
synergy.cs.vt.edu	

CU2CL: An Automated CUDA-to-
OpenCL Source-to-Source Translator

Wu FENG

Dept. of Computer Science and Dept. of Electrical & Computer Engineering
NSF Center for High-Performance Reconfigurable Computing (CHREC)

Center for High-End Computing Systems (CHECS)

© W. Feng, May 2012
wfeng@vt.edu, 540.231.1192

synergy.cs.vt.edu	

Paying For Performance

•  “The free lunch is over...” †

–  Programmers can no longer expect substantial increases
in single-threaded performance.

–  The burden falls on developers to exploit parallel hardware
for performance gains.

•  How do we lower the cost of concurrency?

© W. Feng, May 2012
wfeng@vt.edu, 540.231.1192

† H. Sutter, “The Free Lunch Is Over: A Fundamental Turn Toward Concurrency in Software,” Dr. Dobb’s
Journal, 30(3), March 2005. (Updated August 2009.)

synergy.cs.vt.edu	

The Berkeley View †
•  Traditional Approach

–  Applications that target existing
hardware and programming models

•  Berkeley Approach
–  Hardware design that keeps future

applications in mind
–  Basis for future applications?

13 computational dwarfs
A computational dwarf is a pattern of
communication & computation that is
common across a set of applications.

© W. Feng, May 2012
wfeng@vt.edu, 540.231.1192

† Asanovic, K., et al. The Landscape of Parallel Computing Research: A View from Berkeley. Tech. Rep. UCB/EECS-2006-183,
University of California, Berkeley, Dec. 2006.

Dense Linear
Algebra

Sparse Linear
Algebra

Spectral
Methods

N-Body Methods

Structured
Grids

Unstructured
Grids

Monte Carlo  MapReduce

Combinational Logic
Graph Traversal
Dynamic Programming
Backtrack & Branch+Bound
Graphical Models
Finite State Machine

and

synergy.cs.vt.edu	

Example of a Computational Dwarf: N-Body

•  N-Body problems are studied in
–  Cosmology, particle physics, biology, and engineering

•  All have similar structures
•  An N-Body benchmark can
 provide meaningful insight

 to people in all these fields
•  Optimizations may be
 generally applicable as well

© W. Feng, May 2012
wfeng@vt.edu, 540.231.1192

GEM:
Molecular Modeling

RoadRunner Universe:
Astrophysics

synergy.cs.vt.edu	

OpenDwarfs (a.k.a. OpenCL and the 13 Dwarfs)
https://github.com/opendwarfs/OpenDwarfs	

•  Provide common algorithmic methods, i.e., dwarfs, in a language that is “write
once, run anywhere” (CPU, GPU, or even FPGA), i.e., OpenCL

•  Part of a larger umbrella project (2008-2012) funded by the
 NSF Center for High-Performance Reconfigurable Computing

© W. Feng, May 2012
wfeng@vt.edu, 540.231.1192

synergy.cs.vt.edu	

Status of OpenCL & the 13 Dwarfs
Dwarf Done

Dense linear algebra LU Decomposition

Sparse linear algebra Matrix Multiplication

Spectral methods FFT

N-Body methods GEM

Structured grids SRAD

Unstructured grids CFD solver

MapReduce

Combinational logic CRC

Graph traversal Breadth-First Search (BFS)

Dynamic programming Needleman-Wunsch

Backtrack and branch-and-bound

Graphical models Hidden Markov Model

Finite state machines Temporal Data Mining

© W. Feng, May 2012
wfeng@vt.edu, 540.231.1192

88x  371x

2009 – 2011

synergy.cs.vt.edu	

Our Solutions

•  Functional Portability (2 years  real time)
–  CU2CL (pronounced as “cuticle”)
 An Automated CUDA-to-OpenCL Source-to-Source Translator
 OpenMP  OpenCL

 OpenCL  (AutoESL+ GCC)  FPGA

•  Performance Portability (88x  371x)
–  M. Daga, T. Scogland, and W. Feng, “Architecture-Aware Mapping and

Optimizations on a 1600-Core GPU,” 17th IEEE Int’l Conf. on Parallel and
Distributed Systems, December 2011.

© W. Feng, May 2012
wfeng@vt.edu, 540.231.1192

synergy.cs.vt.edu	

Our Solutions

•  Functional Portability (2 years  real time)
–  CU2CL (pronounced as “cuticle”)
 An Automated CUDA-to-OpenCL Source-to-Source Translator
 OpenMP  OpenCL

 OpenCL  (AutoESL+ GCC)  FPGA

•  Performance Portability (88x  371x)
–  M. Daga, T. Scogland, and W. Feng, “Architecture-Aware Mapping and

Optimizations on a 1600-Core GPU,” 17th IEEE Int’l Conf. on Parallel and
Distributed Systems, December 2011.

© W. Feng, May 2012
wfeng@vt.edu, 540.231.1192

synergy.cs.vt.edu	

Forecast

•  Motivation & Background
•  CU2CL: A CUDA-to-OpenCL Source-to-Source Translator

–  Goals & Background
–  Architecture
–  Evaluation

  Coverage, Translation Time, and Performance

•  Future Work
•  Summary

© W. Feng, May 2012
wfeng@vt.edu, 540.231.1192

synergy.cs.vt.edu	

Overarching Goal: “Write Once, Run Anywhere”

© W. Feng, May 2012
wfeng@vt.edu, 540.231.1192

CUDA Program

CU2CL (“cuticle”)

OpenCL-supported CPUs, GPUs, FPGAs NVIDIA GPUs

OpenCL Program

synergy.cs.vt.edu	

Goals of CU2CL (“cuticle”)

•  Automatically create a treasure trove of
 … maintainable OpenCL code for future development

© W. Feng, May 2012
wfeng@vt.edu, 540.231.1192

synergy.cs.vt.edu	

Examples of Available CUDA Source Code
•  odeint: ODE solver
•  OpenCurrent: PDE solver
•  R+GPU: accelerate R
•  Alenka: “SQL for CUDA”
•  GPIUTMD: multi-particle dynamics
•  rCUDA: remote invocation
•  HOOMD-blue: particle dynamics
•  Exact String Matching for GPU
•  GMAC: asymmetric distributed memory
•  TRNG: random number generation
•  OpenNL: numeric library
•  VMD: visual molecular dynamics
•  CUDA memtest

•  GPU-accelerated Ising model
•  Image segmentation via Livewire
•  OpenFOAM: accelerated CFD
•  PFAC: string matching
•  NBSimple: n-body code
•  WaveTomography: wave propagation

reconstruction
•  CUDAEASY: cosmological lattice
•  HPMC: volumetric iso-surface extraction
•  OpenMM: molecular dynamics
•  MUMmerGPU: DNA alignment
•  SpMV4GPU: sparse-matrix multiplication

toolkit
 and many more…

© W. Feng, May 2012
wfeng@vt.edu, 540.231.1192

Source:	
 h*p://gpgpu.org/	

synergy.cs.vt.edu	

Goals of CU2CL (“cuticle”)

•  Automatically create a treasure trove of
 … maintainable OpenCL code for future development

•  Promote the increasing adoption of OpenCL

 … from AMD, ARM, & Intel to Altera, Xilinx, & Qualcomm

Already receiving nearly daily requests for the CU2CL tool
 … from end users wanting to translate their codes

© W. Feng, May 2012
wfeng@vt.edu, 540.231.1192

synergy.cs.vt.edu	

Ecosystem for Source-to-Source Translation

NVIDIA	
 GPU	
 AMD	
 GPU	
 AMD	
 APU	
 AMD	
 CPU	
 Intel	
 CPU	

Pla;orm-­‐Specific	
 OpDmizaDons	

PTX	
 CAL	
 ASM	
 &	
 CAL	
 ASM	
 ASM	

Pla;orm-­‐Independent	
 OpDmizaDons	

Pla;orm-­‐Dependent	
 De-­‐opDmizaDons	

Language-­‐Dependent	
 Front	
 Ends	

CUDA	
 OpenCL	
 Other	

© W. Feng, May 2012
wfeng@vt.edu, 540.231.1192

synergy.cs.vt.edu	

Forecast

•  Motivation & Background
•  CU2CL: A CUDA-to-OpenCL Source-to-Source Translator

–  Goals & Background
–  Architecture
–  Evaluation

  Coverage, Translation Time, and Performance

•  Future Work
•  Summary

© W. Feng, May 2012
wfeng@vt.edu, 540.231.1192

synergy.cs.vt.edu	

Translator Base to Build Upon

•  Production-quality compiler
•  Ease of extensibility

Clang	

Cetus	

© W. Feng, May 2012
wfeng@vt.edu, 540.231.1192

synergy.cs.vt.edu	

The Clang Compiler Framework

•  Useful libraries for C/C++ source-level tools
•  Powerful AST representation
•  Clang compiler built on top

© W. Feng, May 2012
wfeng@vt.edu, 540.231.1192

��������

�	
���	

����	��

���	�	�����	 ���	�

�	��

���

�	�

������������	�

�����

synergy.cs.vt.edu	

AST-Driven, String-Based Rewriting

•  Characteristics
–  Does not modify the AST
–  Instead, edit text in source ranges

•  Benefits
–  Useful for transformations with limited scope
–  Preserves formatting and comments

© W. Feng, May 2012
wfeng@vt.edu, 540.231.1192

synergy.cs.vt.edu	






  




























Architecture of CU2CL

© W. Feng, May 2012
wfeng@vt.edu, 540.231.1192

synergy.cs.vt.edu	

Translation Procedure of CU2CL
•  Traverse the AST

–  Clang’s AST library, walking nodes and children

•  Identify structures of interest
–  Common patterns arise

•  Rewrite original source range as necessary
–  Variable declarations: rewrite type
–  Expressions: recursively rewrite full expression
–  Host code: remove from kernel files
–  Device code: remove from host files
–  #includes: rewrite to point to new files

© W. Feng, May 2012
wfeng@vt.edu, 540.231.1192

synergy.cs.vt.edu	

Rewriting #includes

© W. Feng, May 2012
wfeng@vt.edu, 540.231.1192

��������	��

��������
��	���

��������
��	��

�����
���	�
����
�

�
���
��������	

				����
�����������
���

��������	

				����
����������
���

���
��������	

				����
���������
���

synergy.cs.vt.edu	

Forecast

•  Motivation & Background
•  CU2CL: A CUDA-to-OpenCL Source-to-Source Translator

–  Goals & Background
–  Architecture
–  Evaluation

  Coverage, Translation Time, and Performance

•  Future Work
•  Summary

© W. Feng, May 2012
wfeng@vt.edu, 540.231.1192

synergy.cs.vt.edu	

Experimental Set-Up
•  CPU

–  2 x 2.0-GHz Intel Xeon E5405 quad-core
–  4 GB of Ram

•  GPU
–  NVIDIA GTX 280
–  1 GB of graphics memory

•  Applications
–  CUDA SDK

  asyncAPI, bandwidthTest, BlackScholes, matrixMul, scalarProd, vectorAdd
–  Rodinia

  Back Propagation, Breadth-First Search, Hotspot, Needleman-Wunsch, SRAD

© W. Feng, May 2012
wfeng@vt.edu, 540.231.1192

synergy.cs.vt.edu	

Coverage: CUDA SDK and Rodinia
Source	
 Application	
 CUDA Lines	
 Changed	
 Percentage	

CUDA SDK	

asyncAPI	
 136	
 4	
 97.06	

bandwidthTest	
 891	
 9	
 98.99	

BlackScholes	
 347	
 4	
 98.85	

matrixMul	
 351	
 2	
 99.43	

scalarProd	
 171	
 4	
 97.66	

vectorAdd	
 147	
 0	
 100.00	

Rodinia	

Back Propagation	
 313	
 5	
 98.40	

Breadth-First Search	
 306	
 8	
 97.39	

Hotspot	
 328	
 7	
 97.87	

Needleman-Wunsch	
 418	
 0	
 100.00	

SRAD	
 541	
 0	
 100.00	

© W. Feng, May 2012
wfeng@vt.edu, 540.231.1192

synergy.cs.vt.edu	

Coverage: Molecular Modeling Application

2,511 CUDA lines out of 6,727 total SLOC in GEM application

•  Fundamental Application in Computational Biology
–  Simulate interactions between atoms & molecules for a period of time by

approximations of known physics

•  Example Usage
–  Understand mechanism behind the function of molecules

  Catalytic activity, ligand binding, complex formation, charge transport

© W. Feng, May 2012
wfeng@vt.edu, 540.231.1192

Source	
 Application	
 CUDA Lines	
 Changed	
 Percentage	

Virginia Tech	
 GEM	
 2,511	
 5	
 99.8	

synergy.cs.vt.edu	

�

���

���

���

���

���

���

���

�� �� �� �� �� ��

	
�
�

���
���

�	�
��

���

�

��

�
��
���

������
�������
���������
���
�

������ �!�"#�$�����%

Model for Total Translation Time

Increase	
 due	
 to	
 CU2CL:	
 0.87-­‐2.2%	

© W. Feng, May 2012
wfeng@vt.edu, 540.231.1192

synergy.cs.vt.edu	

�

�

�

�

�

�

�

�

	

��� ��� ��� ��� ��� ��� ��� ��	 ��

�
�
��
���

���
���
��

���
��
��

�������
���!����������"� ���#��

������$�%!&��'�����

Model for CU2CL-Only Translation Time

© W. Feng, May 2012
wfeng@vt.edu, 540.231.1192

synergy.cs.vt.edu	

Status of OpenCL & the 13 Dwarfs
Dwarf Done

Dense linear algebra LU Decomposition

Sparse linear algebra Matrix Multiplication

Spectral methods FFT

N-Body methods GEM

Structured grids SRAD

Unstructured grids CFD solver

MapReduce

Combinational logic CRC

Graph traversal BFS, Bitonic sort

Dynamic programming Needleman-Wunsch

Backtrack and Branch-and-Bound

Graphical models Hidden Markov Model

Finite state machines Temporal Data Mining

© W. Feng, May 2012
wfeng@vt.edu, 540.231.1192

2009 – 2011
vs. CU2CL

synergy.cs.vt.edu	

Translated Application Performance (sec)

•  Automatically translated OpenCL codes yield similar
execution times to manually translated OpenCL codes

•  OpenCL performance lags CUDA (at least for OpenCL 1.0)
–  Similar for OpenCL 1.1

© W. Feng, May 2012
wfeng@vt.edu, 540.231.1192

Application	
 CUDA	

Automatic
OpenCL	

Manual
OpenCL	

vectorAdd	
 0.0499	
 0.0516	
 0.0521	

Hotspot	
 0.0177	
 0.0565	
 0.0561	

Needleman-Wunsch	
 6.65	
 8.77	
 8.77	

SRAD	
 1.25	
 1.55	
 1.54	

synergy.cs.vt.edu	

CU2CL with OpenCL and the 13 Dwarfs
Dwarf Implemented AMD GPU

Unoptimized
NVIDIA GPU
Unoptimized

AMD CPU
Unoptimized

Dense Linear Algebra LU Decomposition

Sparse Linear Algebra Matrix Multiplication

Spectral Methods FFT

N-Body Methods GEM GEM GEM GEM

Structured Grids SRAD

Unstructured Grids CFD Solver

MapReduce StreamMR StreamMR

Combinational Logic CRC

Graph Traversal BFS, Bitonic Sort

Dynamic Programming Needleman-Wunsch Smith-Waterman

Backtrack and Branch-and-Bound

Graphical Models Hidden Markov Model

Finite State Machines Temporal Data Mining TDM

© W. Feng, May 2012
wfeng@vt.edu, 540.231.1192

synergy.cs.vt.edu	

Status of OpenCL & the 13 Dwarfs
Dwarf Done

Dense linear algebra LU Decomposition

Sparse linear algebra Matrix Multiplication

Spectral methods FFT

N-Body methods GEM

Structured grids SRAD

Unstructured grids CFD solver

MapReduce

Combinational logic CRC

Graph traversal Breadth-First Search (BFS)

Dynamic programming Needleman-Wunsch

Backtrack and branch-and-bound

Graphical models Hidden Markov Model

Finite state machines Temporal Data Mining

© W. Feng, May 2012
wfeng@vt.edu, 540.231.1192

88x  371x

2009 – 2011

synergy.cs.vt.edu	

Ecosystem for Source-to-Source Translation

NVIDIA	
 GPU	
 AMD	
 GPU	
 AMD	
 APU	
 AMD	
 CPU	
 Intel	
 CPU	

Pla;orm-­‐Specific	
 OpDmizaDons	

PTX	
 CAL	
 ASM	
 &	
 CAL	
 ASM	
 ASM	

Pla;orm-­‐Independent	
 OpDmizaDons	

Pla;orm-­‐Dependent	
 De-­‐opDmizaDons	

Language-­‐Dependent	
 Front	
 Ends	

CUDA	
 OpenCL	
 Other	

© W. Feng, May 2012
wfeng@vt.edu, 540.231.1192

synergy.cs.vt.edu	

Our Solutions

•  Functional Portability (2 years  real time)
–  CU2CL (pronounced as “cuticle”)
 An Automated CUDA-to-OpenCL Source-to-Source Translator
 OpenMP  OpenCL

 OpenCL  (AutoESL+ GCC)  FPGA

•  Performance Portability (88x  371x)
–  M. Daga, T. Scogland, and W. Feng, “Architecture-Aware Mapping and

Optimizations on a 1600-Core GPU,” 17th IEEE Int’l Conf. on Parallel and
Distributed Systems, December 2011.

© W. Feng, May 2012
wfeng@vt.edu, 540.231.1192

synergy.cs.vt.edu	

Potential Due to Optimization

© W. Feng, May 2012
wfeng@vt.edu, 540.231.1192

163
192

328

88

224

371

0

100

200

300

400

Basic Architecture unaware Architecture aware

Sp
ee

du
p

ov
er

 h
an

d-
tu

ne
d

SS
E

NVIDIA GTX280 AMD 5870

Platform awareness enhances performance portability

synergy.cs.vt.edu	

The Bigger Picture

© W. Feng, May 2012
wfeng@vt.edu, 540.231.1192

synergy.cs.vt.edu	

CU2CL: Acknowledgments

•  Collaborators
–  Gabriel Martinez, M.S.
–  Mark Gardner, Ph.D.

•  Infrastructure
–  Clang compiler and LLVM

framework

© W. Feng, May 2012
wfeng@vt.edu, 540.231.1192

synergy.cs.vt.edu	

Conclusion:
General Approach for Translating CUDA to OpenCL

•  First Instantiation: CU2CL
–  Profile

  Approximately 2000 source lines of code
  Extends open-source Clang compiler/framework
  AST-driven, string-based source rewriting  maintainable OpenCL code

–  Utility
  Eliminates the hand translation of virtually all CUDA constructs
  Translated OpenCL performance = hand-translated

© W. Feng, May 2012
wfeng@vt.edu, 540.231.1192

synergy.cs.vt.edu	

Conclusion:
General Approach for Translating CUDA to OpenCL

•  First Instantiation: CU2CL
–  Profile

  Approximately 2000 source lines of code
  Extends open-source Clang compiler/framework
  AST-driven, string-based source rewriting  maintainable OpenCL code

–  Utility
  Eliminates the hand translation of virtually all CUDA constructs
  Translated OpenCL performance = hand-translated

© W. Feng, May 2012
wfeng@vt.edu, 540.231.1192

synergy.cs.vt.edu	

Our Solutions

•  Functional Portability (2 years  real time)
–  CU2CL (pronounced as “cuticle”)
 An Automated CUDA-to-OpenCL Source-to-Source Translator
 OpenMP  OpenCL

 OpenCL  (AutoESL+ GCC)  FPGA

•  Performance Portability (88x  371x)
–  M. Daga, T. Scogland, and W. Feng, “Architecture-Aware Mapping and

Optimizations on a 1600-Core GPU,” 17th IEEE Int’l Conf. on Parallel and
Distributed Systems, December 2011.

© W. Feng, May 2012
wfeng@vt.edu, 540.231.1192

synergy.cs.vt.edu	

Conclusion
General Approach for Translating CUDA to OpenCL
•  First Instantiation: CU2CL

–  Profile
  Approximately 2000 source lines of code
  Extends open-source Clang compiler/framework
  AST-driven, string-based source rewriting  maintainable OpenCL code

–  Utility
  Eliminates the hand translation of virtually all CUDA constructs
  Translated OpenCL performance = hand-translated

–  Future Work
  A translation ecosystem that also delivers performance portability

© W. Feng, May 2012
wfeng@vt.edu, 540.231.1192

