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ABSTRACT

Parallel architectures, including multi-core processors, many-core processors, and multi-node sys-

tems, have become commonplace, as it is no longer feasible to improve single-core performance

through increasing its operating clock frequency. Furthermore, to keep up with the exponentially

growing desire for more and more computational power, the number of cores/nodes in parallel

architectures has continued to dramatically increase. On the other hand, many applications in

well-established and emerging fields, such as bioinformatics, social network analysis, and graph

processing, exhibit increasing irregularities in memory access, control flow, and communication

patterns. While multiple techniques have been introduced into modern parallel architectures to

tolerate these irregularities, many irregular applications still execute poorly on current parallel

architectures, as their irregularities exceed the capabilities of these techniques. Therefore, it is

critical to resolve irregularities in applications for parallel architectures. However, this is a very

challenging task, as the irregularities are dynamic, and hence, unknown until runtime.

To optimize irregular applications, many approaches have been proposed to improve data local-

ity and reduce irregularities through computational and data transformations. However, there are

two major drawbacks in these existing approaches that prevent them from achieving optimal per-



formance. First, these approaches use local optimizations that exploit data locality and regularity

locally within a loop or kernel. However, in many applications, there is hidden locality across

loops or kernels. Second, these approaches use “one-size-fits-all” methods that treat all irregular

patterns equally and resolve them with a single method. However, many irregular applications

have complex irregularities, which are mixtures of different types of irregularities and need differ-

entiated optimizations. To overcome these two drawbacks, we propose a general methodology that

includes a taxonomy of irregularities to help us analyze the irregular patterns in an application, and

a set of adaptive transformations to reorder data and computation based on the characteristics of

the application and architecture.

By extending our adaptive data-reordering transformation on a single node, we propose a data-

partitioning framework to resolve the load imbalance problem of irregular applications on multi-

node systems. Unlike existing frameworks, which use “one-size-fits-all” methods to partition the

input data by a single property, our framework provides a set of operations to transform the input

data by multiple properties and generates the desired data-partitioning codes by composing these

operations into a workflow.
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GENERAL AUDIENCE ABSTRACT

Irregular applications, which present unpredictable and irregular patterns of data accesses and com-

putation, are increasingly important in well-established and emerging fields, such as biological

data analysis, social network analysis, and machine learning, to deal with large datasets. On the

other hand, current parallel processors, such as multi-core CPUs (central processing units), GPUs

(graphics processing units), and computer clusters (i.e., groups of connected computers), are de-

signed for regular applications and execute irregular applications poorly. Therefore, it is critical

to optimize irregular applications for parallel processors. However, it is a very challenging task,

as the irregular patterns are dynamic, and hence, unknown until application execution. To over-

come this challenge, we propose a general methodology that includes a taxonomy of irregularities

to help us analyze the irregular patterns in an application, and a set of adaptive transformations

to reorder data and computation for exploring hidden regularities based on the characteristics of

the application and processor. We apply our methodology on couples of important and complex

irregular applications as case studies to demonstrate that it is effective and efficient.
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Chapter 1

Introduction

Currently, processor manufacturers have turned to increase the number of cores to improve the

overall performance of a processor, as it is no longer feasible to improve single-core performance

through increasing its operating clock frequency due to physical limits [2]. For example, the recent

Intel Xeon processors feature up to 28 cores per socket, while AMD processors feature 32 cores

per socket in its latest generation architecture. Along with this trend, many-core architectures,

which can feature an extremely high number of cores (thousands of cores), are becoming popular

in high-performance computing (HPC) due to their high throughput and power efficiency. For

example, in the recent Top500 list [3], seven (7) of the top 10 supercomputers use many-core

processor architectures as accelerators. Furthermore, to keep up with the exponentially growing

need for more and more computational power, the number of compute nodes in HPC systems have

continued to dramatically increase. For example, the recent No. 1 system from the November 2017

Top500 List (i.e., Sunway TaihuLight) has 40,960 nodes, which is more than double the number

1
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of nodes of the previous top system with 16,000 nodes (i.e., Tianhe-2).

On the other hand, many applications in well-established and emerging fields, such as bioinfor-

matics, social network analysis, and graph processing, exhibit increasing irregularities in memory

access, control flow, and communication patterns. Though modern architectures have multiple

techniques, such as smart hardware prefetching, large caches, and branch prediction, to mitigate

the impact of these irregularities, many irregular applications still perform poorly on current paral-

lel architectures, as their irregularities exceed the capabilities of these techniques. For example, the

smart hardware prefetcher [4] in Intel CPUs (specifically, Intel Sandy Bridge CPUs or later) can

pre-load data into the cache when successive cache misses occur in the last-level cache (LLC), but

it requires that the memory accesses are in the same memory page. However, irregular applications

could have random memory accesses with large strides across pages.

Therefore, it is critical to eliminate irregularities in applications. However, it is a very challenging

task, as the irregularities are dynamic and unpredictable, and hence, unknown until runtime and

can even change during the computation. To optimize irregular applications, previous studies [5, 6,

7, 8, 9] propose multiple solutions to map irregular applications onto parallel architectures through

reordering data and computation. However, these approaches have two major limitations. First,

while past work makes local optimizations to exploit the local regularity and locality within a loop

or a kernel. However, many irregular applications have locality that is hidden across loops or

kernels. Second, the “one-size-fits-all” methods that treat irregularities in an application equally

and resolve them with a single method. However, many applications have complex irregularities,

which are mixtures of different types of irregularities and need differentiated optimizations.
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To overcome these two drawbacks, we present a general methodology to better analyze and op-

timize irregular applications. First, we propose a taxonomy of irregularities that classifies irreg-

ularities into four classes based on the relationship of computation and data structures to help us

identify their causes and complexities. From simple to complex, the four classes are as follows:

1) Single-Data-Single-Compute (SDSC), where a single function operates on a single data struc-

ture, 2) Multiple-Data-Single-Compute (MDSC), where a single function operates on multiple data

structures, 3) Single-Data-Multiple-Compute (SDMC), where a single data structure is operated by

multiple functions, and 4) Multiple-Data-Multiple-Compute (MDMC), where multiple functions

operate on multiple data structures. Second, we propose three general transformations: (1) in-

terchanging, which changes the execution order in an application to exploit global locality and

regularity across loops or kernels, (2) decoupling, which divides a complex irregular kernel into

small kernels with simple irregularity, and resolves them with differentiated optimizations, and

(3) reordering, which bridges separate kernels of different patterns with data reordering. Third,

we propose an adaptive data reordering transformation that provides the optimal data reordering

pipeline based on the characteristics of the application and architecture.

For irregular applications on multi-node systems, we propose a balanced data-partitioning frame-

work by extending our adaptive reordering transformation. Unlike with the previous methods,

which use the “one-size-fits-all” approach to partition data by a single property (i.e., data size),

we determine a set of common input-data operations, including sort, group, split and distribute,

to reorder and re-distribute the input data by multiple properties and propose a framework that

can automatically generate desired data-partitioning codes to improve the load balance of irregular
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applications by composing these operations.

To demonstrate our methodology, we analyze and optimize couples of important and complex

irregular applications on different parallel architectures as case studies.

1.1 Optimizing Irregular Applications for Multi-core Architec-

tures

Current multi-core architectures (i.e., multi-core CPUs) have the sophisticated memory hierarchy

and control mechanism to tolerate irregular memory accesses and control flows. However, the

irregular memory accesses in irregular applications usually have large strides and unpredictable

patterns, which exceed the capabilities of current hardware. It can result in substantial cache and

TLB (translation lookaside buffer) misses, which can adversely impact performance. Therefore,

many studies [10, 11, 12] propose advanced cache mechanisms to alleviate the effects of irregu-

lar memory accesses by detecting and exploring the spatial and temporal locality in the running

program. However, these techniques need hardware modifications.

Meanwhile, multiple software approaches have been proposed to improve data locality for multi-

core architectures through data and computation reordering. However, these approaches have lim-

ited effectiveness and efficiency due to several drawbacks. First, many approaches [13, 14, 15, 16]

use static methods, which can hardly deal with dynamic irregular patterns. Second, many dynamic

approaches [5, 6, 17, 18] only use local optimizations to exploit data locality within a loop or ker-
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nel. Third, these dynamic approaches use the “one-size-fits-all” method that uses a single method

to resolve different types of irregularities. In this dissertation, we analyze and optimize two com-

plex irregular applications on multi-core architectures as case studies to show how to resolve these

drawbacks by our methodology.

1.1.1 Case Study - Optimizing Short Read Alignment on Multi-core CPUs

The first application is short read alignment, which is responsible for mapping short DNA se-

quences (i.e., reads) to a long reference genome. It is a fundamental step in next-generation se-

quencing (NGS) analysis. In this dissertation, we focus on short read alignment tools that use the

Burrows-Wheeler Transform (BWT), which are increasingly popular due to their small memory

footprint and flexibility. Despite extensive optimization efforts, the performance of these tools still

cannot keep up with the explosive growth of sequencing data. Through an in-depth performance

characterization of Burrows-Wheeler Aligner (BWA) [19], a popular BWT-based aligner on multi-

core architectures, we demonstrate that BWA is limited by memory bandwidth due to the irregular

memory access patterns on the reference genome index. Specifically, the search kernel of BWA,

which belongs to the Multiple-Data-Single-Compute class, reveals extremely poor locality due to

its irregular memory access pattern and thus suffers from heavy cache and TLB misses, which can

result in up to 85% of stalled cycles. We then propose a locality-aware implementation of BWA,

called LA-BWA [20], to explore hidden data locality via interchanging the execution order of the

kernel and reordering memory accesses with the binning method. However, the preliminary opti-

mization method has a couple of drawbacks, limiting the performance gain: 1) the interchanging
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and binning transformations break the data locality in the original algorithm, which can result in

high TLB misses; 2) the preliminary bin structure has high memory pressure, which could limit

the scaling of the algorithm. Thus, we propose an optimized binning method with a compressed

and cache-oblivious bin structure. Experimental results show that our optimized approach can re-

duce LLC misses by 30% and TLB misses by 20%, resulting in up to a 2.6-fold speedup over the

original BWA implementation.

1.1.2 Case Study - Optimizing Sequence Database Search on Multi-core

CPUs

The other application is sequence database search, which is responsible for searching similar

sequences for a query sequence in a sequence database. In this dissertation, we focus on BLAST

(Basic Local Alignment Search Tool), which is a ubiquitous tool for database search due to its

relatively fast heuristic algorithm delivering fairly high accuracy. However, because of BLAST’s

heuristic algorithm, it possesses heavy irregular control flows and memory accesses in order to

narrow down the search space. Through an in-depth performance analysis of the original BLAST,

we find that indexing the database instead of the query can better exploit the caching mechanism

on modern CPU architectures. However, the database-indexed search with existing BLAST search

techniques will suffer more from irregularities, leading to performance degradation, since it needs

to align a query to millions of database sequences at a time rather than a single database sequence

iteratively. Moreover, due to different challenges and characteristics between query indexing and
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database indexing, the existing techniques for query-indexed search are inefficient for the database-

indexed search. To address these issues, we propose a methodology that first determines that the

database-indexed BLAST algorithm is a Multiple-Data-Multiple-Compute class problem, and then

accordingly proposes a re-factored BLAST algorithm, called muBLASTP, for modern multi-core

CPUs. The key optimizations are that we first decouple the two interactive phases of the original

BLAST algorithm into separate kernels, and then reorder data between the divided kernels with an

efficient data reordering pipeline of filtering-sorting. Experimental results show that on a modern

multi-core architecture, namely Intel Haswell, the multithreaded muBLASTP can achieve up to a

5.1-fold speedup over the multithreaded NCBI BLAST using 24 threads.

1.2 Optimizing Irregular Applications for Many-core Archi-

tectures

To achieve massively parallel computational power, many-core architectures feature a great num-

ber of compute cores but have simple control-flow mechanisms and cache mechanisms. There-

fore, many-core architectures are highly sensitive to irregularities in both memory accesses and

control flows. This makes the optimizations of irregular applications on many-core architectures

more challenging. To eliminate irregularities for many-core architectures (i.e., GPUs), previous

studies [7, 8, 9] use data and computation reordering to improve data locality and reduce branch

divergence. However, these approaches have two major limitations (i.e., local optimizations and

“one-size-fits-all” methods) that limit their effectiveness and efficiency, especially for complex ir-
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regular applications. To overcome the above limitations, we apply our general methodology to the

BLAST algorithm (with query indexing) on a GPU as a case study and resolve the irregularity in

the existing dynamic parallelism approaches.

1.2.1 Case Study - Optimizing Sequence Database Search on a GPU

Though recent studies have utilized GPUs to accelerate the BLAST algorithm for searching protein

sequences (e.g., BLASTP), the complex irregularities in the BLAST algorithm prevent these ap-

proaches from applying fine-grained parallelism to achieve better performance. To address this, we

present a fine-grained approach, referred to as cuBLASTP, to optimize the most time-consuming

phases (i.e., hit detection and ungapped extension). In the optimization, we first decouple the two

phases, which have different irregular patterns, into separate kernels, then map each kernel on a

GPU with fine-grained parallelism, and then connect the two kernels with an efficient data reorder-

ing pipeline of binning-sorting-filtering for GPUs. Compared with the latest GPU implementation,

cuBLASTP can deliver up to a 2.8-fold speedup for the overall performance.

1.2.2 Case Study - Optimizing Irregular Applications with Adaptive Dy-

namic Parallelism on a GPU

On recent GPU architectures, dynamic parallelism, which enables the launching of kernels from

the GPU device without CPU involvement, provides a new way to improve the performance of

irregular applications by generating child kernels dynamically to reduce workload imbalance and
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improve GPU utilization. In general, dynamic parallelism provides an easy way to decouple ker-

nels to resolve the workload imbalance problem. However, in practice, dynamic parallelism gen-

erally does not improve performance due to the high kernel launch overhead and low occupancy.

Consequently, most existing studies focus on mitigating the kernel launch overhead. As the kernel

launch overhead has been progressively reduced due to algorithmic redesigns and hardware ar-

chitectural innovations, the organization of subtasks to child kernels becomes a new performance

bottleneck, which is overlooked in the literature.

In this dissertation, we perform an in-depth characterization of existing software-level approaches

for dynamic parallelism optimizations on the latest available GPUs. We observe that the current

approaches of subtask aggregation, which use the “one-size-fits-all” method that treats all subtasks

equally, can underutilize the resources and degrade overall performance, as different subtasks re-

quire various configurations for the optimal performance. To address this problem, by taking

advantage of statistical and machine-learning techniques, we propose a performance modeling and

task scheduling tool that can 1) analyze the performance characteristics of subtasks to identify

the critical performance factors, 2) predict the performance of new subtasks, and 3) generate the

optimal aggregation strategy for new subtasks. Experimental results show that the implementa-

tion with the optimal subtask aggregation strategy can achieve up to a 1.8-fold speedup over the

state-of-the-art task aggregation approach for dynamic parallelism.
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1.3 Optimizing Irregular Applications on Multi-node Systems

On multi-node systems, load imbalance (or computational skew) is a fundamental problem. To

tackle the problem of computational skew, many multi-node frameworks provide advanced mech-

anisms. For example, MapReduce [21] provides speculative scheduling to replicate the last few

tasks of a job on different compute nodes. Furthermore, many mechanisms, including [22, 23,

24, 25, 26, 27, 28, 29, 30], are also proposed to mitigate skew by optimizing task scheduling, data

partitioning, or job allocation. Although these runtime methods are able to handle skew to a certain

extent, they cannot achieve near-optimal performance for irregular applications because the load

balancing of many irregular applications not only relies on a single property (i.e., data size) but

many other properties, such as the algorithm applied on the data and data distribution.

1.3.1 Case Study - Optimizing Irregular Applications with Adaptive Data

Partition on Multi-node Systems

In our research, we propose PaPar [31], a framework that can generate balanced data partition-

ing codes for irregular applications on multi-node systems. In this framework, we first identify

a set of common data operations, including sort, group, split, and distribute, as building blocks

to reorder and redistribute the input data by multiple properties, and then provide an easy inter-

face to construct a workflow of data partitioning with these building blocks. Finally, PaPar will

map the workflow sequence to the multi-node systems. In our evaluation, we use two irregular

multi-node applications (i.e., muBLAST [32] and PowerLyra [33]) to evaluate the performance
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and programmability of PaPar. Experimental results show that the codes generated by PaPar can

produce the same partition quality as the original applications with less partitioning time.

1.4 Organization of this Dissertation

The remainder of this dissertation is organized as follows:

• Chapter 2 introduces background information, which discusses the characteristics of parallel

architectures and irregular applications.

• Chapter 3 discusses the related works about existing optimization methods of irregular ap-

plications on parallel architectures.

• Chapter 4 introduces our methodology for irregular applications, involving our irregularity

taxonomy, general transformations, and adaptive optimizations.

• Chapter 5 presents the optimizations of two irregular applications as case studies for multi-

core architectures. First, we optimize Burrows-Wheeler Aligner (BWA) on multi-core ar-

chitectures with interchanging and reordering transformations to improve data locality, pre-

sented in Section 5.1. In Section 5.2, we study the BLAST algorithm for protein sequences,

and present a database-indexed search algorithm, called muBLASTP, which uses decoupling

and reordering transformations to improve data locality and performance.

• Chapter 6 presents the optimizations of irregular applications on many-core architectures. In

Section 6.1, we propose a re-factored BLAST algorithm for NVIDIA GPU, called cuBLASTP,
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with decoupling and reordering transformations. In Section 6.2, we propose an optimized

dynamic parallelism mechanism that decouples aggregated subtasks into separate kernels by

their properties to improve GPU utilization. Moreover, we present performance models for

dynamic parallelism to generate the optimal aggregation strategy.

• Chapter 7 presents the PaPar framework for automatically generating balanced data parti-

tioning to alleviate the imbalance problem of irregular applications on multi-node systems.

• Chapter 8 presents the conclusion of the dissertation.



Chapter 2

Background

This chapter provides the background of this dissertation, including an introduction to current

parallel architectures, and brief descriptions of irregular applications as case studies in this disser-

tation.

2.1 Parallel Architectures

In this section, we briefly introduce the characteristics of current parallel architectures, including

multi- and many-core architectures, and multi-node systems, and the impacts of irregularities on

these parallel architectures.

13
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2.1.1 Multi-core Architectures

Fig. 2.1 shows the organization of a typical multi-core architecture. There are multiple identical

cores connected together inside a chip packaging. With a shared unified memory space, different

cores can share information and communicate each other by accessing the same memory locations.

To handle the large gap between the processor and memory speed, multi-core architectures have a

complex memory hierarchy. As Fig. 2.1 shown, the L1 cache is dedicated to each core, while the

L2 cache can either be shared by a subset of cores or dedicated to each core. The L3 cache is large

and shared by all cores in the processor. To speed up address translation for virtual memory sys-

tems, each core also has a dedicated Translation-Lookaside Buffer (TLB) for caching the address

translation results.

L2 Cache

Core 1

L2 Cache

Core 2

L3 Cache/LLC (10~40 MB)

L1 Cache L1 Cache

ALU ALU

CU CU

Figure 2.1: Example of a multi-core CPU architecture

The memory hierarchy takes the advantage of the data locality in a program. In particular, there are

two types of locality, i.e., temporal and spatial locality. Temporal locality supposes that recently

accessed address will be accessed in the near future, e.g. the accesses in loops or stacks. Spatial

locality supposes that the addresses close to recent accesses will be accessed in the near future,
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e.g., sequential memory accesses on arrays.

Irregular applications can cause problems of latency and bandwidth [18]. The latency problem

is due to poor temporal and spatial reuse that can result in elevated cache and TLB misses. The

bandwidth problem is due to indirect references. In particular, when a data block is fetched into

the memory hierarchy, the items within a block are only referenced few times before the block is

evicted due to conflict and/or capacity misses, even though the block will be referenced later.

2.1.2 Many-core Architectures

Since it is hard to achieve high core count on multi-core architectures due to complex architectural

designs, many-core architectures have been developed with hundreds or thousands of simple cores.

Thanks to their high power efficiency and throughput, many-core architectures are increasingly

popular in high performance computing (HPC) systems. In the recent Top500 list [3], 7 of the top

10 supercomputers uses GPUs or Intel MICs as accelerators.

To fit so many cores in a single processor, many-core architectures shrink non-computational-

related resources, such as cache hierarchy, hardware prefetcher, and control flow units. As a result,

compared with multi-core architectures, many-core architectures are more sensitive to irregular

memory accesses and control flows. Below we use both NVIDIA and AMD GPUs as examples to

introduce GPU architectures and explain the impacts of irregularities on many-core architectures.
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2.1.2.1 NVIDIA CUDA Architecture

As Fig. 2.2 shown, a NVIDIA GPU contains a set of Streaming Multiprocessors (SMs or SMXs),

each which consists of multiple Scalar Processors (SPs).

SP SP

SP SP

SP SP

SP SP

Shr. Mem

L1 Cache

SM

SP SP

SP SP

SP SP

SP SP

Shr. Mem

L1 Cache

SM

SP SP

SP SP

SP SP

SP SP

Shr. Mem

L1 Cache

SM

…...

Constant Cache 

Texture Cache 

Device Memory

Figure 2.2: NVIDIA CUDA architecture

In each SM, all SPs must execute the same instruction in the same clock cycle. Otherwise, some

SPs have to wait. This execution model is called “Single-Instruction, Multiple-Thread (SIMT)”.

A group of threads (32 threads) that run together on an SM is called a warp. For each warp, the

hardware handles divergent control flow by splitting threads into two warps and executing the two

warps separately. Thus, a subset of threads (with a wasted slot) will skip the branch, and the

other set of threads will take the branch (Fig. 2.3), called “branch divergence”, which significantly

underutilize computing resources.
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Branch

Path A

Path BPath B

Branch

Path A

Warp 0 Warp 1

Figure 2.3: Example of branch divergence on a GPU

There are several levels of memory on the NVIDIA GPU (Fig. 2.2), each has distinct read and

write characteristics. Overall, there are two types of memory on the GPU, i.e., on-chip and off-

chip memory. On-chip memory, such as the register file and shared memory, has low access latency

but small size. Off-chip memory, such as global memory, constant memory and texture memory,

has much larger size but high access latency.

To efficiently access data in global memory, read/write operations must be coalesced. Specifically,

if the memory accesses of a warp fall into an aligned 128-byte segment (32 single precision words),

the hardware can read/write the data for the warp with a single memory transaction (Fig. 2.4(a)).

If memory addresses are unaligned, i.e., across two 128-byte fragments, the hardware has to issue

two transactions to load the data (Fig. 2.4(b)). Even worse, if irregular memory accesses of a

warp crosses multiple segments, the hardware has to issue multiple transactions and load the data
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serially, which can result in the underutilization of memory bandwidth (Fig. 2.4(c)).

…

128 256Address

Thread Id 0 31

(a) Coalesed memory accesses

…

128 256Address

Thread Id 0 31

(b) Unaligned memory accesses

… …

…

0 128Address

Thread Id 0 31

256
…

… 2n

(c) Memory accesses across N fragments

Figure 2.4: Examples of coalesced and irregular global memory access patterns

2.1.2.2 AMD GPU Architecture

Next, we take the latest AMD Radeon Vega 64 GPU (with AMD Vega architecture) as an example

to introduce AMD GPU architectures. Fig. 2.5 illustrates that the AMD Vega 64 GPU contains 64

compute units (CUs), where each CU consists of 4 SIMD units, a dedicated L1 cache, and local

memory. Threads in a kernel will be distributed across these CUs and processed by SIMD units.

These 64 CUs are organized into four shader engines (SEs) with 16 CUs per SE. All CUs share L2

cache and memory channels through a crossbar.

Similar with NVIDIA GPUs, during the execution, threads on each CU will be divided into 64-

thread wavefronts as basic execution units and processed by SIMD units concurrently. If threads
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in a wavefront take different execution paths, it will cause branch divergence. If threads within a

warp access non-consecutive memory addresses, non-coalesced memory accesses occur, resulting

in memory divergence.
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Figure 2.5: AMD GCN architecture [1]

2.1.2.3 GPU Programming Model

NVIDIA CUDA Programming Model CUDA [34] is a programming model provided by NVIDIA.

As Fig. 2.6 shown, in a CUDA program, the computing system consists of the host that refers to the

traditional CPU and its memory, and the device that refers to the GPU and its memory. Host codes

executed by the CPU can call CUDA functions, i.e., GPU kernels. A kernel runs a large number of
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threads in parallel on the GPU. The threads are grouped into blocks, called thread blocks, where

threads within a block cooperate via the shared memory, atomic operations, and barrier synchro-

nization. All blocks in a grid (i.e., a kernel) have the same number of threads. Thread execution

on the GPU follows a SIMT model, where threads of a block running on an SM are partitioned

into small groups (i.e., warps) and execute the same instruction simultaneously. Each thread has a

unique ID that it uses to decide what data to deal with.
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Figure 2.6: Example of the CUDA programming model

OpenCL Programming Model OpenCL (Open Computing Language) [35], which is defined

by the Khronos Group, is a standard for parallel computing on heterogeneous systems. OpenCL

kernels can be executed with multicore CPUs, AMD and NVIDIA GPUs, and DSPs (Digital Signal

Processor) [36]. Similar to CUDA, in OpenCL programs, the host program executed by the CPU,

while OpenCL kernels are executed on the devices. Threads (i.e., work-items) in an OpenCL
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kernel are grouped into workgroups, and each workgroup will be processed on an SM or CU that

shares local memory.

AMD GPU Computing Software Stack

Radeon Open Compute platform (ROCm) ROCm [37] is an open-source platform created by

AMD for GPU computing. ROCm supports multiple programming languages, such as HCC C+

and HIP, and OpenCL. In addition, the recent ROCM runtime (version 1.6) offers a new feature

that allows the end user to provision individual CUs for kernel execution.

Asynchronous Task and Memory Interface (ATMI) ATMI [38] is a runtime framework and

programming model for heterogeneous CPU-GPU systems. It provides a uniform API to create

task graphs on both CPUs and GPUs. ATMI provides a sophisticated programming model to

describe and fully control the high-level tasks simply by using a few predefined C-style structures.

2.1.2.4 Dynamic Parallelism in GPUs

Dynamic Parallelism (DP) is a feature, supported by both AMD and NVIDIA GPUs, to allow

a GPU kernel to launch additional GPU kernels at the device side without CPU involvement

(Fig. 2.7). Specifically, a parent kernel can launch child kernels and optionally synchronize on

the completion of child kernels to consume the output of the child kernels.

In recent studies [39], Dynamic Parallelism has been used to improve the performance of irregular
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Figure 2.7: Example of Dynamic Parallelism

applications by alleviating workload imbalance and other irregularities. For example, as shown

in Fig. 2.8, dynamic parallelism allows overloaded threads in the parent kernel to offload their

subtasks to new child kernels (Line 5). And then, subtasks will be processed in fine-grained paral-

lelism by multiple threads (Line 10) in child kernels, which can better exploit GPU compute and

memory bandwidth.

2.1.3 Multi-node Systems

Nowadays, the dataset size of applications has been growing at an exponential rate. Therefore, we

need to connect multiple machines (i.e., compute nodes) together to store and process the huge

amount of data.
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1 __kernel parent_kernel() {
2 int tid = get_global_id(0);
3 type *this_subtask = subtasks[tid];
4 if(this_subtask->size >= THRESHOLD)
5 kernel_launch(child_kernel, this_subtask);
6 else
7 process(this_subtask);
8 }
9

10 __kernel child_kernel(type *this_subtask) {
11 int tid = get_global_id(0);
12 // process this_subtask
13 ...
14 }

Figure 2.8: Example of dynamic parallelism for resolving workload imbalance in irregular appli-
cations

2.1.3.1 Message-Passing Interface (MPI)

Message Passing Interface (MPI) [40] is a standardized and portable message-passing system based

on the consensus of the MPI Forum. MPI is a message-passing parallel programming model, in

which through cooperative operations between processes, data are moved from one process to an-

other. The standard defines the interface for users to write portable message-passing programs.

The MPI standard includes a set of functions that support Point-to-Point communication, Collec-

tive communication, Process groups, Process topologies and Datatype manipulation. Moreover,

MPI also provides remote-memory access operations, dynamic process creation, and parallel I/O.

MPI is a specification, not an implementation: there are several open-source and efficient imple-

mentations of MPI, such as OpenMPI [41], MVAPICH [42], MPICH [43], etc.
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2.1.3.2 MapReduce

MapReduce [21] is a programming model and an associated implementation for simplifying large-

scale data processing on commodity clusters. It was originally invented by Google, and now there

are multiple implementations in different programming languages. Hadoop is a popular open-

source implementation developed by Yahoo, being a part of Apache Hadoop [44].

A typical MapReduce job is composed of a Map and Reduce phase. The Map phase splits input

datasets into data blocks, and processes them in parallel, and generates key-value pairs (KVP)

based on user-defined functions. And then, the MapReduce framework internally sorts the pairs

by the key and passes the sorted pairs to the Reduce phase. The Reduce phase computes and

generates a new set of key-value pairs. These new key-value pairs can be output to users, or be

input as another MapReduce job. The traditional file system could be a bottleneck as thousands of

processors will access to the same file at the same time. Therefore, Google developed the robust

distributed Google File System (GFS) [45] to support efficient MapReduce execution. The files in

the GFS are automatically partitioned into fixed size blocks, which are distributed and replicated

across multiple nodes. The file system is designed to provide high bandwidth, but has high latency

for individual file operations, as most of the file operations in MapReduce are bulk read and write.
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2.2 Irregular Applications

Irregular applications pertain in many domains, including both well established and emerging ar-

eas, such as machine learning, social network analysis, bioinformatics, and computer security.

Though these applications have a significant degree of latent parallelism, it is difficult to scale

on current parallel architectures due to their irregular and unpredictable memory access and com-

putation patterns. Moreover, their data sets are difficult to be partitioned and balanced. In this

dissertation, we select couples of complex and important irregular applications from bioinformat-

ics as case studies.

2.2.1 Irregular Applications in Bioinformatics

As many bioinformatics problems are difficult to be solved optimally within polynomial time,

heuristic methods are widely used to get near-optimal results in reasonable time. For example, with

the advent of next-generation sequencing (NGS), which dramatically reduces the cost and time of

DNA sequencing, the growth rate of sequence database has outpaced Moore’s law, more than

doubling each year (Fig. 2.9). But, heuristic methods employ irregular data structures (e.g., hash

tables, suffix trees, lookup tables, etc.) and data-dependent conditional statements, which can cause

complex irregular patterns. Below we introduce two important applications in bioinformatics, i.e.,

short read alignment and database search, as case studies to investigate the complex irregularities.
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Figure 2.9: Growth rate of sequence databases vs. Moore’s law

2.2.1.1 Short Read Alignment

In next-generation sequencing (NGS), millions or billions of DNA strands are sequenced in paral-

lel, producing a huge amount of short DNA sequences, called reads. Mapping these reads to one

or more reference genomes, referred to as short read alignment (Fig. 2.10), is fundamental in NGS

data analysis, such as Indel detection [46]. Thus, tens of short read alignment tools have been de-

veloped over recent decades. In general, these tools can be classified into two categories: 1) hash

table based tools, and 2) suffix/prefix tries based tools.

…CCATAG    TATGCGCC  ATCGGCAAT  GCGGTATA
…CCAT    -ATATGCGC  TATCGGCAA TTGCGGTAT C…
…CCAT  GC-ATATGCG CCTATCGGC ATTTGCGGT  AC…
…CCA AGGC-ATAT    CCTATCGGC ATTTGCGGT TAC…
…CCA AGGC-ATAT   CCCTATCGG AATTTGCGG ATAC…
…CC TAGGC-ATA  CGCCCTATC GCAATTTGC GTATAC…

…CCATAGGCTATATGCGCCCTATCGCCAATTTGCGGTATAC…

Reads

Reference Genome

Figure 2.10: Example of short read alignment

Hash table based tools [47, 48, 49] follow the seed-and-extend paradigm. The main idea is that the
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algorithm first rapidly finds short exact matches with fixed length (i.e., seeds) between the query

and the reference genome by looking up a hash table, which contains all positions of fixed-length

short sequences in the reference genome, and then extends and joins seeds without a gap, and

finally refines high-quality ungapped extensions with dynamic programming. These tools can be

fast and accurate. However, they usually are very memory consuming. For example, the hash table

of the human genome can be tens of gigabytes.

Compared with hash table-based tools, tries-based tools, which use suffix/prefix tries to find short

matches, have much smaller memory footprint. For example, the compressed index based on

Burrows-Wheeler transform (BWT) only need 4 gigabytes for the human genome. Thus, tries-

based tools, especially BWT-based tools [19, 50, 51], become increasingly popular. In this disser-

tation, we focus on Burrows-Wheeler Aligner (BWA), which is a popular BWT-based short-read

alignment tool well optimized for multi-core architectures.

Burrows-Wheeler Aligner The Burrows-Wheeler Aligner (BWA) is based on the Burrows-

Wheeler Transform (BWT), a data compression technique introduced by Burrows and Wheeler [52]

in 1994. The main concept behind BWT is that it sorts all rotations of a given text in lexicographic

order and then returns the last column as the result. The last column, i.e., the BWT string, can

be easily compressed, because it contains many repeated characters. Similar to other BWT-based

mapping tools, BWA uses the FM-index [53], a data structure built atop the BWT string that allows

for fast string matching on the compressed index of the reference genome. In BWA, exact match-

ing of a read (string) is done by a backward search [54], which essentially performs a top-down
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traversal on the prefix tree index of the reference genome. The backward search stage accounts for

the vast majority of the execution time.

A brief description of the backward search in BWA is as follows.1 For the string X , let a ∈ Σ be the

letter being considered and c[a] be the number of symbols in X[0, n− 2] that are lexicographically

smaller than a and Occ(i, a) is the number of occurrences of a in the BWT string of X based

on current position i. c[a], Occ(i, a) and the BWT string form the FM-index. String matching

with the FM-Index tests if W is a substring of X , which is done by following a proven rule that

R(aW ) ≤ R(aW ) if and only if aW is a substring of X:

R(aW ) = c[a] + Occ(R(W )− 1, a) + 1

R(aW ) = c[a] + Occ(R(W ), a)

Iteratively applying the above rule, we get a narrowing search range declared by R(aW ) and

R(aW ) (k and l in Algorithm 1) until R(aW ) is less or equal to R(aW ).

As Algorithm 1 shown, the occurrence calculation, i.e., the Occ function, of a is the core function in

backward search. A trivial solution of implementing the Occ function is counting the occurrences

of a in all previous position of the BWT string. This solution is inefficient when the BWT string

is large. A widely accepted optimization, also used by BWA, is to break the whole BWT string

into millions of small buckets and record pre-calculated counts of A/C/G/T for each bucket. BWA

packages these pre-calculated counts along with the BWT string by inserting them at the head

1We use the same notations as the original BWA paper [19].
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Algorithm 1 Original Backward Search
Input: W : sequence reads
Output: k and l pairs

1: for all Wj do
2: k = 0, l = |X|
3: for i = len− 1 to 0 do
4: a← Wj[i]
5: k ← c[a] + Occ(k − 1, a) + 1
6: l← c[a] + Occ(l, a)
7: if k > l then
8: output k and l
9: break

10: end if
11: end for
12: end for

of each BWT bucket. In this way, the occurrence calculation can be reduced to counting the

occurrences within a bucket, which can be done in constant time. For example, in Fig. 2.11, the

occurrence number of C in the position 3 at the bucket 1 equals to 31, fetched from the head of

the bucket, plus 2, which is the count of C in the bucket before the position. This optimized BWT

table is called FM-index, which is proposed by Ferragina and Manzini in 2001.

A:0
C:0
G:0
T:0

ACCG…...GCTA
A:34
C:31
G:32
T:31

ACCG…...GCTA
A:249
C:259
G:258
T:257

ACCG…...GATC

BWT Table

Bucket

128 charactersheader

Occ(131, ‘C’) = 31 + 2 = 33

Figure 2.11: Memory layout of the BWT table

Based on the FM-index, the Occ function in BWA has three steps as shown in Algorithm 2: 1)

getting the bucket location based on the input i, 2) fetching the pre-calculated count for letter a at
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the header of the bucket, and 3) counting the occurrences of a in the bucket and returning the sum

of the local count and the pre-calculate count. Note that the memory-access location in the BWT

table is determined by the input i.

Algorithm 2 Occ function
Input: i: k or l values; a: letter in reads
Output: n: occurrences of a

1: p← getBucket(i) . Step 1
2: n← getAcc(p, a) . Step 2
3: n← n + calOcc(p, a) . Step 3 return n

2.2.1.2 Sequence Database Search

Sequence database search is responsible for finding the similarity between the query sequence

and subject sequences in the database. The similarities can help to identify the function of the

new-found molecule, since similar sequences probably have the same ancestor, share the same

structure, and have a similar biological function. Sequence database search is also used outside of

bioinformatics. For example, sequence database search is widely used into cybersecurity for data

leak detection [55, 56, 57].

The dynamic programming algorithm is, e.g., Smith-Waterman algorithm, used for the optimal

alignment of two sequences. Though the Smith-Waterman algorithm is well optimized on parallel

architectures [58, 59, 60], the execution time is proportional to the product of the lengths of the

two sequences, which is too slow for database search. Therefore, many tools use fast heuristic

methods to improve search performance by pruning the search space based on the seed-and-extend

paradigm. In this dissertation, we use BLAST (Basic Local Alignment Search Tool) as a case
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study.

Basic Local Alignment Search Tool BLAST is a family of programs to approximate the re-

sults of the Smith-Waterman algorithm. Instead of comparing the entire sequence, BLAST uses

a heuristic method to reduce the search space. With only a slight loss of accuracy, BLAST exe-

cutes significantly faster than the Smith-Waterman. In this dissertation, we focus on BLAST for

protein sequence search, called BLASTP, which is more complicated than the other variants, e.g.,

BLASTN for nucleotide sequence search.

The BLASTP algorithm consists of the four stages as below:

Hit detection finds high-scoring short matches (i.e., hits) between the query sequence and the

subject sequence from the database. The index, which is built on the query, records the positions of

short segments with fixed length W , called words. The hit detection scans the subject sequence and

searches each word in the query index to find the hits. Typically, W is 3 in BLASTP, and the words

can be overlapped. For example, in Fig. 2.12(a), ABC at the position 0 and BCA at the position 1

are overlapping words in the subject sequence. To improve the accuracy, the neighboring words,

which contains the word itself and the similar words to the word, are also considered to be hits.

For example, the neighboring words ABC and ABA are treated as a hit to each other in Fig. 2.12(a).

Two-hit ungapped extension first finds the pairs of hits close together, and then extends hit pairs to

basic alignments without gaps. The ungapped extension algorithm uses an array, called lasthit array

lasthit, to update the last found hit for each diagonal. When a hit is found, the algorithm computes

its distance to the last hit. If the distance is less than the threshold, the ungapped extension is
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triggered in both backward and forward directions. For example, in Fig. 2.12(a), when the hit (4,4)

is found in the diagonal 0, the algorithm checks the distance to the last hit (0,0) in the same diagonal

and triggers the ungapped extension, which ends at the position (7,7). Then, the ending position

will be written back to the position 0 of the last hit array. Fig. 2.12(b) shows the details of the

ungapped extension. Each step, the algorithm compares the differences between the corresponding

characters from the query sequence and subject sequence, which is represented by a score. The

ungapped extension stops when the accumulated score drops T (T = −2 in this example) below

the maximum score.
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(b) Ungapped extension

Figure 2.12: Example of the BLAST algorithm for the most time-consuming stages — hit detection
and ungapped extension.

Gapped extension performs a gapped alignment with dynamic programming on the high-scoring

ungapped regions to determine if they can be part of a larger, higher-scoring alignment.
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Traceback re-aligns the top-scoring alignments from the gapped extension using a traceback algo-

rithm, and produces the top scores. The ranked results will be returned to the user.

Based on [61], where 100 queries are randomly chosen from the NR protein database [62] and

profiled, hit detection, ungapped extension and gapped extension consume the most time, taking

nearly 90% of the total execution time. Thus, our work focuses on the optimizations of these three

phases.

Below we describe the core data structures used in hit detection and ungapped extension: deter-

ministic finite automaton (DFA) [63], position-specific scoring matrix (PSS matrix or PSSM), and

scoring matrix.

The DFA provides a general method for searching one or more fixed- or variable-length strings

expressed in arbitrary, user-defined alphabets. In BLAST, the query sequence is decomposed into

fixed-length short words and converted into a DFA. As an example, Fig. 2.13(a) shows the portion

of DFA structure that is traversed with the example subject sequence “CBABB” processed (the

word length is 3) and query sequence “BABBC”. First, the letter C is read, and the current state

is set to C. Because the next letter is B, the next state of the DFA transitions to the B state.

Simultaneously, the DFA provides a pointer to the CB prefix words to retrieve the query positions

for the word CBA. Because the position for CBA in the DFA constructed from BABBC is

“none,” there is no hit found for CBA. Likewise, for the next letter A in CBABB, the DFA

transitions to the A state and provides a pointer to the BA prefix words to retrieve the query

positions for the word BAB, which is in the position 0 of BABBC, and so on.
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The PSS matrix is built from the query sequence. As shown in Fig. 2.13(b), a column in the PSS

matrix represents a position in the query sequence, and the scores in the rows indicate the similarity

of all possible characters (i.e., amino acid) to the character in the column of the query sequence.

So, the score for X in the subject sequence and Y in the query sequence is −1. By checking the

PSS matrix, the BLAST algorithm can quickly identify the similarity between two characters in

corresponding positions of the two sequences.

The scoring matrix is an alternative data structure of the PSS matrix. This matrix has a fixed and

smaller size than the PSS matrix because the elements in the columns represent words instead

of positions in the PSS matrix. The drawback in using this scoring matrix is that more memory

accesses are needed. For example, to compare the same pair of characters as above, Fig. 2.13(c)

shows the algorithm must first load the letter X from the subject sequence and Y from the query

sequence, and then it can retrieve the score of −1 from the column X and row Y .
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(b) Scoring via the PSS Matrix [64]

Subject: ... E  N  Y  P  I  B  X  Z  Y  M  P...
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  A  B  C  D  …   X  Y
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All 
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(c) Scoring via the Scoring Matrix [64]

Figure 2.13: Core Data Structures in BLAST. In Fig 2.13(a), W = 3 and the example query
sequence is BABBC, and the example subject sequence is CBABB.
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Related Work

3.1 Optimization Methods of Irregular Applications on Paral-

lel Architectures

In this section, we introduce the existing optimization methods of irregular applications on parallel

architectures.

3.1.1 Optimization Methods for Multi-core Architectures

Since irregular memory accesses are a major performance issue on multi-core architectures, many

studies focus on how to improve data locality. In the early study, Leung and Zahorjan [13] discuss

how to choose a proper data layout to match the access pattern for a better spatial locality in nested

36
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loops. They propose a technique, called array restructuring, that improves the spatial locality

exhibited by array accesses in nested loops. Specifically, the technique can determine the proper

layout of array elements in memory that matches the given memory access pattern to maximize

locality. Kandemir et al. [14, 15] propose an approach to improve the global data locality of nested

loops via transforming both loop and data layouts. The authors claim that pure loop transfor-

mations are restricted by data dependencies and may not be successful in optimizing imperfectly

nested loops. On the other hand, the data transformation on an array can affect all the references

to that array in all loop nests. Thus, they propose an integrated approach that employs both loop

and data transformations. Similarly, Boyle et al. [16] propose a framework to improve the local-

ity of nested loops via combining loop and data transformations. However, these approaches use

static methods at compile time. They can hardly resolve dynamic irregularities, where data access

patterns remain unknown until runtime.

For the applications with dynamic irregularities, such as graph processing, sparse matrix opera-

tions, etc., many studies use dynamic methods that reorder data at runtime. Chen et al. [5] propose

a dynamic approach for improving data locality through two methods: 1) grouping data, which

will be accessed in the near future, and 2) packing data, which accesses in the same cache line.

Strout et al. [6] propose an approach that performs data and iteration reordering transformations as

minimal linear arrangements, and provide a corresponding metric that predicts performance and

the cache behavior for selecting the optimal iteration-reordering heuristics. Pichel et al. [65] deal

with irregular memory accesses in sparse matrix codes on multi-core CPUs via reordering data.

As determining the optimal data layout is a classic NP-complete optimization problem, the authors
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solve it as a graph problem, i.e., Traveling Salesman Problem, using the Chained Lin-Kernighan

heuristic.

Locality optimizations have also been developed for sparse linear algebra. The Reverse Cuthill-

McGee (RCM) method can improve locality in sparse matrices by reordering columns using a

reverse breadth-first search (BFS) [66, 67]. Al-Furaih and Ranka also study data partitioning us-

ing graph partitioning algorithm (METIS) and BFS to reorder data in irregular codes [68]. They

conclude METIS yields better locality than BFS. They also evaluate different partition sizes for

METIS and find partitions equal to cache size yielded the best performance. However, they do not

consider the computation reordering or processing overhead.

Ding and Kennedy use dynamic copying of data elements based on the loop traversal order and

show major improvements in performance [69]. They can automatically achieve most of their

transformations in a compiler, using user-provided annotations. For adaptive codes, they reapply

transformations after every change. Mellor-Crummey et al. use a geometric partitioning algo-

rithm (RCB) based on space-filling curves to map multidimensional data to memory [70]. They

also block computation using methods similar to tiling. Mitchell et al. improve locality using the

bucket sorting method to reorder loop iterations in irregular computations [71]. They improve the

performance of two applications, CG and IS, from NAS benchmarks, and a medical heart simula-

tion. Bucket sorting works only for computations with a single irregular access per loop iteration.

Strout et al. provide a uniform framework to handle locality transformations and improve the per-

formance of irregular reductions by using sparse tiling [72]. Hwansoo Han and Chau-Wen Tseng

characterize and compare the locality transformations for irregular codes [73]. And then, they
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develop parameters to guide both geometric (RCB) and graph partitioning (METIS) algorithms

and develop a new graph partitioning algorithm based on hierarchical clustering (GPART) which

achieves good locality with low overhead [74]. And then, they propose an adaptive method for

exploiting the data locality for irregular scientific codes with Z-SORT reordering [75].

3.1.2 Optimization Methods for Many-core Architectures

Unlike with multi-core architectures, many-core architectures (i.e., GPUs and Intel MICs) are

highly sensitive to irregularities in both memory accesses and control flows. Thus, many studies

investigate both irregular memory accesses and control flows. To investigate the impacts of ir-

regularities on GPU architectures, Burtscher et al. [76] define two measures of irregularity called

control-flow irregularity and memory-access irregularity, and study the difference between irregu-

lar GPU kernels and regular kernels with respect to the two measures via the performance profiling

on a suite of 13 benchmarks. Through quantitative studies, they make three important discoveries:

1) irregularity at the warp level varies widely, (2) control-flow and memory-access irregularities

are highly independent of each other, and (3) most kernels, including regular ones, exhibit some

irregularities. Baskaran et al. [77] propose a compiler framework for automatic parallelization and

performance optimization of affine loop nests on GPUs. The framework optimizes the irregular

applications in three ways: 1) performing a program transformation for efficient data access from

GPU global memory, 2) determining the optimal padding factors for conflict-minimal data accesses

from GPU shared memory, and 3) searching the optimal parameters for unrolling and tiling. Sung

et al. [7] propose a compiler approach to transform the data layout of structured-grid applications
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on GPUs for a given model of the memory system. Jang et al. [78] present a methodology that

optimizes memory performance on data-parallel architectures. In particular, the methodology first

uses a mathematical model to analyze the memory access patterns inside nested loops, and then

applies data transformation techniques for vector-based architectures (e.g., AMD VLIW GPUs)

or uses an algorithmic memory selection approach for scalar-based architectures (e.g., NVIDIA

GPUs), respectively. Merrill et al. [79] propose Breath-First Search (BFS) on GPUs with fine-

grained thread blocks to adaptively explore the neighbors of vertices for better SMX utilization

and fine-grained load balance. However, these studies use static methods, which only deal with the

static irregular pattern at compile time.

For dynamic irregular patterns, previous studies use dynamic methods that reorder data and com-

putation at runtime. Sung et al. [80] focus on the global memory accesses for GPU applications

that access data in the Array-of-Structure (AoS) layout, and propose the Array-of-Structure-of-

Tiled-Array (ASTA) that transforms the data layouts on-the-fly using in-place marshaling to reduce

irregular memory accesses. To allow developers to leverage the benefits of ASTA with minimal ef-

fort, this work also provides a user-friendly automatic transformation framework. Zhang et al. [8]

propose a dynamic approach, called G-Streamline, to eliminate the irregular memory accesses and

control flows in GPU programs. G-Streamline utilizes two basic transformation mechanisms: 1)

data reordering that creates a new data array, and stores the original data into the duplicated array in

the regular order; 2) job swapping that packs data into the warp-sized buckets. To hide the overhead

of data transformation, G-Streamline pipelines the data transformation on the CPU and the kernel

execution on the GPU. Che et al. [9] propose an API, called Dymaxion, to help programmers to re-
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solve the irregular memory accesses in GPU programs with hints about memory access patterns. In

particular, the framework proposes a set of memory remapping functions for commonly used data

layouts and access patterns in scientific applications. Instead of reordering data, Novak et al. [81]

resolve the branch divergences in loops on GPUs via iteration scheduling that artificially delays

and aggregates the selected iterations. Hou et al. [82] propose a novel auto-tuning framework that

automatically finds the most efficient parallelizing strategy to achieve high-performance SpMV.

3.1.2.1 Optimizations with Dynamic Parallelism

Other than the conventional transformations, some research works use spawning dynamic subtasks

via dynamic parallelism on the GPU to resolve irregularities. Wang et al. [39] characterize the

benefits and overheads of dynamic parallelism for irregular applications. There are two major

drawbacks in current dynamic parallelism mechanisms — high kernel launch overhead and low

occupancy.

Therefore, there are multiple studies proposed to improve the efficiency of dynamic parallelism

via subtask aggregation, which consolidates small kernels into coarse kernels. Wang et al. propose

Dynamic Thread Block Launch (DTBL) [83], a hardware-based kernel aggregation that buffers

subtasks in aggregation tables. To further improve the efficiency of dynamic parallelism, this work

is enhanced by a locality-aware scheduler [84]. Orr et al. [85] also provide a kernel aggrega-

tion scheme in hardware for fine-grained tasks. However, the two approaches require hardware

modification. Other than hardware-based kernel aggregation, there are multiple compiler-based

approaches using kernel aggregation to reduce the number of kernel launches. Gupta et al. [86]
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introduce the Persistent Thread (PT) programming style on GPUs, which occupies all the SMXs

with a number of thread blocks, and dynamically generates tasks to improve workload balance

across the SMXs. The same technique is also used in Pagoda framework [87] for GPU multipro-

gramming. Yang et al. propose CUDA-NP [88], which is a compiler-based approach for exploring

nested parallelism via using slave threads in a thread block to process subtasks. Chen et al. [89]

propose another compiler-based approach, called “Free Launch” that reuses the parent threads as

persistent threads to process the child tasks. Wu et al. [90] propose a kernel aggregation for child

kernels at three different granularities, including warp, block, and kernel-level. A similar work [91]

is proposed by Hajj that aggregates kernels at the same three granularities and overlaps child kernel

execution with the parent kernel via dispatching child kernels ahead of child tasks ready. Tang et

al. [92] present “SPAWN” to improve the performance of parallelism by balancing subtasks in the

parent and child kernels. However, all these software solutions mainly focus on reducing kernel

launch overhead regardless of child kernel performance.

3.1.3 Optimization Methods for Multi-node Systems

Data partitioning and load balancing are important for parallel computations, especially for multi-

node systems. Over the past few years, many efforts have been taken to explore the load imbalance

(i.e., skew) problem. The speculative scheduling is the basic method of MapReduce that can

speculatively relaunch last few tasks on other nodes. Zaharia et al. [22] propose the “LATE”

scheduling algorithm that speculatively launches tasks having the longest estimation remaining

time for heterogeneous systems. The Mantri system [23] restarts the task having the inconsistent
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runtime. The Flexslot system [93, 94] dynamically changes the numbers of slots for stragglers.

Skewtune [24] mitigates the skew for MapReduce applications by identifying the straggler, repar-

titioning its unprocessed input data, and rescheduling data to other nodes. Libra [28] determines

that the keys having more values may become a performance bottleneck in the reduce stage and

proposes a solution to repartition large keys with a new sampling method. OLH [25] proposes a

key chopping method and a key packing method to split large keys and group medium keys, re-

spectively. TopCluster [26] proposes a distributed monitoring framework to 1) capture the local

data distribution on each mapper, 2) identify the most relevant subset data, and 3) approximate the

global data distribution. This method provides complete information for appropriate skew-tacking

methods. Although these mechanisms can mitigate the skew without the modification of applica-

tions, the effort to improve partitioning algorithms is still valuable, because application-specific

partitioning methods can get better performance and scalability as illustrated in SkewReduce [95],

PowerLyra [33], and Polymer [96].

SkewReduce [95] proposes a cost function based framework for spatial feature extraction applica-

tions manipulating multidimensional data. PowerLyra [33] is a graph computation and partitioning

engine for skew graphs. The hybrid-cut method is proposed to partition input data. Polymer [96]

is a graph processing engine for the NUMA compute node. A differentiated partitioning and allo-

cation mechanism can put graph data into the local memory bank, and a NUMA-aware mechanism

can convert random accesses on local memory to sequential accesses on remote memory.



44

3.1.4 Performance Modeling on Parallel Architectures

There are a large number of studies on performance modeling of traditional parallel architectures

(i.e., multi-core CPUs). Lee and Brooks [97, 98] utilize the piecewise polynomial regression model

to perform accurate performance prediction on a large uniprocessor design space of about one bil-

lion points. Ipek, et al. [99, 100] propose a performance prediction model of memory, core, and

CMP design spaces with artificial neural networks. Marin and Mellor-Crummey predict applica-

tion behavior via semi-automatically measuring and modeling program characteristics with proper-

ties of the architecture, properties of the binary, and application inputs [101]. Their toolkit provides

a set of predefined functions and allows the users adding their customized functions. Carrington,

et al. [102] develop a framework that predicts scientific computing performance and evaluates the

framework for HPL and an ocean modeling simulation. Kerbyson, et al. [103] propose a predictive

analytical model that can determine the performance and scalability of the applications of adaptive

mesh refinement.

In recent years, with the increasing popularity of GPUs, there are a large number of research

works [104, 105, 106] on performance analysis of GPU architectures. Many approaches utilize

machine learning for performance and/or power modeling based on GPU hardware performance

counters. For example, Zhang et al. [107] propose a statistical approach to identify the relationship

between the characteristics of a kernel on a GPU and the performance and power consumption.

To characterize the GPU performance, Souley et al. [108] propose a statistical model based on the

Random Forest algorithm to characterize and predict the performance of GPU kernels. Rogers et
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al. [109] characterize the effect of the warp-size on NVIDIA GPUs. Stargazer [110] is an auto-

mated GPU performance framework based on stepwise regression modeling. Eiger [111] is an au-

tomated statistical methodology for modeling program behavior on different architectures. Though

considerable attention has been focused on performance models to provide performance analysis

and prediction on GPU architectures, none of them address the subtasks of dynamic parallelism in

GPUs, which are tiny, irregular, and many in numbers.

3.2 Irregular Applications on Parallel Architectures

In this section, we introduce the related works of two important irregular applications, i.e., BWA

and BLAST, which are case studies in the dissertation.

3.2.1 Burrow-Wheeler Transform based Alignment

Currently, most optimization studies on BWT-based mapping tools focus on accelerators. For

instance, BarraCUDA [50], proposed by Petr Klus and Simon Lam, is a GPU-accelerated mapping

tool adapted from BWA. BarraCUDA achieves a 3-fold speedup with 8 NVIDIA GPUs over a

12-core CPU. Another GPU-based short read aligner based on BWT released by Liu and Schmidt,

CUSHAW [112], achieves a 4-6x speedup with 2 NVIDIA GPUs over a 4-core CPU. Recently,

Torres and Espert propose another GPU-based alignment algorithm [113], which is three times

faster than Bowtie and four times faster than SOAP2. Liang You et al. release optimized BWA

for Intel Xeon Phi co-processors, which can achieve up to a 1.2x speedup over the 48 cores CPUs.
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Besides many-core acceleration, there have been multiple studies [114, 115] in optimizing BWT-

based alignment with FPGA (Field-Programmable Gate Array). Our research, on the other hand,

focuses on optimizing BWT-based alignment on multi-core CPUs by remapping the algorithm

to better exploit the caching mechanism of modern processors. In addition, our study performs

in-depth performance characterization of BWA, which has not been reported by previous work.

Irregular memory accesses has also been observed for hash-table based short-read mapping tools.

Wang and Tang [116] propose a memory optimization of hash-index for NGS by reordering mem-

ory access and compressing the hash-table. Another cache-oblivious algorithm based on a hash-

table index, called mrsFAST, is proposed by Hach and Hormozdiari [117]. Our research work is

the first to investigate the locality-aware implementation of BWT-based alignment, which involves

more complicated data structures and more sophisticated memory-access patterns than hash-table

based tools.

3.2.2 BLAST: Basic Local Alignment Search Tool

Many studies have conducted to improve the performance of BLAST tools because of its compute-

and data-intensive nature. NCBI BLAST+ [118, 119] uses pthreads to speed up BLAST on a multi-

core CPU. On CPU clusters, TurboBLAST [120], ScalaBLAST [121], and mpiBLAST [122] have

been proposed. Among them, mpiBLAST is a widely-used one based on NCBI BLAST. With

efficient task scheduling and scalable I/O subsystem, mpiBLAST can leverage tens of thousands

processors to speed up BLAST. To achieve higher throughput on a per-node basis, BLAST has
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also been mapped and optimized onto various accelerators, such as FPGAs [123, 124, 125] and

GPUs [126, 127, 128, 129, 130, 64, 131]. Relative to FPGAs, the work of Mahram et al. [125]

is notable for its co-processing approach, which leverages both the CPU and FPGA to accelerate

BLAST.

3.2.2.1 BLAST on GPUs

CUDA-BLASTN [132] is the first implementation of BLAST on a GPU for the nucleotide se-

quence alignments. After that, CUDA-NCBI-BLAST [128] is published for the protein sequence

alignment. However, without GPU architecture-specific optimizations, CUDA-NCBI-BLAST only

achieves up to a 2.7-fold speedup on an NVIDIA G80 GPU over a single-core Intel Pentium 4

CPU. Shortly thereafter, GPU-NCBI-BLAST [129] built on NCBI BLAST is proposed. The most

time-consuming phases, including hit detection and ungapped extension, is ported to the GPU.

With the same accuracy as NCBI BLAST, the authors report approximately a 4-fold speedup using

an NVIDIA Fermi GPU over a single-threaded CPU implementation and a 2-fold speedup over a

multi-threaded CPU implementation on a hexacore processor. CUDA-BLASTP [130] is proposed

to use a compressed DFA for hit detection and an additional step that sorts the subject sequences

by their lengths to improve the load balance. CUDA-BLASTP also ports the gapped extension on

the GPU. GPU-BLASTP [64] improves the load balance further via a runtime work-queue design,

where a thread could grab the next sequence after processing the current subject sequence. GPU-

BLASTP also provides a two-level buffering mechanism, which writes the output of the ungapped

extension first to a local buffer of each thread, and then to a global buffer if the local buffer is
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full. This mechanism avoids global atomics to write the output of different sequences, whose sizes

could not be determined in advance. Most recently, G-BLASTN [131], based on NCBI-BLAST,

is released for the nucleotide sequence alignment. With optimizations on GPU and parallelism on

the CPU, including multithreading and vectorization, G-BLASTN achieves up to a 7-fold over-

all speedup over the multithreaded NCBI-BLAST for nucleotide sequence search on a quad-core

CPU. Because BLASTN has already been implemented as a fine-grained algorithm, BLASTN

does not have the challenges of BLASTP when mapped to GPU architectures.

3.2.2.2 Query Indexed BLAST

Since the hit detection is a time-consuming part of BLAST, to achieve higher throughput, couples

of index data structures have been developed to boost the hit detection. For example, Determinis-

tic Finite Automaton(DFA), which is introduced by FSA-BLAST [63], is multiple times smaller

than the traditional lookup table and more cache-conscious. There are many studies that optimize

the DFA structures for regular expression matching [133, 134, 135, 136]. To improve cache per-

formance, NCBI-BLAST also introduces a couple of optimizations into the lookup table [137].

First is a PV array (presence vector), which uses a bit array to present if a cell in the lookup table

contains query positions. The second is the thick backbone, where couples of query positions are

embedded into the lookup table as there are few query positions for a cell. However, all these

techniques are designed for the query derived index, which has many empty entries and thin en-

tries (few positions in an entry). For the database index, as there are millions of positions of words

from all subject sequences in the database, the lookup table will have zero empty entries, and every
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entry/word contains tons of positions.

3.2.2.3 Database Indexed BLAST

Instead of the hit detection based on the index delivered from the query, a serial of alterna-

tive approaches perform the hit detection based on the database index, such as SSAHA [138],

CAFE [139], BLAT [140] and MegaBLAST [141]. Existing studies suggest that database-based

index generally can deliver better performance, however, less sensitive than the BLAST algo-

rithm [142, 143]. SSAHA and BLAT, for example, are significantly fast for finding near-identical

matches. To reduce memory footprint and search space, both tools build indexes of non-overlapping

words from the database, which leads to extremely fast search but compromised sensitivity. In

particular, BLAT builds the database index with non-overlapping words of length W . With this

approach, the size of database index is significantly reduced, roughly 1
W

the size of an index with

overlapping words. However, it requires a matching region of 2W−1 bases between two sequences

for guaranteeing to detect it. The CAFE is another search tool supporting protein sequence with

database index, but the search method and scoring phase are substantially changed. Moreover,

CAFE uses the large word size, which reduces the number of words that need to be compared,

but impacts the sensitivity. MegaBLAST is a NCBI-BLAST variant based on the database in-

dex. MegaBLAST speeds up the search for highly similar sequences by using a large word size

(W = 28), and thus reducing search workload and index size. But MegaBLAST only supports

nucleotide sequences, as the authors claimed that it is very challenging to support protein sequence

based on their design, such as the increased alphabet size, small word, and two-hit ungapped ex-
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tension.



Chapter 4

Methodology

In general, there are three steps to optimize an irregular application for a parallel architecture

(Fig. 4.1): (1) analyzing irregularities in the application, (2) exploiting the locality and regular-

ity in the application, and (3) mapping the optimizations of the application to the target parallel

architecture. Accordingly, our methodology provides three major techniques: (1) Irregularity Tax-

onomy, which classifies irregular applications into four classes based on the relationship between

functions and data structures to help us analyze the causes and complexities of irregularities in

the application; (2) General Transformation, which provides three general transformations on the

computation and data structures to fully exploit the locality and regularity within the application;

(3) Adaptive Optimization, which maps the transformations of the application to the target archi-

tecture based on the characteristics.

51
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Optimized 
Implementation

Analyzing 
irregularity Irregularity Taxonomy - four irregularity classes

Exploiting locality 
and regularity General Transformation - three transformations

Mapping to the 
parallel architecture Adaptive Optimization - data reordering pipeline

Irregular Application

Figure 4.1: Architecture of our methodology

4.1 Irregularity Taxonomy

Irregularities could have a variety of causes, complexities, and influences, which make analysis

and optimization extremely difficult. To simplify the analysis of the irregularity in an application,

we propose a taxonomy for irregular applications that classifies irregularities into four classes

based on the relationship between functions and data structures. Irregularities in a class could have

similar causes and complexities. Therefore, we can generalize the optimizations for each class.

Here we borrow the terminology from Flynn’s taxonomy [144] that is used for the classification

of architectures. As shown in Fig. 4.2, from simple to complex, the four classes are Single-Data-

Single-Compute (SDSC), Multiple-Data-Single-Compute (MDSC), Single-Data-Multiple-Compute

(SDMC), and Multiple-Data-Multiple-Compute (MDMC). Below we give details of each class.
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Data a Fun. f1

(a) SDSC

Fun. f1
Data a

Data b

(b) MDSC

Data a
Fun. f1

Fun. f2

(c) SDMC

Data a

Data b

Fun. f1

Fun. f2

(d) MDMC

Figure 4.2: Examples (data flow diagrams) of irregularity classes. The red lines indicate the irreg-
ular memory accesses.

4.1.1 Single-Data-Single-Compute (SDSC)

The first class is Single-Data-Single-Compute (SDSC), where a function operates on a single data

structure. As an example shown in Fig. 4.2(a), the function f1 has irregular memory accesses

on the data structure a. SDSC is a simple and common class, which generally occurs in irregular

applications with an irregular data structure, such as graph traversal algorithms, sparse matrix

operations, etc. In this class, the poor locality of memory accesses on the data structure is the

performance bottleneck. Therefore, our optimizations focus on improving the data locality of the

irregular data structure.

4.1.2 Multiple-Data-Single-Compute (MDSC)

The second irregularity class is Multiple-Data-Single-Compute (MDSC), where a single function

operates on multiple data structures. Fig. 4.2(b) gives an example of the MDSC class, where the
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function f1 operates on data structures a and b. In the example, the function f1 has regular memory

accesses on the data structure a, but irregular memory accesses on the data structure b. MDSC’s

irregularities are common in the search applications with index data structures, such as hash tables,

lookup tables, search trees, etc. During the computation, the application loads the input item one

by one with consecutive memory accesses and searches each input item in the index structure

with irregular memory accesses. For example, the Burrow-Wheeler Aligner (BWA) algorithm

(Section 5.1), the algorithm scans each short DNA sequence and checks the random positions in

the BWT index.

The optimization for this class is more complex than the SDSC class. Besides the irregular memory

accesses on the data structure b, we also need to take care of the interference between accesses on

data structures a and b. Therefore, our optimizations should not only alleviate irregular memory

accesses on the data structure b, but also avoid the interference between data structures a and b.

4.1.3 Single-Data-Multiple-Compute (SDMC)

The third irregularity class is Single-Data-Multiple-Compute (SDMC), where multiple functions

operate on a single data structure. Fig. 4.2(c) illustrates an example of the SDMC class, where the

data structure a is operated by functions f1 and f2 as the output and input, respectively. However,

the function f1 outputs the data structure a in a pattern (e.g., row-major order), but the function

f2 consumes the data structure a in another pattern (e.g., column-major order). Therefore, the

two functions have incompatible access patterns on the data structure a, which results in irregular
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memory accesses. This kind of irregularities could happen in the applications with multiple stages.

For example, the BLAST algorithm (Section 5.2 and 6.1) has hit detection and ungapped extension

stages operate on the hit structure. The hit detection generates hits in column-major order, but the

ungapped extension processes hits in diagonal-major order. To resolve this kind of irregularity, we

can reorder the data layout of the data structure a from the function f1 to fit the function f2 or

unify the access patterns of functions f1 and f2.

Besides irregular memory accesses, the SDMC class also can cause irregular control flows (i.e.,

branch divergence on GPUs), when we map the applications of the SDMC class on a GPU. For

example, as shown in Fig. 4.3, the execution of the function f2 depends on the result of the function

f1. In the case, lane 0 (i.e., thread 0 with the warp) executes the function f2, while lane 1 does

not. Therefore, lane 1 has to wait until lane 0 finishing the execution of the function f2. It can

significantly underutilize the computation resource. To resolve this kind of irregularity, we can

also reorder the data structure a to unify the compute patterns of threads/lanes within a warp.

Fun. f1

Fun. f2
Data a1 

Fun. f1
Data a1

X

Lane 0
↓

Lane 1
↓

Figure 4.3: Example of branch divergence in SDMC
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4.1.4 Multiple-Data-Multiple-Compute (MDMC)

The last irregularity class is Multiple-Data-Multiple-Compute (MDMC), where multiple functions

operate on multiple data structures. MDMC is the complex class where multiple irregular patterns

coexist. For example, in Fig. 4.2(d), functions f1 and f2 operate on data structures a and b. In

the example, the kernel has the incompatible access patterns between functions f1 and f2 on the

data structure b, which occurs in the SDMC class, and also has the interference between accesses

on data structures a and b, which occurs in the MDSC class. Such irregularity is common in

complex algorithms (e.g., heuristic algorithms) having multiple stages that switch back and forth

depending on the current status. For example, the BLAST algorithm uses heuristics methods where

multiple alignment stages switch back and forth relying on the current alignment score. To deal

with irregularities in this class, we first use the divide-and-conquer method to decouple the complex

kernel into separate simple kernels, and then apply differentiated and fine-grained optimizations

on each kernel, and then connect them together with data transformation.

4.2 General Transformation

Based on the analysis of irregularity classes above, we abstract three general transformations,

including interchanging, reordering and decoupling, to transform the computation and data for

exploiting the locality and regularity in irregular applications. Below we detail each transformation

and its challenges.
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4.2.1 Interchanging

The interchanging transformation is to change the execution order of kernels/applications to ex-

ploit the locality and regularity across functions or kernels within them. Fig. 4.4 shows an exam-

ple of the interchanging transformation for the MDSC class. In the example, the original kernel

(Fig. 4.4(a)) has the function fun1 operate on arrays a and b, which both are stored in row-major

order. However, the function fun1 accesses the array b in column-major order, which can result

in strided memory accesses on the array b. Furthermore, we find the memory accesses on the ar-

ray b are the performance bottleneck of the kernel. Therefore, to improve the data locality on the

array b, we can exchange the execution order of the function fun1, i.e., interchanging the loops

(Fig. 4.4(b)). After that, the memory accesses on the array b become to row-major order, which

can improve the performance of the kernel due to better locality.

However, the interchanging transformation has a major limitation that it will alter the memory

access pattern in the original algorithm, which may break the original locality and limit the per-

formance gain. For example, in Fig. 4.4(b), after interchanging the loops, the memory accesses on

the array a become to column-major order, which breaks the locality on the array a. To resolve

this side effect, along with the interchanging transformation on the computation, we also apply

the transformation correspondingly on the associated data structures. As Fig. 4.4(c) shown, in this

example, we can combine arrays a and b into a single array ab where each element consists of the

elements from the corresponding positions of arrays a and b. After that, the elements from arrays

a and b at the same position will be referenced together, which improves the locality of both arrays
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a and b.

for(i = 0; i < N; i++)
for(j = 0; j < M; j++)

…= fun1(a[i][j], b[j][i]);

b[][]

a[][]
fun1

(a) Original kernel

for(j = 0; j < M; j++)
for(i = 0; i < N; i++)

…= fun1(a[i][j], b[j][i]);

b[][]

a[][]
fun1

(b) Interchanged kernel

for(j = 0; j < M; j++)
for(i = 0; i < N; i++)

…= fun1(ab[j][i]);

ab[][] fun1

(c) Optimized Kernel

Figure 4.4: Example of optimizing irregularity with the Interchanging transformation.

4.2.2 Reordering

The reordering transformation is to reorganize data at runtime to make the data layout fit for the

access pattern of the kernel/function. In our methodology, we use the reordering transformation to

bridge two kernels/functions with different access patterns. For example, as a typical SDMC kernel

shown in Fig. 4.5(a), the function fun1 outputs the array a in column-major order, but the function

fun2 processes the array in row-major order. As a result, the function fun2 has irregular memory

references on the array a. To solve this irregularity, we can add the reordering between functions

fun1 and fun2 to transform the layout of the array a from row-major order to column-major order

to eliminate the irregular memory accesses of the function fun2.

Besides resolving irregular memory accesses, the reordering transformation also can be used to

deal with the irregularity in computation, e.g., workload imbalance or branch divergence. Fig. 4.6

shows an example of resolving branch divergence in a GPU kernel via reordering tasks. In the

example, threads within a warp have variable-size tasks, resulting in branch divergence. After re-
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for(j = 0; j < N; j++)
…= fun2(a[idx[j]]); 

for(i = 0; i < N; i++ )
a[i] = fun1();

fun1

fun2
a[]

(a) Original algorithm

fun1

reorder

fun2

a[]

a’[]

for(j = 0; j < N; j++)
…= fun2(a’[j]); 

for(i = 0; i < N; i++ )
a[i] = fun1();

a’[i] = reorder(a[i]); 

(b) Algorithm with data reordering

Figure 4.5: Example of optimizing irregularity with the Reordering transformation.

ordering threads by task size, the threads in a warp will have similar-size tasks and less divergence

(Fig. 4.6(b)).

However, as the reordering transformation is dynamic, whose performance is critical to the over-

all performance gain, we need to minimize the overhead of the reordering transformation. In

this dissertation, we provide adaptive optimization on the reordering transformation, which uses

application-specific data reordering pipelines with architecture-aware mapping, presented in Sec-

tion 4.3.

4.2.3 Decoupling

The decoupling transformation is to divide a complex kernel into small kernels with simple pat-

terns, and then we can apply differentiated optimizations and fine-grained parallelism on each
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Figure 4.6: Example of resolving branch divergence in a GPU kernel with the Reordering trans-
formation.

kernel. Fig. 4.7 illustrates a typical kernel of the MDMC class. In the example, both functions

fun1 and fun2 operate on the array a, while the function fun2 operates on the b array. In this

complex kernel, there are a couple of irregularities coexist: 1) the interference (i.e., cache con-

tention) between accesses on arrays a and b. 2) the incompatible access patterns between functions

fun1 and fun2 on the array b. It is difficult to resolve these two kinds of irregularities at the

same time. Therefore, we divide the two functions into two separate kernels. After that, the first

subkernel only contains the function fun1, operating on the array a, while the second subkernel

only contains the function fun2, processing the outputs of the first subkernel with the arrays a

and b. After decoupling, we only have the simple irregularity, i.e., incompatible access patterns

between functions fun1 and fun2 on the array a, which can be easily solved by the reordering

transformation. In this way, we simplify the irregular patterns and avoid the contention between

functions fun1 and fun2.

Beyond resolving irregular memory accesses, the decoupling transformation also can be used to
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for(i=0; i<N; i++) {
j = fun1(a[i]);
…= fun2(b[j], a[j]);

} 

a[i] Fun1(i)

Fun2(i)b[i]

(a) Original kernel

for(j=0; j<N; j++)
…= fun2(b[buff[j]], a[j]); 

for(i=0; i<N; i++)
buff[i] = fun1(a[i]);

Fun1
a[]

buff[]

Fun2

buff[]

a[]

b[]

(b) Decoupled kernels

Figure 4.7: Example of optimizing irregularity with the Decoupling transformation.

deal with branch divergence in GPU kernels. For example, in Fig. 4.8, the GPU kernel contains

functions fun1 and fun2. The execution of the function fun2 relies on the outputs of the function

fun1, which can result in branch divergence in the kernel. To resolve this, we split functions fun1

and fun2 into separate kernels. After that, each kernel only contains a single function without

branch divergence.

However, the decoupling transformation also has a drawback. It needs to buffer all intermediate

results from the first kernel and pass to the second kernel, which could result in high memory

pressure, especially for data-intensive applications, which can limit the scaling of the algorithm.

For example, in the BLAST algorithm, the hit detection stage could generate a huge number of hits

as intermediate results, which can be tens of gigabytes. To minimize the intermediate data size,

we provide a set of techniques, including data compression, which reduces bits by identifying

and eliminating statistical redundancy, data blocking, which limits intermediate data size in each
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iteration, and data filtering, which kicks out useless data. We will discuss these techniques in the

case studies.
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(a) Original kernel
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(b) Decoupled kernel

Figure 4.8: Example of resolving divergence in a GPU kernel with the Decoupling transformation.

4.3 Adaptive Optimization — Adaptive Reordering Pipeline

As discussed above, the reordering transformation is a dynamic, having runtime overhead. To

obtain the optimal overall performance, in this section, we focus on minimizing the reordering

overhead. To achieve this, we propose the data reordering pipeline, which combines multiple data

reordering methods as build blocks to create a pipeline based on the demands of the applications,

and adaptive mapping, which maps the pipeline onto the target architecture based on the charac-

teristics of the architecture. Furthermore, to allow developers and researchers to build the optimal

data reordering pipeline with less efforts, we present the concept of an automatic framework using

machine learning techniques to direct the build of the data reordering pipeline.
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4.3.1 Data Reordering Pipeline

Currently, there are many data reordering methods with various granularities, complexities, and use

cases. However, the data structures and memory access patterns in irregular applications could be

complex where a single reordering method cannot achieve the optimal effectiveness and efficiency.

Therefore, we provide the data reordering pipeline that combines multiple reordering methods to

reorder data step by step. As the example shown in Fig. 4.9, the pipeline starts with the coarse-

grained data reordering method (e.g., the binning algorithm), and then switches to the fine-grained

method (e.g., the sorting algorithm) when the input data get sufficiently small, and finally turns to

the refinement method (e.g., the filtering algorithm) to adjust the sorted data.

fun1

reorder

fun2

a[]

a’[]

Coarse-
grained

Fine-
grained

Refine

Binning

Sorting

Filtering

Figure 4.9: Example of the data reordering pipeline

However, building a proper data reordering pipeline for an irregular application is not trivial. As

Table 4.1 shown, from coarse-grained to fine-grained, we have three reordering methods, includ-

ing binning, sorting and filtering, where each has different complexity and effectiveness. Below

we will discuss the details of each data reordering method and the placement of each one in the

pipeline.



64

Table 4.1: Data Reordering Methods

Reordering method Algorithms Granularity Time Complexity

Binning
One-level binning

Hiearchical binning Coarse-grained O(n)

Sorting

Radix sort
Merge sort
Quicksort

...

Fine-grained ∼ O(n log n)

Filtering
Array-based filtering
Scan-based filtering Refinement O(n)

• Binning is a coarse-grained data reordering method that groups data into bins/buckets by

keys. Since the binning method has low computational complexity (i.e., O(n)), we can

use it to reorder large data roughly to improve data locality. First, we can use the binning

method alone to group the memory accesses of adjacent memory locations into the same bin

to improve data locality of the application directly. For example, in the optimization of the

BWA algorithm on CPUs (Section 5.1), we use the binning method to group the access on

the same bucket of the index into a bin to improve the data locality on the index. Second,

we can use the binning to pre-process large input data into small blocks prior to fine-grained

reordering methods. For example, in the optimization of the BLAST algorithm on a GPU

(Section 6.1, we first group hits by diagonal id with the binning, and then sort each bin by

position id. In this way, we can both reduce the computational overhead of the fine-grained

methods (i.e., sorting) and improve its data locality.

• Sorting is a fine-grained data reordering method, which can provide precious data reorder-

ing, but has higher computational complexity (average O(n log(n)) than the binning method.
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We can use the sorting to reorder data for kernels that have high requirements on memory

access patterns. For example, GPU architectures, whose performance highly relies on the

memory throughput, require coalesced memory accesses where all threads access consecu-

tive and aligned memory locations. Thus, we need to use the sorting rather than the binning

to achieve the coalesced memory accesses for better performance improvement. However,

due to the high complexity of the sorting, we generally place the sorting into the pipeline

after binning and filtering instead of using it alone.

• Filtering provides refinement on data with a small overhead (O(n)). It is mainly responsible

for eliminating some data without changing the order of data as binning and sorting. For

example, in our optimization of the BLAST algorithm on a GPU, after sorting, there are

non-extendable hits, which make the memory accesses interleaved. Therefore, we scan the

sorted data to determine non-extendable hits and filter them out. In this case, we can use the

filtering to refine the reordered data, and compact memory accesses. The filtering also can

be used to pre-process the data before sorting to reduce the complexity of the sorting. For

example, in our optimization of the BLAST algorithm on CPUs, we perform the filtering to

eliminate non-extendable hits before the sorting to reduce the overhead of the sorting.

4.3.2 Adaptive Mapping

As Table 4.1 shown, each data reordering method could have multiple algorithms and implementa-

tions where each could have its suitable scenario. To achieve the optimal performance, as shown in
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Fig. 4.10, we provide the adaptive mapping with the awareness of the application and architecture.

Specifically, the adaptive mapping will select the proper algorithm and implementation for each

data reordering method based on the characteristics of the application and architecture. Below we

will discuss the adaptive mapping for each reordering method.

Key length

One-level 
binning

Hierarchical 
binning

Small Large

Binning

(a) Binning

Key len.
/data size

Radix sort

Key length

Merge sort Quicksort

Small Large

Sorting

Large Very Large

(b) Sorting

Key length

array-based 
filtering

Scan-based 
filtering

Small Large

Filtering

Sorting

(c) Filtering

Figure 4.10: Adaptive mapping and optimizations for binning, sorting and filtering

4.3.2.1 Binning

As the binning method is memory intensive, the performance of the binning algorithm highly

relies on the memory throughput. To achieve the optimal performance, ideally, we need to fit the

bin structure into the cache to reduce memory accesses. However, for the data with a large number

of keys, it requires a large number of bins for all possible keys, which cannot fit into the cache

and degrade the performance. Therefore, we provide a hierarchical binning algorithm that breaks

the long keys in multiple segments and reorders the data segment by segment to make sure the bin
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structure for each level can fit into the cache. Thus, as shown in Fig. 4.10(a), our binning method

uses the one-level binning algorithm for a short key length, and turns to use the multiple-level

binning for a large key length.

4.3.2.2 Sorting

The optimization of the sorting reordering method is more complex than binning and filtering,

since there are many sorting algorithms with variable characteristics. There are multiple factors to

consider when selecting a proper sorting algorithm, such as data size, key length, and architectural

characteristics. Below we use the three typical high performance sorting algorithms as case studies

to discuss the selection of sorting algorithms.

Table 4.2: Characteristics of sorting algorithms

Sorting algorithm Time Complexity Space Complexity Parallelism

Radix sort O(nw) O(n + w) Thread-level (medium)
Merge sort O(n log(n)) O(n) Thread/data-level (high)
Quicksort O(n log(n)) O(log(n)) Thread-level (medium)

• Radix sort [145] is the non-comparison based sort algorithm, which has the lowest time

complexity O(wn), where w is the average key length, n is the number of elements. But

radix sort has irregular memory access patterns, requiring high memory bandwidth. More-

over, radix sort requires fixed and small size keys, and more memory O(n + w). Because

of these characteristics, in our methodology, we use radix sort for small datasets and the

datasets with short and fixed key length.
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• Merge sort is a fast parallel sorting algorithm for large data with the time complexity of

O(n log(n)), and the space complexity of O(n). Since Merge sort exhibits massive thread-

and data-level parallelism, the state of the art studies [146, 147, 148, 149, 150, 151, 152, 153]

show that parallel and vectorized merge sort with can deliver high and stable performance

for large datasets on modern CPUs and GPUs.

• Quicksort is an efficient sorting algorithm for large datasets with good data locality and

low storage complexity (O(log(n))). However, quicksort is lack of data-level parallelism,

compared with merge sort. Thus, in our work, we use quicksort for large datasets with very

long keys, which are not suitable for data-level parallelism.

Based on the characteristics of sorting algorithms above, as the example shown in Fig. 4.10(b), we

can build a decision tree to select the optimal sorting algorithm. If the data size is small enough,

where all data can fit into the cache, we can use radix sort for low complexity. Otherwise, we

select merge sort or quicksort. Between merge sort and quicksort, if the key length is very large

(i.e., 128bit), we choose quicksort for better locality. Otherwise, we choose merge sort for better

parallelism.

4.3.2.3 Filtering

Similar with the binning, the performance of the filtering highly relies on the size of the filtering

data structure, which is mainly affected by the key length. The array-based method uses a large

array to record the status of each key, and filter out unnecessary data by tracking the status of each



69

key. However, the memory accesses on the array are irregular. On a CPU, which has a large cache,

the array can easily fit into the cache to avoid irregular memory accesses. But, since GPUs have

the small cache, the irregular accesses on the global memory can lead to poor performance. To

resolve this problem, we can use the scan-based filtering with the sorting. After sorting, the data

with the identical key are grouped into contiguous memory locations. Thus, we can perform the

scan-based filtering via scanning and comparing the adjacent data with regular memory accesses

(details are presented in Section 6.1). As a result, as shown in Fig. 4.10(c), our filtering method

will use the array-based filtering for small keys with the large cache, and switch to the scan-based

filtering for large keys with the small cache.

4.3.3 Automatic Framework

Though we provide guidelines above, it is still not easy to build a proper data reordering pipeline,

as it requires substantial efforts with professional expertise and experience on the application and

the architecture. It needs to evaluate possible data reordering pipeline strategies and select the

optimal data reordering strategy for the target architecture. To simplify this process, we propose a

concept of the adaptive framework that utilizes machine learning techniques to build performance

models of the data reordering methods and direct developers and researchers to choose the optimal

data reordering pipeline strategy.

Figure 4.12 illustrates a high-level depiction of the framework, which consists of three phases: Per-

formance Measurement that runs the micro-benchmarks of provided data reordering algorithms
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with different parameters, and collects performance numbers on the target architecture, Perfor-

mance Modeling that applies machine learning techniques on the collected performance numbers

and generates performance models for reordering algorithms, and Pipeline Generator that searches

the optimal pipeline strategy based on the predicted performance provided by performance models.

Below we discuss the design of each phase.
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schedulers

Figure 4.11: Architecture of the adaptive data reordering framework

Performance Measurement In this phase, we run a set of micro-benchmarks of data reordering

algorithms with varying input parameters, such as data size, key length, and data distribution. Dur-

ing the benchmarks, the performance numbers, including execution time and performance counter

data of the target architectures will be collected via profilers or profiling APIs.

Performance Modeling Based on the performance numbers collected in the previous phase,

we can utilize machine learning techniques to build performance models for each data reordering

method. For example, as Fig. 4.12 shown, we build performance models for each data reordering

method that can predict the performance for the given input and parameter. Based on the predicted
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performance, we can select the optimal data reordering algorithm for different inputs. Moreover,

we can build a decision tree based the performance models to direct the selection of the reordering

algorithm for each data reordering method. For example, the model of the binning method gen-

erates a decision tree that can tell us the right binning algorithm for the specified key length and

return the estimated performance. If the key length is large than the threshold T_b1, the binning

structure cannot fit into the cache; the model will choose the hierarchical binning algorithm. And

then, we can build the performance model of the data reordering pipeline via combining the perfor-

mance models of data reordering methods. (Section 6.2 provides a concrete example of building

performance models for determining the optimal strategy for dynamic parallelism on a GPU.)
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Figure 4.12: Example of the model of adaptive data reordering methods.
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Pipeline Generation Based on the performance models above, we can search all data reorder-

ing pipeline strategies, and determine the optimal one based on the predicted performance. More

specifically, we evaluate the overhead and performance gain of each data reordering pipeline strat-

egy and select the optimal data reordering pipeline with the maximum overall performance gain

after transformation costs.

4.4 Case Studies

To demonstrate our methodology, we choose couples of important irregular applications from dif-

ferent domains on different parallel architectures as case studies. Table 4.3 lists all the case studies

in the dissertation with the irregularity class and transformations applied to them. From the table,

we can see these case studies cover all irregular classes and transformations. Moreover, in the case

study of adaptive DP (i.e., Dynamic Parallelism), we provide an example of building performance

models for performance analysis and prediction using machine learning techniques. In the case

study of PaPar, we provide an example of automatic code generation for irregular applications.
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Table 4.3: Case Studies of Optimizing Irregular Applications

Case Study Application Architecture Irregularity Class Transformation

LA-BWA (Sec. 5.1) Short read alignment CPUs MDSC
Interchanging

Reordering

muBLASTP (Sec. 5.2) Sequence search CPUs MDMC
Decoupling
Reordering

cuBLASTP (Sec. 6.1) Sequence search GPUs SDMC
Decoupling
Reordering

Adaptive DP (Sec. 6.2)
Graph algorithm

Sparse Matrix Ops
GPUs SDSC, MDSC Adaptive Decou-

pling

PaPar (Sec. 7.1)
Graph algorithm
Sequence search

Multi-node N/A Reordering with
Auto-Generation



Chapter 5

Optimizing Irregular Applications for

Multi-core Architectures

5.1 LA-BWA: Optimizing Burrows-Wheeler Transform-Based

Alignment on Multi-core Architectures

5.1.1 Introduction

Recently, next-generation sequencing (NGS) technologies have dramatically reduced the cost and

time of DNA sequencing, making possible a new era of medical breakthroughs based on per-

sonal genome information. A fundamental task, called short read alignment, is mapping short

DNA sequences, also called reads, that are generated by NGS sequencers, to one or more refer-

74
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ence genomes, which are really big. Many short read alignment tools based on different indexing

techniques have been developed during the past couple of years [154]. Among them, alignment

tools based on the Burrows-Wheeler Transform (BWT), such as BWA [19], SOAPv2 [155], and

Bowtie [51] have become increasingly popular because of their superior memory efficiency and

support of flexible seed lengths. The Burrows-Wheeler Transform is a string compression tech-

nique that is used in compression tools such as bzip2. Using the FM-index [54], a data structure

built atop the BWT, BWT-based alignment tools allow fast mapping of short DNA sequences

against reference genomes with a small memory footprint.

State-of-the-art BWT-based alignment tools are well engineered and highly efficient. However,

the performance of these tools still cannot keep up with the explosive growth of NGS data. In this

study, we first perform an in-depth performance analysis of BWA, one of the most widely BWT-

based aligners, on modern multi-core processors. As a proof of concept, our study focuses on

the exact matching kernel of BWA, because inexact matching is typically transformed into exact

matching in BWT-based alignment. Our investigation shows that the irregular memory access

pattern is the major performance bottleneck of BWA. Specifically, the search kernel of BWA is

a typical irregular pattern in the MDSC class, which shows poor locality in its memory access

pattern, and thus suffers very high cache and TLB misses. To address these issues, we propose a

locality-aware design of the BWA search kernel, which interchanges the execution order to exploit

the potential locality across reads, and reorders memory accesses to better take advantage of the

caching and prefetching mechanism in modern multi-core processors. Experimental results show

that our improved BWA implementation can effectively reduce cache and TLB misses, and in turn,
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significantly improve the overall search performance.

Our specific contributions are as follows:

1. We carry out an in-depth performance characterization of BWA on modern multi-core pro-

cessors. Our analysis reveals crucial architecture features that will impact the performance

of BWT-based alignment.

2. We propose a novel locality-aware design for exact string matching using BWT-based align-

ment. Our design refactors the original search kernel by grouping together search computa-

tion that accesses adjacent memory regions. The refactored search kernel can significantly

improve memory access efficiency on multi-core processors.

3. We evaluate the optimized BWA algorithm on two different Intel Sandy Bridge platforms.

Experimental results show that our approach can improve LLC misses by 30% and TLB

misses by 20%, resulting in up to a 2.6-fold speedup over the original BWA implementation.

5.1.2 Performance Characterization of BWA

In order to understand the performance characteristics of BWA, we collect critical performance

counter numbers, such as branch misprediction, I-Cache misses, LLC misses, TLB misses, and

microcode assists, using Intel VTune [156]. Fig. 5.1 shows the breakdown of cycles impacted by

different performance events. As we can see, the percentage of stalled cycles is overwhelmingly

high (more than 85%). Clearly, cache misses and TLB misses are the two major performance
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bottlenecks of backward search. Together, the two account for over 60% of all cycles. A closer

look at the profiling data shows that the main source of these misses is the Occ function, which is

the core function in backward search and accounts for over 80% of total execution time. Based on

profiling numbers, within the Occ function, the stalled cycles caused by cache misses account for

55% of overall cycles, and TLB misses caused stalled cycles occupy 41%. Thus, our optimization

strategy focuses on how to optimize the memory access of the Occ function.
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Figure 5.1: Breakdown of cycles of BWA with Intel Sandy Bridge processors

As we mentioned in Section 2.2.1.1, in the Occ function (Algorithm 2), the input i (k or l in

backward search) determines the access location in the BWT table. In order to further understand

the memory access pattern of the Occ function, we trace the buckets that need to be accessed in

calculating ks when searching an input read. As shown in Fig. 5.2, the access location in the

BWT table jumps irregularly with large strides. Also, there seems to be little locality between

consecutive access locations. Thus, we can classify the BWA kernel into the MDSC class, where

the irregular memory access is the main reason for the high cache-miss rate. Furthermore, as the

capacity of TLB is limited, large strides (e.g., larger than the 4K page size) over the BWT table

can cause high TLB misses.
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Figure 5.2: The trace of k in backward search for a read

Clearly, the backward searches of individual reads suffer from poor locality. However, we observe

the potential locality across processing of different reads. To reduce I/O overhead, BWA loads

millions of reads into memory as a batch. It is highly probable that multiple bucket accesses from

different reads will fall into the same memory region. This observation is the main motivation of

our optimizations, which will be presented in Section 5.1.3.

5.1.3 Optimization

In order to improve memory-access efficiency in BWT-based alignment, we propose a locality-

aware backward search design, which exploits the locality of memory accesses to the BWT table

from a batch of reads. Specifically, as discussed in Section 5.1.2, the computation of occurrences,

i.e., the Occ function, is the main source of cache and TLB misses.
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5.1.3.1 Exploit Locality with Interchanging

As shown in Algorithm 3, our design batches the occurrence computation from different reads by

interchanging the inner and outer loops of the original BWA implementation. After interchanging,

in each outer iteration, we compute the occurrences of the position in all reads. And then, we can

exploit the hidden locality across reads via reordering memory accesses by grouping together the

occurrence computation that accesses the adjacent buckets of the BWT table.

5.1.3.2 Reordering Memory Access with Binning

To reorder memory accesses, our design maintains a list of bins, where each bin corresponds to

several consecutive buckets in the BWT table. The binning method can improve the data locality

with rough data reordering of low overhead. Designing a highly efficient binning algorithm here is

challenging as it involves many competing factors. For instance, while binning can help improve

memory access in occurrence computation, it also introduces extra memory accesses that can lead

to undesirable cache and TLB misses. The design is also complicated by the complex memory

hierarchy and prefetching mechanisms of modern processors.

Memory-Efficient Data Structure The preliminary data structure of a bin entry is depicted in

the left picture in Fig. 5.3. k, l and r_id are the input of the refactored Occ function, where k

and l are corresponding top and bottom in the original BWA implementation, and r_id is the id

of the read being processed. Besides the three prerequisite variables, we add a small character

array for data preloading to help reduce memory access overhead (discussed in Section 5.1.3.3).
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Such a bin entry requires 28 bytes to store. However, because of the data structure alignment, each

element should occupy a multiple of the largest alignment of any structure member with padding,

i.e., actually requires 32 bytes in memory. For a large batch of reads, there can be millions of

entries, which can consume gigabytes of memory. To preserve the memory-efficiency of BTW-

based alignment, we optimize the preliminary data structure as follows.

First, we observe an interesting property of k and l that can help shrink the data structure of a bin

entry. In the original BWA implementation, the k and l are 64-bit integers, occupying 16 bytes in

total. However, for the human genome, the maximum values of k and l are less than 234. Therefore,

storing k or l only requires 33 bits, wasting the remaining 31 bits (in a 64-bit integer). To improve

memory utilization, we pack k and l into a single 64-bit integer such that k takes the first 33 bits,

and l is represented as an offset to k in the remaining 31 bits. By doing so, the size of the bin

structure can be significantly reduced. However, such a design requires the offset between k and l

to be less than 232. Extensive profiling using data from the 1000 Genome Project [157] shows that

the distance between k and l is always less than 231 except the first iteration (example statistics

are shown in Fig. 5.4(a). This can also be explained in theory because the FM-index mimics a

top-down prefix tree traversal, and as such, the distance between k and l decreases quickly as

more letters are matched. Based on this observation, we package k and l by just skipping the first

iteration. In addition, the trend shown in Fig. 5.4(b) implies that our method can be easily extended

and used for larger genomes by skipping more initial iterations.

Second, cc is a small character array used to temporally store sub-sequences of reads. As the letters

in the sequence reads are A, T, C, G and a few other reserved letters, we can use 4 bits to present a
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instead of 1 byte. By doing so, the 8-byte small char array can be packed into 4 bytes, i.e., a 32-bit

integer.

The optimized data structure of a bin entry is shown in Fig. 5.3(b). With the aforementioned

optimization, the size of an entry reduces by half, thus greatly improving memory efficiency. This

can also improve cache performance as more entries can fit into a cache line.
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Figure 5.3: The layout of data structure of one element: preliminary (a), and optimized (b)

Bin Buffer Allocation The memory allocation of the bin buffer is complicated by the fact that

the number of entries in each bin varies significantly. Dynamic memory allocation can help

workaround this variance but will introduce non-trivial overhead with frequent allocation requests.

On the other hand, static allocation can reduce memory allocation overhead, but can lead to mem-

ory wastage. To achieve a balance between memory utilization efficiency and runtime overhead,

we adopt a hybrid approach—which statically allocates a fixed buffer for each bin and uses a large

pool to be stored overflow items.

By carefully analyzing the distribution of bucket accesses to the BWT table, we find that the

number of accesses of individual buckets is more evenly distributed after the first few iterations.



82

Since searching a read always begins with the same and k and l values, the access locations of

the BWT table when searching different reads are almost the same for the first iteration. Based on

the above observation, our implementation skips the first few iterations before starting the binning

process and uses the average number of accesses across all buckets as the size of the preallocated

buffer.

5.1.3.3 Cost-Efficient Binning

Compared to the original BWA implementation, our design involves extra computation in the bin-

ning process. It is critical to minimize the compute overhead of binning, to avoid offsetting the

benefit from memory access reordering. To this end, our implementation simply right-shifts k and

l to get the corresponding bin bucket numbers. However, the binning process can still introduce

non-trivial overhead because it needs to be performed for every calculation of k and l. To further

improve the binning efficiency, we leverage an interesting property from the BWT alignment; that

is, the distance between k and l narrows fast as the search progresses. Fig. 5.4(b) shows statistics

of the distance between k and l for representative input reads. As we can see, in matching reads

of length 100, for most iterations (more than 80), k and l fall in the same bucket in the BWT

table. This is because backward search mimics a top-down traversal over the prefix tree. In fact,

this property was also used in the original BWA implementation to improve data reuse; the Occ

function is optimized for the case where k and l fall in the same bucket to eliminate duplicated

data loading from the BWT table. Based on this observation, our design applies binning only to k,

which reduces the binning computation by half.
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Figure 5.4: Properties of distribution of k and l (read length 100); (a) the maximum distance
between k and l in a given iteration; (b) number of iterations in which k and l in same BWT bucket

Algorithm 3 Optimized Burrows-Wheeler Aligner Kernel
Input: W : sequence reads
Output: k and l pairs

1: for i = len′ − 1 to 0 do
2: for all binx do
3: for all ej in binx do
4: if i mod cc_size = 0 then
5: preload cc_size letters from reads to ej.cc
6: end if
7: a← get_a(ej.cc, i mod cc_size)
8: ok ← Occ(ej.k − 1, a)
9: ol← Occ(ej.l, a)

10: ej.k ← C[a] + ok + 1
11: ej.l← C[a] + ol
12: if ej.k > ej.l then
13: output as result
14: else
15: y ← get_bin_number(ej.k)
16: fill ej into biny

17: end if
18: end for
19: end for
20: end for
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Reducing Binning Overhead with Data Preload Although the basic binning algorithm can ef-

fectively improve locality of memory accesses, it does not come for free. The first two columns

in Table 5.1 show the comparison between the original BWA and the preliminary binning imple-

mentations in cache misses and TLB misses for a representative input file. Surprisingly, while

reordering memory access through binning can effective reduce the number of cache misses, it

introduces more TLB misses.

Table 5.1: Performance numbers of original backward search, preliminary binning algorithm and
optimized binning algorithm with a single thread on Intel Desktop CPU and batch size 224.

LLC Misses (milli) TLB misses (milli) Execution Time (sec)

Original 70 27 3.60
Preliminary binning 56 59 3.28
Binning with preload 53 23 2.60

With careful profiling, we find that the extra TLB misses are caused by indirect references on the

sequence reads; when backward search needs to fetch the next character from a read, it uses the read

id r_id to locate the corresponding buffer storing the read sequence. As shown in Fig. 5.5(a), in the

original algorithm, the access on a sequencing read is sequential, and thus, fetching read sequence

data can benefit from the prefetching mechanism available in modern processors. However, in the

preliminary binning design, due to loop interchange and memory reordering by buckets, memory

accesses on the letter at the same location of different reads are random as shown in Fig. 5.5(b).

As a consequence, we violate the data locality of accesses on reads in the original BWA algorithm,

prefetching of sequence data from a read cannot be reused, causing more frequent accesses to

read data. As a batch of reads typically occupies several hundreds of megabytes, accessing such a

memory space with large strides cause an overflow of the TLB cache.
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To mitigate this issue, we add a small character array in each bin entry to periodically store letters

loaded from sequence reads. As the character array is embedded in every entry, it will be loaded

in the cache when the corresponding k and l are processed, thus greatly reducing TLB misses in

fetching the read data. As shown in the third column of Table 5.1, the enhanced binning design

can significantly reduce cache misses without incurring extra TLB misses.
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Figure 5.5: Access pattern of backward search in original (left) and binning BWA (right): each
box presents a block of data; arrows show the memory access direction.

Fig. 5.6 shows the execution profile of the enhanced binning algorithm, collected using Intel

VTune. Compared to Fig. 5.1, the number of non-stall cycles improves from 15% to 30%. Also,

the stall cycles caused by TLB misses are greatly reduced. The differences in the execution pro-

files suggest that our memory-access reordering design is effective in improving memory access

efficiency.
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5.1.3.4 Multithreading Optimization

Multi-core architectures add more complexity to our design. False sharing of data between threads

can cause thrashing and severely impact performance. A straightforward approach to parallelize

our binning design is to have each thread maintain a separate bin and work independently. The

disadvantage of such a design is that the memory bandwidth of a multi-core processor cannot be

efficiently utilized because there is no data sharing between threads. Therefore, in our design, all

threads share the same bin structure. A design challenge then lies in how to efficiently synchronize

between different threads.

To minimize synchronization overhead, our design maintains two copies of the bin structure. In

the beginning, one copy of the bin structure stores all initial values and is marked as read-only.

Another copy of the bin structure is marked as write-only. Extensive profiling shows that the

processing time of each bin is about the same. Therefore, our design uses a static task-allocation

approach, where all bins in the read-only structure are evenly distributed among all of the threads.
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When processing a bin, each thread computes the k and l of each entry and places them in the

corresponding bin of the write-only structure. The read-only and write-only structures are swapped

in the next iteration. Such a design reduces the synchronization overhead as there is no need to

coordinate accesses to the read-only structure. For the write-only structure, one index is maintained

for each bin to mark the last entry in the bin. Thus, a new entry can be safely placed at the end

of the bin by executing an atomic add on the index associated with the bin. Our profiling shows

that such a design incurs very low overhead, partly because the contention on a particular bin is

typically low.

5.1.4 Performance Evaluation

We evaluate the performance of our implementation in three aspects: impact of software configu-

ration, the impact of micro-architecture, and scalability.

5.1.4.1 Experiment Setup

In order to evaluate the impact of variance of the micro-architecture, particularly cache size, two

different Intel Sandy Bridge CPUs are used in our experiments: (1) Intel Core i5 2400 is a high-

performance quad-core microprocessor with high clock frequency; (2) Intel Xeon E5-2620, a hex-

core processor designed for servers, has a lower clock frequency, but is integrated with a large

on-chip L3 cache. To eliminate effects of Hyper-threading (HT) on cache performance, we disable

HT on the Intel Xeon E5-2620 via BIOS setting.
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While our experiments focus on human genome sequencing, none of our analysis is specific to such

a genome and easily carry over to other genomic datasets as well. We use sequence datasets from

the GenBank database. The read queries used in this thesis are from the 1000 Genome Project.

To evaluate the impact of read lengths, we choose 4 read queries with different lengths. In the

remaining experiments, we use a read query with 100bp as default input.

5.1.4.2 Impact of Software Configuration

In the optimized BWA algorithm, there are three important parameters: (1) preloaded data size - the

number of letters in sequence reads preloaded; (2) bin range - the range of bucket access grouped

into a bin; (3) batch size - the number of sequence reads loaded into memory to be processed.

To achieve the optimal configuration of these parameters, we quantify the impacts of the three

parameters in this section.

5.1.4.3 Preloading Data Size

The size of preloading data determines the frequency of preloading data. A larger preloaded data

size implies less indirect references, but fatter elements and larger memory footprint. In Fig. 5.7(a),

we can see that when the preloaded data size increases from 4 to 32, the performance improves

slightly and peaks at 16.
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5.1.4.4 Bin Range

The bin range determines the granularity of memory reordering. A smaller bin range indicates that

bucket accesses are more in-order. However, the overhead of binning increases as the bin range

reduces. As the cache in modern CPU can be up to several megabytes, which can contain millions

of elements, the elements in one bin are unlikely to be evicted before the next bucket is accessed.

As we can see in Fig. 5.7(b), the overhead of binning increases with decreasing bin range causing

the performance to suffer noticeable degradation when the bin range is reduced to 16.

5.1.4.5 Batch size

Batch size is a critical parameter, significantly influencing the overall performance. In Fig. 5.7(c),

we observe that increasing the batch size dramatically improves cache performance, and conse-

quently the overall application performance. But, increasing batch size barely impacts the perfor-

mance of original BWA. A large batch size allows more bucket accesses, and more accesses fall

into a bin, increasing the possibility that multiple bucket accesses hit the same cache line. Due to

memory space limitation, we can maximally get a 2.6-fold speedup with 16 GigaBytes memory. If

further increasing batch size with larger memory, we can achieve more performance gain.

5.1.4.6 Impacts of Read Length

To clarify the impact of read length, we compare the performance of the original and optimized

versions of BWA with different read lengths. We notice that the difference of read lengths has
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Figure 5.7: Throughput (reads per second) of optimized BWA with different software configura-
tions: (a) preloaded data size, (b) bin range, (c) batch size. In each figure, we change a parameter
while fixing the other two parameters.

little influence on the speedup of the optimized BWA algorithm as shown in Table.5.2; that is, the

speedup is stable with different read lengths on both single-thread and multi-threaded tests.

Table 5.2: Performance of original and optimized BWA with different read length

SRR003084(36bp) SRR003092(51bp)

orig(s) opt(s) speedup orig(s) opt(s) speedup

single thread 6.21 4.04 1.43 6.87 4.65 1.44

multithreads 2.4 1.87 1.28 3.79 3.14 1.21

SRR003196 (76bp) SRR062640(100bp)

orig(s) opt(s) speedup orig(s) opt(s) speedup

single thread 12.79 8.93 1.54 20.54 14.26 1.48

multithreads 1.21 0.89 1.36 1.29 0.99 1.30

5.1.4.7 Impacts of Micro-Architectures

Micro-architectures can differ in several aspects. In this work, we mainly focus on cache size.

To understand the effect of the variation of cache size, we profile both the original and optimized
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backward search on the two Intel CPU architecture models described in Section 7.1.5.1.

As shown in Fig. 5.8, the speedup on the Intel Xeon CPU is not better than that on Intel i5 CPU,

despite the larger cache on the Intel Xeon. This is because our optimization mainly improves

spatial locality of the algorithm, which is sensitive to cache line size rather than cache size itself.

Furthermore, the higher single-core performance on Intel i5 benefits our optimized algorithm. If

we restrict the frequency of Intel i5 to 2GHz, which is the same as the Intel Xeon, the speedup

drops to close to that achieved by the Intel Xeon (Fig.5.8).
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Figure 5.8: Speedup of optimized BWA over original BWA on different platforms with a single
thread

5.1.4.8 Scalability

Fig. 5.9 shows the strong and weak scalability of the optimized BWA algorithm. We notice that

the weak scaling of the optimized algorithm is pretty close to ideal, with an approximately 10%

loss of scalability going from 1 thread to 6 threads. Strong scaling numbers show a 4.5X speedup
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with 6 cores (that is, a parallel efficiency of 75%).
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platform

We further analyze the loss of scalability for strong scaling in Table 5.3, through a more detailed

architectural analysis. We notice that the multithreaded version suffers more cache and DTLB

misses due to interference among threads, thus resulting in some loss of performance.

Table 5.3: Performance numbers of optimized Occ function

Cache miss(milli) DTLB miss(milli) CPI

multi-threads 127 87 2.077
single thread 109 49 1.589

5.1.5 Conclusion

In this work, we first present an in-depth performance characterization with respect to the memory

access pattern and cache behavior of BWT-based alignment. We then propose a well-designed op-

timization approach to improve data locality of backward search via binning. Our optimized BWA
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algorithm achieves up to a 2.6-fold speedup and a good weak scaling on multi-core architectures.
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5.2 muBLASTP: Eliminating Irregularities of Protein Sequence

Search on Multi-core Architectures

5.2.1 Introduction

The Basic Local Alignment Search Tool (BLAST) [119] is a fundamental algorithm in life sciences

that compares a query sequence to the sequences from a database, i.e., subject sequences, to iden-

tify sequences that are most similar to the query sequence. The similarities identified by BLAST

can be used to infer functional and structural relationships between the corresponding biological

entities, for example.

Although optimizing BLAST is a rich area of research using multi-core CPUs [118, 158], GPUs [126,

132, 130, 131], FPGAs [123, 125], and clusters and Clouds [120, 122, 159, 160, 161, 121, 162],

BLAST is still a major bottleneck in biological research. In fact, in a recent human microbiome

study that consumed 180,000 core hours, BLAST consumed nearly half the time [163]. It still

requires urgent attention in higher level applications.

BLAST adopts a heuristic method to identify the similarity between the query sequence and subject

sequences from the database. Initially, the query sequence is decomposed into short words of the

fixed length; and the words are converted into the query index, i.e., a lookup table [137] or a

deterministic finite automaton (DFA) [61], to store the positions of words in the query sequence.

BLAST reads the words from the subject sequence and identifies high scoring short matches, i.e.,

hits, from the query index. If two or more hits near enough to each other, BLAST forms the local
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alignment without insertions and deletions, i.e., gaps, (called two-hit ungapped extensions), and

then generates the further extension based on the local alignments but allows the gaps. Although

such a heuristics can efficiently eliminate unnecessary search space, it makes the execution of the

program unpredictable and the memory access pattern irregular, leading to the limited scope of

SIMD parallelism and the increase of the trips to the memory.

With the advent of next-generation sequencing (NGS), the exponential growth of sequence databases

is arguably outstripping the ability to analyze the data. In order to deal with huge databases, a range

of recent approaches of BLAST build the index based on the subject sequences instead of the in-

put query [140, 138, 141, 139, 32]. Although these alternatives that build the database index in

advance and reuse it during the search for multiple queries can improve the overall performance,

there are more challenges in the parallel design on multi-core processors. In fact, most of the

tools use longer, non-overlapping, or non-neighboring words to reduce the size of database index,

and consequently reduce the number of hits and extensions, that also reduces irregular memory

accesses. However, as reported by [142, 164, 165], they compromise the sensitivity and accuracy

compared to the query indexed methods.

In this work, following the existing heuristic algorithm, we first implement a database-indexed

BLAST algorithm that includes the overlapping and neighboring words, to provide exactly the

same accuracy as the query-indexed BLAST i.e., NCBI-BLAST. Then, we identify that directly

using the existing heuristic algorithms on the database-indexed BLAST will suffer further from

irregularities: when it aligns a query to multiple subject sequences at the same time, the ungapped

extension, which is the most time-consuming stage, will access the memory randomly across dif-
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ferent subject sequences. Even worse is that the penalty from random memory access cannot be

offset by the cache hierarchy even on the latest multi-core processors. To eliminate irregularities

in the BLAST algorithm, which is a complex MDMC class problem, we propose muBLASTP, a

multi-threaded and multi-node parallelism of BLAST algorithms for protein search. It includes

three major optimization techniques: (1) decoupling the hit detection and ungapped extension to

avoid the contention between the two phases, (2) sorting hits between decoupled phases to remove

the irregular memory access and improve data locality in the ungapped extension, (3) pre-filtering

hits not near enough ahead of sorting to reduce the overhead of hit sorting.

Experimental results show that on a modern multi-core architecture, i.e., Intel Haswell, the multi-

threaded muBLASTP can achieve up to a 5.1-fold speedup over the multithreaded NCBI BLAST

using 24 threads. In addition to improving performance significantly, muBLASTP produces the

identical results as NCBI BLAST, which is important to the bioinformatics community.

5.2.2 Database Index

One of most challenging components of muBLASTP is the design of the database index. The

index should include the positions of overlapping words from all subject sequences of the database,

where each position contains the sequence ID and the offset in the subject sequence, i.e., subject

offset. For the protein sequence search, the BLASTP algorithm uses the small word size (W = 3), a

large alphabet size (22 letters), and neighboring words. These factors may make the database index

very large, thus we need to design our database index with the following techniques: blocking,



97

sorting, and compression.

5.2.2.1 Index Blocking

Fig. 5.10(a) illustrates the design of index blocking. We first sort the database by the sequence

length; partition the database into small blocks, where each block has the same number of letters;

and then build the index for each block separately. In this way, the search algorithm can go through

the index blocks one by one and merge the high-scoring results of each block in the final stage. In-

dex blocking can enable the database index to fit into main memory, especially for large databases

whose total index size can exceed the size of main memory. By shrinking the size of the index

block, when the index block is small enough to fit into the CPU cache.

Another benefit of using the index blocking is to reduce the total index size. Without index blocking

and assuming a total of M sequences in the database, we need log2M bits to store sequence IDs.

After dividing the database into N blocks, each block contains M
N

sequences on average. Thus,

we only need log2dMN e bits to store sequence IDs. For example, if there are 220 sequences in a

database, we need 20 bits to store the sequence IDs. With 28 blocks, if each block contains 212

sequences, then we only need a maximum of 12 bits to store the sequence IDs. In addition, because

the number of bits for storing subject offsets is determined by the longest sequences in each block,

after sorting the database by the sequence length, we can use fewer bits for subject offsets in the

blocks having short and medium sequences, and more bits only for the blocks having extremely

long sequences. (This is one of the reasons why we sort the database by the sequence length

ahead.)
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Figure 5.10: An example of building a compressed database index. The figure shows the flow
from the original database to the compressed index. (a) Index blocking phase partitions the sorted
database into blocks. (b) Basic indexing phase generates basic index, which contains positions of
all words in the database. (c) Index sorting sorts positions of each word by subject offsets. (d)
Index compression-merge merges positions with the same subject offset. (e) Index compression-
increment done on the merged positions generates increments of subject offsets and sequence IDs
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Furthermore, the index blocking allows us to parallelize the BLASTP algorithm via the mapping

of a block to a thread on a modern multi-core processor. For this block-wise parallel method to

achieve the ideal load balance, we partition index blocks equally to make each block have a similar

number of letters, instead of an identical number of sequences. To avoid cutting a sequence in the

middle, if the last sequence reaches the cap of the block size, we put it into the next block.

After the database is partitioned into blocks, each block is indexed individually. As shown in

Fig. 5.10(b), the index consists of two parts: the lookup table and the position array. The lookup

table contains aw entries, where a is the alphabet size of amino acids and w is the length of the

words. Each entry contains an offset to the starting position of the corresponding word. In the

position array, a position of the word consists of the sequence ID and the subject offset. For protein

sequence search, the BLASTP algorithm not only searches the hits of exactly matched words, but

also searches the neighboring words, which are similar words. The query index used in existing

BLAST tools, e.g., NCBI BLAST, includes the positions of neighboring words in the lookup table.

However, for the database index in muBLASTP, if we store the positions for the neighboring words,

the total size of the index becomes extraordinarily large. To address this problem, instead of storing

positions of the neighboring words in the index, we put the offsets, which point to the neighboring

words of every word, into the lookup table. The hit detection stage then goes through the positions

of neighbors via the offsets after visiting the current word. In this way, we use additional stride

memory accesses to reduce the total memory footprint for the index.
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5.2.2.2 Index compression

As shown in Fig. 5.10(b), a specific subject offset for a word may be repeated in multiple se-

quences. For example, the word “ABC” appears in the position 0 of sequences 1 and 3. In light

of this repetition, it is possible to compress the index by optimizing the storage of subject offsets.

Next, we sort the position array by the subject offset to group the same subject offsets together,

as shown in Fig. 5.10(c). After that, we reduce the index size via merging the repeated subject

offsets: for each word, we store the subject offset and the number of positions once and store the

corresponding sequence IDs sequentially, as shown in Fig. 5.10(d). After the index merging, we

only need a small array for the sorted subject offsets. Furthermore, because the index is sorted by

subject offsets, instead of storing the absolute value of subject offsets, we store the incremental

subject offsets, as noted in Fig. 5.10(e), and only use eight (8) bits for the incremental subject

offsets. Because the number of positions for a specific subject offset in a block is generally less

than 256, we can also use eight (8) bits for the number of positions. Thus, in total, we only need a

16-bit integer to store a subject offset and its number of positions.

However, this compressed method presents a challenge. When we use eight (8) bits each for the

incremental subject offset and the number of repeated positions, there still exist a few cases that the

increment subject offsets or the number of repeated positions can be larger than 255. When such

situations are encountered, we split a position entry into multiple entries to make the value less than

255. For example, as shown in Fig. 5.11(a), if the increment subject offset is 300 with 25 positions,

then we split the subject offset into two entries, where the first entry has the incremental subject
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offset 255 and the number of repeated position 0, and the second entry has the incremental subject

offset 45 for the 25 positions. Similarly, as shown in Fig. 5.11(b), for 300 repeated number of

positions, the subject offset is split into two entries, where the first entry has the incremental subject

offset 2 for 255 positions, but the second has the incremental subject offset 0 for an additional 45

positions.
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Figure 5.11: An example of resolving overflows in the compressed index. (a) Resolving the over-
flow in the number of positions. (b) Resolving in the incremental subject offsets

5.2.3 Performance Analysis of BLAST Algorithm with Database Index

The existing BLAST algorithm executes the first three stages interactively: once a hit is detected,

the algorithm immediately triggers the ungapped extension if the distance is smaller than the

threshold, and then issues the gapped extension. For the query-indexed BLAST algorithm, since

the subject sequences are aligned one by one to the query, only a lasthit array is needed for the
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query sequence. Moreover, the protein sequences are generally short, no more than 2K characters.

Therefore, we still can achieve good cache performance for the lasthit array method, the query se-

quence, and the subject sequence, even though the memory access pattern on those data is totally

random.
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Figure 5.12: Profiling numbers and execution time of the query indexed NCBI-BLAST (NCBI)
and the database-indexed NCBI-BLAST (NCBI-db) when search a query of length 512 on the
env_nr database.

However, irregular memory access patterns in the database-indexed search can lead to a severe

locality issue. With an in-depth performance characterization, we identify the database-indexed

BLAST algorithm is a MDMC problem, which has complex irregularities across multiple func-

tions and data structures. Each word in the database index can include positions from all subject

sequences, the algorithm has to keep many lasthit arrays, one for a subject sequence. When the

algorithm scans the query sequence successively, a new hit may be located on any lasthit array, and

the ungapped extension may be triggered for any subject sequence. As a consequence, the execu-

tion path of the program will jump back and forth across different subject sequences, leading to the
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cached lasthit arrays and subject sequences flushed out from the cache before reuse. Fig. 5.12(a)

and 5.12(b) compares the LLC (Last-Level Cache) and TLB (Translation Lookaside Buffer) miss

rate, respectively, between NCBI-BLAST with the query index (NCBI) and NCBI-BLAST with

the database index (NCBI-db), when searching a real protein sequence of length 512 on the env_nr

database. Note that NCBI-db (described in Section 5.2.2) uses the database index with overlapping

and neighboring words to provide the same results as NCBI-BLAST with the query index. We can

see the database index method has much higher LLC and TLB miss rate. As a result, the overall

performance with the database index is much worse than that with the query index, as shown in

Fig. 5.12(c).

5.2.4 Optimized BLASTP Algorithm with Database Index

5.2.4.1 Decoupling First Three Stages

As discussed in Section 5.2.3, with the database index, the BLAST algorithm have to operate on

multiple lasthit arrays simultaneously, because a word can induce multiple hits at different subject

sequences. The interleaving execution of hit detection, ungapped extension, and gapped extension

will lead to random memory accesses across lasthit arrays and subject sequences. In order to

avoid the data swapped in and out the cache without being fully reused, we decouple these three

stages. That means after loading an index block, the hit detection will find all hits, and store

hits in a temporal buffer. Because the hits for a subject sequence may be distributed randomly in

this buffer, we add an additional stage, i.e., hit reordering, before the ungapped extension and the
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following gapped extension.

A new data structure is introduced to record the hits for fast hit reordering. A hit should contain

sequence ID, diagonal ID, subject position (subject offset) and query position (query offset). For

the sequence ID and diagonal ID, we pack them into a 32-bit integer as the key, in which the

sequence ID uses the higher bits and the diagonal ID uses the lower bits. With this packed key,

we just need to sort hits by the key once, and then hits are sorted in the order for both sequence

IDs and diagonal IDs. For the subject offset and query offset, since a subject offset or query

offset can be calculated with each other with a given diagonal ID as diagonal_id− query_offset

or diagonal_id − subject_offset, we just need to keep one of these two offsets, e.g., the query

offset, and calculate the other in the ungapped extension (Fig. 5.13). We realize that today’s protein

databases may contain very long sequences (∼ 40k characters). We don’t build the index for such

extreme cases. Instead, we use a method proposed recently in [162] to divide the extremely long

sequence into multiple short sequences with the overlapped boundaries and use an assembly stage

to extend the ungapped extension and gapped extension after finishing the extension inside each

short sequence.

5.2.4.2 Hit Reordering with Radix Sort

As shown in Fig. 5.13, the hit detection algorithm will put hits for different subject sequences

in successive memory locations in the temporal hit buffer. For the word ABC, the hit detection

will put the hits (0,0) and (0,4) for the subject sequence 0 in the hit buffer, and then put the hits

(0,0), (0,4), and (0,6) for the subject sequence 1 into the following memory locations of the hit
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buffer. Because the ungapped extension can only operate on hits in the same diagonal of a subject

sequence, we have to reorder hits.

There are many sorting algorithms, such as radix sort, merge sort, bitonic sort, and quicksort.

Based the analysis in Section 4.3.2.2, radix sort is the best option for the hit reordering due to the

following reasons: First, thanks to the index blocking technique, each block has merely hundreds

of kilobytes to several megabytes of hits, which can easily fit into the LLC. Therefore, the radix

sort does not have high memory bandwidth issue in our case. Second, because we sort the subject

sequences when building the database index, each block has the similar length of keys, which

is friendly to the radix sort. Third, in the hit detection, the query sequence is scanned from the

beginning to the end, and the hits are already in the order of query offsets. Because we need to

keep such an order in the key-value sort, the radix sort is a better choice considering the merge

sort may lose a little bit performance to achieve the stable sort. There are two ways to implement

the radix sort, one is beginning at the least significant digit, called LSD radix sort; and the other

is beginning at the most significant digit, called MSD radix sort. Although MSD radix sort has

less computational complexity because it may not need to examine all keys, MSD radix sort is too

slow for small datasets, e.g., hundred kilobytes in our case. Therefore, we choose LSD radix sort

to reorder the hits after the hit detection stage.

Algorithm 4 illustrates the BLAST algorithm on the database index. To achieve better data locality,

the algorithm loads index blocks one by one (line 3), and go through all input queries for an

index block in the inner loop (line 4). For each query in the inner loop, the hit detection function

hitDetect() scans the current query, and find hits for all subject sequences in the index block (line
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Figure 5.13: Hit-pair search with hit reordering

5). All hits are sorted with the key, including the sequence ID and diagonal ID, by LSD radix sort

(line 6). After the hits are sorted, they are passed to the filtering stage (line 9) that picks up the

hit pairs near enough along the same diagonal (line 11) and stores them into the internal buffer

HitPairs. In the ungapped extension, the for loop starting from line 20, the hit pairs are extended

one by one in the order of subject sequence IDs and diagonal IDs. Thus, this method can reuse

the subject sequence during the ungapped extension, while the previous methods cannot, because

they issue the ungapped extension immediately within the hit detection and have to jump from a

subject sequence to another. Before doing the ungapped extension, the algorithm will also check if

the current hit pair is covered by the extension of previous hit pair (line 21). If it is, the algorithm
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will skip this hit pair.

5.2.4.3 Hit Pre-filtering

Although we have applied the highly efficient radix sort in the hit reordering, the overhead to

sort millions of hits per block are not negligible. We introduce a pre-filtering stage before the hit

reordering to kick out hits that cannot trigger the ungapped extension. We use the similar idea of

the lasthit array: an array is created for a subject sequence to record the current hit in each diagonal;

instead of triggering the ungapped extension immediately when a hit pair is detected, the hit pair

is put into the hit buffer. Because we only use these lasthit arrays in the hit detection in which we

don’t access any subject sequence, we do not have the cache swapping issue in the lasthit array

method. Fig. 5.14 illustrates the optimized BLAST algorithm with the hit pre-filtering.

Fig. 5.15 illustrates the number of hits that will be sorted in the hit reordering stage with and

without the hit pre-filtering. When searching randomly picked 20 input queries on the real protein

database uniprot_sprot, there are only 3 ∼ 4 percent of hits left after the pre-filtering. As a result,

the overhead in radix sort can be reduced dramatically.

Algorithm 5 shows the optimized BLAST algorithm with pre-filtering. In the inner loop, the two-

dimensional array lasthitArr is used to record the lasthits in every diagonal of subject sequences.

When a hit is detected (line 6), the algorithm calculates its diagonal ID and sequence ID (line 7),

and accesses the lasthit in this diagonal (line 9). If the distance is smaller than the threshold, this

hit pair is stored in the hit pair buffer (line 12). The corresponding position of the lasthit array is
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Algorithm 4 database-indexed BLASTP Algorithms with Hit Reordering
1: Input: DI: database index, Q: query sequences
2: Output: U : high-scoring ungapped alignments
3: for all database index block dIdxBlki in DI do
4: for all sequence qi in Q do
5: hits← hitDetect(dIdxBlki, qi)
6: sortedHits← radixSort(hits)
7: reachedPos← −1
8: reachedKey ← −1
9: for all hiti in sortedHits do

10: distance← hiti.qOffset− reachedPos
11: if reachedKey == hiti.key and distance < threshold then
12: hiti.dist = distance
13: HitPairs← HitPairs + hiti
14: end if
15: reachedPos← hiti.qOffset
16: reachedKey ← hiti.key
17: end for
18: extReached← −1
19: reachedKey ← −1
20: for all hiti in HitPairs do
21: if reachedKey == hiti.key and extReached > hiti.qOffset then
22: skip this hit
23: else
24: ext← ungappedExt(hiti, lasthit, S, qi)
25: if ext.score > thresholdT then
26: U ← U + ext
27: extReached← ext.end
28: else
29: extReached← hiti.qOffset
30: end if
31: end if
32: reachedKey ← hiti.key
33: end for
34: end for
35: end for
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Figure 5.14: Hit reordering with pre-filtering

also updated to the current hit (line 14). After the pre-filtering, all hit pairs will be sorted using

the radix sort (line 16). Note that Algorithm 4 also has a filtering stage after the hit reordering

(post-filtering) to kick out the hit pairs that cannot trigger the ungapped extension. We apply the

pre-filtering in our evaluations to reduce the overhead of hit reordering.

5.2.4.4 Optimizations in multithreading

In the BLAST algorithm, the query sequence is aligned to each subject sequence in the database

independently and iteratively. Thus, we can parallelize the BLAST algorithm with OpenMP mul-

tithreading on the multi-core processors in a compute node, e.g., our pair of 12-core Intel Haswell
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Algorithm 5 database-indexed BLASTP Algorithms with Pre-filtering and Hit Reordering
1: Input: DI: database index, Q: query sequences
2: Output: U : high-scoring ungapped alignments
3: for all database index block dIdxBlki in DI do
4: for all sequence qi in Q do
5: hits← hitDetect(dIdxBlki, qi)
6: for all hitj in hits do
7: diagId← hit.subOff − hit.queryOff
8: seqId← hit.seqId
9: lasthit← lasthitArr[seqId][diagId]

10: distance← hit− lasthit
11: if distance < thresholdA then
12: hitPairs← createHitPairs(hit, lasthit)
13: end if
14: lasthitArr[seqId][diagId]← hit.subOff
15: end for
16: sortedHitPairs← hitSort(hitPairs)
17: extReached← −1
18: for all hitPairi in sortedHitPairs do
19: if hitPairi.end.subOff > extReached then
20: ext← ungappedExt(hitPairi, S, qi)
21: if ext.score > thresholdT then
22: U ← U + ext
23: extReached← ext.end.subOff
24: else
25: extReached← hitPairi.end.subOff
26: end if
27: end if
28: end for
29: end for
30: end for
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Figure 5.15: Percentage of hits remained after pre-filtering. For different query length — 128, 256
and 512, we select 20 queries from the uniprot_sprot database

CPUs or 24 cores in total. However, achieving robust scalability on such multi-core processors is

non-trivial, particularly for a data-/memory-intensive program like BLAST, which also introduces

irregular memory access patterns as well as irregular control flows. At a high level, two major chal-

lenges exist for parallelizing BLAST within a compute node: (1) cache and memory contention

between threads on different cores and (2) load balancing of these threads.

Because the alignment on each query is independent, a straightforward approach of parallelization

is mapping the alignment of each query to a thread. However, this approach results in different

threads potentially accessing different index blocks at the same time. In light of the limited cache

size, this approach results in severe cache contention between threads. To mitigate this cache

contention and maximize cache-sharing across threads, we exchange execution order, as shown

in Algorithm 6. That is, the first two stages, i.e., hit detection and ungapped extension, which

share the same database index, access the same database block for all batch query sequences (from
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Line 5 to 10). So, we apply the OpenMP pragma on the inner loop to make different threads

process different query sequences but on the same index block. Then, threads on different cores

may share the database index that is loaded into memory and even cache. The aligned results for

each index block are then merged together for the final alignment with traceback, as shown on

Line 9.

Algorithm 6 Optimized multithreaded muBLASTP
1: Input: DI: database index, Q: query sequences
2: Output: G: top-scoring gapped alignments with traceback
3: for all database index block dIdxBlki in DI do
4: #pragma omp parallel for schedule(dynamic)
5: for all qi in Q do
6: hits← hitDetect(dIdxBlki, qi)
7: sortedHitPairs← hitF ilterAndSort(hits)
8: ungapExts← ungapExt(sortedHitPairs);
9: gapExts[i]← gapExts + gappedExt(ungappedExts);

10: end for
11: end for
12: #pragma omp parallel for schedule(dynamic)
13: for all qi in Q do
14: sortedGapExts[i]← SortGapExt(gapExts[i])
15: G← gappedExtWithTraceback(sortedGapExts[i])
16: end for

For better load balancing, and in turn, better performance, we leverage the fact that we already have

a sorted database with respect to sequence lengths. We then partition this database into blocks of

equal size and leverage OpenMP dynamic scheduling.
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5.2.5 Performance Evaluation

5.2.5.1 Experimental Setup

Platforms: We evaluate our optimized BLASTP algorithm with the database index on modern

multi-core CPUs. For the single-node evaluations, the compute node consists of two Intel Haswell

Xeon CPUs (E5-2680v3), each of which has 12 cores, 30MB shared L3 cache, and dedicated 32KB

L1 cache and 256KB L2 cache on each core. For the multi-node evaluations, we use 128 nodes of

the Stampede supercomputer, that was 10th on the Top 500 list of November 2015. Each node of

our multi-node evaluations has two Intel Sandy Bridge Xeon CPUs (E5-2680), where each CPU

has 8 cores, 20MB shared L3 cache, and dedicated 32KB L1 cache and 256KB L2 cache on each

core. All programs are compiled by the Intel C/C++ compiler 15.3 with the compiler flags -O3

-fopenmp. All MPI programs are compiled using Intel C/C++ compiler 15.3 and MVAPICH 2.2

library.

Databases: We choose two typical protein NCBI databases from GenBank [62]. The first is the

uniprot_sprot database, including approximately 300,000 sequences with a total size of 250 MB.

The median length and average length of sequences are 292 and 355 bases (or letters), respectively.

The second is the env_nr database, including approximately 6,000,000 sequences with the total size

at 1.7 GB. The median length and average length are 177 and 197 bases (or letters), respectively.

Fig. 5.16 shows the distribution of sequence lengths for the uniprot_sprot and env_nr databases.

We observe that the sizes of most sequences from the two databases are in the range from 60 to
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Figure 5.16: Sequence length distributions of uniprot_sprot and env_nr databases.

1000 bases and there are few sequences longer than 1000 bases. Similar observations were also

reported in previous studies for the protein sequence [166, 167, 142].

Queries: According to the length distribution shown in Fig. 5.16, we randomly pick three sets

of queries from target databases with different lengths: 128, 256 and 512. To mimic the real

world workload, we prepare the fourth set of queries with the mixed length. This set follows the

distribution of sequence length of the target databases. Each set has two batch size: the batch of

128 queries and batch of 1024 queries.

Methods: We evaluate three methods on the single node: the latest NCBI-BLAST (version 2.30)

that uses the query index, labeled as NCBI; the NCBI-BLAST algorithm with the database index as

shown in Section 5.2.2, labeled as NCBI-db; and our optimized BLAST, labeled as muBLASTP.

Note that because there isn’t an open sourced BLAST tool using the database index that can get
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Figure 5.17: Performance numbers of multi-threaded NCBI-db and muBLASTP on the
uniprot_sprot database. The batch has 128 queries. The lengths of queries are 128, 256 and
512.
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exactly same results of NCBI-BLAST, we implement the second method with our own database

index structure but follow the NCBI-BLAST algorithm. On multiple nodes, we compare the MPI

version of muBLASTP with mpiBLAST (version 1.6.0). All performance results in experiments

refer to the end to end run times from submitting queries to getting the final results. The database

sorting time and index build time is not included since the index only needs to be built once offline

for a given database.

5.2.5.2 Performance with Different Block Sizes

To find the best index block size, we evaluate the performance of database indexed methods, i.e.,

NCBI-db and muBLASTP, with various block sizes for the uniprot_sprot database. Fig. 5.17(a)

shows the variable performance. We set the batch size to 128, having 128 input queries, change

the length of query: 128, 256 and 512, and also change the index block size from 128 KB to

4 MB, corresponding to 32K to 1M positions in each index block. The figures show obvious

improvements in execution time of muBLASTP in all cases, the reduced LLC miss rate give a hint

of the reason where the performance comes from: much better cache utilization.

With increasing the index block size, we can also see both execution time and the LLC miss rate

decrease initially but increase rapidly after the index block size reaches 512 KB. The reason for

the decreasing LLC miss rate at the beginning is because of the increasing efficiency of cache

usage. For example, if the index block size is 512 KB, there are nearly 128K positions (i.e., each

position is stored in a 32-bit Integer). Because a word has 3 amino acids codes (24 codes), there

are totally 243 (i.e., 13824) possible words. On the average, there are 9 to 10 positions per word
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(i.e., 128 ∗ 1024/13824), occupying 36 to 40 bytes. Thus the cache line can be fully utilized with

the block size of 512 KB. As a result, if the index block size is smaller than 512 KB, the cache line

is underutilized.

After the block size reaches 1 MB, the index block and lasthit array cannot fit into the LLC cache.

Therefore, the LLC miss rate begins to grow. Because the length of the lasthit array is twice of a

number of positions, the lasthit array in each thread can roughly occupy 2 MB of the memory, and

totally 24 MB for 12 threads. However, there is a 30 MB LLC in our test platform. If the block

size is larger than 1 MB, it is possible that the memory access on the lasthit array lead to severe

LLC misses because the lasthit array is out of the cache. Without the optimizations of eliminating

irregularities, the performance of NCBI-db is reduced much more rapidly than that of muBLASTP.

Based on the discussion above, to fully utilizing hardware prefetcher, we need to select a proper

block size to make the index block and the lasthit array can just fit into the LLC cache. Since the

lasthit array size for t threads is t ∗ b ∗ 2, where b is the block size, for the given LLC cache size L,

we can estimate the optimal block size b by b = L/(t ∗ 2 + 1).

5.2.5.3 Comparison with Multi-threaded NCBI-BLAST

Fig. 6.11 illustrates the performance comparisons of muBLASTP with NCBI and NCBI-db on two

types of protein databases. Fig. 5.18(a) and Fig. 5.18(b) show that for the batch of 128 queries,

muBLASTP can achieve up to 5.1-fold and 3.3-fold speedups over NCBI on uniprot_sprot and

env_nr databases, respectively. For the batch of 1024 queries, the speedups are 2.5-fold and 2.1-
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fold, as shown in Fig. 5.18(c) and Fig. 5.18(d). Compared to NCBI-db, muBLASTP can deliver

up to 3.3-fold and 3.9 fold speedups on uniprot_sprot and env_nr databases for the batch of 128

queries, and up to 2.4-fold and 2.7-fold speedups for the batch of 1024 queries.
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Figure 5.18: Performance comparisons of NCBI, NCBI-db and muBLASTP with batch of 128 and
1024 queries on uniprot_sprot and env_nr databases.

The figure also illustrates that for the large database, i.e., env_nr, database-indexed NCBI-BLAST

(NCBI-db) cannot gain the better performance than the query-indexed NCBI-BLAST (NCBI). This

is because of more irregularities in the BLAST algorithm with the larger database index. Our op-
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timizations in muBLASTP are designed to resolve these issues and can deliver better performance

than NCBI-BLAST no matter which indexing methods are used.

5.2.6 Conclusion

In this chapter, we present muBLASTP, a database-indexed BLASTP that delivers identical hits

returned to NCBI BLAST for protein sequence search. With our new index structure for protein

databases and associated optimizations in muBLASTP, we deliver a re-factored BLASTP algo-

rithm for modern multi-core processors that achieves much higher throughput with acceptable

memory usage for the database index. On a modern compute node with a total of 24 Intel Haswell

CPU cores, the multithreaded muBLASTP achieves up to a 5.7-fold speedup for alignment stages,

and up to a 4.56-fold end-to-end speedup over multithreaded NCBI BLAST. muBLASTP also can

achieve significant speedups on an older generation platform with dual 6 cores Intel Nehalem CPU,

where muBLASTP delivers up to an 8.59-fold speedup for alignment stages, and up to a 3.85-fold

end-to-end speedup over multithreaded NCBI BLAST.



Chapter 6

Optimizing Irregular Application for

Many-core Achitectures

6.1 cuBLASTP: Fine-Grained Parallelization of Protein Sequence

Search on CPU+GPU

6.1.1 Introduction

The Basic Local Alignment Search Tool (BLAST) [119] is a fundamental algorithm in the life

sciences that compares a query sequence to the database of known sequences in order to identify

the most similar known sequences to the query sequence. The similarities identified by BLAST can

then be used to infer functional and structural relationships between the corresponding biological

120
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entities, for example.

With the advent of next-generation sequencing (NGS) and the increase in sequence read-lengths,

whether at the outset or downstream from NGS, the exponential growth of sequence databases is

arguably outstripping our ability to analyze the data. Consequently, there have been significant

efforts to accelerate sequence-alignment tools, such as BLAST, on various parallel architectures in

recent years.

Graphics processing units (GPUs) offer the promise of accelerating bioinformatics algorithms and

tools due to their superior performance and energy efficiency. However, in spite of the promising

speedups that have been reported for other sequence alignment tools such as the Smith-Waterman

algorithm [168], BLAST remains the most popular sequence analysis tool but also one of the most

challenging to accelerate on GPUs.

Due to its popularity, the BLAST algorithm has been heavily optimized for CPU architectures over

the past two decades. However, these CPU-oriented optimizations create problems when acceler-

ating BLAST on GPU architectures. First, to improve computational efficiency, BLAST employs

input-sensitive heuristics to quickly eliminate unnecessary search spaces. While this technique

is highly effective on CPUs, it induces unpredictable execution paths in the program, leading to

many divergent branches on GPUs. Second, to improve memory-access efficiency, the data struc-

tures used in BLAST are finely tuned to leverage CPU caching. Re-using these data structures on

GPUs, however, can lead to highly inefficient memory access because the cache size on GPUs is

significantly smaller than that on CPUs and because the coalesced memory access is needed on

GPUs to achieve good performance.
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State-of-the-art BLAST realizations for protein sequence search on GPUs [130, 64, 129, 128] adopt

a coarse-grained and embarrassingly parallel approach, where one sequence alignment is mapped

to only one thread. In contrast, a fine-grained mapping approach, e.g., using warps of threads to

accelerate one sequence alignment, could theoretically better leverage the abundant parallelism

offered by GPUs. However, such an approach presents significant challenges, mainly due to the

high irregularity in execution paths and memory-access patterns that are found in CPU-based re-

alizations of the BLAST algorithm. Thus, accelerating BLAST on GPUs requires a fundamental

rethinking in the algorithmic design of BLAST.

Consequently, we propose cuBLASTP, a novel fine-grained mapping of the BLAST algorithm

for protein search (BLASTP) onto a GPU, that improves performance by addressing the irregular

execution paths caused by branch divergence and irregular memory access with the following

techniques.

• First, we identify the BLAST kernel on a GPU is a SDMC class problem that can result

in branch divergence and irregular memory accesses. Therefore, we decouple the phases

in the BLASTP algorithm (i.e., hit detection and ungapped extension) to eliminate branch

divergence and parallelize the phases having different computational patterns with different

strategies on the GPU or CPU, as appropriate.

• Second, we propose a data reordering pipeline of binning-sorting-filtering as an additional

phase between the phases of BLASTP to reduce irregular memory accesses.

• Third, we propose three implementations for the ungapped-extension phase with differ-
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ent parallel granularities, including diagonal-based parallelism, hit-based parallelism, and

window-based parallelism. Fourth, we design a hierarchical buffering mechanism for the

core data structures, i.e., deterministic finite automaton (DFA) and the position-specific scor-

ing matrix (PSS matrix), to explore the new memory hierarchy provided by the NVIDIA

Kepler architecture.

• Finally, we also optimize the remaining phases of BLASTP, i.e., gapped extension and align-

ment with traceback, on a multi-core CPU and overlap the phases running on the CPU with

those running on the GPU.

Experimental results show that cuBLASTP can achieve up to a 3.4-fold speedup for the overall

performance over the multi-threaded implementation on a quad-core CPU. Compared with the

latest GPU implementation - CUDA-BLASTP, cuBLASTP delivers up to a 2.9-fold speedup for

the critical phases of cuBLASTP and a 2.8-fold speedup for the overall performance.

6.1.2 Design of a Fine-Grained BLASTP

Here we first analyze the challenges in our coarse-grained BLASTP algorithm on the GPU. Then

we introduce our fine-grained BLASTP algorithm. The basic idea is to explicitly partition the

phases of BLASTP from within a single kernel into multiple kernels, where each kernel is op-

timized to run across a group of GPU threads. In particular, this is done for hit detection and

ungapped extension. We then present our CPU-based optimizations for the two remaining phases,

i.e., gapped extension and alignment with traceback.
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6.1.2.1 Challenges of Mapping BLASTP to GPUs

Fig. 6.1 shows how hit detection and ungapped extension execute in the default BLASTP algo-

rithm. In the hit detection, each subject sequence in the database is scanned from left to right to

generate words; each word, in turn, is searched in the DFA of the query sequence. The positions

with similar words found in the query sequence are tagged as hits, with each hit denoted as a tuple

of two elements — (QueryPos, SubPos), where QueryPos is the position in the query sequence

and SubPos is the position in the subject sequence. For example, the word ABC in the subject

sequence is searched in the DFA and found in positions 1, 7, and 11 of the query sequence, which

in turn generates the following tuple hits: (1, 3), (7, 3), and (11, 3).

After finding the hits, the BLASTP algorithm starts the ungapped extension. The algorithm uses

a global array denoted as lasthit_arr to record the hits found in the previous detection for each

diagonal. In the ungapped extension, the algorithm checks the previous hits in the same diagonals

with the current hits. If the distance between the previous hit and the current hit is smaller than

the threshold, the ungapped extension continues until a gap is encountered. For example, when the

word ABB is processed to generate the hits (2, 8) and (6, 8), the hits in the lasthit_arr array for

diagonal 2 and diagonal 6 are checked.

Because all the hits in a column are tagged simultaneously, the hit detection proceeds in column-

major order. However, the ungapped extension proceeds in diagonal-major order, where hits in a

diagonal are checked from top left to bottom right. Fig. 6.1 also illustrates the memory-access order

on the lasthit_arr array. With the interleaved execution of hit detection and ungapped extension,
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memory access on the lasthit_arr array is highly irregular.
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Figure 6.1: BLASTP hit detection and ungapped extension

Algorithm 7 illustrates the traditional BLASTP algorithm, on either CPU or GPU. When a hit is

detected, the corresponding diagonal number (i.e., diagonal id) is calculated as the difference of

hit.sub_pos and hit.query_pos, as shown in Line 5. The previous hit in this diagonal is obtained

from the lasthit_arr array (Fig. 6.1). If the distance between the current hit and previous hit is less

than the threshold, the ungapped extension is triggered. After the ungapped extension occurs in the

current diagonal, the extended position in the subject sequence is used to update the previous hit

in the lasthit_arr array. After all hits in the current column are checked in the ungapped-extension

phase, the algorithm moves forward to the next word in the subject sequence.
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Algorithm 7 Hit Detection and Ungapped Extension
Input: database: sequence database;
DFA: DFA lookup table base on query sequence
Output: extensions: results of ungapped extension

1: for all sequencei in database do
2: for all wordj in sequencei do
3: find hits for wordj in DFA
4: for all hitk in hits do
5: diagonal← hitk.sub_pos− j + query_length . calculate diagonal number
6: lasthit← lasthit_arr[diagonal] . get lasthit in the same diagonal
7: distance← hitk.sub_pos− lasthit.sub_pos . calculate distance to lasthit
8: if distance within threshold then
9: ext← ungapped_ext(hitk, lasthit) . perform the ungapped extension

10: extensions.add(ext)
11: lasthit_arr[diagonal]← ext.sub_pos . update lasthit with ext position
12: else
13: lasthit_arr[diagonal]← hit.sub_pos . update lasthit with hit position
14: end if
15: end for
16: end for
17: end for
18: output extensions

Fig. 6.2 shows how the BLASTP algorithm traditionally maps onto a GPU. It is a coarse-grained

approach where all the phases of the alignment between the query sequence and one subject se-

quence are handled by a dedicated thread on the GPU. Because of the heuristic nature of BLASTP,

there exist irregular execution paths in different subject sequences from a sequence database. Since

the number of hits that trigger the ungapped extension in different sequences cannot be deduced in

advance, branch divergence (and in turn, load imbalance) occurs when using coarse-grained par-

allelism in BLASTP. For example, while thread 2 works on the ungapped extension, as shown in

Fig. 6.2, neither thread 0 nor thread 1 can trigger because in thread 0, there is no hit found in the hit

detection, and in thread 1, the distance between the current hit and previous hit is larger than the

threshold T . As a result, the branch divergence in this warp cripples the performance of BLASTP



127

on a GPU.

… … … …

Thread 0 Thread 1 Thread 2 Thread 3

……

Subject 3Subject 2Subject 1Subject 0

Q
ue

ry

Divergence

Warp

Figure 6.2: Branch divergence in coarse-grained BLASTP

Irregular memory access further impacts the performance of BLASTP on a GPU. Because the

current hits can lead to irregular memory access on the previous hits in the lasthit_arr array and

because each thread has its own lasthit_arr when pursuing coarse-grained parallelism for BLASTP,

coalesced memory access when the threads of a warp are used for different sequence alignments

proves to be effectively impossible.

Even a straightforward fine-grained multithreaded approach that uses multiple threads to unfold

the “for” loop in Algorithm 7 can also lead to severe branch divergence on a GPU. Why? Due to

the uncertainty in both the number of hits on different words and the distance to previous hits along

the diagonals. Furthermore, since any position in the lasthit_arr array can be accessed during any

one iteration, this approach can also cause significant memory-access conflicts. Thus, designing

an effective fine-grained parallelization of BLASTP that fully utilizes the capability of the GPU

is a daunting challenge. To address this, we decouple the phases of the BLASTP algorithm, use
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different strategies to optimize each of them, and propose a “binning-sorting-filtering” pipeline

based on the method presented in Section 4.3 to reorder memory accesses and eliminate branch

divergence, as articulated in the following subsections.

6.1.2.2 Hit Detection with Binning

We first decouple the phases of hit detection and ungapped extension into separate kernels. In

our fine-grained hit detection, we use multiple threads to detect consecutive words in a subject

sequence and to ensure the coalesced memory access. In addition, because the ungapped extension

executes along the diagonals, we re-organize the output results of the hit-detection into diagonal-

major order and introduce a binning data structure and bin-based algorithms to bridge the phases

of hit detection and ungapped extension. Specifically, we allocate a contiguous buffer in global

memory and logically organize this buffer into bins (which will map onto the diagonals) to hold

the hits. While a bin could be allocated for one diagonal, we allocate a bin for multiple diagonals

to reduce memory usage on the GPU and to allow longer sequences to be handled.

Fig. 6.3 illustrates our approach to the fine-grained hit detection, where each word in the subject

sequence is scheduled to one thread. A thread retrieves a word from the corresponding position

(i.e., column number or id) in the subject sequence, searches the word in the DFA to get the

hit positions (i.e., row number or id), and immediately calculates the diagonal numbers as the

difference in corresponding column number and row number. For example, thread 3 retrieves word

ABC from column 3 of the subject sequence, searches for ABC in the DFA to get hit positions 1,

7, and 11, and calculates the diagonal numbers as 2, −4, and −8, respectively. Since multiple
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threads can write hit positions into the same bin simultaneously, we must use atomic operations to

address write conflicts, and in turn, ensure correctness.

Algorithm 8 Warp-based Hit Detection
Input: database: sequence database;
DFA: DFA lookup table base on query sequence
Output: bins: diagonal-based bins that store hits

1: tid← blockDim.x ∗ blockIdx.x + threadIdx.x
2: numWarps← gridDim.x ∗ blockDim.x/warpSize . calculate total number of warps
3: warpId← tid/warpSize
4: laneId← threadIdx.x mod warpSize . initialize i with warpId
5: i← warpId
6: while database has i-th sequence do
7: j ← laneId . initialize j with laneId
8: while i-th sequence has j-th word do
9: find hits of j-th word in DFA

10: for all hitk in hits do
11: diagonal← hitk.sub_pos− j + query_length
12: binId← diagonal mod num_bins . calculate bin number
13: curr ← atomicAdd(top[bin_id], 1) . increment hit counts of the bin
14: bins[binId][curr]← hitk . store the hit into the bin
15: end for
16: j ← j + warpSize . continue j + warpSize-th word
17: end while
18: i← i + numWarps . continue i + numWarps-th sequence
19: end while
20: output bins

Algorithm 8 describes our fine-grained hit detection algorithm. num_bins represents the number of

bins, which is a configurable parameter. The algorithm schedules a warp of threads for a sequence

based on warpId. The word seq[i][j] in position j of sequence seq[i] is handled by the thread with

the laneId j. For each hit of the word, the diagonal number is calculated and mapped to a bin (

Line 12).

The top array stores the currently available position in each bin. Using atomic operations on the top
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array in the shared memory, we avoid the heavyweight overhead of atomic operations on global

memory. The warp is then scheduled to handle the next sequence after all words in the current

sequence are processed.

6.1.2.3 Hit Reordering

After the hit detection, hits are grouped into bins by diagonal numbers. Because multiple threads

can write hits from different diagonals into the same bin simultaneously, hits in each bin could

interleave. For example, Fig. 6.3 shows that hits belonging to diagonal 2 and diagonal 6 inter-

leave. Because the ungapped extension can only extend continuous hits whose distance is less than

a threshold, we need to further reorder the hits in each bin to enable contiguous memory access

during the ungapped extension. To achieve this, we propose a hit-reordering pipeline that includes

binning, sorting, and filtering. Fig. 6.4 provides illustrative examples of these three kernels, re-

spectively.

Hit Binning with Assembling: Because it is effectively impossible to get an accurate number of

hits for each subject sequence before the completion of the hit-detection, we allocate the maximally

possible size (i.e., number of words in the query sequence) as the buffer size of each bin. Though

this leads to unused memory in the bins, it offers the promise of high performance as we can use a

segmented sort [169] to sort the hits per bin. To maximize the throughput of the sort, the data must

be contiguously stored, even if they belong to different segments. Thus, prior to sorting, we launch

a kernel that assembles the hits from different bins into a large but contiguous array, as shown

in Fig. 6.4(a). Each bin is then processed by a block of threads consecutively for the coalesced
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memory access.

Hit Sorting: A hit includes four attributes: the row number that is the position in the query se-

quence; the column number that is the position in the subject sequence; the diagonal number that

is calculated as the difference of the column number and row number; and the sequence number

that is the index of the subject sequence. To unify the attributes and only have to sort once, we

propose a bin data structure for the hits. As shown in Fig. 6.5, we pack the sequence number, diag-

onal number, and subject position into a 64-bit integer. Because the longest sequence in the most

recent NCBI NR database [170] contains 36,805 letters, 16 bits is sufficient to record the subject

position and 16 bits for the diagonal number, each of which can represent 64K positions. With this

data structure, we sort hits in each bin once instead of by the diagonal number and subject position,

respectively. The packed data structure also can reduce memory accesses.
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Using the segmented sort kernel from the Modern GPU Library [169] by NVIDIA, according to the

experiments, we found that as we vary the number of segments for a given data size, the throughput
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increases as more segments are used. Since the total number of hits after the hit-detection is fixed,

we can increase the number of bins to improve sorting performance but at the expense of more

memory usage. Because GPU device memory is limited, we must choose an appropriate number

of bins to balance the sorting performance and memory storage. We set the number of bins as a

configurable parameter in our cuBLASTP algorithm, which relies on many factors, such as the size

of device memory and the query length.

Hit Filtering: With the bins now sorted, we introduce hit filtering to eliminate hits whose distances

with neighbors are larger than a specified threshold because these hits cannot trigger the ungapped

extension. As shown in Fig. 6.4(c), we use a block of threads to check consecutive hits in each

bin for the coalesced memory access. We assign a thread for a hit to compare the distance to its

neighbor on the left. If the distance to the neighbor is less than the threshold, the hit is kept and

passed to the ungapped-extension.

To avoid global synchronization and atomic operations, we write extendable hits into a dedicated

buffer that is maintained by each thread block. The overall performance of this additional filtering

step is then determined by the ratio of the overhead of hit filtering over the overhead of branch

divergence. (Our experimental results show that only 5% to 11% of the hits from the hit-detection

are passed to the ungapped extension; thus the overall cuBLASTP performance improves due to

this hit filtering.)
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6.1.2.4 Fine-Grained Ungapped Extension

After hit reordering, the hits in each bin are arranged in ascending order by diagonals, and the

hits that cannot be used to trigger the ungapped extension have been filtered out. Based on the or-

dered hits, we design a diagonal-based, ungapped-extension algorithm, as depicted in Algorithm 9,

where each diagonal is processed by a thread. So, as shown from Lines 6 to 8, different threads are

scheduled to different bins, and threads in a warp are scheduled to different diagonals based on the

warpId. We then call the ungapped_ext function to extend the diagonal until a gap is encountered

or the diagonal is ended. ext represents the extension result. Because an extension could cover

other hits along the diagonal, Line 14 determines if a hit is covered by the previous extension. If

the hit is not covered by the previous extension, it can be used to trigger an extension. However,

this extension method could introduce branch divergent due to various extension length.

Due to the above divergent branching, we propose an alternative fine-grained approach to Algo-

rithm 9 called hit-based ungapped extension, as shown in Algorithm 10. This approach seeks

to improve performance by trading off divergent branching for redundant computation. Specifi-

cally, each thread extends a hit independently. Thus, different hits could have the same extension,

which can result in redundant computation and duplicated results. These duplicates are then in-

dependently stored on a per-thread basis (Line 13). Unlike Algorithm 9, this algorithm requires a

de-duplication step before the remaining phases of gapped extension and alignment with traceback.

Intuitively, which of the two algorithms performs best depends on hits between the query sequence

and the subject sequences. If there are too many hits that will be covered by the extension of other
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Algorithm 9 Diagonal-based Ungapped Extension
Input: bins binned hits
Output: extensions: results of ungapped extension

1: tid← blockDim.x ∗ blockIdx.x + threadIdx.x
2: numWarps← gridDim.x ∗ blockDim.x/warpSize
3: warpId← tid/warpSize
4: laneId← threadIdx.x mod warpSize
5: i← warpId
6: while i < num_bins do . go through all bins by warps
7: j ← laneId
8: while j < bini.num_diagonals do . process all diagonals in the bin by lanes
9: ext_reach← −1 . initialize last extension position

10: for all hitk in diagonalj do . go through all hits in the diagonal
11: sub_pos← hitk.sub_pos
12: query_pos← hitk.sub_pos

−hitk.diag_num
13: seq_id← hitk.seq_id
14: if sub_pos > ext_reach then . check if the pos has been extended
15: ext← ungapped_ext(seq_id, query_pos, sub_pos)
16: extensions.add(ext)
17: ext_reach← ext.sub_pos . update with new extension pos
18: end if
19: end for
20: j ← j + warpSize
21: end while
22: i← i + numWarps
23: end while
24: output extensions

hits in the diagonal, then diagonal-based the ungapped extension should perform better; otherwise,

the hit-based ungapped extension will. However, while hit-based extension eliminates divergent

branching, it can create load imbalance. That is because different hits in one diagonal could be

extended to different lengths and if (at least) a hit can be extended much longer than other hits,

then all other threads in the warp must wait for the completion of the longest extension.

To address the above, we present a window-based extension, as detailed in Algorithm 11. It con-
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Algorithm 10 Hit-based Ungapped Extension
Input: bin binned hits
Output: extensions: results of the ungapped extension

1: tid← blockDim.x ∗ blockIdx.x + threadIdx.x
2: numWarps← gridDim.x ∗ blockDim.x/warpSize
3: warpId← tid/warpSize
4: laneId← threadIdx.x mod warpSize
5: i← warpId
6: while i < num_bins do
7: j ← laneId
8: while j < bini.num_hits do . process all hits in the bin by lanes in parallel
9: sub_pos← hitj.sub_pos

10: query_pos← hitj.sub_pos− hitj.diag_num
11: seq_id← hitj.seq_id
12: ext← ungapped_ext(seq_id, query_pos, sub_pos)
13: extensions.add(ext)
14: j ← j + warpSize
15: end while
16: i← i + numWarps
17: end while
18: output extensions

sists of the following steps: (1) divide a warp of threads into different windows; (2) map a window

to a diagonal; and (3) extend hits in a diagonal one by one using a window-sized set of threads at

the same time. Because this approach uses a window-sized set of threads to extend a single hit, it

can speed up the hit-based extension on the longest extension and reduce the load imbalance that

would otherwise more adversely affect performance.

Fig. 6.6 illustrates how computation proceeds in the window-based ungapped extension, along

with details on gap detection. A gap can be detected by computing the accumulated score for

each extended position from the hit position and then comparing the score change from the highest

score along the extension with a threshold. In this figure, we present two windows, each of which

extends the IY P hit along the diagonal but in opposite directions.
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Algorithm 11 Window-based Ungapped Extension
Input: bin binned hits, winSize size of windows
Output: extensions: results of ungapped extension

1: numBlocks← gridDim.x
2: numWin← blockDim.x/winSize . get number of windows in a thread block
3: winId← threadIdx.x/winSize . get window id
4: wLaneId← threadIdx.x mod winSize . get lane id in the window
5: i← blockIdx.x
6: while i < num_bins do . go through all bins by blocks
7: j ← winId
8: while j < bini.num_diagonals do . go through all diagonals in the bin
9: ext_reach← −1

10: for all hitk in diagonalj do . go through all hits in the diagonal by wins
11: sub_pos← hitk.sub_pos
12: query_pos← hitk.sub_pos− hitk.diag_num
13: seq_id← hitk.seq_id
14: if sub_pos > ext_reach then
15: . perform window-based extension
16: ext← ungapped_ext_win(seq_id, query_pos, sub_pos, wLaneId, winSize)
17: if wLaneId = 0 then
18: extensions.add(ext)
19: end if
20: ext_reach← ext.sub_pos
21: end if
22: end for
23: j ← j + numWin
24: end while
25: i← i + numBlocks
26: end while
27: output extensions
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For brevity, we only discuss the extension to the IY P hit with the right window; the left window

is handled concurrently in a similar fashion. First, we map the window-sized set of threads (in this

case, 8) along consecutive positions from the hit and then calculate the prefix sum of each position

for the PrefixSum array using the optimized scan algorithm derived from the CUB library [171].

This prefix sum in the right window produces the highest score of 12, as circled in the PrefixSum

array.
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Figure 6.6: Example of window-based extension. In this example, the dropoff threshold is −10.

Then, each thread after the position with the highest score calculates the score changed from the

highest score while the threads before the highest score position simply record the contribution to

the highest score, i.e., the changes from the previous positions. After this step, our window-based

algorithm generates the ChangeSinceBest. Next, by comparing to the dropoff threshold (i.e.,-10,

as noted in the figure), the algorithm then generates the DropFlag array. If the change is more than

the threshold, a “1” is set to denote this position as a gap; otherwise, a “0” is set. If there is a gap,

the algorithm then writes the start position and end position of this extension with the highest score
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into the output of the ungapped extension. If there is no gap in the window like the left window

in the figure, the algorithm goes to the next iteration to move the windows forward. (This figure

also illustrates the redundant computation in the window-based ungapped extension: even if the

gap exists in the middle of the window, all positions of the window have to be checked.)

Thread 0

(a) Coarse-grained extension

Thread 1

Thread 0

Thread 2

(b) Diagonal-based extension

Warp 1

Warp 0

Warp 2

(c) Hit-based extension

Win 1

Win 0

Win 2

(d) Window-based extension

Figure 6.7: Four parallelism strategies of the ungapped extension

Algorithm 11 describes the details of the window-based ungapped extension. Because we use
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a window per diagonal to check hits one by one, we still need to check whether the current hit

is covered by the previous extension at Line 14. However, this approach removes the redundant

computation that would have otherwise been done with our hit-based extension. As a result, we

use a configurable parameter to allow the user to select which the ungapped extension algorithm

to execute at runtime: diagonal-based, hit-based, or window-based, as noted in Fig. 6.7.

6.1.2.5 Hierarchical Buffering

To fully utilize memory bandwidth and further improve cuBLASTP performance, we propose a

hierarchical buffering approach for the core data structure (DFA) used in the hit detection. As

shown in Fig. 2.13(a), the DFA consists of the states in the finite state machine and the query

positions for the states. Both the states and query positions are highly reused in the hit detection

for words in subject sequences. Loading the DFA into the shared memory can improve the data

access bandwidth. However, because the number of query positions depends on the length of

the query sequence, fetching all positions into the shared memory may affect the occupancy of

GPU kernels and offset the improvement from higher data access bandwidth, especially for long

sequences. Thus, we load the states that have relatively fixed but small size into the shared memory

and store the query positions into constant memory.

On the latest NVIDIA Kepler GPU, a 48-KB read-only cache with relaxed memory coalescing

rules provides reusable but randomly accessed data. We allocate the query positions in the global

memory but tag them with the keyword “const __restrict” for loading them into the read-only cache

automatically.



142

Fig. 6.8 shows the hierarchical buffering architecture for the DFA on a Kepler GPU. We put the

DFA states, e.g., ABB and ABC, into the shared memory. For the first access of ABB from

thread 3, the positions are written into bins and loaded into the read-only cache. For the subsequent

access of ABB from thread 4, the positions are obtained from the cache.

Shared Memory

ABC

ABB

...

addr

addr

DFA States
...

... ... 1 7 -1 2 6 ...11

DFA query positions

Global Memory
With read-only cache

Read-Only Cache

Thread 3

1 7

Thread 4

11 -1

Figure 6.8: Hierarchical buffering for DFA on the NVIDIA Kepler GPU

The PSS matrix is another core data structure that is highly reused in the ungapped extension. The

number of columns in the PSS matrix is equal to the length of the query sequence, as shown in

Fig. 2.13(b). However, because each column contains 64 bytes (32 rows with 2 bytes for each), the

size of the PSS matrix increases quickly with the query length. The 48-KB shared memory cannot

hold the PSS matrix when the query sequence is longer than 768.

On the other hand, the scoring matrix can be used to substitute the PSS matrix. For example, the

BLOSUM62 matrix, which consists of 32 * 32 = 1024 elements and has a fixed size of only 2 KB

(i.e., 2 bytes per element), can be always put into the shared memory. Therefore, for longer query

sequences, the BLOSUM62 matrix in the shared memory can provide better performance, even
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though more memory operations are needed compared with the PSS matrix for short sequences.

Thus, we provide a configurable parameter to select PSS matrix or scoring matrix. For the PSS

matrix, we put it into the shared memory until a threshold and then we put it into the global

memory. For the scoring matrix, we always put it into the shared memory. We will compare the

performance using the PSS matrix and the scoring matrix in Section 6.1.4.

6.1.3 Optimizing Gapped Extension and Alignment with Traceback on a

Multi-core CPU

After the most time-consuming phases of BLASTP accelerated, the remaining phases, i.e., gapped

extension and alignment with traceback, now consume the largest percentage of the total time.

Specifically, for a query sequence with 517 characters (i.e., Query517), Fig. 6.9 shows that after

applied fine-grained optimizations on the GPU, the percentage of time spent on hit detection and

ungapped extension is dropped from 80% (FSA-BLAST) down to 52% (cuBLASTP with one

CPU). The percentage of time spent on gapped extension and alignment with traceback, however,

grows up from 13% to 32% and 5% to 13%, respectively. Thus, it is necessary to optimize these

two stages for better overall performance.

In the BLASTP algorithm, only the high-scoring seeds from the ungapped extension stage can be

passed to the gapped-extension stage. Although the gapped extension on each seed is independent,

and the extension itself is compute-intensive, only a small percentage of subject sequences require

the gapped extension. If we offload the gapped extension to GPU, CPU will be idle during most
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Figure 6.9: Breakdown of execution time for Query517 on Swissprot database

of the BLASTP search. In order to improve the resource utilization of the whole system, i.e.,

making use of both GPU and CPU, parallelize the gapped extension on CPU is an alternative.

Furthermore, though there were several studies proposed to parallelize the gapped extension on

GPU, e.g., CUDA-BLASTP, they had to modify the dynamic programming method of the gapped

extension on GPU for the performance. As a result, we optimize the gapped extension on CPU

with Pthreads. For the alignment with traceback, due to the data dependency and the random

memory access, we also optimize it on CPU with multithreading. In order to reduce the overhead

of data transfer between CPU and GPU, we design a pipeline to overlap the computations on CPU

and GPU, and the data communication on PCIe. Fig. 6.10 illustrates the pipeline design. Once the

kernels of hit detection and ungapped extension for one block of the database are finished on GPU,

the intermediate data is sent back to CPU asynchronously for the remaining phases. At the same
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time, the kernels for hit detection and ungapped extension are triggered for the next data block.

With the pipeline design, we can overlap the computations on CPU and GPU, and the data transfer

on PCIe for different data blocks.
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Figure 6.10: Overlapping hit detection and ungapped extension on a GPU and gapped extension
and alignment with traceback on a CPU

Fig. 6.9 shows that the multithreaded optimization (cuBLASTP with four CPU threads) signifi-

cantly improves the gapped extension and the alignment with traceback. Ultimately, the overall

performance improvement is more than four-fold over FSA-BLAST. Fig. 6.11 shows multithreaded

gapped extension and alignment with traceback exhibiting strong scaling.
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Figure 6.11: Strong scaling for gapped extension and alignment with traceback on a multi-core
CPU
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6.1.4 Performance Evaluation

We conduct our experimental evaluation on a compute node that includes an Intel Core i5-2400

quad-core processor (with 6MB shared L3 cache and 8GB DDR3 main memory) and a NVIDIA

Kepler K20c GPU. The system runs Debian Linux 3.2.35-2 and NVIDIA CUDA toolkit 5.0. For

input data, we use two typical NCBI databases [170]. The first database is env_nr, which includes

about 6-million sequences whose total size is 1.7 GB and where the average length of the sequences

is about 200 letters. The second is swissprot, which includes over 300,000 sequences with a total

size of 150 MB. The average length is 370 letters. For the input query sequences, we choose three

sequences, whose lengths are 127 (“query127”), 517 (“query517”), and 1054 (“query1054”) bytes,

to represent short, medium, and long sequences, respectively.

6.1.4.1 Evaluation of Configurable Parameters

We first evaluate the performance of cuBLASTP kernels with different numbers of bins. Fig. 6.12

shows that the performances of hit sorting and hit filtering can be constantly improved if we in-

crease the number of bins per warp. However, the performance of hit detection drops dramatically

after 128 bins. That is, because more bins will use more shared memory to record the current

header, and in turn, decrease the occupancy of the kernel. Thus, in order to achieve the maximum

overall performance, the optimal number of bins per warp should balance the performance of hit

detection with hit sorting and filtering. In our experimental environment, we set the number of bins

per warp to 128 for the best overall performance.
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Second, in the performance comparison of using the PSS and BLOSUM62 matrix, Fig. 6.13 shows

that the PSS matrix performs better for the short sequence (query127) whereas the BLOSUM62

matrix performs better for longer sequences (query517 and query 1054), as reasoned and predicted

in Section 6.1.2.5. In short, we observe a –24%, 50%, and 237% improvement in performance

when using the BLOSUM62 matrix. As a result, we configure our algorithm to use the PSS matrix

for “query127” and the BLOSUM62 matrix for “query517” and “query1057” on NVIDIA Kepler

K20c GPU for the following evaluations.
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Figure 6.13: Performance with different scoring matrices

6.1.4.2 Evaluation of our Fine-Grained Algorithms for cuBLASTP: Diagonal-, Hit-, and

Window-Based

Fig. 6.14(a) shows that window-based extension delivers 24%, 20%, and 12% better performance

for query127, query517, and query1054, respectively, when compared to the diagonal-based ex-

tension. Similarly, the window-based extension achieves 38%, 36%, and 27% better performance

when compared to the hit-based extension. Fig. 6.14(b) compares the divergence overhead of the

three algorithms. The window-based algorithm experiences a significant improvement in diver-

gence overhead when compared with the other two algorithms. As a result, we configure our

cuBLASTP algorithm to use the window-based extension for these two databases on the NVIDIA

Kepler K20c GPU in the following evaluations.

Fig. 6.15 illustrates that cuBLASTP performance can always improve by adopting our hierarchical

buffering mechanism, where the read-only cache is used to store the DFA for the hit detection.
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6.1.4.3 Performance Comparison to Existing BLASTP Algorithms

Fig. 6.16 presents the normalized speedup of our fine-grained cuBLASTP over the sequential FSA-

BLAST on CPU, the multithreaded NCBI-BLAST on CPU, and the state of the art GPU-based

implementations CUDA-BLASTP [130] and GPU-BLASTP [64].

Compared with the single-threaded FSA-BLAST, Fig. 6.16(a) shows that on the swissprot and

env_nr database, cuBLASTP delivers up to 7.9-fold and 5.5-fold speedups for the critical phases

of BLASTP, i.e., hit detection and ungapped extension. Fig. 6.16(b) shows that for the overall

performance, the corresponding performance improvements using cuBLASTP are 3.6-fold and

6-fold, respectively.

Compared with NCBI-BLAST with four threads, Fig. 6.16(c) shows that on the swissprot and

env_nr database, cuBLASTP delivers up to 2.9-fold and 3.1-fold speedups for the critical phases.

Fig. 6.16(d) shows that for the overall performance, the corresponding performance improvements

using cuBLASTP are 2.1-fold and 3.4-fold, respectively.

Compared with CUDA-BLASTP on NVIDIA Kepler K20c GPU, Fig. 6.16(e) shows that on the

swissprot and env_nr database, cuBLASTP delivers up to a 2.9-fold speedup and 2.1-fold speedup

for the critical phases. Fig. 6.16(f) shows that for the overall performance, including all stages of

BLASTP and the data transfer between CPU and GPU, the corresponding performance improve-

ments using cuBLASTP are 2.8-fold and 2.5-fold, respectively.

Finally, with respect to GPU-BLASTP, Fig. 6.16(g) shows that on the swissprot and env_nr database,

cuBLASTP achieves up to 1.5-fold and 1.6-fold speedups for the critical phases. Fig. 6.16(h)
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Figure 6.16: Speedup for critical phases and overall performance respectively of cuBLASTP
over FSA-BLAST(a-b), NCBI-BLAST with four threads(c-d), CUDA-BLASTP(e-f) and GPU-
BLASTP(g-h)
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shows that for the overall performance, the corresponding performance improvements using cuBLASTP

are 1.9-fold and 1.6-fold, respectively.

Fig. 6.17(a), 6.17(b), and 6.17(c) show the profiling results of global memory load efficiency, di-

vergence overhead, and occupancy, achieved for cuBLASTP, CUDA-BLASTP, and GPU-BLASTP

on the NVIDIA Kepler K20c GPU. Because we observed similar results on other query sequences,

we only report the results of “query517” for the env_nr database.

Fig. 6.17(a) shows 67.0%, 46.2%, 25.0%, and 81.0% global memory load efficiency for the four re-

spective kernels of cuBLASTP; and only 5.2% for CUDA-BLASTP and 11.5% for GPU-BLASTP,

both of them use a single coarse-grained kernel, where both hit detection and ungapped extension

are interleaved together. The significantly improved efficiency of our fine-grained kernels comes

from the coalesced memory access. In the hit detection, threads in the same warp access positions

of subject sequences successively. In sorting and filtering, threads in the same warp access hits

in each bin successively; and in the window-based ungapped extension, the window-sized set of

threads can access successive positions for one hit to calculate the prefix sum and check the score

change. In contrast, neither of the coarse-grained kernels of CUDA-BLASTP or GPU-BLASTP

can guarantee such coalesced memory accesses.

Fig. 6.17(b) and 6.17(c) present the divergence overhead and GPU occupancy, respectively. Our

four kernels of cuBLASTP exhibit much lower divergence overhead and higher GPU occupancy

than the fused kernels in CUDA-BLASTP and GPU-BLASTP. Fig. 6.20 shows the breakdown of

the overall execution time when aligning “query517” on env_nr database with cuBLASTP. Al-

though the data transfer between CPU and GPU, and the gapped extension on CPU have the non-
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negligible execution time, we can overlap them with the kernels running on GPU, as shown in the

shadowed bars of this figure. We also find after we optimize all stages of BLASTP on GPU and

CPU, the remaining part of BLASTP, denoted as “Other” in this figure, can occupy near 18% total

execution time. This part includes the time spent on the database read, the DFA and PSS matrix

build, and the final results output. We will further investigate the time spent on this part when we

extend our research to GPU clusters in the future. Finally, we would like to mention that the output

of cuBLASTP is identical to the output of FSA-BLAST.

6.1.5 Conclusion

In this chapter, we propose cuBLASTP, an efficient fine-grained BLASTP for GPU using the

CUDA programming model. We decompose the hit detection and ungapped extension into sepa-

rate phases and use different GPU kernels to speed up their performance. To significantly reduce

the branch divergence and irregular memory access, we propose binning-sorting-filtering optimiza-

tions to reorder memory accesses in the BLASTP algorithm. Our algorithms for diagonal-based

and hit-based ungapped extension further reduce branch divergence and improve performance. Fi-

nally, we also propose a hierarchical buffering mechanism for the core data structures, which takes

advantage of the latest NVIDIA Kepler architecture.

We optimize the remaining phases of cuBLASTP on a multi-core CPU with pthreads. On a com-

pute node with a quad-core Intel Sandy Bridge CPU and a NVIDIA Kepler GPU, cuBLASTP

achieves up to a 7.9-fold and 3.1-fold speedup over single-threaded FSA-BLAST and multithreaded
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NCBI-BLAST with four threads for the critical phases of cuBLASTP, namely hit detection and un-

gapped extension, and up to a 6-fold and 3.4-fold speedup for the overall performance, respectively.

Compared with CUDA-BLASTP, cuBLASTP delivers up to a 2.9-fold and 2.8-fold speedup for the

critical phases of cuBLASTP and for the overall performance, respectively. Finally, compared with

GPU-BLASTP, cuBLASTP delivers up to a 1.6-fold and 1.9-fold speedup for the critical phases of

cuBLASTP and for the overall performance, respectively.

In summary, our research with cuBLASTP consists of a novel fine-grained method for optimizing a

critical life sciences application that has irregular memory-access patterns and irregular execution

paths on a single compute node having CPU and GPU.
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6.2 Adaptive Dynamic Parallelism for Irregular Applications

on GPUs

6.2.1 Introduction

General-purpose graphics processing units (GPGPUs) are widely used to accelerate a variety of

applications in different domains. Since GPUs are ideally suited to applications with regular com-

putations and memory access patterns, it is challenging to map irregular applications, e.g., graph

algorithms, sparse linear algebra, mesh refinement applications, etc. on a GPU. Dynamic paral-

lelism, supported by both CUDA [34] and OpenCL [35], allows a GPU kernel to directly launch

other GPU kernels from the device and without the involvement of the CPU. This feature can

potentially improve the performance of irregular applications by reducing workload imbalance

between threads, thereby improving both parallelism and memory utilization [39]. For example,

during the kernel execution, if some GPU threads have more work than others, new child kernels

can be spawned to process these subtasks from the overloaded threads. However, the efficiency

of dynamic parallelism is limited by two issues: 1) the high overhead of kernel launch, especially

when a large number of child kernels are needed for subtasks; and 2) the low occupancy, espe-

cially when the subtasks correspond to tiny kernels that underutilize the computational resources

of GPUs.

To address these two issues in dynamic parallelism, multiple solutions [83, 84, 85, 88, 89, 172]

have been proposed in both hardware and software. They mainly use the techniques of subtask
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aggregation, which consolidates small child kernels into larger kernels, hence reducing the num-

ber of kernels and increasing the GPU occupancy. However, when the kernel launch overhead

has been progressively reduced on the latest GPU architectures, the “one-size-fits-all” approach

in the existing studies, where subtasks are aggregated into a single kernel, cannot provide good

performance, because those subtasks launched by dynamic parallelism usually require different

optimizations and configurations. As a consequence, the organization of subtasks to child kernels

becomes more critical to the overall performance, and an adaptive strategy of subtask aggregation

that provides differentiated optimizations for subtasks with different characteristics may satisfy

dynamic parallelism on the latest GPUs.

However, it is non-trivial to determine the optimal aggregation strategy for subtasks at runtime,

because there are many performance factors to be considered, especially the characteristics of sub-

tasks and GPU architectures. To provide a simple system-level solution, in this paper, we propose

a performance modeling and task scheduling tool for subtasks in dynamic parallelism to generate

the optimal aggregation strategy. Our tool collects the values of a set of GPU performance counters

with sampling data and then leverages a couple of statistical and machine learning tools to build the

performance model step by step. At the performance analysis phase, we use the statistical analysis

on GPU performance counters to identify the most influential performance factors, which can give

us the hints of performance critical characteristics and performance bottleneck of subtasks. At the

performance prediction phase, based on the most influential performance factors, we establish a

performance prediction model to estimate the performance of new subtasks. At the task scheduling

phase, the adaptive subtask aggregation strategy launches a set of GPU kernels for subtasks con-
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sidering the resource utilization, aggregation overhead, and kernel launch overhead. Comparing to

the “1-to-1” launching in the default implementations of dynamic parallelism, where one subtask

is scheduled to one child kernel, and the “N-to-1” launching in the previous research, where all

subtasks are scheduled to an execution entity, e.g., all subtasks to a kernel or thread block or thread

warp, our “N-to-M” launching mechanism can provide the most adaptability and fully utilize GPU

resources. Our paper has the following contributions:

• We perform an in-depth characterization of existing subtask aggregation approaches for dy-

namic parallelism on the latest GPU architectures and identify the performance issues.

• We propose a performance model to identify the most critical performance factors and char-

acteristics of subtasks that affect the performance and configurations of subtasks, and predict

the performance of new tasks. Based on the prediction model, we design a subtask aggre-

gation model based on the performance model to generate the optimal subtask aggregation

strategy.

• In the experiments, we show the accuracy of our performance model by evaluating it with dif-

ferent irregular programs and datasets. Evaluation results show that the optimal aggregation

strategy can achieve up to a 1.8-fold speedup over the state-of-the-art subtask aggregation

approach.
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6.2.2 Background

In this section, we will first introduce the performance counters used in this work, and then briefly

introduce the statistical and machine learning techniques for performance modeling and prediction.

6.2.2.1 Performance Counters (PCs)

The hardware performance counters (PCs), which are special-purpose registers built into modern

micro-architectures to record the counts of hardware-related events, can help us to perform low-

level performance analysis and tuning. In particular, by tracing these PCs, programmers can obtain

the correlation between programs and their performance.

Both AMD and NVIDIA provide profiling tools and APIs to access these performance counters.

Table 6.1 shows an example of performance counters of NVIDIA GPUs. In this paper, we will

utilize these performance counters to establish performance models for performance analysis and

prediction.

6.2.2.2 Statistical and Machine Learning Model

In this section, we provide the background of the statistical and machine learning tools that will be

used in this paper.

Regression trees and forest Tree-based regression models [173] provide an alternative to the

classic linear regression model. It builds decision trees with training datasets and generates the
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Table 6.1: Performance counters (NVIDIA Pascal GPU)

Performance Counter Description

warp_execution_efficiency
Ratio of the average active threads per warp to the maximum
number of threads per warp supported on a multiprocessor ex-
pressed as percentage

inst_replay_overhead Average number of replays for each instruction executed

global_hit_rate Hit rate for global loads

gld/gst_efficiency
Ratio of requested global memory load/store throughput to re-
quired global memory load throughput expressed as percentage

gld/gst_throughput Global memory load/store throughput

gld/gst_requested_throughput Requested global memory load/store throughput

tex_cache_hit_rate Texture cache hit rate

l2_read/write_throughput
Memory read/write throughput seen at L2 cache for all write re-
quests

l2_tex_read/write_hit_rate Hit rate at L2 cache for all read/write requests from texture cache.

issue_slot_utilization
Percentage of issue slots that issued at least one instruction, aver-
aged across all cycles

ldst_issued/executed
Number of issued/executed local, global, shared and texture
memory load and store instructions

stall_not_selected Percentage of stalls occurring because warp was not selected

issued/executed_ipc Instructions issued/executed per cycle
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classification or regression of the individual trees. Random decision forests (Random Forest) [174]

is a popular regression tree model that selects features randomly to avoid the over-fitting issues in

decision trees.

Principle Component Analysis Principal component analysis (PCA) [173] is a statistical tool to

reduce the number of dimensions by converting a large set of correlated variables into a small set

of uncorrelated variables i.e., principal components, where most of the information still remain in

the large set. PCA is a technique used to identify the important variables and patterns in a dataset.

Hierarchical Cluster Analysis Hierarchical Cluster Analysis (HCA) [173] is a statistical and

data mining tool that builds a hierarchy of clusters for cluster analysis. It provides a measure of

correlation between sets of observations. Typically, this is achieved by use of an appropriate metric

(such as distance matrices), and a linkage criterion which represents the similarity of sets with the

pairwise distances of observations in the sets.

6.2.3 Problems of Dynamic Parallelism

In this paper, we carry out the performance characterization of existing dynamic parallelism ap-

proaches to identify their performance issues.
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6.2.3.1 Experimental Setup

In this section, we present our experimental setup, including benchmarks, hardware platforms, and

software environments.

Benchmark Implementations To identify the performance issues in dynamic parallelism, we

choose three typical irregular applications, including Sparse-Matrix Vector Multiplication (SpMV),

Single Source Shortest Path (SSSP), and Graph Coloring (GCLR). For each application, we first

provide the basic dynamic parallelism implementation that spawns a child kernel per subtask from

a thread (Figure 2.8). And then according to the recent publications [83, 90], we build the state-

of-the-art subtask aggregation approach that consolidates as many as possible subtasks into a GPU

kernel to minimize the kernel launch overhead and improve occupancy. As shown in Figure 6.18,

the parent kernel stores all subtasks into a global queue (Line 7), and launches a child kernel for all

subtasks, and a subtask is processed by a workgroup for the AMD GPU (or one thread block for

the NVIDIA GPU) (Line 17), which was reported to be the best configuration for the graph and

sparse linear algebra algorithms.

Dataset Each application has three datasets from the DIMACS challenges [175]: coPapers,

which has 434,102 nodes and 16,036,720 edges, kron-logn16, which has 65,536 nodes and 4,912,142

edges, and kron-logn20, which has 1,048,576 nodes and 89,238,804 edges.
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1 __global int num_subtasks = 0;
2 __kernel parent_kernel(type *queue, ...) {
3 int tid = get_global_id(0);
4 type *this_subtask = subtasks[tid];
5 if(this_subtask->size >= THRESHOLD){
6 int pos = atomic_add(&num_subtasks, 1);
7 queue[pos] = this_subtask;
8 }
9 else{

10 process(this_subtask);
11 }
12 __global_sync();
13 if(tid==0)
14 kernel_launch(process_subtasks, queues);
15 }
16
17 __kernel process_subtasks(type *queue, ...) {
18 int wg_id = get_group_id(0);
19 type *this_subtask = queue[wg_id];
20 // process this_subtask
21 }

Figure 6.18: Example of state-of-the-art subtask aggregation

Hardware We evaluate state-of-the-art dynamic parallelism implementations on the latest AMD

and NVIDIA GPU architectures. For the AMD GPU platform, called Vega, the compute node con-

sists of two Intel Broadwell CPUs (E5-2637v4), and an AMD Radeon RX Vega 64 GPU (AMD

Vega architecture). For the NVIDIA GPU platform, called P100, the compute node has two Broad-

well CPUs (E5-2680v4), and an NVIDIA Tesla P100 GPU (NVIDIA Pascal architecture).

Compiler Each application has OpenCL and CUDA versions for AMD and NVIDIA platform,

respectively. OpenCL kernels are compiled and executed with the ROCM 1.6 and ATMI v0.3 on

the AMD platfrom. CUDA kernels are compiled and executed with NVIDIA CUDA 8.0 on the

NVIDIA platform. CPU-side codes are compiled with GCC 4.7.8.
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Profilers To get in-depth performance analysis, we use the profilers provided by NVIDIA and

AMD to get the performance counters of GPUs. On the NVIDIA platform, we use nvprof from

CUDA 8.0. On the AMD platform, we use CodeXL of version 2.5.

6.2.3.2 Performance Analysis

To identify the performance issues in existing approaches, we perform in-depth performance anal-

ysis on our driving applications without dynamic parallelism, implementations with the dynamic

parallelism, and the dynamic parallelism with state-of-the-art subtask aggregation.

Figure 6.19 illustrates the bad performance of the default dynamic parallelism, compared with

the implementations without dynamic parallelism which workload imbalance. This figure also

illustrates a huge improvement of using the state-of-the-art subtask aggregation mechanism over

the default dynamic parallelism implementation. Moreover, with better workload balance and

improved memory access patterns, the state-of-the-art subtask aggregation can also deliver better

performance than the implementation without dynamic parallelism (except SSSP benchmarks on

the AMD Vega GPU). And we also observe that there are much higher speedups of using the

subtask aggregation over the default dynamic parallelism implementations on the NVIDIA P100

GPU than those on the AMD Vega GPU, which is due to the higher kernel launch overhead on the

NVIDIA P100 GPU.

Figure 6.20 shows the normalized execution time of child kernels, including kernel launch time

and kernel compute time. We can find that with the subtask aggregation mechanism, the kernel
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Figure 6.19: Speedups of the implementations without dynamic parallelism (Non-DP) and the
implementations with state-of-the-art subtask aggregation (SoA Agg.) over the default dynamic
parallelism implementations (Basic DP).
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launch overhead is significantly reduced to be negligible and most of the execution time is spent on

the computation of subtasks, especially for large datasets (i.e., kron-logn20). Thus, if one wants to

improve the overall performance of dynamic parallelism, improving the performance of subtasks

is more critical than reducing the launch overhead of child kernels. This is the major reason of why

we investigate an adaptive strategy for the subtask aggregation.
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Figure 6.20: Breakdown of the child kernel execution time in state-of-the art subtask aggregation
mechanism (SoA Agg.).

Although the subtask aggregation mechanisms can significantly improve the overall performance

of dynamic parallelism, with a deeper investigation, we find that there is a major drawback in exist-

ing subtask aggregation mechanisms: they treat all subtasks equally, by using the “one-size-fits-all”

methodology, so called “N-to-1” approach, to aggressively aggregate as many as possible subtasks
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into a single kernel and apply the uniform configuration and parallel strategy for all subtasks. How-

ever, we have observed there are highly diverse characteristics in subtasks. Figure 6.21(a) shows

that in the SpMV benchmark, the subtask sizes, i.e., corresponding numbers of GPU threads in

subtasks, can range from 1 to over 2K; and the distribution of subtask sizes highly depends on the

input datasets. We also find although most of the subtasks fall into the range from 1 to 256 in this

case, the execution time of large subtasks, i.e., the subtask size > 2048, can take a considerable

portion of the total execution time, as shown in Figure 6.21(b).

As a result, we carry out a simple evaluation to investigate if we can find different performance

when we vary the resource usage, i.e., changing GPU thread block sizes, for different subtask sizes.
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Figure 6.21: The distribution of subtask size and execution time of SpMV benchmarks. The
execution time of each subtask size is normalized to the total execution time.

Figure 6.22 shows that for the subtasks of size 64, 256, and 1024, their performances have ob-

viously affected by the thread block size; and the optimal thread block size is variable with the
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subtask size and benchmark. The major reason is that when we change the thread block size for

a given benchmark, each thread has different workloads and uses different hardware resources,

e.g., GPU registers, shared memory, leading to changes in parallelism, occupancy, and resource

utilization. As a consequence, the “one-size-fits-all” approach in existing approaches may result

in resource underutilization. A more intelligent subtask aggregation strategy is needed.
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Figure 6.22: Performance of SpMV and SSSP subtask with different block size. The execution
time is normalized to that of block size = 32.

6.2.4 Adaptive Subtask Aggregation

To obtain the optimal task aggregation strategy for dynamic parallelism, we propose a task ag-

gregation modeling and task scheduling tool that uses statistical analysis and machine learning

techniques to establish performance models based on a collection of performance counters with

sampling data.

Figure 6.23 shows the high-level depiction of our tool, which consists of four phases: 1) per-
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formance measurement phase, which collects performance counter data with the sampling data

from different input datasets and parameters; 2) performance modeling phase, which establishes

a performance model for the performance analysis, i.e., determining most important performance

counters and subtask characteristics; 3) performance prediction phase, which uses the identified

important performance counters and characteristics to build a performance prediction model; 4)

aggregation generation phase, which generates the optimal subtask aggregation strategy based on

the performance model by considering subtask performance gain and loss, aggregation overhead,

kernel launch overhead, etc. Below we will discuss each phase in details.

Irregular 
program

Perf. 
Measure

Perf. 
Modeling

Scheduler

Auto-tuner

Data 
Sample

Perf.
Prediction

New 
subtask

Perf.
Analysis

Aggreg.
Generation

Aggreg.
Strategy

Figure 6.23: Architecture of the adaptive subtask aggregation tool

6.2.4.1 Performance Measurement

Performance Measurement phase is responsible for collecting performance counter data of the

irregular program on the target architecture. Since the collection of performance counter data can

significantly affect the accuracy of the performance models in the later stages, we carry out the

performance measurement by running the subtasks with varying parameters, including different
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datasets, subtask sizes, and runtime configurations (i.e., thread block (workgroup) size and the

number of thread blocks). During the performance measurement, our tool collects performance

counter data, and measures the execution time as the response variable. Performance counter

data are collected using corresponding performance profilers - CodeXL and nvprof for AMD and

NVIDIA platforms, respectively.

The size and selection of sample data are critical for the accuracy of the performance model.

Though more sample data can improve the accuracy of the performance model, over-saturated

sample data will significantly increase the data collection time and performance modeling over-

head. Moreover, to avoid selection bias, which makes the model is non-representative for new

subtasks with unseen characteristics, the data selection should have proper randomization. There-

fore, we randomly collect 200 samples with different input parameters and configurations, which

are sufficient to build accurate performance models for predicting the optimal aggregation strategy.

As a configurable parameter, the number of samples can also be set by users.

6.2.4.2 Performance Modeling

In performance modeling phase, to identify the most important performance factors, we utilize

couples of statistical and machine learning tools, including Principal Components Analysis (PCA),

Random Forest Regression (RF) and Hierarchical Cluster Analysis (HCA).

Principal Components Analysis (PCA) We first perform PCA analysis on performance counter

data, which can help us to identify important performance counters that contribute most to the
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variance, and also can help us to determine the correlation between these performance counters.

Based the importance and correlation, we can reduce the number of performance counters for the

later performance modeling to reduce the risk of over-fitting. In this paper, we identify first few

important performance counters (< 10) from the top principal components as important variables.

Random Forest Regression After PCA analysis, we apply the Random Forest (RF) model on

the performance counter data, and obtain the relative variable importance of RF, which can reveal

the influence of a variable to the response variable, i.e., execution time. Through identifying the

most important variables (i.e., performance counters), we can determine the performance counters

that are strongly correlated to the execution time, which give us hints of the characteristics and

performance bottlenecks of subtasks.

Hierarchical Cluster Analysis (HCA) After the Random Forest, we use Hierarchical Clustering

Analysis (HCA) to help us get insights of the important performance counters determined by the

Random Forest, which can give us hints about the characteristics and performance bottlenecks of

subtasks.

Result Analysis In this section, we offer examples of performance analysis with the performance

modeling phase.

SpMV Figure 6.24 shows the result of performance modeling of SpMV benchmarks. Based on

the PCA results (Figure 6.24(a)), we can identify the most variable performance counters from the
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top four principle components - PC1, PC2, PC3 and PC4, which account for the most of the vari-

ance in the performance counter data. The most variable performance counters are global_hit_rate,

tex_cache_hit_rate, gld_throughput, achieved_occupancy, ldst_issued, ldst_executed, l2_write_throughput

and gst_throughput.

After identifying the most variable performance counters, the Random Forest will be applied to

the performance counter data with execution time as response variable to determine the most im-

portant performance counters relevant to performance. Figure 6.24(b) shows the inst_issued and

inst_replay_overhead are the two most important performance counters for SpMV benchmarks.

Then, we can turn to HCA to get more insights. We can observe that the most relevant performance

counter (i.e., inst_issued) has strong correlation to inst_issued and ldst_executed. And the second

important performance counter -inst_replay_overhead has strong correlation to global_hit_rate,

tex_cache_hit_rate and l2_tex_write_hit_rate. It indicates that data locality and the amount of

workload have significant impacts on the performance of SpMV.
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(c) Clustering

Figure 6.24: The result of the performance modeling of SpMV benchmark.
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SSSP From the results for SSSP (Figure 6.25(a)), we can observe that the SSSP benchmarks

has highly similar PCA results as SpMV benchmarks. However, Figure 6.25(b) shows the most

important variable for the time prediction is dram_write_throughput. From Figure 6.25(c), we

observe that dram_write_throughput is strongly connected to inst_replay_overhead, gst_efficiency,

l2_tex_write_hit_rate and gst_throughput. It can give us a hint that the performance of SSSP is

highly relevant to the memory write performance.
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(c) Clustering

Figure 6.25: The result of the performance modeling of SSSP benchmark.

Graph Coloring Figure 6.26 shows the performance modeling result of graph coloring bench-

marks. Similar with SSSP benchmarks, dram_write_throughput is the most important performance

counters for performance prediction. Based on the result of HCA (Figure 6.26(c)), there are high

correlation among dram_write_throughput, l2_tex_read_hit_rate, gld_efficiency, and dram_read_throughput,

which indicate that the performance of graph coloring is highly relevant to the memory read per-

formance.
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(c) Clustering

Figure 6.26: The result of the performance modeling of Graph Coloring (GCLR) benchmark.

6.2.4.3 Performance Prediction

Based on the performance modeling phase, we can establish a prediction model to estimate the

performance of new subtasks.

Prediction Model with Random Forest Our general idea for the performance prediction is (1)

building dedicated prediction models for each top important performance counters (≤ 5) based on

thread blocks size, subtask size, and the number of subtasks, (2) using the top important perfor-

mance counters to retrain the prediction model for the execution time, (3) and merging the two sets

of predict models to predict the execution time for new subtasks with the given subtask size and

the number of tasks. With this performance prediction model, we can predict the optimal thread

block size for new subtasks. And then, we can perform the initial subtask aggregation that groups

subtasks with the same thread block size together, and set the optimal thread block size for each

group. But, to achieve the optimal overall performance, we need a more sophisticated subtask

aggregation strategy, which will be discussed in the following Section 6.2.4.4.
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Result Analysis Figure 6.27 shows an example of performance prediction model for SpMV

subtasks with task size = 128, the number of tasks = 64, and varied thread block size. To verify the

accuracy of our model, we randomly select 80% of data as training data and use the rest 20% of

data as evaluation data.

As Figure 6.27(a) shown, we first predict the top five important performance counters. And then, as

Figure 6.27(b) illustrated, we use the predicted value of the top 5 performance counters to estimate

the performance of the given SpMV subtasks with varying thread block size.
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(a) Performance counter prediction
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Figure 6.27: The result of the performance prediction of SpMV benchmark with kron-logn16
dataset, task size = 128 and number of tasks = 64.

Figure 6.28 shows the prediction results of SSSP and GCLR benchmarks. In general, we get

produce highly accurate performance prediction for SpMV and SSSP benchmarks, and GCLR

benchmarks.
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Figure 6.28: The result of the performance prediction of SSSP and GCLR benchmark kron-logn16
dataset, task size = 128 and number of tasks = 64.

6.2.4.4 Aggregation Generation

With the performance prediction model, we can easily determine the optimal configurations (i.e.,

block size) for new subtasks through searching the configuration space. However, generating the

optimal aggregation strategy is not trivial, which has the following challenges.

First, despite the fact that kernel launch time has been continually reduced in the latest GPU micro-

architecture and runtime, the kernel launch is not free. Second, the aggregation will reduce kernel

launch overhead, but aggregating subtasks with different configurations will result in performance

loss by applying non-optimal configuration on subtasks. Third, subtask aggregation also introduces

aggregation overhead, e.g., migrating subtasks into the same subtask group. Therefore, we need to

balance the kernel launch overhead, aggregation overhead, and subtask performance.

To achieve the optimal overall performance, we build a model that firstly identifies the optimal

performance for each subtask (Equation 6.1), and then searches the subtasks, which require the
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identical or similar configuration (i.e., block size), into a kernel, and uses a subtask aggregation

model to estimate the optimal performance after merging subtasks, and then determines if we need

to merge the two subtask groups. We estimate the optimal task time by applying the configuration

across each other subtask to choose the optimal one (Equation 6.2) for both, and then determine

merge or not by considering the kernel launch overhead and aggregation overhead (Equation 6.3).

Note that the state-of-the-art aggregation method only considers reducing kernel launch overhead

rather than the performance loss of applying the non-optimal configuration.

confA, timeA = conf_search(taskA)

confB, timeB = conf_search(taskB)

(6.1)

timechild = min


predict(confA, tB) + timeA

predict(confB, tA) + timeB

(6.2)

timeoverall = min


timeA + timeB

timechild − timekl + timeagg

(6.3)

6.2.5 Performance Evaluation

In this section, we evaluate the effectiveness of our aggregation model on AMD and NVIDIA GPU

platforms with different benchmarks.
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6.2.5.1 Performance Comparison between the State-of-the-Art and Optimal Subtask Ag-

gregation

Implementations For each application, we have two implementations:

• State-of-the-art Subtask Aggregation (SoA Agg.) is the implementation based current

publications that aggressively consolidate as many as possible subtasks into a single kernel.

• Optimal Subtask Aggregation (Opt. Agg.) is the implementation based on the optimal

subtask aggregation strategy generated by our subtask aggregation model.

As the performance measurement, performance modeling and performance prediction phase are

offline, which just need to run once offline with sampling data for an application. Therefore, in the

evaluation, we do not include the execution time of these phases, only include the execution time

of the aggregation generation phase, which needs to be performed at runtime.

Performance Figure 6.29 shows the performance comparison between the state-of-the-art ag-

gregation and optimal subtask aggregation. The optimal aggregation strategy can achieve up to a

1.8-fold speedup over the state-of-the-art aggregation on the NVIDIA P100 GPU, and a 1.5-fold

speedup on the AMD Vega GPU. For dataset kron-logn20, which has higher subtask size diversity,

we can achieve higher performance improvement.

Profiling With in-depth profiling, as Figure 6.30 shown, the implementation with the optimal ag-

gregation improves warp_execution_efficiency and global_hit_rate, which indicates less irregular-
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(b) NVIDIA P100 GPU

Figure 6.29: Speedup of the optimal subtask aggregation over the state-of-the-art subtask aggrega-
tion (SoA Agg.)

ities in control flows and memory accesses. Furthermore, we observe the noticeable improvement

in achieved_occupancy, which indicates improved resource utilization.

6.2.6 Conclusion

It is challenging to map irregular applications on GPUs due to their irregularities in memory access

and computation. Dynamic parallelism supported by AMD and NVIDIA GPUs can potentially

improve the performance of irregular applications. However, dynamic parallelism is inefficient on

current GPU architectures due to high kernel launch overhead and low occupancy. Therefore, there

are multiple studies for improving the efficiency of dynamic parallelism.

However, with the in-depth performance characterization, existing approaches, which treat all sub-

tasks equally and use uniform configurations, can cause GPU underutilization due to variable char-
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(b) Global hit rate
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Figure 6.30: Profiling of the state-of-the-art aggregation (SoA Agg.) and optimal aggregation (Opt.
Agg.) on NVIDIA P100 GPUs
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acteristics between subtasks. To overcome these drawbacks, we propose a subtask aggregation and

scheduling tool that utilizes the statistical and machine learning techniques to establish a set of

performance models for performance analysis and prediction of subtasks, and generate the optimal

subtask aggregation strategy by considering the subtask performance, kernel launch and aggrega-

tion overhead. Experimental results show that the optimal subtask aggregation strategy generated

by our tool can achieve up to a 1.8-fold speedup over the state-of-the-art subtask aggregation.



Chapter 7

Optimizing Irregular Applications for

Multi-node Systems

7.1 PaPar: A Parallel Data Partitioning Framework for Big

Data Applications

7.1.1 Introduction

In the past decade, big data processing systems have been gaining momentum; and scientists have

turned to these systems to process large scale and unprecedented data. Most of these systems

provide advanced mechanisms to tackle the load imbalance (a.k.a skew), which is a fundamental

problem in parallel and distributed systems. For example, MapReduce [21] and its open source im-

182
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plementation Apache Hadoop provides the speculative scheduling to replicate last few tasks of a

job on different compute nodes. Many mechanisms, including [22, 23, 24, 25, 26, 27, 28, 29, 176],

are also proposed to mitigate skew by optimizing task scheduling, data partitioning, job alloca-

tion, etc. Although these runtime methods are able to handle skew to a certain extent without

code modification on applications, they can not get the optimal application performance, because

the runtime of application not only depends on input data size but also other multiple proprieties.

Therefore, many research efforts have been taken to explore the application-specific partitioning

methods, including [177, 178, 95, 33, 96]. However, manually writing application-specific parti-

tioning codes requires huge coding efforts. More challenging is the truth that finding the optimal

data partitioning strategy is hard even for developers having adequate application knowledge, lead-

ing to the iterative and incremental development of design, evaluation, redesign, reevaluation, and

so on.

In this research, we target the complexity of developing application-specific data partitioning al-

gorithms and propose PaPar, a parallel data partitioning framework for big data applications, to

simplify their implementations. We identify a set of common operators used in data partitioning

algorithms, e.g., sort, group, distribute, etc., and put them into PaPar as the building blocks. And

then we provide a set of interfaces to construct the workflow of partitioning algorithms with these

operators. PaPar can parse the configurations of input data types and workflow jobs, and generate

the parallel codes after formalizing the workflow as a sequence of key-value operations. Finally,

PaPar will map the workflow sequence to the parallel implementations with MPI and MapReduce.

In our evaluation, we use two applications as the case studies to show how to use PaPar to con-
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struct user-defined partitioning algorithms. The first driving application is muBLAST [32], an MPI

implementation of BLAST for biological sequence search. The second is PowerLyra [33], a com-

putation and partitioning method for skewed graphs. We conduct our experiments on a cluster of 16

compute nodes. Experimental results show that the code generated by PaPar can produce the same

partitions as the applications but with less partitioning time. Compared to the multithreaded im-

plementation of muBLASTP partitioning, PaPar can achieve up to 8.6-fold and 20.2-fold speedups

for two widely used sequence databases. Compared to the parallel implementation of PowerLyra

partitioning, PaPar can also deliver comparable performance for different input graphs.

7.1.2 Background and Motivation

In this section, we first describe our driving applications, summarize the common operators needed

in their data partitioning, and then discuss our motivation and design requirements.

7.1.2.1 Driving Applications

muBLASTP: BLAST is a fundamental bioinformatics tool to find the similarity between the query

sequence and database sequences. muBLASTP is an MPI implementation of BLAST for protein

sequence search. By building the index for each database partition instead of input queries and opti-

mizing the search algorithms with spatial blocking through the memory hierarchy, muBLASTP can

achieve better performance than the widely used BLAST implementations, e.g., mpiBLAST [179].

However, the performance of muBLASTP is sensitive to the partitioning methods: because of the
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nature of heuristics in the search algorithms, the runtime of sequence search depends on the dis-

tribution of sequence lengths more than the total size of each partition. The optimized partition-

ing method [180] tries to satisfy: (1) database partitions have similar numbers of sequences, (2)

database partitions have the similar encoded length distribution, and (3) database partitions have

the similar total size. Fig. 7.1 illustrates such an implementation. This method manipulates a four-

tuple index where each consists of the encoded sequence pointer, the encoded sequence length, the

description pointer, and the description length. The partitioning method first sorts the index based

on the encoded sequence length and then distributes sequences to different partitions in a cyclic

manner.

{0, 94, 0, 74}

{94, 100, 74, 89}

{194, 99, 163, 109}

{293, 91, 272, 107}

Format: {seq_start, seq_size, desc_start, desc_size}

{293, 91, 272, 107}

{0, 94, 0, 74}

{194, 99, 163, 109}

{94, 100, 74, 89}

{293, 91, 272, 107}

{194, 99, 163, 109}

{0, 94, 0, 74}

{94, 100, 74, 89}

Sort

Cyclic Distribution

Figure 7.1: The partitioning method in muBLASTP: sort and distribute sequences based on the
encoded sequence length.

PowerLyra: PowerLyra is a graph computation and partitioning engine on skew graphs. Other

than the vertex-cut and edge-cut partitioning methods, PowerLyra provides a hybrid method to

partition graph data. It first does the statistics to generate a user-defined factor, e.g., vertex indegree

or outdegree, then splits vertices to a low-cut group and a high-cut group based on this factor, and
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applies different distribution policies on each group. Integrated with GraphLab [181], PowerLyra

can bring significant performance benefits to many graph algorithms, e.g., PageRank, Connected

Components, etc. Fig. 7.2 from [33] shows this hybrid-cut method. In this case, PowerLyra uses the

vertex indegree to divide the low-cut group and high-cut group with a predefined threshold. For the

low-cut group, PowerLyra distributes vertices with all its edges (in-edges) to different partitions;

and for the high-cut group, PowerLyra distributes edges of each vertex to different partitions.
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Figure 7.2: The hybrid-cut in PowerLyra: count vertex indegree, split vertices to the low-cut group
and high-cut group; for the low-cut, distribute a vertex with all its in-edges to a partition, and for
the high-cut, distribute edges of a vertex to different partitions.

7.1.2.2 Motivation

These driving applications illustrate the application-specific methods are necessary for better per-

formance and scalability, even if the underlying systems provide the data partitioning methods. We

also observe that there are several common operators used in these two applications to partition

data, e.g., the sort operation: muBLASTP needs to sort sequences (as the value) by the encoded

sequence length (as the key), and PowerLyra may group the edges belonging to the same in-vertex



187

(as the value) and sort them by the vertex indegree (as the key). Therefore, our motivation is

to design a framework to provide such common operators and simplify the implementations of

application-specific partitioning algorithms. This task is not straightforward: even if the same op-

erator is needed, the requirements on these operators are very different. For example, for the sort

operation, the key and value in muBLASTP can be obtained from input data, i.e., the encoded

sequence length and the sequence entry; while in PowerLyra, neither the key (the vertex indegree)

nor the value (the grouped edges belonging to the same in-vertex) can be retrieved from input. As

a result, the framework must have the capability to concatenate multiple operators, add/delete data

attributes, and change data formats on demand. We summarize the design requirements:

• Correctness: The framework needs to generate the user-defined partitioning codes. For

the same input data, the partitions produced by the framework should be the same to those

generated by the original partitioning algorithms.

• Comprehensiveness: The framework needs to provide adequate building blocks to construct

user-defined partitioning algorithms and be flexible to extend more building blocks as well.

Other than the key-value concept for unstructured data, the framework also needs to provide

easy to use interfaces to define multiple data types, considering many scientific applications

manipulate structured and semi-structured data. Not only processing data from the input

file, but the framework also needs to support the in-memory data partitioning, because the

intermediate data may require repartitioning and redistribution at runtime.

• Efficiency: The generated partitioning codes should be optimized to avoid data partitioning



188

to be a performance bottleneck. Therefore, the framework needs to adopt the sophisticated

techniques from the recent research.

7.1.3 Methodology

Fig. 7.3 shows the high-level architecture of our framework. The user interfaces are two configura-

tion files. One is to describe the input data format, and the other is to describe the data operators in

the user-defined partitioning algorithm. By parsing the input data configuration and the workflow

configuration, the framework can understand the data structure and set corresponding keys and val-

ues for each operator listed in the workflow. Users are allowed to register their own data operator

as a new building block by inheriting the Operator class and implementing the functionality, which

will be discussed in Section 7.1.3.2. The PaPar framework will generate the workflow which will

be launched as a sequence of jobs at runtime.

7.1.3.1 Interface for Data Types

To read the structured data, the MapReduce framework, e.g., Hadoop, provides a base class to

unify the user interface: users need to implement their own parser for the input data structure by

inheriting the Hadoop InputFormat class. In this class, users need to implement getSplits method

to split the input file and generate a list of data blocks, each of which will be assigned to an indi-

vidual mapper at runtime. Users also need to implement the getRecordReader method to extract

individual input elements (records) from each split, and set the key and value for the mapper. Al-
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though many research projects [182, 183, 184, 185, 186, 187] have leveraged this mechanism to

process structured data on MapReduce, we prefer a programming-free method as the interface for

user-defined data structures. We provide the InputData configuration file to allow users to describe

their data structures.

InputData
Config

Workflow	
Config

Parser

Job	Generation

PaPar
InputFormat

PaPar
Operators

User	Operators	
and	Config

Job	Launcher
Inputs

Partitioning	
Results

MapReduce	
Library

PaPar Framework
System	Config

Figure 7.3: The high-level architecture of PaPar framework

Fig. 7.4 shows the example how to describe the BLAST sequence index. The input_format and

start_position sections indicate that BLAST sequence file is a binary file, and the index data starts

at 32 bytes. The element section describes the index data structure consisting of four 32-bit inte-

gers: seq_start, seq_size, desc_start and desc_size. According to the configuration file, the parser

of PaPar will tell the InputFormat class to skip the first 32 bytes of the file, and treat every 16

bytes (4 * 32-bit integers) as an entry. Fig. 7.5 shows the example for the text format used in

PowerLyra. The element section indicates that each element represents an edge from vertex_a to

vertex_b, separated by the Tab character "\t" and ended with the Enter character "\n". Similarly,
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the InputFormat class will treat each line in the text file as an entry, and fill two characters from

each line to a two-tuple. Note that for derived data types, users may need to declare the nested

elements in the configuration file. By providing such a configuration file as an interface, PaPar can

support different input data types.

1 <input id="blast_db" name="BLAST Database file">
2 <input_format>binary</input_format>
3 <start_position>32</start_position>
4 <element>
5 <value name = "seq_start" type = "integer"/>
6 <value name = "Seq_size" type = "integer"/>
7 <value name = "desc_start" type = "integer"/>
8 <value name = "desc_size" type = "integer"/>
9 </element>

10 </input>

Figure 7.4: Data type description for BLAST index

1 <input id="graph_edge" name="edge lists">
2 <input_format>text</input_format>
3 <element>
4 <value name = "vertex_a" type = "String"/>
5 <delimiter value="\t"/>
6 <value name = "vertex_b" type = "String"/>
7 <delimiter value="\n"/>
8 </element>
9 </input>

Figure 7.5: Data type description for graph data

7.1.3.2 Operators

We define a set of operators as the building blocks to implement the workflow of desired partition-

ing algorithms. Users can construct a workflow through the Workflow configuration file. For a data

partitioning program, we observe that the input and output data formats are usually same, while

the formats of intermediate data during partitioning may be different. For example, as discussed in

Section 7.1.2.2, the PowerLyra hybrid-cut will count the vertex indegree, which is a new attribute.

Based on the behaviors of operators on input data, we define three types of operators. First, the
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Basic operators, including sort, distribute, split, group, etc., will reorder input data but not add or

delete any attribute. For example, the sort operator will move entries from one compute node to

another but keep data unchanged. Although multiple basic operators are usually concatenated to

construct a workflow, a single basic operator can also be treated as a complete workflow. Second,

the Add-on operators, e.g., count, max, min, mean, sum, etc., will add or delete data attributes. Dif-

ferent with the basic operators, the add-on operators themselves can not construct a workflow or a

job in the workflow. They need to cooperate with the basic operators. Third, the Format operators,

e.g., orig, pack, and unpack, can change the data format, but not reorder data or add/delete any

attribute. Note that the input and output data discussed in this section refers to the input and output

of an operator instead of the input and output files of a partitioning program.

Table 7.1 shows the details of the operators. Most of them will set a field of input data (or in-

termediate data) as the key and do the computation following the key-value concept. We will

present more details with the driving applications in Section 7.1.4. In this paragraph, we focus

on the policy parameter used in distribute, which is an operator not following the key-value con-

cept. In a partitioning algorithm, an entry from the input file is usually put into a partition of

output. Although sometimes a entry may be put into multiple partitions for better performance

or fault tolerance [188], we discuss the one-to-one mapping like the perfect hash in this research.

We design two basic types of policies, i.e., cyclic and block. The partitioning algorithms gen-

erated by PaPar will read the parameters policy and numPartitions from the configuration file at

runtime, and formalize the policy to a matrix-vector multiplication operation. We borrow the

idea of a domain-specific language (DSL) [189] to define a policy as a permutation matrix: Lkm
m ,
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Table 7.1: Operators of PaPar workflow

Basic Operator

Sort(String inputPath, String outputPath, Class<?> inputFormat, Class<? extends Format>
outputFormat, ValueId key, int flag, Class<? extends AddOn> addOn)
Sort data by the given key. inputPath: the path of input data. ouputPath: the path of output
data. inputFormat: the format of input data. outputFormat: the format of output data. key: the
key for sorting input data. flag: the sorting type; -1: ascending, 1: descending. addOn: add-ons.
Group(String inputPath, String outputPath, Class<?> inputFormat, Class<? extends For-
mat> outputFormat, ValueId key, Class<? extends AddOn> addOn)
Group data by the given key. inputPath: the path of input data. ouputPath: the path of output
data. inputFormat: the format of input data. outputFormat: the format of output data. key: the
key to group input data. addOn: add-ons.
Split(String inputPath, List<String> outputPathList, Class<?> inputFormat, List<? extends
Format> outputFormat, ValueId key, SplitPolicy policy, Class<? extends AddOn> addOn)
Split data by the given split operation and key. inputPath: the path of the list of inputs. output-
PathList: the file list for outputs. inputFormat: the format of the input data. outputFormat: the
format of the output data. key: the key for splitting. policy: the policy for splitting data. addOn:
add-ons.
Distribute(String inputPath, String outputPath, Class<?> inputFormat, Class<? extends For-
mat> outputFormat, DistrPolicy policy, int numPartitions, Class<? extends AddOn> addOn)
Distribute data by the given policy. inputPath: the path of input. ouputPath: the path of output.
inputFormat: the format of input data. outputFormat: the format of output data. policy: the
distribution policy: cyclic and block. numPartitions: the number of partitions. addOn: add-ons.

Add-on Operator

count(List<T> elements, ValueId key) Count the number of elements of the specific key.
max(List<T> elements, ValueId value) Get the maximum of the specific values of elements.
min(List<T> elements, ValueId value) Get the minimum of the specific values of elements.
mean(List<T> elements, ValueId value) Get the average of the specific values of elements.
sum(List<T> elements, ValueId value) Get the sum of the specific values of elements.

Format Operator

orig(List<T> keyVale) (default) Output data with the input format.
pack(List<T> keyVale) Output data with the packed format.
unpack(List<T> keyValue) Output data with the unpacked format.

xik+j 7→ xjm+i, 0 6 i < m, 0 6 j < k, which performs a stride-by-m permutation on a vector x

having km items. In the distribution policy, x is the input data represented as a vector having km
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entries, and m is the stride to permute entries. Fig. 7.6(a) illustrates the example to permute 4 en-

tries with the stride 2 in the cyclic manner. The corresponding permutation matrix is L4
2. Fig. 7.6(b)

illustrates the example for the block policy, which will not permute entries and the matrix is L4
4.

After the permutation, the contiguous data will be sent to two partitions for the distribution. The

benefit of using the permutation matrix is to decouple the distribution policies from the workflow

when PaPar generates the codes: at the time of code generation, it is not necessary to bind a distri-

bution policy; and at runtime, the parameters policy and numPartitions will be processed and the

permutation matrix will be generated, while the codes of the distribution operator are not changed.

At runtime, the matrix-vector multiplication is enforced by multiple mappers in parallel and each

mapper only processes its local data distribution based on the multiplication result.

! " " " " "

" " ! " ! #

" ! " " # !

" " " ! $ $

(a) Cyclic matrix L4
2

! " " " " "

" ! " " ! !

" " ! " # #

" " " ! $ $

(b) Block matrix L4
4

Figure 7.6: Formalize the distribution polices to matrix-vector multiplication

Though the operators listed in the table are sufficient for most cases, PaPar allows users to define

their own operators. Users need to inherit one of these three operator classes, and provide a con-

figuration file to describe the operator. Fig. 7.7 shows an example of customized sort. The user

needs to specify the class and argument types to tell the framework how to invoke it.
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1 <prog id="Sort" type="operator"
2 name="MapReduce sort operator">
3 <import classpath="/user/mr/sort"
4 package="com.mr.sort" class="Sort"/>
5 <arguments>
6 <param name="inputPath" type="String"/>
7 <param name="outputPath" type="String"/>
8 <param name="keyId" type="KeyId"/>
9 <param name="ascending" type="boolean"

10 default="true"/>
11 </arguments>
12 </prog>

Figure 7.7: Configuration file for sort operator

7.1.4 Case Studies

To demonstrate the capability and usability of PaPar, we use muBLASTP and PowerLyra as case

studies.

muBLASTP: Fig. 7.8 shows the workflow configuration file of muBLASTP partitioning. Three

parameters listed in the argument section are the input file name, output file name, and number

of partitions. Two operators sort and distribute are defined, each of which will be mapped to a

job. We use the symbol $ to represent the variable coming from the output of another operator.

For example, for the operator distribute, its input comes from the output of operator sort, which is

labeled as “$sort.outputPath” in the configuration. The optional parameter num_reducers is used to

launch reducers at runtime. Each operator can use a parameter defined in the workflow arguments

or overwrite it in its own parameter section.

Fig. 7.9 illustrates the workflow of muBLASTP partitioning, which sorts input by the encoded se-

quence length and then distributes elements evenly to partitions with the cyclic policy. This figure

follows the MapReduce style. In the figure, the leftmost part shows the index data of muBLASTP.

Two jobs are launched in the workflow. The sort job sorts entries by using the sequence length
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seq_size. The mappers will shuffle key-value pairs to different reducers according to the range

of keys, which is sampled when reading the input. The data sampling will be discussed in Sec-

tion 7.1.4.1. In this case, as an example, the entries having the key seq_size ranging from 90 to 95

are assigned with the reduce-key “1”, and then shuffled to the reducer “1”. The reducers will sort

entries by the key seq_size and write output data after removing the temporary reduce-key, because

the basic operators will only reorder data but not change data as the definition.

The distribute job will distribute entries with the cyclic policy. The mappers will enforce the

cyclic policy by applying the matrix-vector multiplication in parallel. In this case, each mapper

knows there are 4 entries at local and 3 partitions for the output. Therefore, the permutation matrix

L4
3 is generated to permute the entries locally. After that, the mapper will distribute the entries

to corresponding partitions. For example, the mapper "0" will send the entries “0” {566, 51, 490,

120}, “3” {1041, 79, 1107, 76} to the partition “0”, the entry “1” {783, 64, 799, 91} to the partition

“1”, and so on. Because a reducer is launched to write data for a partition, the reducer id is used as

the reduce-key. The reducers of the distribute job will write data to the output after removing the

temporary reduce-key. Note that, some applications may need to adjust output data. For example,

muBLASTP needs to recalculate the start pointers of sequence data and description data. This

process has been implemented as a user-defined add-on operator. The algorithm recalculating the

muBLASTP index has been discussed in 5.2, and we skip the details in this chapter.

PowerLyra: As introduced in Section 7.1.2.1, the hybrid-cut of PowerLyra will generate the new

attributes and use them as the key and value of corresponding operators. Fig. 7.10 shows the

configuration file, which concatenates three basic operators — group, split, and distribute — in the
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1 <workflow id="blast_partition"
2 name="BLAST database partition">
3 <arguments>
4 <param name="input_path" type="hdfs"
5 format="blast_db"/>
6 <param name="output_path" type="hdfs"
7 format="blast_db"/>
8 <param name="num_partitions" type="integer"/>
9 <param name="num_reducers" type="integer"

10 value="3"/>
11 </arguments>
12 <operators>
13 <operator id="sort" operator="Sort"
14 num_reducers="$num_reducers">
15 <param name="inputPath" type="String"
16 value="$input_path"/>
17 <param name="ouputPath" type="String"
18 value="/user/sort_output"/>
19 <param name="key" type="KeyId"
20 value="seq_size"/>
21 </operator>
22 <operator id="distr" operator="Distribute">
23 <param name="inputPath" type="String"
24 value="$sort.ouputPath"/>
25 <param name="outputPath" type="String"
26 value="$output_path"/>
27 <param name="distrPolicy" type="DistrPolicy"
28 value="roundRobin"/>
29 <param name="numPartitions" type="integer"
30 value="$num_partitions"/>
31 </operator>
32 </operators>
33 </workflow>

Figure 7.8: Configuration file for muBLASTP

workflow.

Fig. 7.10 shows the details. The input data represents edges, i.e., vertex_a → vertex_b). The

group job uses out-vertex vertex_b as the key to group edges in the map stage, and uses the add-

on operator count to add a new attribute on each edge, i.e., vertex indegree, and uses the format

operator pack to pack output data in the reduce stage. The split job then splits the packed entries

based on the key indegree, which is the new attribute added by the add-on operator count. The split

operator will send the entries, which indegree are larger than or equal to threshold (i.e., 4 in this

example), to the high-degree output, and others to the low-degree output. Note that, for the high-
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Figure 7.9: The workflow of muBLASTP data partitioning. The Sort job will sort the index ele-
ments by the user-defined key seq_size (in the dashed boxes), including: (1) mappers will shuffle
data to reducers with the sampled reduce-key; (2) reducers will sort data by the key seq_size;
(3) store data by removing the reduce-key. The Distribute job will distribute the sorted elements
to partitions with the cyclic policy, including: (4) mappers will shuffle data to reducers with the
generated reduce-key (reducer id); (5) remove the temporary reduce-key.

degree output, the format operator unpack is used to unpack data from the packed organization

(as shown in the step 5 in the figure). The third job distribute will then operate on two different

formats of intermediate data and generate two permutation matrices, i.e., L4
3 for the high-degree

and L3
3 for the low-degree. Note that L3

3 in this case happens not to permute data, because there

are 3 entries for 3 partitions. In a general case, LM
N will enforce the cyclic distribution when M is

larger than N . As the distribute is the last step in the workflow, all data will be unpacked to make

sure the output has the same format of the input.

7.1.4.1 Implementations

We map our framework on top of Apache Hadoop (2.7.0), MapReduce-MPI (abbr. MR-MPI) [190],

and MPI. The interfaces of first two MapReduce systems are similar. On Hadoop, we implement

the interfaces of processing structured data by inheriting InputFormat class. We implement those

operators in Java and generate Hadoop jobs for the workflow. On MR-MPI, an open-source C++



198

1 <workflow id="hybrid_cut" name="Hybrid-cut">
2 <arguments>
3 <param name="input_file" type="hdfs"
4 format="graph_edge"/>
5 <param name="output_path" type="hdfs"
6 format="graph_edge"/>
7 <param name="num_partitions" type="integer"/>
8 <param name="threshold" type="integer"/>
9 </arguments>

10 <operators>
11 <operator id="group" operator="group">
12 <param name="inputPath" type="String"
13 value="$input_file"/>
14 <param name="outputPath" type="String"
15 value="/tmp/group" format="pack"/>
16 <param name="key" type="KeyId"
17 value="vertex_b"/>
18 <addon operator="count" key="vertex_b"
19 attr="indegree"/>
20 </operator>
21 <operator id="split" operator="Split">
22 <param name="inputPath" type="String"
23 value="$sort.outputPath"/>
24 <param name="outputPathList"
25 type="StringList"
26 value="/tmp/split/high_degree,
27 /tmp/split/low_degree"
28 format="unpack,orig"/>
29 <param name="key" type="KeyId"
30 value="$group.$indegree"/>
31 <param name="policy" type="SplitPolicy"
32 value="{>=,$threshold},
33 {<,$threshold}"/>
34 </operator>
35 <operator id="distr" operator="Distribute">
36 <param name="inputPath" type="String"
37 value="/tmp/split/">
38 <param name="outputPath" type="String"
39 value="$output_path"/>
40 <param name="policy" type="distrPolicy"
41 value="graphVertexCut"/>
42 <param name="numPartitions" type="integer"
43 value="$num_partitions"/>
44 </operator>
45 </operators>
46 </workflow>

Figure 7.10: Configuration file for PowerLyra hybrid-cut

implementation of MapReduce on MPI, we use C++ to implement mappers and reducers by call-

ing MR-MPI interfaces. The MR-MPI library can help us to hide the details of MPI based data

shuffle and synchronization. On MPI, we currently use MPI non-blocking interfaces (Isend, Irecv,

and Wait) to implement the data shuffle. During the execution of a PaPar-generated partitioner,
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Figure 7.11: The workflow of PowerLyra hybrid-cut algorithm. The Group job will group the
edges by in-vertex, including: (1) mappers will shuffle data to reducers by setting the in-vertex id
as the reduce-key; (2) the add-on operator count will add a new attribute indegree for each edge; (3)
the format operator pack will change the output format to the packed one. The Split job will split
data into two groups, including: (4) based on the split condition in the configuration file (indegree
is larger than or equal to 4 in this case), mappers will set the reducer id as the temporary reduce-key
and shuffle data to reducers; (5) based on the different formats of output files, the unpack operator
is applied on the high-degree part to unpack the data format. The Distribute job will distribute
the entries in a cyclic manner, including: (6) mappers will shuffle data to reducers by setting the
reducer id as the reduce-key; (7) reducers will remove the temporary reduce-key.

the jobs are launched one by one following the order defined in the workflow configuration file.

Several important techniques are also implemented as below:

Code Generation: We implement a parser to parse the configuration files and generate the Hadoop

or MPI based partitioner by directly calling the backend implementations of operators. This

method has been widely used in the code generation from a higher-level description to a lower-

level implementation, e.g., from SQL to MapReduce jobs in Apache Hive [191], from SQL to GPU

kernels [192], from DSL to SIMD implementations of sorting networks [151], etc. We plan to use

an internal representation (IR) [193] to decouple the binding between the frontend and the backend

in the future work.

Data Sampling: We implement the data sampling to balance the workload for the reduce stage.

For example, for the sort operator, the temporary reduce-key corresponding to the range of input
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data is needed. In order to avoid the imbalance on reducers, we follow the mechanisms proposed

in [26] to sample data on every node and approximate to the global data distribution. Based on the

distribution of the user-set key and the number of reducers, we set the proper data range for each

temporary reduce-key.

Data Compression: This optimization is used to compress the packed data. As shown in the

hybrid-cut of PowerLyra, the group operator will call the pack operator to pack edges having the

same in-vertex, resulting in the redundant data in this packed format. As shown in Fig. 7.11,

after the step 3, the reducer 0 has the packed data as {{2, 1, 4}, {3, 1, 4}, {4, 1, 4}, {5, 1,

4}}, and the redundant data is 1. This optimization uses the Compressed Sparse Row (CSR)

and its transposition Compressed Sparse Column (CSC), which are widely used in sparse matrix

computations [194, 195, 196, 197, 198], to compress data. In this case, the CSC format {0, {2,

3, 4, 5}, {4, 4, 4, 4}} is used: 0 is the start pointer of the in-vertex 1, the first vertex in the

graph; {2, 3, 4, 5} is the out-vertex id array, and {4, 4, 4, 4} is the value array. Because the

value array may include different values (depending on the algorithm to generate the attribute), we

do not compress the value array to keep the generality. This optimization can improve the data

communication performance, while it highly depends on the input data. We have observed up to

13% improvement for the graph datasets in our evaluation.
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7.1.5 Experiments

7.1.5.1 Experimental Setup

We conduct our evaluations on a homogeneous cluster consisting of 16 compute nodes. Each node

has two 8-core Intel Xeon E5-2670 (Sandy Bridge) CPUs running at 2.60 GHz, 64 GB memory,

and 512 GB local disk. These nodes are linked by 10Gbps Ethernet and a Quad Data Rate (QDR)

InfiniBand interconnect. Because both muBLASTP and PowerLyra are implemented in C++, we

map PaPar on MR-MPI that leverages the MapReduce concept and the in-memory communication

on MPI to provide comparable performance. All codes are compiled with the MVAPICH2 library

(version 2.2) and GCC 4.5.3. In all experiments, the execution time is the average time of five runs

without I/O time.

In the muBLASTP experiments, two partitioning methods are generated by PaPar. One is the

default method to keep the number of sequences in partitions similar. We label it as "block". The

other is the optimized method that will sort the index and distribute the sequences in a cyclic

manner. We label it as "cyclic". We use two popular protein databases as the test datasets: env_nr

database and nr database. The env_nr database consists of about 6,000,000 sequences with the

total size at 1.7 GB, and the nr database has over 85,000,000 sequences with the size at 53 GB.

Most of the sequences in two databases are less than 100 letters. We follow the experimental setups

in [32] to randomly pick up sequences from corresponding databases to construct three batches,

each of which includes 100 sequences. In the batch "100" and "500", all sequences are less than

100 and 500 letters, respectively; and for the "mixed" batch, we randomly select 100 sequences
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without the limitation of length.

In the PowerLyra experiments, we generate codes for three types of partitioning methods, "edge-

cut", "vertex-cut", and "hybrid-cut" shown in Fig. 7.2 . We choose PageRank as the test algorithm,

which computes the rank of vertices in a graph. We use the snapshot version of PowerLyra with

the tuned command line parameters downloaded from the PowerLyra website. The threshold pa-

rameter of hybrid-cut is set to 200 to divide the vertices into the low-cut or high-cut group. We

choose three graph datasets: Google, Pokec and LiveJournal, from SNAP [199]. The datasets are

stored in the EdgeList format as shown in Fig. 7.5. Table 7.2 shows the statistics of these datasets.

Table 7.2: Statistics of graph datasets

Graph Vertices Edges Type Triangles
Google 875713 5105039 Directed 13391903
Pokec 1632803 30622564 Directed 32557458

LiveJournal 4847571 68993773 Directed 177820130

In our evaluations, we first compare the partitions generated by PaPar and by the partitioning

programs of driving applications. The results show that PaPar can produce the same partitions as

the driving applications. After that, we present the performance numbers, including the execution

time of applications with different partitioning algorithms, the partitioning time on the given input

data sets, and the scalability on multiple compute nodes.

7.1.5.2 Evaluation of BLAST Database Partitioning

Fig. 7.12 shows the normalized execution time of muBLASTP search for three batches on 8 and

16 compute nodes with the cyclic and block policies. muBLASTP follows the MPI + OpenMP



203

programming model, and the best performance can be achieved when binding an MPI process to a

CPU (socket) and launch multiple OpenMP threads (8 on our Intel Sandy Bridge CPU) in one MPI

process. As a result, on 8 nodes, we produce 16 (8 * 2) partitions; and on 16 nodes, the partition

number is 32 (16 * 2). In these figures, the cyclic policy is the clear winner that can bring obvious

performance benefits to muBLASTP, no matter which combination of database and batch is used.

We also observe that the cyclic policy can achieve more performance benefits for the larger batch,

i.e. the batch "500". That means the skew is more significant for the longer queries because they

have relatively longer search time.

Because the cyclic policy can deliver better performance to muBLASTP search, we compare

the partitioning time of PaPar and default muBLASTP partitioning for this policy. Fig. 7.13(a)

shows the normalized partitioning time on 16 nodes for the env_nr and nr databases, respectively.

Because the current implementation of muBLASTP partitioning only provides a multithreaded

method for the input database [32], it can not scale out on 16 nodes. On the contrary, PaPar can

map to MapReduce and MPI implementations, and scale on multiple compute nodes. As shown

in the figure, PaPar can achieve 8.6x and 20.2x speedups over default muBLASTP partitioning on

16 nodes for two databases, respectively. Note that even on a single compute node, PaPar is faster,

thanks to ASPaS [151], a highly optimized merge sort implementation on multicore processors.

We used it in the sort operator implementation. Fig. 7.13(b) shows the scalability up to 16 nodes.

Compared to its own single node implementation, PaPar can obtain 7.9x and 14.3x speedups for

the nr and evn_nr databases, respectively.
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Figure 7.12: Normalized execution time of muBLASTP with the cyclic partitioning and block
partitioning (normalized to cyclic) on env_nr and nr databases.
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Figure 7.13: Partitioning time (cyclic) for env_nr and nr databases, and strong scalability of codes
generated by PaPar, compared to muBLASTP partitioning program.

7.1.5.3 Evaluation of Hybrid-Cut Graph Partitioning

Fig. 7.14 shows the normalized execution time of PageRank with "hybrid-cut", "edge-cut", and

"vertex-cut" on 8 and 16 nodes. The hybrid-cut can deliver the best performance as we expected.

The vertex-cut distributes a vertex with all its in-edges to a partition, which favors the vertices

having low-degrees. Because the three datasets in our experiments follow the power law distribu-

tion that have much more low-degree vertices, the vertex-cut, instead of the edge-cut, has closer

performance to the hybrid-cut.

Fig. 7.15(a) shows the normalized partitioning time of PaPar codes and PowerLyra on 16 nodes for

the hybrid-cut. On the Google and Pokec datasets, PowerLyra has the better performance; while

PaPar can deliver 1.2x speedup on the LiveJournal dataset. There are several reasons leading to the

variable performance comparison. PaPar is mapped on MR-MPI to balance the programmability
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Figure 7.14: Normalized execution time of PageRank (with PowerLyra) for hybrid-cut, edge-cut,
and vertex-cut (normalized to hybrid-cut).

and performance but without those optimizations on multicore processors used by PowerLyra, e.g.,

the NUMA-aware data access. Therefore, PowerLyra is faster for the small and medium datasets,

where the single node performance counts more. However, such a benefit is offset in the communi-

cation intensive case on multiple nodes. Although PowerLyra is integrated with GraphLab on top

of MPI, its data shuffle is still based on the socket communication on Ethernet. On the contrary,

PaPar maps to MR-MPI that uses MPI instead of socket communication. In our experiments, the

MVAPICH2 library can use Remote Direct Memory Access (RDMA) communication on Infini-

Band to improve the performance. Furthermore, PowerLyra uses the dynamic approach that calcu-

lates scores for low-degree vertices in each partition. This method introduces additional overhead,

especially for graphs which vertices cluster together, e.g., the LiveJournal dataset. Fig. 7.15(b) also

demonstrates the variable performance. PowerLyra can scale up to 8 and 16 nodes for the Pokec
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and LiveJournal datasets, respectively, but cannot scale on multiple nodes for the Google dataset;

while, PaPar can scale up to 16 nodes for all three datasets.
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Figure 7.15: Partitioning time (hybrid-cut) and strong scalability of codes generated by PaPar
framework, compared to PowerLyra.

7.1.6 Conclusion

In this research, we propose the PaPar framework to generate application-specific partitioning al-

gorithms. Taking two configuration files as input, PaPar can formalize the partitioning workflow as

a sequence of key-value operations and matrix-vector multiplications, and map to implementations

on MPI and MapReduce. We use muBLASTP and PowerLyra as the case studies to show how to

generate the user-defined partitioning algorithms with PaPar. Our evaluations illustrate PaPar can

generate the same partitions with comparable or less partitioning time.



Chapter 8

Conclusion and Future Work

8.1 Conclusion

Nowadays, the applications in emerging domains have increasing irregularities in memory access,

control flow and network communication patterns. However, current parallel architectures, which

are designed for regular computation and memory accesses, are inefficient for irregular applica-

tions. Therefore, many previous approaches have been proposed to map irregular applications to

parallel architectures through reordering data and computation. However, these approaches can-

not fully exploit the locality and regularity in irregular application due to local optimizations and

“one-size-fits-all” methods. To overcome these challenges, we propose a general methodology

with three techniques 1) a taxonomy for irregular applications that has four irregularity classes

based on the relationship between functions and data structures to help us analyze the irregularity

208
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in an application, 2) general transformation that provides interchanging, decoupling and reorder-

ing transformations to explore hidden locality across loops or kernels in irregular applications,

and 3) adaptive optimization that provides the adaptive data reordering pipeline based the charac-

teristics of the application and architecture to achieve the optimal performance. To evaluate our

methodology, we analyze and optimize couples of important and complex irregular applications

from different domains across parallel architectures as case studies.

8.1.1 Optimizing Irregular Applications on Multi-core Architectures

On multi-core architectures, we first investigate Burrow-Wheeler Aligner (BWA), a popular short

read alignment tool on multi-core architectures. Through in-depth performance analysis of BWA,

we determine that the BWA kernel belongs to the MDSC class, where the irregular memory behav-

ior is the performance bottleneck of such tools due to poor locality. We then propose a locality-

aware implementation of BWA with interchanging its execution order and reordering intermediate

data between iterations with a cache-oblivious bin structure to minimize the reordering overhead.

Experimental results show that our optimized BWA implementation can reduce LLC misses by

30% and TLB misses by 20%, resulting in up to a 2.6-fold speedup over the original BWA imple-

mentation.

We then investigate Basic Local Alignment Search Tool (BLAST), which is another important

bioinformatics application. We first develop a BLAST algorithm using database indexing instead

of query indexing for better exploiting the cache mechanism. We then demonstrate irregular prob-
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lems in the database-indexed BLAST algorithm (MDMC class) and propose a refactor BLAST

algorithm that decouples mixed phases, and reorders intermediate data between phases with a data

reordering pipeline of binning-filtering-sorting. Our optimized BLAST can produce the identical

results as the original query-indexed BLAST with up to a 4.41-fold speedup with a single thread,

and up to a 5.7-fold speedup for 24 threads.

8.1.2 Optimizing Irregular Applications on Many-core Architectures

Beyond multi-core architectures, we also investigate irregular problems on many-core architec-

tures.

First, we investigate the BLAST algorithm on NVIDIA GPUs. We demonstrate that the irregularity

in BLAST on a GPU (i.e., SDMC class), especially for protein sequence search, can result in se-

rious performance degradation on a GPU. To overcome these problems, we present a fine-grained

parallel approach, referred as cuBLASTP. In cuBLASTP, we resolve the irregular memory accesses

and branch divergence via decoupling the complex irregular kernel into separate kernels and re-

ordering data between kernels with a data reordering pipeline of binning-sorting-filtering. Exper-

imental results show that cuBLASTP can achieve up to a 3.4-fold speedup over the multithreaded

NCBI-BLAST, and up to a 2.9-fold speedup over the state-of-the-art GPU-implementation.

Second, we identify the irregular problems in the existing implementations of dynamic parallelism

on a GPU that use the “one-size-fits-all” subtask aggregation method. To alleviate irregularities, we

use decoupling method to redistribute aggregated subtasks into separate kernels by their properties.
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To achieve the optimal performance, we present an adaptive subtask aggregation and scheduling

tool based on machine learning techniques to generate the optimal parallel strategy. Experimental

results show that the optimal subtask aggregation strategy provided by our tool can achieve up to a

1.8-fold speedup over the existing subtask aggregation method.

8.1.3 Optimizing Irregular Applications on Multi-node Systems

On multi-node systems, workload imbalance is a fundamental problem. Though current frame-

works provide advanced mechanisms to partition data and resolve workload imbalance, they are

inefficient for irregular applications, whose run time depends on not only a single properties i.e.,

the database size, but also multiple other properties, such as algorithms applied on the data, data

locality and data distribution. To effectively resolve workload imbalance of irregular applications,

we propose a framework, called PaPar, that can generate the desired data partitioning codes for

irregular applications via composing input-data transformations, including Sort, Group, Split, and

Distribute. We conduct our experiments on a cluster with 16 compute nodes. Experimental results

show that the codes generated by PaPar can produce the same partition quality as the application-

specific partitioning by manual with less partitioning time.

8.2 Future Work

There are the two possible major extensions to this dissertation. First, our methodology can be

extended into a framework that can direct the compilers and runtimes to automatically optimize
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the irregular applications. Second, our methodology can be extended to resolve “irregularities” in

regular applications, such as deep neural network kernels, dense linear algebra algorithms, etc.

8.2.1 Extending Our Methodology into An Automatic Framework

In our methodology, we provide an irregularity taxonomy and a set of general transformations

to help us to analyze and optimize irregular applications. However, applying these analysis and

optimization techniques in real-world applications is still non-trivial. To simplify the process of

analysis and optimization, our methodology could be extended into a framework that can automat-

ically discover and identify the irregularity in an application, and direct compilers and runtimes to

generate the optimized implementation.

In Section 6.2, we provide an example of building models for performance analysis and prediction

using statistical analysis and machine learning techniques. Similarly, we can build performance

models with a set of irregular benchmarks to obtain the correlation between the irregular patterns

and the performance counter data [108, 107, 109]. Therefore, we can identify the irregularity

patterns in the irregular application based on the performance counter data. And then, with the

extension of the performance models in Section 4.3.3, the framework can determine the optimal

transformation strategy for the application and architecture to direct the compiler and runtime for

generating the optimized implementation.
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8.2.2 Extending Our Methodology for Regular Applications

According to [76], irregular is not a binary property, which not only exists in irregular applications

but also regular applications. For example, regular applications may have workload imbalance

and resource skew. For example, applications in GPU-based scientific computing kernels and

deep learning kernels on a GPU may require solving many independent dense matrix operations

that are different in size. These matrix operations have various resource usage and parallelism,

which requires different tuning parameters. However, existing studies [200, 201, 202] use the

“one-size-fits-all” approach that execute all matrix operations with a single kernel and applies the

uniform configuration on all operations, which will underutilize the GPU resource and degrade the

performance. This problem is very similar with the performance issue in the subtask aggregation

for dynamic parallelism. Thus, we can easily extend our subtask aggregation model presented

in Section 6.2 to decouple the matrix operations into separate kernels and generate the optimal

aggregation strategy.

Furthermore, to improve the utilization of GPUs or other many-core architectures, GPU multipro-

gramming, which allows two or more kernels from different applications being executed concur-

rently on a GPU, began to attract a wide attention. However, running two kernels concurrently

with different irregular patterns can make the resource sharing and contention very complicated.

To generate the optimal aggregation and scheduling strategy for multiprogramming on a GPU, we

also can extend our subtask aggregation model with the performance models for multiple applica-

tions.
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