
pDindel: Accelerating InDel Detection on a
Multicore CPU Architecture with SIMD

Da Zhang, Hao Wang, Kaixi Hou, Jing Zhang, Wu-chun Feng
Department of Computer Science, Virginia Tech

Blacksburg, Virginia, USA
Email: {daz3, hwang121, kaixihou, zjing14, wfeng}@vt.edu

Abstract—Small insertions and deletions (indels) of bases in
the DNA of an organism can map to functionally important sites
in human genes, for example, and in turn, influence human traits
and diseases. Dindel detects such indels, particularly small indels
(< 50 nucleotides), from short-read data by using a Bayesian
approach. Due to its high sensitivity to detect small indels, Dindel
has been adopted by many bioinformatics projects, e.g., the 1,000
Genomes Project, despite its pedestrian performance.

In this paper, we first analyze and characterize the current
version of Dindel to identify performance bottlenecks. We then
design, implement, and optimize a parallelized Dindel (pDindel)
for a multicore CPU architecture by exploiting thread-level par-
allelism (TLP) and data-level parallelism (DLP). Our optimized
pDindel can achieve up to a 37-fold speedup for the computational
part of Dindel and a 9-fold speedup for the overall execution time
over the current version of Dindel.

Index Terms—short-read mapping; indel detection; Dindel;
OpenMP; multithreading; vectorization.

I. INTRODUCTION

Sequencing has come a long way since the first-generation
sequencing technologies of the 1970s. Technologies from that
time period, such as Sanger and shotgun sequencing, success-
fully contributed to the sequencing of the human genome by
2003 — at a cost of nearly $3,000,000,000 U.S. dollars (USD).

Today, the revolution continues with the short-read, mas-
sively parallel sequencing technique of next-generation se-
quencing (NGS). In contrast to the slow performance and high
cost for sequencing a human genome with first-generation
sequencing techniques, NGS can make large-scale, whole-
genome sequencing accessible and practical. For example, the
HiSeq XTM Ten system, released by Illumina Inc. in 2014,
can sequence over 45 human genomes in a single day at
an approximate cost of only $1,000 USD per genome. As a
consequence, a single NGS sequencer generating on the order
of a gigabase (Gb) per run means that we can generate data
faster than we can analyze it.

DNA sequencing (DNA-seq), a common NGS applica-
tion, can discover genomic variations in the form of single
nucleotide variants (SNVs), small DNA insertions and/or
deletions (indels), copy number variations (CNVs), or other
structural variants (SVs). During DNA sequencing, artifacts
corresponding to different indels introduced by different align-
ments may affect the quality of the downstream variant calling.
Thus, an indel realignment step is recommended to minimize
those artifacts in post-alignment processing. Two algorithms

for the indel realignment are usually adopted: (1) local realign-
ment of gapped reads to the reference genome or alternative
candidate haplotype or (2) local de novo assembly of the reads
aligned around the target region, followed by construction of
a consensus sequence for indel discovery [1]. Tools, such
as Dindel [2], Genome Analysis Toolkit (GATK) [3], and
SOAPindel [4], implement either of these two algorithms or a
mixture of the two.

In this paper, we study Dindel, a bioinformatics applica-
tion that uses a Bayesian approach for calling small (< 50
nucleotides) indels from short-read data. Dindel uses the
former algorithm, i.e., local realignment of gapped reads to
the reference genome or alternative candidate haplotype, to
do the local realignment and deliver good sensitivity. Rather
than improve the sensitivity of Dindel, we focus on studying
and improving its performance from the perspective of a “big
data” problem on a multicore CPU processor in order to create
an optimized parallel Dindel (pDindel).

We first work to improve the performance of the (sequential)
Dindel program by restructuring loops to guide the compiler
vectorization of for loops automatically. However, for Dindel,
this auto-vectorization method cannot optimize all of the eight
heavy-duty loops because of the indeterminate number of
iterations, the divergent control flows, and the noncontiguous
memory access patterns. Therefore, we manually vectorize
these loops by using the loop reconstruction and the intrinsics
from instruction set architecture (ISA).

After evaluating the performance of auto-vectorization and
manual vectorization on each loop, we combine these vector-
ization techniques to achieve the best overall performance for
the entire program. In addition to vectorization, i.e., data-level
parallelism (DLP), we also exploit thread-level parallelism
(TLP) to parallelize the most outer loops, which contain
the computation of calculating read-haplotype likelihoods. We
then evaluate different granularities of the thread binding and
use the one that produces the best performance.

In all, this paper makes the following contributions:
1) An analysis of the Dindel program to identify the

performance bottlenecks.
2) Acceleration of the compute-intensive functions within

Dindel via thread-level parallelism (TLP) and data-level
parallelism (DLP)

3) An evaluation of our optimized pDindel on a multicore
processor with SIMD processing, which delivers up to a

978-1-4673-9963-9/15/$31.00 c�2015 IEEE 1

International Conference on Computational Advances in Bio and Medical Sciences (ICCABS), October, 2015

37-fold speedup for the computational part and a 9-fold
speedup for entire Dindel program.

II. RELATED WORK

VarScan [5], [6] is an open-source tool that uses heuristic
and statistical methods to detect variants in sequences. The
old version of VarScan [5] is implemented in Perl; the latest
version VarScan2 [6] is implemented in Java. Compared with
VarScan, Dindel can provide better accuracy and can be better
optimized on modern multicore processors due to its C++ im-
plementation. SAMtools [7] is a set of open-source utilities for
manipulating alignments in the SAM/BAM files. The mpileup
in SAMtools is based on a Bayesian approach to calculate
the likelihoods of possible genotypes from the aligned reads.
The Genome Analysis Toolkit (GATK) [3] is a collection
of tools primarily for calling variants and genotyping. It
also uses a Bayesian genotype likelihood model for calling
indels. By adopting the MapReduce framework, it can provide
a robust and powerful high-performance computing (HPC)
solution to accelerate the processing of a large amount of
sequence alignments in parallel. SOAPindel [4] from the Short
Oligonucleotide Analysis Package (SOAP) package provides
an efficient implementation to identify indels from short-paired
reads. Compared to these tools, Dindel achieves the best
sensitivity but with the longest execution time for calling small
indels because Dindel examines all potential indels rather than
a filtered list of indels [2], [4], [8].

III. BACKGROUND

Albers et al. proposed Dindel, short for detection of in-
dels [2]. It is a widely used bioinformatics software for calling
small (< 50 nucleotides) indels from short-read data via
a Bayesian approach. In order to detect small indels from
short-read data, Dindel first realigns all reads to a set of
candidate haplotypes generated from the targeting region and
then calculates the posterior possibility for each candidate
haplotype. As a result, an indel can be estimated. The main
workflow of Dindel’s realignment algorithm is described as
follows. First, identify the set of reads {R

i

} to be realigned.
Second, generate the set of candidate haplotypes {H

j

}. Third,
for each read R

i

, compute the likelihood P (R
i

|H
j

) on each
haplotype H

j

using the probabilistic realignment model and
find the maximum P

max

(R
i

|H
j

). Fourth, estimate haplotype
frequencies from the read-haplotype likelihoods P

max

(R
i

|H
j

)
and the prior probability of the candidate haplotype. Fifth,
estimate quality scores for the candidate indels and other
sequence variants.

The sequential Dindel program walks through the read-
haplotype pairs one by one independently and calculates the
read-haplotype likelihood with the probabilistic realignment
model in the third step of the Dindel algorithm. This is the
most time-consuming part of Dindel and consumes more than
90% of the total execution time in our experiments. Within the
likelihood computation of a read-haplotype pair, the alignment
of every base in the read with respect to the haplotype can be
different types: a read base is aligned to a haplotype base; a

of haplotype bases

of

 re
ad

 b
as

es Loop2

Loop1

Loop3

Loop4

Loop5

(a)

of haplotype bases

of

 re
ad

 b
as

es

Conditional
branch!

Loop2

Loop1

Loop3

Loop4

Loop5

(b)

Fig. 1: Memory access pattern and dependency for updating
the probabilities of the observed reads bases on generated
haplotypes: (1a) regular memory access pattern; (1b) irregular
memory access pattern. A ! B means updating A depends
on B.

read base is a part of an insertion; or a read base is aligned
to the left or the right of the haplotype.

The realignment model calculates the probability of the
observed read base for a given alignment. Updating these
probabilities for each read base with different alignments is
the time-consuming component of the calculation of the read-
haplotype likelihood. There are data dependencies between
probabilities of two adjacent read bases. For a given read-
haplotype pair, the updating process in the Dindel program is
conducted by eight loops on a two-dimensional (2D) matrix,
of which one dimension represents the read bases and the
other represents the haplotype bases. Different loops introduce
different memory-access patterns and dependencies. Figure 1
shows two examples. Specifically, Figure 1a shows a simple
one-to-one pattern, and Figure 1b shows a “conditional branch-
to-check the corner” case.

IV. DESIGN AND OPTIMIZATION OF PARALLEL DINDEL
(PDINDEL)

To improve the performance of Dindel, we seek to paral-
lelize and optimize it for a multicore CPU architecture with
SIMD vectorization. We first describe how to vectorize Dindel
to exploit data-level parallelism (DLP) and then combine it
with thread-level parallelism (TLP) to maximize performance
benefits.

A. Data-Level Parallelism (DLP)

In a single instruction, multiple data (SIMD) multiproces-
sor system, each processing unit executes the same task on
different pieces of data. The process of mapping a program
onto a SIMD processor is called vectorization or SIMDization
and can either be done automatically by the compiler or
manually by the programmer. For example, the GCC/G++
compilers from the GNU Compiler Collection (GCC) can
vectorize different kinds of loops, even with simple conditional
branch or of nested form [9], by using the flag -ftree-vectorize
or the flag -O3. When auto-vectorization fails, it is the
programmer’s duty to explicitly vectorize the code for better
performance by using low-level intrinsics or even lower-level
assembly instructions. The programmer also needs to carefully

2

International Conference on Computational Advances in Bio and Medical Sciences (ICCABS), October, 2015

handle data dependency, control flow, and corner cases. The
intrinsics [10] provided by Intel support low-level DLP. Even
though the program can be automatically optimized by the
compiler, there are still a plenty of opportunities to boost the
performance of Dindel by manually applying intrinsics on a
multicore CPU with SIMD support because the compiler may
miss some vectorization opportunities due to its conservative
optimization strategies.

In Dindel, there are eight heavy-duty loops that update
the probabilities of the observed read bases with respect
to the given alignments on a two-dimensional (2D) matrix
in Section III. The regular memory-access pattern and the
independence between adjacent cells within one row point
to the promise of vectorization. However, after checking the
report of the G++ compiler (with flag -O3 to enable the
vectorization), we found that the compiler did not vectorize
any of the eight loops for various reasons. We summarize these
reasons as below:

#1 Indeterminate number of loop iterations: The original
Dindel code uses a class data member as its loop bound,
which is considered to be indeterminate by the compiler.
GCC/G++ cannot vectorize a for loop if its bound is
indeterminate.

#2 Divergent control flow: Some conditional branches in
the loops prevent themselves from being vectorized due
to the conservative optimization strategy of the compiler.

#3 Noncontiguous memory access: There are two-level
nested loops that result in noncontiguous memory ac-
cess. These complex forms hinder the compiler to vec-
torize the loops.

We summarize the issues with the eight loops in Table I.
While the compiler was unable to vectorize any of the loops,
we were able to vectorize these loops by simply refactoring
them or manually vectorizing them.

TABLE I: #number corresponds to a reason in the list above.

reasons for being not vectorizable
loop1 #1, #2, #3
loop2 #1, #2
loop3 #1
loop4 #1, #2
loop5 #1, #2, #3
loop6 #1, #2
loop7 #1
loop8 #1, #2

1) Auto-vectorization: As discussed above, the compiler is
not “smart” enough in some cases and needs hints from the
programmer with respect to some constraints. We summarize
our loop restructuring methods in Dindel below:

#1 Eliminate the indeterminate number of iterations: We
replace the class data member with a local variable for
each loop. See Figures 2 and 3.

#2 Eliminate divergent control flow: We apply different
approaches to remove the divergent control flow: (1)

Use the ternary operator (i.e. e1?e2 : e3), which can be
vectorized with the mask instructions by the compiler,
in place of the “if...else...” conditional statement. (2)
Split the loop into two branch-free loops, based on the
condition to avoid the “if...else...” statement. (3) For
the combinations of multiple conditions, use bitwise
operations, which can be automatically vectorized by
the compiler. See Figures 4 and 5 (Note: “&” and “|”
are bitwise operations).

#3 Eliminate noncontiguous memory access: We inter-
change the inner and outer loops to promote contiguous
memory access and split the new outer loop to avoid
divergent control flow, if possible. See Figures 6 and 7.

After applying these simple optimizations, we are enable
to make G++ compiler vectorize all eight loops. The vector-
ization reports show that the simple loops can be completely
vectorized, while some complex loops can only be partially
vectorized.

2) Manual vectorization: To achieve better performance,
we manually vectorize these loops by directly using SSE2
or AVX intrinsics — 128-bit SSE registers for 32-bit integer
variables and 256-bit AVX registers for 64-bit double variables
because AVX has weak support for integers. In order to handle

1: integer hapSize . Class member
2: function UPDATE PROBABILITY(...) . Member function
3: for i = 1 to hapSize do
4: // carry out some calculation

Fig. 2: Pseudocode of #1 before eliminating the indeterminate
number of iterations.

1: integer hapSize . Class member
2: function UPDATE PROBABILITY(...) . Member function
3: integer hSize = hapSize . Using local variable
4: for i = 1 to hSize do
5: // carry out some calculation

Fig. 3: Pseudocode of #1 after eliminating the indeterminate
number of iterations.

1: for i = 1 to hapSize do
2: if condition1 and condition2 or condition3 then .

Multiple conditions
3: a[i] b[i]

Fig. 4: Pseudocode of #2 before eliminating divergent control
flow.

1: for i = 1 to hapSize do
2: c condition1 & condition2 | condition3 . Using

bitwise operation
3: a[i] c ? b[i] : a[i] . Using conditional operator

Fig. 5: Pseudocode of #2 after eliminating divergent control
flow.

3

International Conference on Computational Advances in Bio and Medical Sciences (ICCABS), October, 2015

1: for i = 1 to hapSize do
2: for j = 1 to MaxLengthDel do
3: if j anchor then
4: a[j][i] b[i] + d
5: else
6: a[j][i] c[i] + d

Fig. 6: Pseudocode of #3 before eliminating noncontiguous
memory access.

1: for j = 1 to anchor do
2: for i = 1 to hapSize do
3: a[j][i] b[i] + d

4: for j = anchor + 1 to MaxLengthDel do
5: for i = 1 to hapSize do
6: a[j][i] c[i] + d

Fig. 7: Pseudocode of #3 after eliminating noncontiguous
memory access.

divergent control flows, we use the mask intrinsics, which is a
general solution to manually vectorize branches. Alternatively,
some conditionals can be handled by splitting the original loop
into several small loops if the resulting loops have contiguous
memory access and regular access patterns.

Comparing the performance advantages between using mask
intrinsics and splitting the loop, we find that splitting the
loop delivers better performance than using mask intrinsics.
Loop splitting can reduce the number of issued instructions
by removing testing operations for the conditional while using
mask intrinsics typically adds extra operations to handle the
intermediate data (i.e., the masks) and to choose the correct
results. Therefore, even though we use mask intrinsics to
handle divergent control flow, we switch to the loop splitting
whenever possible. Similar to the auto-vectorization, we also
restructure complex nested loops to gain better memory-access
patterns. In Figure 8, the first “if...else...” conditional is
avoided by splitting the for loop into two sub-loops; and the
second “if” conditional is handled by using the mask intrinsics.
The vectorized example is shown in Figure 9. We also illustrate
the mapping relationships of branches to the resulting loops
in the figure.

We summarize the auto-vectorization and manual vector-
ization as follows. On the one hand, auto-vectorization can
provide better programmability and flexibility, but there are a
lot of constraints that impede performance. On the other hand,
manual vectorization may be more efficient, but it reduces
the programmability and portability of the program. In our
experimental study, we profile both implementations, present
our experimental results, and finally choose the approach, i.e.,
auto-vectorization vs. manual vectorization, that delivers better
performance for each one of the eight heavy-duty loops in the
code.

1: const anchor
2: for i = 1; i < hapSize; i = i+ 1 do
3: if i < anchor then
4: a[i] a[i] + b[i] . Branch A
5: else
6: a[i] a[i] + e . Branch B
7: if a[i] < c[i] then
8: a[i] c[i] . Branch C

Fig. 8: Pseudocode before applying manual vectorization

1: const anchor
2: for i = 1; i < anchor; i = i+ 4 do . Branch A+C
3: vector1 a[i : i+ 3]
4: vector2 b[i : i+ 3]
5: vector1 vector1 + vector2
6: vector3 c[i : i+ 3]
7: mask vector1 < vector3
8: vector4 (mask & vector3) | (reversed mask &

vector1)
9: a[i : i+ 3] vector4

10: for i = anchor; i < hapSize; i = i+4 do. Branch B+C
11: vector1 a[i : i+ 3]
12: vector2 (e, e, e, e)
13: vector1 vector1 + vector2
14: vector3 c[i : i+ 3]
15: mask vector1 < vector3
16: vector4 (mask & vector3) | (reversed mask &

vector1)
17: a[i : i+ 3] vector4

Fig. 9: Pseudocode after applying manual vectorization

B. Thread-Level Parallelism

Thread-level parallelism (TLP) seeks to exploit the power of
tightly-coupled, shared-memory multiprocessors via a multiple
instruction, multiple data (MIMD) programming model. In
C/C++, the general way to implement TLP is to use the
POSIX threads (Pthreads) API. However, because Pthreads
delivers low programmability, and moreover, because most
of the computations in Dindel come from the for loops, we
choose to use OpenMP — the state-of-the-art technique that
provides portability, performance, and better programmability
for practicing loop-level TLP in C/C++.

As mentioned in Section III, the Dindel program walks
through read-haplotype pairs one by one independently for
all identified reads to all generated candidate haplotypes.
This is implemented in a two-level nested loop. We optimize
these loops by applying the OpenMP parallel clause with the
dynamic scheduling. The granularity, i.e., how many pairs of
reads to haplotypes will be assigned to a thread each time,
may significantly affect the performance. We test three primary
granularities to identify the best solution.

1) One read-haplotype pair. (Apply OpenMP clause on the
inner loop.)

4

International Conference on Computational Advances in Bio and Medical Sciences (ICCABS), October, 2015

2) All pairs of one read to all haplotypes. (Exchange two
for loops and apply OpenMP clause on the inner loop.)

3) All pairs of all reads to one haplotype. (Apply OpenMP
clause on the outer loop.)

Figure 10 shows each of these task granularities. The pink
circles represent identified reads, and the blue circles represent
generated candidate haplotypes. The green circles represent the
smallest granularity that is the computation task for a read-
haplotype pair. The purple and yellow containers represent
packaging multiple smallest tasks into one large granularity
task. The details of the performance of different granularities
is discussed in Section V.

V. EVALUATION

Experimental Setup

Our experimental platform consists of two Intel(R) Xeon(R)
CPU E5-2697 v2 running at 2.70 GHz. Each CPU has 12
physical cores with support for hyper-threading, i.e., two
logical cores on each physical core. We use G++ 4.8.2 with
flag -O3 -mavx for all the tests. Our experiments are carried out
on a human genome sample HG01140 from the 1000 Genome
Project with the hg19 reference sequence. We present the
results of three input files: file1 contains 1004 windows; files2
contains 2008 windows; and file3 contains 10030 windows.
For all input files, in the original Dindel, the calculation of the

thread
1

thread
k

thread
1

thread
k

thread
1

thread
k

Candidate Haplotypes

R
ea

ds

1

n

1 m... ...

...
...

...
...

...
...

...
... ...
...

...
...

...
...

...
...

...
...

...
...

1read_1hap nread_1hap 1read_mhap

Fig. 10: Different Task Granularities: assuming there are n
identified reads and m generated haplotypes in the target-
ing region, 1read 1hap means that a thread calculates the
likelihood for a read-haplotype pair each time; nread 1hap
means that a thread calculates the likelihood for all pairs of n
reads to one haplotype each time; 1read mhap means that a
thread calculates the likelihood for all pairs of one read to all
haplotypes each time.

read-haplotype likelihood consumes more than 93% of total
execution time, of which the eight loops consume 70% of the
execution time.

Experimental Results

1) Vectorization: We compare the performance using auto-
vectorization and manual vectorization for the eight loops to
find the best optimization method for each one. As shown
in Figure 11 with refactoring codes for all eight loops, auto-
vectorization and manual vectorization deliver noticeably bet-
ter performance than the original Dindel program, especially
for loop 6. The compute-intensive operations of loop 6 deliver
more benefits from the vectorization. (This loop with multiple
conditions was shown in Figures 4 and 5.) In addition, we
observe that in most cases, manual vectorization achieves
greater speedup than auto-vectorization. This is because the
compiler is too conservative in selecting the best optimizations
even when the compiler flag -O3 is used. For the loops with
complex logical and control flows, which prevent the compiler
from comprehensively and correctly analyzing the code, man-
ual vectorization with the knowledge of the programmer can
exploit more parallelism and achieve better performance.

However, we can observe that for loops 2, 3, and 7,
auto-vectorization outperforms our manual vectorization. A
possible reason is that along with the auto-vectorization, the
compiler could also automatically analyze source code and
apply other optimizations we did not apply in the manual
optimization, e.g., software data prefetching, loop unrolling,
loop tiling, etc., which can further improve performance.

2) OpenMP with different granularities: We test the per-
formance with different granularities by applying TLP-only
optimizations. The normalized speedup over the sequential

0

0.5

1

1.5

2

2.5

loop1 loop2 loop3 loop4 loop5 loop6 loop7 loop8

Sp
ee
du

p2
(N
or
m
al
ize

d2
to
2

Se
qu

en
tia

l2D
in
de

l)

auto_vec manual_vec

Fig. 11: Auto-vectorization vs. manual vectorization on eight
for loops

0

5

10

15

20

25

1read_1hap nread_1hap 1read_mhap

Sp
ee
du

p0
(N
or
m
al
ize

d0
to
0

Se
qu

en
tia

l0D
in
de

l)

file1 file2 file3

Fig. 12: Performance of using TLP with different granularities

5

International Conference on Computational Advances in Bio and Medical Sciences (ICCABS), October, 2015

Dindel program using 24 OpenMP threads for calculating
the read-haplotype likelihoods is presented in Figure 12. As
shown in the figure, the finest granularity provides the best
performance and achieves up to a 23-fold speedup over the
sequential Dindel code. This performance improvement comes
from the workload balance across different threads. With the
smaller granularity and dynamic scheduling of OpenMP, the
threads will wait less time after finishing current workload.
Based on this observation, we use the finest granularity in our
final solution.

3) OpenMP+Vectorization: Finally, we test all of our
optimizations by combining DLP and TLP optimizations
(DLP+TLP). We also change the number of threads (24 threads
or 48 threads) to check whether hyper-threading benefits over-
all performance. Figure 13a presents the normalized speedup
for calculating the read-haplotype likelihoods, and Figure 13b
presents the normalized speedup for the whole Dindel pro-
gram. Although there are only a total of 24 physical cores
across our dual 12-core CPUs, the optimized Dindel code
performs best when using 48 threads, as the hyperthreading
can hide the high memory-access latency. After applying
vectorization (vec) in addition to the OpenMP multithreading
(omp24 or omp48 in the figures), we achieve up to a 37-fold
speedup for calculating the read-haplotype likelihoods and up
to a 9-fold speedup for the total execution time of pDindel
(normalized to the sequential Dindel code). Moreover, for the

0
5
10
15
20
25
30
35
40

omp24 omp48 omp24+vec omp48+vec

Sp
ee
du

p2
(N
or
m
al
ize

d2
to
2

Se
qu

en
tia

l2D
in
de

l)

file1 file2 file3

(a)

0
1
2
3
4
5
6
7
8
9
10

omp24 omp48 omp24+vec omp48+vec

Sp
ee
du

p5
(N
or
m
al
ize

d5
to
5

Se
qu

en
tia

l5D
in
de

l)

file1 file2 file3

(b)

Fig. 13: Performance comparison with various optimizations:
(a) Performance of calculating read-haplotype likelihoods with
different optimization strategies; (b) Performance of Dindel
with different optimization strategies. Note: vec: vectorized;
omp#: OpenMP with # threads.

different input files, our implementation exhibits stable and
scalable results.

VI. CONCLUSION AND FUTURE WORK

Dindel is an important bioinformatics application that calls
small indels from short-read data. In this paper, we propose
the design, implementation, and optimization of our parallel
Dindel (pDindel) implementation on multicore processors with
SIMD processing. In our evaluation, we illustrate that our
optimized pDindel is scalable, stable, and can achieve up to
a 37-fold speedup for the computational part and up to a 9-
fold speedup for the overall execution time over the original
Dindel implementation. In the future, we will extend our
parallelism of Dindel to multiple nodes with the distributed
memory programming models, e.g., MPI and MapReduce.

ACKNOWLEDGMENT

This work was supported in part by NSF-BIGDATA pro-
gram via IIS-1247693 and NSF-XPS program via CCF-
1337131.

The authors would like to thank to Dr. Nataliya Tim-
oshevskaya for serving as the initial sounding board for
parallelizing Dindel.

REFERENCES

[1] R. Bao, L. Huang, J. Andrade, W. Tan, W. A. Kibbe, H. Jiang, and
G. Feng, “Review of current methods, applications, and data man-
agement for the bioinformatics analysis of whole exome sequencing,”
Cancer Informatics, vol. 13, no. Suppl 2, pp. 67–82, 2014.

[2] C. A. Albers, G. Lunter, D. G. MacArthur, G. McVean, W. H. Ouwe-
hand, and R. Durbin, “Dindel: Accurate indel calls from short-read data,”
Genome Research, vol. 21, no. 6, pp. 961–973, 06 2011.

[3] A. McKenna, M. Hanna, E. Banks, A. Sivachenko, K. Cibulskis,
A. Kernytsky, K. Garimella, D. Altshuler, S. Gabriel, M. Daly, and
M. A. DePristo, “The genome analysis toolkit: A mapreduce framework
for analyzing next-generation dna sequencing data,” Genome Research,
vol. 20, no. 9, pp. 1297–1303, 09 2010.

[4] S. Li, R. Li, H. Li, J. Lu, Y. Li, L. Bolund, M. H. Schierup, and J. Wang,
“Soapindel: Efficient identification of indels from short paired reads,”
Genome Research, vol. 23, no. 1, pp. 195–200, 01 2013.

[5] D. C. Koboldt, K. Chen, T. Wylie, D. E. Larson, M. D. McLellan, E. R.
Mardis, G. M. Weinstock, R. K. Wilson, and L. Ding, “Varscan: variant
detection in massively parallel sequencing of individual and pooled
samples,” Bioinformatics, vol. 25, no. 17, pp. 2283–2285, 09 2009.

[6] D. C. Koboldt, Q. Zhang, D. E. Larson, D. Shen, M. D. McLellan,
L. Lin, C. A. Miller, E. R. Mardis, L. Ding, and R. K. Wilson, “Varscan
2: Somatic mutation and copy number alteration discovery in cancer by
exome sequencing,” Genome Research, vol. 22, no. 3, pp. 568–576, 03
2012.

[7] H. Li, B. Handsaker, A. Wysoker, T. Fennell, J. Ruan, N. Homer,
G. Marth, G. Abecasis, R. Durbin, and . G. P. D. P. Subgroup, “The
sequence alignment/map format and samtools,” Bioinformatics, vol. 25,
no. 16, pp. 2078–2079, 08 2009.

[8] J. A. Neuman, O. Isakov, and N. Shomron, “Analysis of insertion-
deletion from deep-sequencing data: software evaluation for optimal
detection,” Briefings in Bioinformatics, 2012.

[9] Auto-vectorization in gcc. [Online]. Available: https://gcc.gnu.org/
projects/tree-ssa/vectorization.html

[10] The intel intrinsics guide. [Online]. Available: https://software.intel.
com/sites/landingpage/IntrinsicsGuide/

[11] D. A. Patterson and J. L. Hennessy, Computer Architecture: A Quantita-
tive Approach. San Francisco, CA, USA: Morgan Kaufmann Publishers
Inc., 1990.

6

International Conference on Computational Advances in Bio and Medical Sciences (ICCABS), October, 2015

