

Green Destiny: A 240-Node Compute Cluster in One Cubic Meter

Wu-chun (Wu) Feng

Research & Development in Advanced Network Technology (RADIANT)

Computer & Computational Sciences Division

Los Alamos National Laboratory

Outline

- Where is Supercomputing?
 - Architectures from the Top 500.
- Evaluating Supercomputers
 - Metrics: Performance & Price/Performance
- An Alternative Flavor of Supercomputing
 - ◆ Supercomputing in Small Spaces → Bladed Beowulf
- Architecture of a Bladed Beowulf
- Performance Metrics
- Benchmark Results
- Discussion & Status
- Conclusion
- Acknowledgements & Media Coverage

Flavors of Supercomputing

(Picture Source: Thomas Sterling, Caltech & NASA JPL)

Architectures from the Top 500 Supercomputer List

Int Hoa Int Ho

Metrics for Evaluating Supercomputers

- Performance
 - Metric: <u>Floating-Operations Per Second</u> (FLOPS)
 - ◆ Example: Japanese Earth Simulator
- Price/Performance → Cost Efficiency
 - Metric: Cost / FLOPS
 - ◆ Examples: SuperMike, GRAPE-5, Avalon.

Performance (At Any Cost)

Japanese Earth Simulator (\$400M)

	Performance	Price/Perf
Peak	40.00 Tflop	\$10.00/Mflop
Linpack	35.86 Tflop	\$11.15/Mflop
n-Body	29.50 Tflop	\$13.56/Mflop
Climate	26.58 Tflop	\$15.05/Mflop
Turbulence	16.40 Tflop	\$24.39/Mflop
Fusion	14.90 Tflop	\$26.85/Mflop

Price/Performance

◆ LSU's SuperMike (2002: \$2.8M)

	Performance	Price/Perf
Linpack	2210 Gflops	\$1.27/Mflop

◆ U. Tokyo's GRAPE-5 (1999: \$40.9K)

	Performance	Price/Perf
N-body	5.92 Gflops	\$6.91/Mflop

◆ LANL's Avalon (1998: \$152K)

	Performance	Price/Perf	
Peak	149.40 <i>G</i> flops	\$1.02/Mflop	
Linpack	19.33 <i>G</i> flops	\$7.86/Mflop	

The Need for New Supercomputing Metrics

- Analogy: Buying a car. Which metric to use?
 - Raw performance, price/performance, fuel efficiency, reliability, size, etc.
- Issues with today's supercomputing metrics
 - ◆ Focus: Performance & price/performance
 - Important metrics, but ...

Flavors of Supercomputing

(Picture Source: Thomas Sterling, Caltech & NASA JPL)

Why ERA Metrics?

Observations

- Strong hints of the tradeoffs that come with "performance" and "price/performance" metrics ...
 - Lower efficiency, reliability, and availability.
 - Higher operational costs, e.g., admin, maintenance, etc.
- ◆ Institutional consumers that use clusters as a tool ...
 - Pharmaceutical, financial, actuarial, retail, aerospace, data centers for web-server farms.
 - A couple of informational data points:
 - Peter Bradley, Pratt & Whitney: IEEE Cluster 2002.
 - Reliability, transparency, and ease of use.
 - Eric Schmidt, Google: IEEE Hot Chips & NY Times, 2002.
 - Low power, NOT speed.
 - DRAM density, NOT speed.

An Alternative Flavor of Supercomputing

- Supercomputing in Small Spaces (http://sss.lanl.gov)
 - ◆ First instantiation: Bladed Beowulf
 - MetaBlade (24), MetaBlade2 (24), and Green Destiny (240).
- Goal
 - Improve efficiency, reliability, and availability (ERA) in large-scale computing systems.
 - Sacrifice a little bit of raw performance.
 - Improve overall system throughput as the system will "always" be available, i.e., effectively no downtime, no hardware failures, etc.
 - Reduce the total cost of ownership (TCO).
- Analogy
 - ◆ Ferrari 550: Wins raw performance but reliability is poor so it spends its time in the shop. Throughput low.
 - Toyota Camry: Loses raw performance but high reliability results in high throughput (i.e., miles driven).

Architecture of a Bladed Beowulf

A Fundamentally Different Approach to High-Performance Computing

Transmeta TM5600 CPU: VLIW + CM5

VLIW Engine

- Up to four-way issue
 - In-order execution only.
 - 20% reduction on transistor count w.r.t superscalar arch.
- Two integer units
- Floating-point unit
- Memory unit
- Branch unit

- VLIW Transistor Count ("Anti-Moore's Law")
 - $\sim \frac{1}{4}$ of Intel PIII $\rightarrow \sim 6x-7x$ less power dissipation
 - \bullet Less power \rightarrow lower "on-die" temp. \rightarrow better reliability & availability

Transmeta TM5x00 Comparison

Intel P4	MEM	MEM	2xALU	2xALU	FPU	SSE	SSE	Br
Transmeta TM5x00	MEM		2xALU		FPU			Br

- Current-generation Transmeta TM5800 performs comparably to an Intel PIII over iterative scientific codes on a clock-for-clock-cycle basis.
- Next-generation Transmeta CPU rectifies the above mismatch in functional units.

Transmeta TM5x00 CMS

- Code Morphing Software (CMS)
 - Provides compatibility by dynamically "morphing" x86 instructions into simple VLIW instructions.
 - ◆ Learns and improves with time, i.e., iterative execution.
- Modules for CMS
 - ◆ Interpreter
 - Interprets x86 instructions (a la Java).
 - Filters infrequently executed code from being optimized.
 - Collects run-time statistical information.
 - ◆ Translator
 - Re-compiles x86 instructions into optimized VLIW instructions (a la JIT compiler).

RLX ServerBlade 633 (circa 2000)

RLX System[™] 324

3U chassis that houses 24 blades

- · 3U vertical space
 - 5.25" × 17.25" × 25.2"
- Two hot-pluggable
 450W power supplies
 - Load balancing
 - Auto-sensing fault tolerance
- · System midplane
 - Integration of system power, management, and network signals.
 - Elimination of internal system cables.
 - Enabling efficient hotpluggable blades.
- Network cards
 - Hub-based management.
 - Two 24-port interfaces.

"Green Destiny" Bladed Beowulf

- A 240-Node Beowulf in One Cubic Meter
- Each Node
 - 667-MHz Transmeta TM5600 CPU
 - Upgrade to 933-MHz Transmeta TM5800 CPUs
 - ◆ 640-MB RAM
 - 20-GB hard disk
 - 100-Mb/s Ethernet (up to 3 interfaces)
- Total
 - ◆ 160 Gflops peak (224 Gflops with upgrade)
 - 240 nodes
 - ◆ 150 GB of RAM (expandable to 276 GB)
 - ◆ 4.8 TB of storage (expandable to 38.4 TB)

Who Cares? So What? It's a Smaller Beowulf ...

- Goal
 - Improve efficiency, reliability, and availability (ERA) in large-scale computing systems.
 - Reduce the total cost of ownership (TCO).
- How to quantify ERA?
- What exactly is TCO?
 - Can it be concretely quantified?
 - Or is it a "foofy" metric?

What is TCO?

- Cost of AcquisitionFixed, one-time cost
 - \$\$\$ to buy the supercomputer.
- Cost of Operation ← Variable, recurring cost
 - Administration
 - \$\$\$ to build, integrate, configure, maintain, and upgrade the supercomputer over its lifetime.
 - ◆ Power & Cooling
 - \$\$\$ in electrical power and cooling that is needed to maintain the operation of the supercomputer.
 - Downtime
 - \$\$\$ lost due to the downtime (unreliability) of the system.
 - Space
 - \$\$\$ spent to house the system.

Total Price-Performance Ratio

- Price-Performance Ratio
 - ◆ Price = Cost of Acquisition
 - Performance = Floating-Point Operations Per Second
- <u>Total Price-Performance Ratio</u> (ToPPeR)
 - ◆ Total Price = Total Cost of Ownership (TCO)
 - Performance = Floating-Point Operations Per Second

- Why is TCO hard to quantify?
 - Components
 - Acquisition + Administration + Power + Downtime + Space

- Why is TCO hard to quantify?
 - Components
 - Acquisition + Administration + Power + Downtime + Space

Too Many Hidden Costs
Institution-specific

- Why is TCO hard to quantify?
 - Components
 - Acquisition + Administration + Power + Downtime + Space

Too Many Hidden Costs
Institution-Specific

- Traditional Focus: Acquisition (i.e., equipment cost)
 - Cost Efficiency: Price/Performance Ratio

- Why is TCO hard to quantify?
 - Components
 - Acquisition + Administration + Power + Downtime + Space

Institution-Specific
Too Many Hidden Costs

- Traditional Focus: Acquisition (i.e., equipment cost)
 - Cost Efficiency: Price/Performance Ratio
- New Quantifiable Efficiency Metrics
 - Power Efficiency: Performance/Power Ratio
 - Space Efficiency: Performance/Space Ratio

Moore's Law for Power Dissipation

Source: Fred Pollack, Intel. New Microprocessor Challenges in the Coming Generations of CMOS Technologies, MICRO32 and Transmeta

Moore's Law for Power Dissipation

Source: Fred Pollack, Intel. New Microprocessor Challenges in the Coming Generations of CMOS Technologies, MICRO32 and Transmeta

Power, Temperature, Reliability

- What's wrong with high power?
 - ◆ Costs \$\$\$ to power such a system; costs \$\$\$ to cool it.
 - Causes reliability problems. Why?
 - Higher power density implies higher temperatures.
- Arrhenius' Equation (circa 1980s)
 - ◆ As temperature increases by 10° C ...
 - The failure rate of a system doubles.
 - The reliability of a system is cut in half.
 - Twenty years of unpublished empirical data.

Empirical Data on Temperature

From off to system boot-up, after 25 seconds:

Processor	Clock Freq.	Voltage	Peak Temp.*
Intel Pentium III-M	500 MHz	1.6 V	252° F (122° <i>C</i>)
Transmeta Crusoe TM5600	600 MHz	1.6 V	147° F (64° C)

^{*}Peak temperature measured with *no* cooling.

- Arrehenius' Equation
 - Every 10° C increase, doubles the failure rate.

Implication: Without cooling facilities, PIII-M is 32 times more likely to fail!

Summary of Performance Metrics

- Total Price/Performance Ratio (ToPPeR)
 - Price is more than the cost of acquisition.
 - Operational costs: sys admin, power & cooling, space, downtime.
- Performance/Power Ratio → "Power Efficiency"
 - How efficiently does a computing system use energy?
 - How does this affect reliability and availability?
 - Higher Power Dissipation α Higher Temperature α Higher Failure Rate
- Performance/Space Ratio → "Space Efficiency"
 - How efficiently does a computing system use space?
 - Performance has increased by 2000 since the Cray C90; performance/sq. ft. has only increased by 65.

Gravitational Microkernel Benchmark (circa June 2002)

Processor	Math sart	Karp sart
500-MHz Intel PIII	87.6	137.5
533-MHz Compaq Alpha EV56	76.2	178.5
633-MHz Transmeta TM5600	115.0	144.6
800-MHz Transmeta TM5800	174.1	296.6
375-MHz IBM Power3	298.5	379.1
1200-MHz AMD Athlon MP	350.7	452.5

Units are in Mflops.

Memory Bandwidth for Transmetas (via STREAMS): 350 MB/s

Treecode Benchmark for n-Body

Site	Machine	CPUs	Gflops	Mflops/CPU
NERSC	IBM SP-3	256	57.70	225.0
LANL	SGI O2K	64	13.10	205.0
LANL	Green Destiny	212	38.90	183.5
<i>SC</i> '01	MetaBlade2	24	3.30	138.0
LANL	Avalon	128	16.16	126.0
LANL	Loki	16	1.28	80.0
NASA	IBM SP-2	128	9.52	74.4
SC'96	Loki+Hyglac	32	2.19	68.4
Sandia	ASCI Red	6800	464.90	68.4
CalTech	Naegling	96	5.67	59.1
NRL	TMC CM-5E	256	11.57	45.2

"Cost Efficiency" Metrics

- Price-Performance Ratio
 - ◆ Price = Cost of Acquisition
- ✓ Performance = Floating-Point Operations Per Second
- <u>Total Price-Performance Ratio</u> (ToPPeR)
 - ◆ Total Price = Total Cost of Ownership (TCO)
- ✓ ◆ Performance = Floating-Point Operations Per Second

ToPPeR Metric

 ToPPeR: <u>Total Price-Performance Ratio</u> (over the lifetime of a 24-node cluster in a 80° F environment)

Cost Parameter	Alpha	Athlon	PIII	P4	TM5600
Acquisition	\$17K	\$15K	\$16K	\$17K	\$26K
System Admin	\$60K	\$60K	\$60K	\$60K	\$5K
Power & Cooling	\$11K	\$6K	\$6K	\$11K	\$2K
Space	\$8K	\$8K	\$8K	\$8K	\$2K
Downtime	\$12K	\$12K	\$12K	\$12K	\$1K
TCO (four yrs)	\$108K	\$101K	\$102K	\$108K	\$36K

- Problem: Too many hidden costs & institution-specific
- ToPPeR metric is approximately 2x better ...

ToPPeR Metric

 ToPPeR: <u>Total Price-Performance Ratio</u> (over the lifetime of a 24-node cluster in a 80° F environment)

Cost Parameter	Alpha	Athlon	PIII	P4	TM5600
Acquisition	\$17K	\$15K	\$16K	\$17K	\$26K
System Admin	\$60	-			\$5K
Power & Ca As volumes increase, \$2K					
space prices of bladed solutions \$2K					
Downtime will come down.					\$1K
TCO (four yrs)	\$108K	ŞIVIK	\$102K	\$108K	\$36K

- Problem: Too many hidden costs & institution-specific
- ToPPeR metric is approximately 2x better ...

Price/Performance vs. ToPPeR

- Green Destiny
 - ◆ Price/Performance Ratio
 - \$26K / 38.9 Gflops = \$0.67 / Mflop
 - ◆ Total Price/Performance Ratio (ToPPeR)
 - \$36K / 38.9 Gflops = \$0.92 / Mflop
- But ToPPeR is a "foofy" metric ...

Parallel Computing Platforms

- Avalon (1996)
 - ◆ 140-Node Traditional Beowulf Cluster
- ASCI Red (1996)
 - ◆ 9632-CPU MPP
- ASCI White (2000)
 - ◆ 512-Node (8192-CPU) Cluster of SMPs
- Green Destiny (2002)
 - ◆ 240-Node Bladed Beowulf Cluster

Parallel Computing Platforms Running the N-body Code

Machine	Avalon Beowulf	ASCI Red	ASCI White	Green Destiny
Year	1996	1996	2000	2002
Performance (Gflops)	18	600	2500	39
Area (ft²)	120	1600	9920	6
Power (kW)	18	1200	2000	5
DRAM (GB)	36	585	6200	150
Disk (TB)	0.4	2.0	160.0	4.8
DRAM density (MB/ft²)	300	366	625	25000
Disk density (GB/ft²)	3.3	1.3	16.1	800.0
Power density (watts/ft²)	150	750	202	833
Space efficiency (Mflops/ft2)	150	375	252	6500
Power efficiency (Mflops/watt)	1.0	0.5	1.3	7.5

Parallel Computing Platforms Running the N-body Code

Machine	Avalon Beowulf	ASCI Red	ASCI White	Green Destiny
Year	1996	1996	2000	2002
Performance (Gflops)	18	600	2500	39
Area (ft²)	120	1600	9920	6
Power (kW)	18	1200	2000	5
DRAM (GB)	36	585	6200	150
Disk (TB)	0.4	2.0	160.0	4.8
DRAM density (MB/ft²)	300	366	625	25000
Disk density (GB/ft²)	3.3	1.3	16.1	800.0
Power density (watts/ft²)	150	750	202	833
Space efficiency (Mflops/ft2)	150	375	252	6500
Power efficiency (Mflops/watt)	1.0	0.5	1.3	7.5

Green Destiny vs. Japanese Earth Simulator

Machine	Green Destiny+	Earth Simulator	
Year	2002	2002	
LINPACK Performance (Gflops)	144 (ext.)	35,860	
Area (ft²)	6	17,222	
Power (kW)	5	7,000	
Cost efficiency (\$/Mflop)	2.33	11.15	
Space efficiency (Mflops/ft²)	24,000	2,085	
Power efficiency (Mflops/watt)	28.8	5.13	

Disclaimer: This is not exactly a fair comparison. Why?

- (1) LINPACK performance is extrapolated for Green Destiny+.
- (2) Use of area and power does not scale linearly.

Discussion: Interesting Tidbits

- DARPA Contributes \$2M to IBM's Low Power Center in Aug. 2001
 - http://www.computerworld.com/industrytopics/defense/story/0,10801, 73289,00.html
- Transmeta performance on N-body code can match Intel performance on a clock-for-clock-cycle basis.
 - Problem: Fastest Transmeta? Fastest Intel?
- Low component count on blade server enhances reliability.
 - ◆ 100 parts per RLX node vs. 800-1000 parts per typical node.
- Intel-based Bladed Beowulf: 18 nodes in 3U
 - 80° F environment: "Silent" failure on LINPACK.
 - 1/3 of nodes inaccessible.
 - ◆ 65 ° F environment: ~20% better performance vs. 933-MHz Transmeta.
- Why 10/100? GigE has been available for two years now.
 - In 2000-01, GigE ~12-15 W. Now, GigE ~6-8W?
- Systems community vs. applications community.

Status

Recent Work

- April 2002: Assembled and integrated a 240-node Beowulf in one cubic meter called *Green Destiny*.
- July 2002: Worked with Transmeta to demonstrate comparable performance to similarly-clocked Intels.
- ◆ July 2002: Worked with DOE SciDAC-funded 3-D Supernova project to demo "base code" on Green Destiny. (A verticallyintegrated solution from hardware on up to the application.)
- ◆ August 2002: Completed mpiBLAST code. Presented at IEEE Bioinformatics. Demonstrated super-linear speed-up.

Future Work

- Demo first 3-D supernova on a Linux-based cluster at SC.
- Work with additional code teams, e.g., climate modeling, computational fluid dynamics, large-scale molecular dynamics.
- Upgrade Green Destiny processors from 667 MHz to 933 MHz.

Conclusion

- New Performance Metrics
 - Overall Efficiency
 - ToPPeR: Total Price-Performance Ratio
 - Power Efficiency
 - Performance-Power Ratio
 - Space Efficiency
 - Performance-Space Ratio
- Predictions
 - Traditional clustering and supercomputing as we know it will NOT scale to petaflop computing due to issues of efficiency, reliability, and availability.
 - "Supercomputing in Small Spaces" is a single step in the right direction ...

Conclusion

- Keeping It In Perspective
 - The "Supercomputing in Small Spaces" project
 (http://sss.lanl.gov) is not meant to replace today's large supercomputers.
 - Focus on metrics related to efficiency, reliability, and availability (ERA) rather than raw performance.
 - i.e., SSS = "Toyota Camry" of supercomputing.
 - Works particularly well as a departmental cluster (or even institutional cluster if there exists power and space constraints).

Acknowledgments

- Technical Co-Leads
 - Mike Warren and Eric Weigle
- Contributions
 - Mark Gardner, Adam Engelhart, Gus Hurwitz
- Enablers
 - ◆ J. Thorp, A. White, R. Oldehoeft, and D. Lora (LACSI)
 - ♦ W. Feiereisen and S. Lee (CCS Division Office)
- Funding Agencies
 - ◆ LACSI
 - ◆ IA-Linux

- Encouragement & Support
 - Gordon Bell, Chris Hipp, Linus Torvalds

The "Hype": A Sampling of Press Coverage

- "Not Your Average Supercomputer," Communications of the ACM, 8/02.
- "At Los Alamos, Two Visions of Supercomputing," The New York Times, 6/25/02.
- "Two Directions for the Future of Supercomputing," slashdot.org, 6/25/02.
- "Researchers Deliver Supercomputing in Smaller Package," Yahoo! Finance, 6/4/02.
- "Computer World Faces Heat Wave," Santa Fe New Mexican, 6/3/02.
- "Supercomputing Coming to a Closet Near You?" HPCwire, 5/31/02.
- "Smaller, Slower Supercomputers May Someday May Win The Race," HPCwire, 5/31/02.
- "Supercomputing Coming to a Closet Near You?" PCworld.com, 5/27/02.
- "Bell, Torvalds Usher Next Wave of Supercomputing," HPCwire, 5/24/02.
- "Supercomputing Cut Down to Size," Personal Computer World, 5/22/02.
- "Bell, Torvalds Usher Next Wave of Supercomputing," CNN.com, 5/21/02.
- "Transmeta's Low Power Finds Place in Supercomputers," ZDNet News, 5/20/02.
- "Transmeta Blades Power Landmark Supercomputer Breakthrough," The Register, 5/20/02.

SUPERCOMPUTING in SMALL SPACES

http://sss.lanl.gov

Wu-chun (Wu) Feng

Research and Development in Advanced Network Technology

http://www.lanl.gov/radiant