

2004 International Supercomputer Conference Most "Innovative Supercomputer Architecture" Award

Green Destiny and Its Evolving Parts: Supercomputing for the Rest of Us

Wu Feng and Chung-Hsing Hsu

Research & Development in Advanced Network Technology (RADIANT)

Computer & Computational Sciences Division

Los Alamos National Laboratory

Outline

- Where is Supercomputing?
- Motivation: Efficiency, Reliability, Availability (ERA)
- A New Flavor of Supercomputing: Supercomputing in Small Spaces
 - ◆ Green Destiny: Origin and Architecture
- Benchmark Results for Green Destiny
- The Evolution of Green Destiny
 - Real-time, Constraint-based Dynamic Voltage Scaling
 - Initial Benchmark Results
- Conclusion

Where is Supercomputing?

(Pictures courtesy of Thomas Sterling, Caltech & NASA JPL)

Metrics for Evaluating Supercomputers

- Performance (i.e., Speed)
 - Metric: <u>Floating-Operations Per Second</u> (FLOPS)
 - ◆ Example: Japanese Earth Simulator, ASCI Thunder & Q.
- Price/Performance → Cost Efficiency
 - ◆ Metric: Cost / FLOPS
 - ◆ Examples: LANL Space Simulator, VT Apple G5 cluster.
- Performance & price/performance are important metrics, but ...

Architectures from the Top 500 Supercomputer List

Top500 (http://www.top500.org/) 2003-11-11

Reliability & Availability of Supercomputers

Systems	CPUs	Reliability & Availability
ASCI Q	8,192	MTBI: 6.5 hrs. 114 unplanned outages/month. HW outage sources: storage, CPU, memory.
ASCI White	8,192	MTBF: 5 hrs. (2001) and 40 hrs. (2003). HW outage sources: storage, CPU, 3rd-party HW.
NERSC Seaborg	6,656	MTBI: 14 days. MTTR: 3.3 hrs. SW is the main outage source. Availability: 98.74%.
PSC Lemieux	3,016	MTBI: 9.7 hrs. Availability: 98.33%.
Google	~15,000	20 reboots/day; 2-3% machines replaced/year. ◆ HW outage sources: storage, memory. Availability: ~100%.

MTBI: mean time between interrupts; MTBF: mean time between failures; MTTR: mean time to restore

Wu Feng feng@lanl.gov

Source: Daniel A. Reed, RENCI & UNC

Chung-Hsing Hsu chunghsu@lanl.gov

Efficiency of Supercomputers

- "Performance" and "Price/Performance" Metrics ...
 - Lower efficiency, reliability, and availability.
 - Higher operational costs, e.g., admin, maintenance, etc.
- Examples
 - Computational Efficiency
 - Relative to Space: Performance/Sq. Ft.
 - Relative to Power: Performance/Watt
 - Relative to Peak: Actual Perf/Peak Perf (see J. Dongarra)
 - ◆ Performance: 2000-fold increase (since the Cray C90).
 - Performance/Sq. Ft.: Only 65-fold increase.
 - Performance/Watt: Only 300-fold increase.
 - Massive construction and operational costs associated with powering and cooling.

Where is Supercomputing?

(Pictures courtesy of Thomas Sterling, Caltech & NASA JPL)

Another Perspective: "Commodity-Use" HPC

- Requirement: Near-100% availability with efficient and reliable resource usage.
 - ◆ E-commerce, enterprise apps, online services, ISPs.
- Problems
 - Frequency of Service Outages
 - 65% of IT managers report that their websites were unavailable to customers over a 6-month period.
 - Cost of Service Outages

MYC stockbroker: \$ 6,500,000/hr

Fbay (22 hours): \$ 225,000/hr

- Amazon.com: \$ 180,000/hr

Social Effects: negative press, loss of customers who "click over" to competitor.

Source: David Patterson, UC-Berkeley

Another Perspective: "Commodity-Use" HPC

- Pharmaceutical, financial, actuarial, retail, aerospace, automotive, science and engineering, data centers.
- Sampling of Consumer Requirements of HPC Systems
 - Myself, LANL (high-performance network simulations)
 Traditional cluster fails weekly, oftentimes more frequently.
 [1] Low Power → Reliability, [2] Space, [3] Performance.
 - Peter Bradley, Pratt & Whitney (CFD, composite modeling)
 [1] Reliability, [2] Transparency, [3] Resource Management
 - Eric Schmidt, Google (instantaneous search)
 - Low power, NOT speed.
 - DRAM density, NOT speed.
 - Availability and reliability, NOT speed.

Outline

- Where is Supercomputing?
- Motivation: Efficiency, Reliability, Availability (ERA)
- A New Flavor of Supercomputing: Supercomputing in Small Spaces
 - Green Destiny: Origin and Architecture
- Benchmark Results for Green Destiny
- The Evolution of Green Destiny
 - ◆ Real-time, Constraint-based Dynamic Voltage Scaling
 - Initial Benchmark Results
- Conclusion

A New Flavor of Supercomputing

- Supercomputing in Small Spaces (http://sss.lanl.gov)
 - First instantiations: Bladed Beowulf
 - MetaBlade (24) and Green Destiny (240).

Goal

- Improve efficiency, reliability, and availability (ERA) in largescale computing systems.
 - Sacrifice a little bit of raw performance.
 - Improve overall system throughput as the system will "always" be available, i.e., effectively no downtime, no hardware failures, etc.
- ◆ Reduce the total cost of ownership (TCO). Another talk ...
- Crude Analogy
 - ◆ Ferrari 550: Wins raw performance but reliability is poor so it spends its time in the shop. Throughput low.
 - Toyota Camry: Loses raw performance but high reliability results in high throughput (i.e., miles driven → answers/month).

How to Improve Efficiency, Los Alamos Reliability & Availability?

- Complementary Approaches
 - Via HW design & manufacturing (e.g., IBM, Transmeta)
 - Via a software reliability layer that assumes underlying hardware unreliability a la the Internet (e.g., Google).
 - Via systems design & integration (e.g., Green Destiny)
- Observation
 - lacktriangle High power α high temperature α low reliability.
 - ◆ Arrhenius' Equation

(circa 1890s in chemistry \rightarrow circa 1980s in computer & defense industries)

- As temperature increases by 10° C ...
 - The failure rate of a system doubles.
- Twenty years of unpublished empirical data.

Moore's Law for Power

Source: Fred Pollack, Intel. New Microprocessor Challenges in the Coming Generations of CMOS Technologies, MICRO32 and Transmeta

Moore's Law for Power

Source: Fred Pollack, Intel. New Microprocessor Challenges in the Coming Generations of CMOS Technologies, MICRO32 and Transmeta

MetaBlade: The Origin of Green Destiny

- Project Conception: Sept. 28, 2001.
 - On a winding drive home through Los Alamos Canyon ...
 the need for reliable compute cycles.
 - Leverage RLX web-hosting servers with Transmeta CPUs.
- Project Implementation: Oct. 9, 2001.
 - Received the "bare" hardware components.
 - ◆ Two man-hours later ...
 - Completed construction of a 24-CPU RLX System 324 (dubbed MetaBlade) and installation of system software.
 - One man-hour later ...
 - Successfully executing a 10-million N-body simulation of a galaxy formation
- Public Demonstration: Nov. 12, 2001 at SC 2001.

MetaBlade: 24 ServerBlade 633s

MetaBlade2: 24 ServerBlade 800s __

(On-loan from RLX for SC 2001)

- MetaBlade Node
 - ◆ 633-MHz Transmeta TM5600
 - ◆ 512-KB cache, 256-MB RAM
 - 100-MHz front-side bus
 - ◆ 3 × 100-Mb/s Ethernet

MetaBlade2 Node

800-MHz Transmeta TM5800

512-KB cache, 384-MB RAM

(128-MB on-board DDR+

256-MB SDR DIMM)

133-MHz front-side bus

 3×100 -Mb/s Ethernet

Performance of an N-body Simulation of Galaxy Formation

MetaBlade: 2.1 Gflops; MetaBlade2: 3.3 Gflops

No failures since Sept 2001 despite no cooling facilities.

- Interest in MetaBlade and MetaBlade2?
 - Continual crowds over the three days of SC 2001.
- Inspiration
 - Build a full 42U rack of MetaBlade clusters.
 - Scale up performance/space to 3500 Mflop/sq. ft.
 - Problem: In 2001, performance per node on MetaBlade was nearly three times worse than the fastest processor at the time.
 - Can we improve performance while maintaining low power? Yes via Transmeta's code-morphing software, which is part of the Transmeta CPU.
 - What is code-morphing software?

Green Destiny Architecture Los Alamos RLX ServerBlade 633 (circa 2000)

Wu Feng feng@lanl.gov http://www.lanl.gov/radiant http://sss.lanl.gov Chung-Hsing Hsu chunghsu@lanl.gov

Transmeta TM5600 CPU: VLIW + CM5

- VLIW Engine
 - Up to four-way issue
 - In-order execution only.
 - Two integer units
 - Floating-point unit
 - Memory unit
 - Branch unit

- VLIW Transistor Count ("Anti-Moore's Law")
 - $\sim \frac{1}{4}$ of Intel PIII $\rightarrow \sim 6x-7x$ less power consumption
 - \bullet Less power \rightarrow lower "on-die" temp. \rightarrow better reliability & availability

Green Destiny Architecture Los Alamos Transmeta TM5x00 CM5

- Code-Morphing Software (CMS)
 - Provides compatibility by dynamically "morphing" x86 instructions into simple VLIW instructions.
 - ◆ Learns and improves with time, i.e., iterative execution.
- High-Performance Code-Morphing Software (HP-CMS)
 - Results (circa 2001)
 - Optimized to improve floating-pt. performance by 50%.
 - □ 1-GHz Transmeta performs as well as a 1.2-GHz PIII-M.
 - ◆ How?

Green Destiny Architecture Los Alamos Low-Power Network Switches

- WWP LE-410: 16 ports of Gigabit Ethernet
- WWP LE-210: 24 ports of Fast Ethernet via RJ-21s
- (Avg.) Power Dissipation / Port: A few watts.

Green Destiny" Bladed Beowulf

(circa 2002)

- A 240-Node Beowulf in One Cubic Meter
- Each Node
 - ◆ 667-MHz Transmeta TM5600 CPU w/ Linux 2.4.x
 - Upgraded to 1-GHz Transmeta TM5800 CPUs
 - 640-MB RAM, 20-GB hard disk, 100-Mb/s Ethernet (up to 3 interfaces)
- Total
 - ◆ 160 Gflops peak (240 Gflops with upgrade)
 - ◆ 150 GB of RAM (expandable to 276 GB)
 - ◆ 4.8 TB of storage (expandable to 38.4 TB)
 - ◆ Power Consumption: Only 3.2 5.2 kW.
- Linpack: 101 Gflops in March 2003.
- Reliability & Availability
 - No unscheduled failures in 24 months.

Outline

- Where is Supercomputing?
- Motivation: Efficiency, Reliability, Availability (ERA)
- A New Flavor of Supercomputing: Supercomputing in Small Spaces
 - ◆ Green Destiny: Origin and Architecture
- Benchmark Results for Green Destiny
- The Evolution of Green Destiny
 - ◆ Real-time, Constraint-based Dynamic Voltage Scaling
 - Initial Benchmark Results
- Conclusion

Gravitational Microkernel on Transmeta CPUs

(Data courtesy of Michael S. Warren, T-6 at Los Alamos National Laboratory.)

Gravitational Microkernel Benchmark (circa June 2002)

Processor	Math sart	Karp sart
500-MHz Intel PIII	87.6	137.5
533-MHz Compaq Alpha EV56	76.2	178.5
633-MHz Transmeta TM5600	115.0	144.6
800-MHz Transmeta TM5800	174.1	296.6
375-MHz IBM Power3	298.5	379.1
1200-MHz AMD Athlon MP	350.7	452.5

Units are in Mflops.

Bottom Line: CPU performance was competitive. Memory bandwidth was not (i.e., 300-350 MB/s with STREAMS).

Treecode Benchmark for n-Body Galaxy Formation

(Data courtesy of Michael S. Warren, T-6 at Los Alamos National Laboratory.)

Year	Site	Machine	CPUs	Gflops	Mflops/CPU
2003	LANL	ASCI QB	3600	2793	775.8
2003	LANL	Space Simulator	288	179.7	623.9
2002	NERSC	IBM SP-3	256	57.70	225.0
2000	LANL	SGI O2K	64	13.10	205.0
2002	LANL	Green Destiny	212	38.90	183.5
2001	<i>SC</i> '01	MetaBlade2	24	3.30	138.0
1998	LANL	Avalon	128	16.16	126.0
1996	LANL	Loki	16	1.28	80.0
1996	SC '96	Loki+Hyglac	32	2.19	68.4
1996	Sandia	ASCI Red	6800	464.90	68.4
1995	JPL	Cray T3D	256	7.94	31.0
1995	LANL	TMC CM-5	512	14.06	27.5

Treecode Benchmark for n-Body Galaxy Formation

(Data courtesy of Michael S. Warren, T-6 at Los Alamos National Laboratory.)

				100			
Year	Site	Machine	CPUs	Gflops	Mflops/CPU		
2003	LANL	ASCI QB	3600	2793	775.8		
2003	LANL	Space Simulator	288	179.7	623.9		
2002	NERSC	IBM SP-3	256	57.70	225.0		
2000	LANL	SGI O2K	64	13.10	205.0		
2002	LANL	Green Destiny	212	38.90	183.5		
2001	<i>SC</i> '01	Meto ?	24	3.30	138.0		
1998	LANL			16 16	126.0		
1996 Upgraded "Green Destiny" (Dec. 2002) 80.0							
1	58 Gflops → 274 Mflops/CPU						
(Balance: 1 Mflop - 1 MB/s - 1 Mb/s							
1995							
1995	LANL	TAIO		11.06	27.5		

- Efficiency, Reliability, and Availability (ERA)
 - Total Cost of Ownership
 - Computational Efficiency
 - Relative to Space: Performance/Sq. Ft.
 - Relative to Power: Performance/Watt
 - Reliability
 - MTBF: Mean Time Between Failures
 - Availability
 - Percentage of time that resources are available for HPC.

Parallel Computing Platforms Los Alamo (An "Apples-to-Oranges" Comparison)

- Avalon (1996)
 - ◆ 140-CPU Traditional Beowulf Cluster
- ASCI Red (1996)
 - ◆ 9632-CPU *MPP*
- ASCI White (2000)
 - ◆ 512-Node (8192-CPU) Cluster of SMPs
- Green Destiny (2002)
 - ◆ 240-CPU Bladed Beowulf Cluster

Parallel Computing Platforms Los Alam Running the N-body Code

Machine	Avalon Beowulf	ASCI Red	ASCI White	Green Destiny
Year	1996	1996	2000	2002
Performance (Gflops)	18	600	2500	39
Area (ft²)	120	1600	9920	6
Power (kW)	18	1200	2000	5
DRAM (GB)	36	585	6200	150
Disk (TB)	0.4	2.0	160.0	4.8
DRAM density (MB/ft²)	300	366	625	25000
Disk density (GB/ft²)	3.3	1.3	16.1	800.0
Perf/Space (Mflops/ft²)	150	375	252	6500
Perf/Power (Mflops/watt)	1.0	0.5	1.3	7.5

Parallel Computing Platforms Los Alan Running the N-body Code

Machine	Avalon Beowulf	ASCI Red	ASCI White	Green Destiny
Year	1996	1996	2000	2002
Performance (Gflops)	18	600	2500	39
Area (ft²)	120	1600	9920	6
Power (kW)	18	1200	2000	5
DRAM (GB)	36	585	6200	150
Disk (TB)	0.4	2.0	160.0	4.8
DRAM density (MB/ft²)	300	366	625	25000
Disk density (GB/ft²)	3.3	1.3	16.1	800.0
Perf/Space (Mflops/ft²)	150	375	252	6500
Perf/Power (Mflops/watt)	1.0	0.5	1.3	7.5

Parallel Computing Platforms Alamos Running the N-body Code

Machine	Avalon Beowulf	ASCI Red	ASCI White	Green Destiny+
Year	1996	1996	2000	2002
Performance (Gflops)	18	600	2500	58
Area (ft²)	120	1600	9920	6
Power (kW)	18	1200	2000	5
DRAM (GB)	36	585	6200	150
Disk (TB)	0.4	2.0	160.0	4.8
DRAM density (MB/ft²)	300	366	625	25000
Disk density (GB/ft²)	3.3	1.3	16.1	0.008
Perf/Space (Mflops/ft²)	150	375	252	9667
Perf/Power (Mflops/watt)	1.0	0.5	1.3	11.6

Green Destiny vs. Earth Simulator: LINPACK

Machine	Green Destiny+	Earth Simulator
Year	2002	2002
LINPACK Performance (Gflops)	101	35,860
Area (ft²)	6	17,222 * 2
Power (kW)	5	7,000
Cost efficiency (\$/Mflop)	3.35	11.15
Space efficiency (Mflops/ft²)	16,833	1,041
Power efficiency (Mflops/watt)	20.20	5.13

Disclaimer: This is not a fair comparison. Why?

- (1) Price and the use of area and power do *not* scale linearly.
- (2) Goals of the two machines are different.

Summary of ERA Performance Metrics for ...

- Green Destiny
 - Computational Efficiency
 - Relative to Space: Performance/Sq. Ft.
 Up to 60x better.
 - Relative to Power: Performance/Watt Up to 20x better.
 - Reliability
 - MTBF: Mean Time Between Failures
 "Infinite"
 - Availability
 - Percentage of time that resources are available for HPC.
 Nearly 100%.

Outline

- Where is Supercomputing?
- Motivation: Efficiency, Reliability, Availability (ERA)
- A New Flavor of Supercomputing: Supercomputing in Small Spaces
 - ◆ Green Destiny: Origin and Architecture
- Benchmark Results for Green Destiny
- The Evolution of Green Destiny
 - ◆ Real-time, Constraint-based Dynamic Voltage Scaling
 - Initial Benchmark Results
- Conclusion

The Evolution of Green Destiny

- Problems with Green Destiny (even with HP-CMS)
 - An architectural approach that ties us to a specific vendor, i.e., RLX, who is headed in a different direction.
 - Raw performance of a compute node.
 - Up to two times worse than the fastest CPU at the time of construction (2002). Now, upwards of four times worse (2004).

Solution

- Transform our architectural approach into a software-based one that works across a wide range of processors.
- Start with higher-performing commodity components to achieve performance goals but use the above softwarebased technique to reduce power consumption dramatically.

But How?

Dynamic voltage scaling + efficient scheduling algorithm.

Dynamic Voltage Scaling (DVS)

- DVS Technique
 - Trades CPU performance for power reduction by allowing the CPU supply voltage and/or frequency to be adjusted at run-time.
- Why is DVS important?
 - ◆ Recall: Moore's Law for Power.
 - CPU power consumption is directly proportional to the square of the supply voltage and to frequency.
- DVS Algorithm
 - Determines when to adjust the current frequencyvoltage setting and what the new frequency-voltage setting should be.

Motivation for Real-Time Constraint-Based DVS

- Key Observation
 - ◆ The execution time of many programs are insensitive to the CPU speed change. e.g., NAS IS benchmark.

http://sss.lanl.gov

Approach to Real-Time Constraint-Based DVS

Key Idea

 Applying DVS to these programs will result in significant power and energy savings at a minimal performance impact.

Problem Formulation for Real-Time Constraint-Based DVS

- Key Challenge
 - Find a performance-constrained, energy-optimal DVS schedule on a realistic processor in real time.
- Previous Related Work

Targeted at Embedded Systems ...

- \bullet $P \alpha V^2 f$
 - 1. $P \alpha f^3$ [assumes $V \alpha f$]
 - Discretize V. Use continuous mapping function, e.g., f = g(V), to get discrete f, e.g., 512 MHz, 894 MHz. Solve as ILP (offline) problem.
 - 3. Discretize V and f, e.g., AMD frequency-voltage table.
- Simulation vs. Real Implementation
 - Problem with Simulation: Simplified Power Model
 - Does not account for leakage power.
 - Assumes zero-time switching overhead between (f, V) settings.
 - Assumes zero-time to construct a DVS schedule.
 - Does not assume realistic CPU support.

Creating an Energy-Optimal DVS Schedule

Solve the following constraint-based problem:

$$E = \min\{\sum_{i} r_i \cdot E_i : \sum_{i} r_i \cdot T_i \le d, \sum_{i} r_i = 1, r_i \ge 0\}$$

Theorem for Real-Time Constraint-Based DVS

 If the execution-time vs. energy curve is convex, then the energy-optimal DVS schedule can be constructed in constant time.

Emulating Frequencies for an Energy-Optimal DVS Schedule

$$E = \gamma \cdot E_j + (1 - \gamma) \cdot E_{j+1}$$
 where

$$\gamma = \frac{d - T_{j+1}}{T_j - T_{j+1}} \quad \text{and} \quad T_{j+1} < d \le T_j$$

Energy Usage(%)

DVS Scheduling Algorithm

Input: deadline d and performance model T(f)

Output: deadline-constrained energy-optimal DVS schedule

Algorithm:

1. Figure out f_j and f_{j+1} .

$$T(f_{j+1}) < d \le T(f_j)$$

2. Compute the ratio γ .

$$\gamma = \frac{d - T_{j+1}}{T_j - T_{j+1}}$$

- 3. Execute for γ percent of time at f_j
- 4. Execute for 1γ percent of time at f_{i+1} .

DVS Scheduling Algorithm

$$\frac{T(f)}{T(f_{max})} = \beta \cdot \frac{f_{max}}{f} + (1 - \beta)$$

To guarantee the execution-time vs. energy curve is convex, the following theorem is useful:

Theorem. If the above performance model holds and

$$\frac{P_1 - 0}{f_1 - 0} \le \frac{P_2 - P_1}{f_2 - f_1} \le \frac{P_3 - P_2}{f_3 - f_2} \le \dots \le \frac{P_n - P_{n-1}}{f_n - f_{n-1}}$$

then

$$0 \ge \frac{E_2 - E_1}{T_2 - T_1} \ge \frac{E_3 - E_2}{T_3 - T_2} \ge \dots \ge \frac{E_n - E_{n-1}}{T_n - T_{n-1}}$$

Initial Experimental Results

- Tested on a mobile AMD Athlon XP system with 5 settings
- Measured through Yokogawa WT210 digital power meter
- $\beta \in [0, 1]$ indicates performance sensitivity to changes in CPU speed, with 1 being most sensitive.

program	β	T_{rel}/E_{rel}
swim	0.02	1.02/0.46
tomcatv	0.24	1.01/0.80
su2cor	0.27	1.02/0.81
compress	0.37	1.05/0.80
mgrid	0.51	1.04/0.84
vortex	0.65	1.06/0.85
turb3d	0.79	1.04/0.92
go	1.00	1.05/0.93

Conclusion

- Efficiency, reliability, and availability will be the key issues of this decade.
- Performance Metrics for Green Destiny (circa 2002)
 - ◆ Performance: 2x to 2.5x worse than fastest AMD/Intel.
 - ◆ Price/Performance: 2x to 2.5x worse.
 - Overall Efficiency (Total Price-Performance Ratio)
 - □ 1.5x to 2.0x better. See ACM Queue, Oct. 2003.
 - ◆ Power Efficiency (Perf/Power): 10x to 20x better.
 - Space Efficiency (Perf/Space): 20x to 60x better.
 - Reliability: "Infinite"
 - Availability: Nearly 100%.

Conclusion

- Problem with Green Destiny
 - Architectural solution that sacrifices too much performance.
- Evolution of Green Destiny: Software-Based Solution
 - ◆ Real-time, constraint-based dynamic voltage scaling.
 - Performance on AMD XP-M
 - Power reduction of as much as 56% with only a 2% loss in performance.
 - Promising initial results on AMD Athlon-64 and Opteron.
- Future Directions
 - lacktriangle Calculation of eta at run-time and at finer granularities.
 - Refinement of the DVS scheduling algorithm.
 - Profiling on multiprocessor platforms and benchmarks.

Acknowledgments

- Contributions to Green Destiny
 - Mike Warren, Eric Weigle, Mark Gardner, Adam Engelhart, Gus Hurwitz
- Encouragement & Support
 - Gordon Bell, Chris Hipp, and Linus Torvalds
- Funding Agencies
 - ◆ Los Alamos Computer Science Institute
 - ◆ IA-Linux at Los Alamos National Laboratory

Supercomputing For the Rest of Us ...

http://sss.lanl.gov

Wu Feng

Research and Development in Advanced Network Technology

http://www.lanl.gov/radiant