
1545-5963 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/TCBB.2015.2489662, IEEE/ACM Transactions on Computational Biology and Bioinformatics

1

cuBLASTP: Fine-Grained Parallelization of
Protein Sequence Search on CPU+GPU

Jing Zhang, Hao Wang, Wu-chun Feng

Abstract—BLAST, short for Basic Local Alignment Search Tool, is a ubiquitous tool used in the life sciences for pairwise
sequence search. However, with the advent of next-generation sequencing (NGS), whether at the outset or downstream from
NGS, the exponential growth of sequence databases is outstripping our ability to analyze the data. While recent studies have
utilized the graphics processing unit (GPU) to speedup the BLAST algorithm for searching protein sequences (i.e., BLASTP),
these studies use coarse-grained parallelism, where one sequence alignment is mapped to only one thread. Such an approach
does not efficiently utilize the capabilities of a GPU, particularly due to the irregularity of BLASTP in both execution paths
and memory-access patterns. To address the above shortcomings, we present a fine-grained approach to parallelize BLASTP,
where each individual phase of sequence search is mapped to many threads on a GPU. This approach, which we refer to as
cuBLASTP, reorders data-access patterns and reduces divergent branches of the most time-consuming phases (i.e., hit detection
and ungapped extension). In addition, cuBLASTP optimizes the remaining phases (i.e., gapped extension and alignment with
trace back) on a multicore CPU and overlaps their execution with the phases running on the GPU.

Index Terms—BLAST, BLASTP, GPU, bioinformatics, algorithmic refactoring, fine-grained parallelization, life sciences, local
alignment, pairwise sequence search, next-generation sequencing.

F

1 INTRODUCTION

THE Basic Local Alignment Search Tool (BLAST) [25]
is a fundamental algorithm in the life sciences

that compares a query sequence to database of known
sequences in order to identify the most similar known
sequences to the query sequence. The similarities
identified by BLAST can then be used to infer func-
tional and structural relationships between the corre-
sponding biological entities, for example.

With the advent of next-generation sequencing
(NGS) and the increase in sequence read-lengths,
whether at the outset or downstream from NGS,
the exponential growth of sequence databases is ar-
guably outstripping our ability to analyze the data.
Consequently, there have been significant efforts to
accelerate sequence-alignment tools, such as BLAST,
on various parallel architectures in recent years.

Graphics processing units (GPUs) offer the promise
of accelerating bioinformatics algorithms and tools
due to their superior performance and energy effi-
ciency. However, in spite of the promising speedups
that have been reported for other sequence alignment
tools such as Smith-Waterman [27], BLAST remains
the most popular sequence analysis tool but also one
of the most challenging to accelerate on GPUs.

Due to its popularity, the BLAST algorithm has been
heavily optimized for CPU architectures over the past
two decades. However, these CPU-oriented optimiza-
tions create problems when accelerating BLAST on

• J. Zhang, H. Wang, and W. Feng are with the Dept. of Com-
puter Science at Virginia Tech. E-mail: {zjing14, hwang121,
wfeng}@vt.edu.

GPU architectures. First, to improve computational
efficiency, BLAST employs input-sensitive heuristics
to quickly eliminate unnecessary search spaces. While
this technique is highly effective on CPUs, it induces
unpredictable execution paths in the program, leading
to many divergent branches on GPUs. Second, to
improve memory-access efficiency, the data structures
used in BLAST are finely tuned to leverage CPU
caching. Re-using these data structures on GPUs,
however, can lead to highly inefficient memory access
because the cache size on GPUs is significantly smaller
than that on CPUs and because coalesced memory ac-
cess is needed on GPUs to achieve good performance.

State-of-the-art BLAST realizations for protein se-
quence search on GPUs [29], [26], [23], [9] adopt a
coarse-grained and embarrassingly parallel approach,
where one sequence alignment is mapped to only
one thread. In contrast, a fine-grained mapping ap-
proach, e.g., using warps of threads to accelerate one
sequence alignment, could theoretically better lever-
age the abundant parallelism offered by GPUs. How-
ever, such an approach presents significant challenges,
mainly due to the high irregularity in execution paths
and memory-access patterns that are found in CPU-
based realizations of the BLAST algorithm. Thus,
accelerating BLAST on GPUs requires a fundamental
rethinking in the algorithmic design of BLAST.

Consequently, we propose cuBLASTP, a novel fine-
grained mapping of the BLAST algorithm for protein
search (BLASTP) onto a GPU, that improves perfor-
mance by addressing the irregular execution paths
caused by branch divergence and irregular memory
access. First, we decouple the phases in the BLASTP

1545-5963 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/TCBB.2015.2489662, IEEE/ACM Transactions on Computational Biology and Bioinformatics

2

algorithm (i.e., hit detection, ungapped extension,
gapped extension, and alignment with traceback) and
parallelize the phases having different computational
patterns with different strategies on the GPU or
CPU, as appropriate. Second, we propose a binning-
sorting-filtering optimization as an additional phase
between the phases of BLASTP to reduce branch
divergence and irregular memory access. This opti-
mization includes the following: (a) reordering the
memory-access pattern from column-major order in
the hit-detection phase to diagonal-major order, as
in the ungapped-extension phase; and (b) reducing
divergence branches in the ungapped-extension phase
by sorting hits in each diagonal and eliminating hits
beyond the threshold distance along the diagonal.
Third, we propose diagonal-based parallelism, hit-
based parallelism, and window-based parallelism for
the ungapped-extension phase to efficiently extend
sequences with different characteristics in databases.
Fourth, we design a hierarchical buffering mecha-
nism for the core data structures, e.g., deterministic
finite automation (DFA) and position-specific scoring
matrix (PSS matrix), using features provided by the
NVIDIA Kepler architecture, e.g., read-only cache, to
improve data-access bandwidth on the GPU. Finally,
we also optimize the remaining phases of BLASTP,
i.e., gapped extension and alignment with traceback,
on a multicore CPU and overlap the different phases
running on the CPU with those running on the GPU.

2 BACKGROUND

In this section, we provide a brief discussion of the
BLAST algorithm and GPU architecture.

2.1 Basic Local Alignment Search Tool (BLAST)
BLAST is a family of programs with variants used
for different types of alignment searches. BLAST algo-
rithms approximate the results of the Smith-Waterman
algorithm, an optimal local-alignment algorithm. In-
stead of comparing entire sequences, BLAST algo-
rithms locate high-scoring short matches (i.e., hits)
between a query sequence and subject sequences and
extend the hits to longer alignments. With only a
slight loss in accuracy, BLAST algorithms execute sig-
nificantly faster than Smith-Waterman. In this paper,
we focus on BLASTP, which compares the similarity
of protein sequences.

We use FSA-BLAST [2], which has been optimized
on the CPU for protein sequence search, as an ex-
ample to illustrate the BLAST algorithm. The BLAST
algorithm consists of four phases, as described below.

Hit detection finds high-scoring short matches (i.e.,
hits) between the query sequence and each sub-
ject sequence from the collection of sequences being
searched (i.e., sequence database). The short matches
are subsequences (i.e., words) with fixed length W
(typically, W = 3 for protein sequence search; W = 11

for nucleotide sequence search) extracted from the
query and the subject sequence. To quickly detect
hits, the query sequence is preprocessed and con-
verted into a lookup table. Alternatively, for nu-
cleotide sequence search, instead of preprocessing a
query sequence into a lookup structure, the lookup
table can be built upon the database for better perfor-
mance (e.g., MegaBLAST [7]). However, there exists
no BLASTP tool that uses a database index. Why?
The index for protein sequence search has a larger
alphabet size, short words, and neighboring words,
leading to an exponential increase in index size and
search complexity. To help address these issues, alter-
native (non-BLAST) algorithms that make substantial
changes in searching methods and scoring mecha-
nisms, e.g., CAFE [13], BLAT [28] and SSAHA [30],
have been proposed in order to facilitate an approach
based on database indexing. However, while these
(non-BLAST) database-index approaches report much
better performance than BLAST, they suffer from poor
sensitivity and less accuracy than BLAST [18]. Conse-
quently, we focus on the standard BLASTP algorithm
rather than those variants using database index.

Ungapped extension determines if two or more
hits from hit detection can form the basis of a local
alignment without insertions and deletions. It also
passes extended hits with the requested scores to the
next phase. Only hits along the same diagonal can
trigger ungapped extension.

Gapped extension performs a gapped alignment
with dynamic programming on high-scoring un-
gapped regions to determine if they can be part of
a larger, higher-scoring alignment.

Alignment with traceback re-scores all the align-
ments from the gapped extension using a traceback
algorithm and produces the top scores.

Fig. 1 illustrates the phases of BLASTP. The word
IY P is detected as a hit between the query and the
subject sequence in the hit-detection phase. The hit
is then extended to a larger ungapped region in the
ungapped-extension phase. This region is extended
further to a region with insertions and deletions in the
gapped-extension phase. Finally, the alignment with
traceback re-computes the score of the alignment.

Subject:...CL-PIXYAALGDLPLIYPFLVNDPABC...
Query:...CFAJ-PDALLGPLPNIYPFIVNDPGEG...

Gapped Extension Ungapped ExtensionHit Detection

Alignment with Traceback

Score:...1,2,2,3,3,4,5,7,7,8,...32,34,34,35,...

Fig. 1: Four Stages of BLAST Execution [26]

Based on [19], where 100 queries are randomly cho-
sen from the NR protein database [11] and profiled,
hit detection and ungapped extension consume the
most time, taking nearly 70% of the total execution
time. Thus, our work in this paper focuses on the
optimizations of these two phases on the GPU.

1545-5963 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/TCBB.2015.2489662, IEEE/ACM Transactions on Computational Biology and Bioinformatics

3

Below we describe the core data structures used in
hit detection and ungapped extension: deterministic
finite automaton (DFA) [20]; position-specific scoring
matrix (PSS matrix or PSSM); and scoring matrix. The
DFA provides a general method for searching one or
more fixed- or variable-length strings expressed in
arbitrary, user-defined alphabets. In BLAST, the query
sequence is decomposed into fixed-length short words
and converted into a DFA. As an example, Fig. 2(a)
shows the portion of DFA structure that is traversed
when the example subject sequence “CBABB” is pro-
cessed (and when the word length is 3 and query
sequence is “BABBC”). First, the letter C is read, and
the current state is C. Because the next letter is B,
the next state of the DFA transitions to the B state.
Simultaneously, the DFA provides a pointer to the
CB prefix words to retrieve the query positions for
the word CBA. Because the position for CBA in the
DFA constructed from BABBC is “none,” there is no
hit found for CBA. Likewise, for the next letter A
in CBABB, the DFA transitions to the A state and
provides a pointer to the BA prefix words to retrieve
the query positions for the word BAB, which is in
position 0 in BABBC, and so on.

The PSS matrix is built from the query sequence. As
shown in Fig. 2(b), a column in the PSS matrix repre-
sents a position in the query sequence, and the scores
in the rows indicate the similarity of all symbols (i.e.,
amino acid) to the symbol in the column of the query
sequence. So, the score for X in the subject sequence
and Y in the query sequence is −1. By checking the
PSS matrix, the BLAST algorithm can quickly identify
the similarity between two symbols in corresponding
positions of two sequences.

The scoring matrix is an alternative data structure of
the PSS matrix. This matrix has a fixed and smaller
size than the PSS matrix because the elements in
the columns represent words instead of positions in
the PSS matrix. The drawback in using this scoring
matrix is that more memory accesses are needed. For
example, to compare the same pair of letters as above,
Fig. 2(c) shows that BLAST must first load the letter
X from the subject sequence and Y from the query
sequence, and then it can retrieve the score of −1 from
column X and row Y .

2.2 GPU Architecture and Programming Model

A NVIDIA GPU contains a set of streaming multi-
processors (SMs), each consisting of multiple cores of
single-instruction, multiple-thread (SIMT) units. There
are two types of memory on the GPU: on-chip mem-
ory and off-chip memory. On-chip memory, such as
the register file and shared memory, has low access la-
tency but relatively small size. Off-chip memory, e.g.,
global memory, has much larger size but higher access
latency. To efficiently access data in off-chip memory,
read/write operations must be coalesced. The latest

Next state = A

Next state = B

Next state = C

C state

A

B

C

Next state = A

Next state = B

Next state = C

B state

A

B

C

Next state = A

Next state = B

Next state = C

A state

A

B

C

none

none

none

Prefix:CB

CBA

CBB

CBC

none

Query pos = 0

none

Prefix:BA

BAA

BAB

BAC

none

Query pos = 1

none

Prefix:AB

ABA

ABB

ABC

w
o

rd
s

w
o

rd
s

w
o

rd
s

tr
a

n
si

ti
o

n
s

(a) Read Matched Query Position via DFA [20]*

Subject: ... E N Y P I B X Z Y M P...

Query: ... N E Y B A B Y Z ... M P K

A ... -1 -2 -1 -2 6 -2 -1 -2 ...-2 -1 -2

X ... -1 -2 -1 -2 -2 -2 -1 -2 ...-2 -1 -2
Y ... -1 -2 7 -2 -2 -2 7 -2 ...-2 -1 -2

All
Protein
Letters

(b) Scoring via PSS Matrix [26]

Subject: ... E N Y P I B X Z Y M P...

Query: ... N E Y B A B Y Z ... M P K

 A B C D … X Y
A ... 4 -2 -1 -2 ...-2 -1

X ... -1 -2 -1 -2 ... 4 -1
Y ... -1 -2 7 -2 ...-1 7

All
Protein
Letters

(c) Scoring via Scoring Matrix [26]

Fig. 2: Core Data Structures in BLAST. In Fig 2(a), W = 3
and the example query sequence is BABBC, and the
example subject sequence is CBABB.

NVIDIA Kepler architecture also offers various caches
to improve the efficiency of data access, especially for
those with irregular access patterns. Specifically, a 48-
kB read-only cache is introduced to improve irregular
memory-access performance.

CUDA [22] is a programming model provided by
NVIDIA. The CUDA functions that run on a GPU
are called kernels. A kernel runs a large number
of threads in parallel on the GPU. The threads are
grouped into blocks of threads, and in turn, grids
of blocks. Thread execution on the GPU follows a
SIMT model, where threads running on a SM are
partitioned into groups (i.e., warps) and execute the
same instruction simultaneously. If the threads in a
single warp take different execution paths (i.e., branch
divergence), these different paths within a warp are
serialized, thus causing lower resource utilization and
adversely impacting GPU performance.

3 DESIGN OF A FINE-GRAINED BLASTP
Here we first analyze the challenges in our coarse-
grained BLASTP algorithm on the GPU. Then we in-
troduce our fine-grained BLASTP algorithm. The basic
idea is to explicitly partition the phases of BLASTP
from within a single kernel into multiple kernels,
where each kernel is optimized to run across a group of

1545-5963 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/TCBB.2015.2489662, IEEE/ACM Transactions on Computational Biology and Bioinformatics

4

GPU threads. In particular, this is done for hit detection
and ungapped extension. We then present our CPU-
based optimizations for the two remaining phases, i.e.,
gapped extension and alignment with traceback.

3.1 Challenges of Mapping BLASTP to GPUs
Fig. 3 shows how hit detection and ungapped ex-
tension execute in the default BLASTP algorithm. In
hit detection, each subject sequence in the database
is scanned from left to right to generate words;
each word in turn is searched in the DFA of the
query sequence. The positions with similar words
found in the query sequence are tagged as hits,
with each hit denoted as a tuple with two elements
(QueryPos, SubPos), i.e., the positions in the query
sequence and subject sequence, respectively. For ex-
ample, the word ABC in the subject sequence is
searched in the DFA and found in positions 1, 7, and
11 of the query sequence, which in turn generates the
following tuple hits: (1, 3), (7, 3), and (11, 3).

After finding the hits, the BLASTP algorithm starts
the ungapped extension. The algorithm uses a global
array denoted as lasthit arr to record the hits found
in the previous detection for each diagonal. In un-
gapped extension, the algorithm checks the previous
hits in the same diagonals with the current hits. If
the distance between the previous hit and the current
hit is smaller than a threshold, ungapped extension
continues until a gap is encountered. For example,
when the word ABB is processed to generate the hits
(2, 8) and (6, 8), the hits in the lasthit arr array for
diagonal 2 and diagonal 6 are checked.

Because all the hits in one column are tagged simul-
taneously, hit detection proceeds in column-major order.
However, ungapped extension proceeds in diagonal-
major order, where hits in a diagonal are checked from
the top left to bottom right. Fig. 3 also illustrates the
memory-access order on the lasthit arr array. With the
interleaved execution of hit detection and ungapped
extension, memory access on the lasthit arr array is
highly irregular.

Algorithm 1 illustrates the traditional BLASTP al-
gorithm, on either CPU or GPU. When a hit is de-
tected, the corresponding diagonal number is calcu-
lated as the difference of hit.sub pos and hit.query pos,
as shown in Line 6. The previous hit in this diagonal
is obtained from the lasthit arr array (Fig. 3). If the
distance between the current hit and previous hit is
less than a certain threshold, the ungapped extension
is triggered. After ungapped extension occurs in the
current diagonal, the extended position in the subject
sequence is used to update the previous hit in the
lasthit arr array. After all hits in the current column
are checked in the ungapped-extension phase, the
algorithm moves forward to the next word in the
subject sequence.

Fig. 4 shows how the BLASTP algorithm tradition-
ally maps onto a GPU. It is a coarse-grained approach

Subject Sequence

Q
uery Sequence

(2,
8)

(1,
3)

ABC
ABB

ABB
ABC

ABC

(7,
3)

(6,
8)

Search direction
ABB ABCABC

(11,
3)

(1,
13)

(7,
13)

(11,
13)

lasthit_arr

 Hit Detection

012

...
34

... -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 ... 6

...
12...

567

Memory Access Order

Diagonal:

(QueryPos,
SubPos)

Fig. 3: BLASTP Hit Detection and Ungapped Extension

Algorithm 1 Hit Detection and Ungapped Extension
Input: database: sequence database;
DFA: DFA lookup table base on query sequence
Output: extensions: results of ungapped extension

1: for all sequencei in database do
2: for all wordj in sequencei do
3: find hits for wordj in DFA
4: for all hitk in hits do
5: //calculate diagonal number
6: diagonal← hitk.sub pos− j

+ query length
7: //get lasthit in the same diagonal
8: lasthit← lasthit arr[diagonal]
9: //calculate distance to lasthit

10: distance← hitk.sub pos
− lasthit.sub pos

11: if distance within threshold then
12: //perform ungapped extension
13: ext← ungapped ext(hitk, lasthit)
14: extensions.add(ext)
15: //update lasthit with ext position
16: lasthit arr[diagonal]← ext.sub pos
17: else
18: //update lasthit with hit position
19: lasthit arr[diagonal]← hit.sub pos
20: end if
21: end for
22: end for
23: end for
24: output extensions

where all the phases of the alignment between the
query sequence and one subject sequence are handled
by a dedicated thread on the GPU. Because of the
heuristic nature of BLASTP, there exist irregular exe-
cution paths in different subject sequences from a se-
quence database. Since the number of hits that trigger
ungapped extension in different sequences cannot be
deduced in advance, branch divergence (and in turn,
load imbalance) occurs when using coarse-grained
parallelism in BLASTP. For example, while thread 2
works on ungapped extension, as shown in Fig. 4,

1545-5963 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/TCBB.2015.2489662, IEEE/ACM Transactions on Computational Biology and Bioinformatics

5

neither thread 0 nor thread 1 can trigger because in
thread 0, there is no hit found in hit detection, and
in thread 1, the distance between the current hit and
previous hit is larger than the threshold T . As a result,
the branch divergence in this warp cripples BLASTP
performance on a GPU.

subject_seq 0 subject_seq 1 subject_seq 2 ...

Thread 0 Thread 1 Thread 2 ...

Hit Detection

Subject
Sequence

Hit found
& distance > T

Hit found
& distance < T

Ungapped
Extension

No hit

Divergence

Warp 0

Divergence

Fig. 4: Branch Divergence in Coarse-Grained BLASTP

Irregular memory access further impacts BLASTP
performance on a GPU. Because the current hits can
lead to irregular memory access on the previous hits
in the lasthit arr array and because each thread has
its own lasthit arr when pursuing coarse-grained par-
allelism for BLASTP, coalesced memory access when
the threads of a warp are used for different sequence
alignments proves to be effectively impossible.

Even a straightforward fine-grained multithreaded
approach that uses multiple threads to unfold the
“for” loop in Algorithm 1 can also lead to severe
branch divergence on a GPU. Why? Due to the uncer-
tainty in both the number of hits on different words
and the distance to previous hits along the diagonals.
Furthermore, since any position in the lasthit arr array
can be accessed during any one iteration, this ap-
proach can also cause significant memory-access con-
flicts. Thus, designing an effective fine-grained paral-
lelization of BLASTP that fully utilizes the capability
of the GPU is a daunting challenge. To address this,
we decouple the phases of the BLASTP algorithm, use
different strategies to optimize each of them, and pro-
pose a “binning-sorting-filtering” approach to reorder
memory accesses and eliminate branch divergence, as
articulated in the following subsections.

3.2 Hit Detection with Binning
We first separate the phases of hit detection and
ungapped extension into their own kernels. In our
fine-grained hit detection, we use multiple threads to
detect consecutive words in a subject sequence and to
ensure coalesced memory access. In addition, because
ungapped extension executes along the diagonals,
we re-organize the output results of the hit-detection
phase into diagonal-major order and introduce a
binning data structure and bin-based algorithms to
bridge the phases of hit detection and ungapped
extension. Specifically, we allocate a contiguous buffer
in global memory and logically organize this buffer
into bins (which will map onto the diagonals) to hold
the hits. While one bin could be allocated for one

diagonal, we allocate one bin for multiple diagonals
to reduce memory usage on the GPU and to allow
longer sequences to be handled.

Fig. 5 illustrates our approach to fine-grained hit
detection, where each word in the subject sequence
is scheduled to one thread. A thread retrieves a word
from the corresponding position (i.e., column number)
in the subject sequence, searches the word in the
DFA to get the hit positions (i.e., row numbers), and
immediately calculates the diagonal numbers as the
difference in corresponding column number and row
number. For example, thread 3 retrieves word ABC
from column 3 of the subject sequence, searches for
ABC in the DFA to get hit positions 1, 7, and 11,
and calculates the diagonal numbers as 2, −4, and
−8, respectively. Since multiple threads can write hit
positions into the same bin simultaneously, we must
use atomic operations to address write conflicts, and
in turn, ensure correctness.

B
in

n
in

g

Thread 0

Thread 1

Thread 2

Threa
d 3

Threa
d 4

Threa
d 5

Threa
d 6

Threa
d 7

Threa
d 8

Threa
d 9

Thread 10

Thread 11

Thread 12

Thread 13

ABB ABC

(2,
8)

(1,
3)

A
B

C
A

B
B

A
B

B
A

B
C

A
B

C

Thread 3

ABC

ABB

ABA

DFA

...

1 7

...

(7,
3)

(11,
3)

11

ABC

2 6

Subject Sequence

(6,
8)

Thread 8 Thread 6
(1,
13)

(11,
13)

(7,
13)

Bin 0

Bin 2

Bin 1

Bin 3

(7,3):D-4 (11,3):D-8

(1,3):D2 (7,13):D6

(1,13):D12

(11,13):D2 (6,8):D2(2,8):D6

Q
ue

ry Se
q

ue
nce

Fig. 5: Hit Detection and Binning

Algorithm 2 describes our fine-grained hit detection
algorithm. The variable num bins represents the num-
ber of bins, which is a configurable parameter. The
algorithm schedules a warp of threads for a sequence
based on warpId. The word seq[i][j] in position j of
sequence seq[i] is handled by the thread with the laneId
j. For each hit of the word, the diagonal number is
calculated and mapped to a bin on Line 16.

The top array stores the currently available posi-
tion in each bin. Using atomic operations on the top
array in shared memory, we avoid the heavyweight
overhead of atomic operations on global memory. The
warp is then scheduled to handle the next sequence
after all words in the current sequence are processed.

1545-5963 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/TCBB.2015.2489662, IEEE/ACM Transactions on Computational Biology and Bioinformatics

6

Algorithm 2 Warp-based Hit Detection
Input: database: sequence database;
DFA: DFA lookup table base on query sequence
Output: bins: diagonal-based bins that store hits

1: tid← blockDim.x ∗ blockIdx.x+ threadIdx.x
2: //calculate total number of warps
3: numWarps← gridDim.x ∗ blockDim.x/warpSize
4: warpId← tid/warpSize
5: laneId← threadIdx.x mod warpSize
6: //initialize i with warpId
7: i← warpId
8: while database has i-th sequence do
9: //initialize j with laneId

10: j ← laneId
11: while i-th sequence has j-th word do
12: find hits of j-th word in DFA
13: for all hitk in hits do
14: diagonal← hitk.sub pos− j

+ query length
15: //calculate bin number
16: binId← diagonal mod num bins
17: //increment hit counts of the bin
18: curr ← atomicAdd(top[bin id], 1)
19: //store the hit into the bin
20: bins[binId][curr]← hitk
21: end for
22: //continue j + warpSize-th word
23: j ← j + warpSize
24: end while
25: //continue i+ numWarps-th sequence
26: i← i+ numWarps
27: end while
28: output bins

3.3 Hit Reordering

After hit detection, hits are grouped into bins by diag-
onal numbers. Because multiple threads can write hits
from different diagonals into the same bin simultane-
ously, hits in each bin could interleave. For example,
Fig. 5 shows that hits belonging to diagonal 2 and
diagonal 6 interleave. Because ungapped extension
can only extend continuous hits whose distance is less
than a threshold, we need to further reorder the hits in
each bin to enable contiguous memory access during
the ungapped-extension phase. To achieve this, we
propose a hit-reordering mechanism that includes
assembling, sorting, and filtering. Fig. 6 provides illus-
trative examples of these three kernels, respectively.

Hit Assembling: Because it is effectively impossible
to get an accurate number of hits for each subject
sequence before the completion of the hit-detection
phase, we allocate the maximally possible size (i.e.,
number of words in the query sequence) as the buffer
size of each bin. Though this leads to unused memory
in the bins, it offers the promise of high performance
as we can use a segmented sort [3] to sort the hits per
bin. To maximize the throughput of the sort, the data
must be contiguously stored, even if they belong to
different segments. Thus, prior to sorting, we launch a
kernel that assembles the hits from different bins into
a large but contiguous array, as shown in Fig. 6(a).
Each bin is then processed by a block of threads
consecutively for coalesced memory access.

Th
re

ad
 1

Th
re

ad
 2

Th
re

ad
 0

...

…...

Th
re

ad
 1

Th
re

ad
 2

Th
re

ad
 0

……...

Bin 0 Bin 1 ...

...

...

Bin 0 Bin 1 ...

Th
re

ad
 1

Th
re

ad
 0

...

…...

...Block 0 Block 1

(a) Hit Assembling

Sortin
g

Sortin
g

Sortin
g

...

Bin 0 Bin 1 ...

...

Th
re

ad
 0

Th
re

ad
 1

Th
re

ad
 2

...

 ...

Th
re

ad
 1

Th
re

ad
 2

Th
re

ad
 0

 ...

...Block 0 Block 1

(b) Hit Sorting

...

Bin 0 Bin 1 ...

Th
re

ad
 0

Th
re

ad
 1

T
h

re
ad

 2

...…... ...

…...

Th
re

ad
 1

Th
re

ad
 2

Th
re

ad
 0

……...

...Block 0 Block 1

...

Bin 0 Bin 1 ...
(c) Hit Filtering

Fig. 6: Three Kernels for Assembling, Sorting, and Filtering

Hit Sorting: A hit includes four attributes: the row
number that is the position in the query sequence;
the column number that is the position in the subject
sequence; the diagonal number that is calculated as
the difference of the column number and row number;
and the sequence number that is the index of the
subject sequence. To unify the attributes and only
have to sort once, we propose a bin data structure for
the hits. As shown in Fig. 7, we pack the sequence
number, diagonal number, and subject position into
a 64-bit integer. Because the longest sequence in the
most recent NCBI NR database [4] contains 36,805
letters, 16 bits is sufficient to record the subject po-
sition and 16 bits for the diagonal number, each of
which can represent 64K positions. With this data
structure, we sort hits in each bin once instead of
by the diagonal number and subject position, respec-
tively. This data structure provides an added benefit
during ungapped extension — all the required infor-
mation, including sequence number, query position
(i.e., subject position−diagonal number), and subject
position can be obtained in one memory access.

Using the segmented sort kernel from the Mod-
ern GPU Library [3] by NVIDIA, according to the
experiments, we found that as we vary the number
of segments for a given data size, the throughput
increases as more segments are used. Since the total

1545-5963 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/TCBB.2015.2489662, IEEE/ACM Transactions on Computational Biology and Bioinformatics

7

So
rt

in
g

Bin 0

Bin 2

Bin 1

Bin 3

(7,3):D-4 (11,3):D-8

(1,3):D2 (7,13):D6

(1,13):D12

(11,13):D2 (6,8):D2(2,8):D6

Bin 0

Bin 2

Bin 1

Bin 3

(7,3):D-4 (11,3):D-8

(1,3):D2

(1,13):D12

(2,8):D6(6,8):D2 (7,13):D6(11,13):D2

Filtering

Bin 0

Bin 2

Bin 1

Bin 3

(1,3):D2 (2,8):D6(6,8):D2 (7,13):D6(11,13):D2

Sequence Number

Diagonal Number Subject Position

31 15 0
Bit

Data structure of
bin element

63

31

0

Fig. 7: Sorting and Filtering with Bin Data Structure

number of hits after the hit-detection phase is fixed,
we can increase the number of bins to improve sorting
performance but at the expense of more memory us-
age. Because GPU device memory is limited, we must
choose an appropriate number of bins that balances
sorting performance and memory usage. We set the
number of bins as a configurable parameter in our
cuBLASTP algorithm because many factors, such as
the size of device memory and the query length, affect
the choice of the number of bins.

Hit Filtering: With the bins now sorted, we intro-
duce hit filtering to eliminate hits whose distances
with neighbors are larger than a specified threshold
because these hits cannot trigger ungapped extension.
As shown in Fig. 6(c), we use a block of threads to
check consecutive hits in each bin for coalesced mem-
ory access. A thread scheduled for one hit compares
the distance to its neighbor on left. If the distance to
the neighbor is less than the threshold, the hit is kept
and passed to the ungapped-extension phase.

To avoid global synchronization and atomic op-
erations, we write extendable hits into a dedicated
buffer that is maintained by each thread block. The
overall performance of this additional filtering step
is then determined by the ratio of the overhead of
hit filtering over the overhead of branch divergence.
(Our experimental results show that only 5% to 11%
of the hits from the hit-detection phase are passed
to ungapped extension; thus the overall cuBLASTP
performance improves due to this hit filtering.)

3.4 Fine-Grained Ungapped Extension

After hit reordering, the hits in each bin are arranged
in ascending order by diagonals, and the hits that
cannot be used to trigger ungapped extension have
been filtered out. Based on the ordered hits, we
design a diagonal-based, ungapped-extension algorithm,
as depicted in Algorithm 3, where each diagonal is
processed by a thread. So, as shown from Lines 7
to 10, different threads are scheduled to different bins,
and threads in a warp are scheduled to different
diagonals based on the warp id warpId. We then call
the ungapped ext function to extend the diagonal until
a gap is encountered or the diagonal is ended. The
variable ext represents the extension result. Because an
extension could cover other hits along the diagonal,
Line 19 determines if a hit is covered by the previous

extension. If the hit is not covered by the previous
extension, it can be used to trigger an extension. How-
ever, the above step introduces divergent branching.

Algorithm 3 Diagonal-based Ungapped Extension
Input: bins binned hits
Output: extensions: results of ungapped extension

1: tid← blockDim.x ∗ blockIdx.x+ threadIdx.x
2: numWarps← gridDim.x ∗ blockDim.x/warpSize
3: warpId← tid/warpSize
4: laneId← threadIdx.x mod warpSize
5: i← warpId
6: //go through all bins by warps
7: while i < num bins do
8: j ← laneId
9: //process all diagonals in the bin by lanes

10: while j < bini.num diagonals do
11: //initialize last extension position
12: ext reach← −1
13: for all hitk in diagonalj do
14: //get hit information
15: sub pos← hitk.sub pos
16: query pos← hitk.sub pos

−hitk.diag num
17: seq id← hitk.seq id
18: //check if the pos has been extended
19: if sub pos > ext reach then
20: ext← ungapped ext(seq id,

query pos, sub pos)
21: extensions.add(ext)
22: //update with new extension pos
23: ext reach← ext.sub pos
24: end if
25: end for
26: j ← j + warpSize
27: end while
28: i← i+ numWarps
29: end while
30: output extensions

Due to the above divergent branching, we propose
an alternative fine-grained approach to Algorithm 3
called hit-based ungapped extension, as shown in Algo-
rithm 4. This approach seeks to improve performance
by trading off divergent branching for redundant
computation. Specifically, each thread extends a differ-
ent hit independently. Thus, the results from the un-
gapped extension of different hits could result in the
same output (i.e., redundant computation that results
in duplicates). These duplicates are then indepen-
dently stored on a per-thread basis on Line 14. Unlike
Algorithm 3, this algorithm requires a de-duplication
step before the remaining phases of gapped extension
and alignment with traceback can be run.

Intuitively, which of the two algorithms performs
best depends on the characters in the query sequence
and the subject sequences. If there are too many
hits that will be covered by the extension of other
hits in the diagonal, then diagonal-based ungapped
extension should perform better; otherwise, hit-based
ungapped extension will. However, while hit-based
extension eliminates divergent branching, it can create
load imbalance. That is, because different hits in one
diagonal could be extended to different lengths and

1545-5963 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/TCBB.2015.2489662, IEEE/ACM Transactions on Computational Biology and Bioinformatics

8

Algorithm 4 Hit-based Ungapped Extension
Input: bin binned hits
Output: extensions: results of ungapped extension

1: tid← blockDim.x ∗ blockIdx.x
+threadIdx.x

2: numWarps← gridDim.x ∗ blockDim.x/warpSize
3: warpId← tid/warpSize
4: laneId← threadIdx.x mod warpSize
5: i← warpId
6: while i < num bins do
7: j ← laneId
8: //process all hits in the bin by lanes in parallel
9: while j < bini.num hits do

10: sub pos← hitj .sub pos
11: query pos← hitj .sub pos− hitj .diag num
12: seq id← hitj .seq id
13: ext← ungapped ext(seq id,

query pos, sub pos)
14: extensions.add(ext)
15: j ← j + warpSize
16: end while
17: i← i+ numWarps
18: end while
19: output extensions

if (at least) one hit can be extended much longer than
other hits, then all other threads in the warp must
wait for the completion of the longest extension.

To address the above, we present a window-based
extension, as detailed in Algorithm 5. It consists of
the following steps: (1) divide a warp of threads
into different windows; (2) map one window to one
diagonal; and (3) extend hits in a diagonal one by
one using a window-sized set of threads at the same
time. Because this approach uses a window-sized set
of threads to extend a single hit, it can speedup
the hit-based extension on the longest extension and
reduce the load imbalance that would otherwise more
adversely affect performance.

Fig. 8 illustrates how computation proceeds in
window-based ungapped extension, along with de-
tails on gap detection. A gap can be detected by
computing the accumulated score for each extended
position from the hit position, and then comparing
the score change from the highest score along the
extension with a threshold. In this figure, we present
two windows, each of which extends the IY P hit
along the diagonal but in opposite directions.

For brevity, we only discuss the extension to the
IY P hit with the right window; the left window
is handled concurrently in a similar fashion. First,
we map the window-sized set of threads (in this
case, 8) along consecutive positions from the hit and
then calculate the prefix sum of each position for the
PrefixSum array using the optimized scan algorithm
derived from the CUB library [1]. This prefix sum in
the right window produces the highest score of 12, as
circled in the PrefixSum array.

Then, each thread after the position with the highest
score calculates the score changed from the highest
score while the threads before the highest score po-
sition simply record the contribution to the highest

Algorithm 5 Window-based Ungapped Extension
Input: bin binned hits, winSize size of windows
Output: extensions: results of ungapped extension

1: numBlocks← gridDim.x
2: //get number of windows in a thread block
3: numWin← blockDim.x/winSize
4: //get window id
5: winId← threadIdx.x/winSize
6: //get lane id in the window
7: wLaneId← threadIdx.x mod winSize
8: i← blockIdx.x
9: //go through all bins by blocks

10: while i < num bins do
11: j ← winId
12: //go through all diagonals in the bin by wins
13: while j < bini.num diagonals do
14: ext reach← −1
15: for all hitk in diagonalj do
16: //get hit informatioin
17: sub pos← hitk.sub pos
18: query pos← hitk.sub pos

−hitk.diag num
19: seq id← hitk.seq id
20: if sub pos > ext reach then
21: //perform window-based extension
22: ext← ungapped ext win(seq id,

query pos, sub pos, wLaneId, winSize)
23: //lane 0 stores the extension
24: if wLaneId = 0 then
25: extensions.add(ext)
26: end if
27: ext reach← ext.sub pos
28: end if
29: end for
30: j ← j + numWin
31: end while
32: i← i+ numBlocks
33: end while
34: output extensions

Score:

PrefixSum:

ChangeSinceBest:

DropFlag:

StartPos: -7

window

Query Seq:

Subject Seq:

-2 -1 0

3 3 3 1 2

12 9 6 3 2

+3 +3 +3 +1 +2

-6 2 3

11 17 15

-6 +2 +3

0 0 0 0 00 0 0

... A L G P L I Y P

... L L G P L I Y P

-6 -5 -4 -3-7 321

33312

129632

+3+3+3+1+2

-6-6-6

-606

-18-12-6

00000 110

...BAPDNVLF

...EGEDNVIF

7654 8

EndPos: 7

window

highest score highest score

Fig. 8: Example of Window-based Extension. In this exam-
ple, dropoff threshold is −10.

score, i.e., the changes from the previous positions.
After this step, our window-based algorithm gener-
ates the ChangeSinceBest. Next, by comparing to the
dropoff threshold (i.e.,-10, as noted in the figure), the
algorithm then generates the DropFlag array. If the
change is more than the threshold, a “1” is set to
denote this position as a gap; otherwise, a “0” is
set. If there is a gap, the algorithm then writes the
start position and end position of this extension with
the highest score into the output of the ungapped

1545-5963 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/TCBB.2015.2489662, IEEE/ACM Transactions on Computational Biology and Bioinformatics

9

extension. If there is no gap in the window like the
left window in the figure, the algorithm goes to the
next iteration to move the windows forward. (This
figure also illustrates the redundant computation in
the window-based ungapped extension: even if the
gap exists in the middle of the window, all positions
of the window have to be checked.)

Algorithm 5 describes the details of the window-
based ungapped extension. Because we use one win-
dow on one diagonal to check hits one by one, we
still need to check whether the current hit is cov-
ered by the previous extension at Line 20. However,
this approach removes the redundant computation
that would have otherwise been done with our hit-
based extension. As a result, we use a configurable
parameter to allow the user to select which ungapped
extension algorithm to execute at run time: diagonal-
based, hit-based, or window-based, as noted in Fig. 9.

3.5 Hierarchical Buffering

To fully utilize memory bandwidth and further im-
prove cuBLASTP performance, we propose a hierar-
chical buffering approach for the core data structure
(DFA) used in hit detection. As shown in Fig. 2(a),
the DFA consists of the states in the finite state
machine and the query positions for the states. Both
the states and query positions are highly reused in
hit detection for words in subject sequences. Loading
the DFA into shared memory can improve the data
access bandwidth. However, because the number of
query positions depends on the length of the query se-
quence, fetching all positions into the shared memory
may affect the occupancy of GPU kernels and offset
the improvement from higher data access bandwidth,
especially for long sequences. Thus, we load the states
that have relatively fixed but small size into shared
memory and store the query positions into constant
memory.

On the latest NVIDIA Kepler GPU, a 48-kB read-
only cache with relaxed memory coalescing rules
provides reusable but randomly accessed data. We
allocate the query positions in the global memory
but tag them with the keyword “const restrict” for
loading them into the read-only cache automatically.

Fig. 10 shows the hierarchical buffering architecture
for the DFA on a Kepler GPU. We put the DFA states,
e.g., ABB and ABC, into the shared memory. For the
first access of ABB from thread 3, the positions are
written into bins and loaded into the read-only cache.
For the subsequent access of ABB from thread 4, the
positions are obtained from the cache.

The PSS matrix is another core data structure that
is highly reused in ungapped extension. The number
of columns in the PSS matrix is equal to the length of
the query sequence, as shown in Fig. 2(b). However,
because each column contains 64 bytes (32 rows with
2 bytes for each), the size of the PSS matrix increases

Shared Memory

ABC

ABB

...

addr

addr

DFA States
...

... ... 1 7 -1 2 6 ...11

DFA query positions

Global Memory

Read-Only Cache

1 7

Thread 4
Thread 4

11 -1

Thread 3

Thread 3

const __restrict__

Fig. 10: Hierarchical Buffering for DFA on Kepler GPU

quickly with the query length. The 48-kB shared
memory cannot hold the PSS matrix when the query
sequence is longer than 768.

On the other hand, the scoring matrix can be used
to substitute the PSS matrix. For example, BLOSUM62
matrix, which consists of 32 * 32 = 1024 elements and
has a fixed size of only 2 kB (i.e., 2 bytes per element),
can be always put into the shared memory. Therefore,
for longer query sequences, the BLOSUM62 matrix in
the shared memory can provide better performance,
even though more memory operations are needed
compared with PSS matrix for short sequences. Thus,
we provide a configurable parameter to select PSS
matrix or scoring matrix. For the PSS matrix, we put it
into the shared memory until a threshold and then we
put it into the global memory. For the scoring matrix,
we always put it into the shared memory. We will
compare the performance using the PSS matrix and
the scoring matrix in Section 4.

3.6 Optimizing Gapped Extension and Alignment
with Traceback on a Multicore CPU
After the most time-consuming phases of BLASTP
accelerated, the remaining phases, i.e., gapped exten-
sion and alignment with traceback, now consume the
largest percentage of time. Specifically, for a query
sequence with 517 characters (i.e., Query517), Fig. 11
shows that after applied fine-grained optimizations on
GPU, the percentage of time spent on hit detection
and ungapped extension is dropped from 80% (FSA-
BLAST) down to 52% (cuBLASTP with one CPU). The
percentage of time spent on gapped extension and
alignment with traceback, however, grows up from
13% to 32% and 5% to 13%, respectively. Thus, it
is necessary to optimize these two stages for better
overall performance.

In the BLASTP algorithm, only the high-scoring
seeds from ungapped extension can be passed to the
gapped-extension stage. Although the gapped exten-
sion on each seed is independent, and the extension
itself is compute-intensive, only a small percentage of
subject sequences require the gapped extension. If we
offload the gapped extension to GPU, CPU will be
idle during most of the BLASTP search. In order to
improve the resource utilization of the whole system,
i.e., make use of both GPU and CPU, parallelize the
gapped extension on CPU is an alternative. Further-
more, though there were several studies proposed to

1545-5963 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/TCBB.2015.2489662, IEEE/ACM Transactions on Computational Biology and Bioinformatics

10

Thread 0

(a) Coarse-grained Extension

Thread 1

Thread 0

Thread 2

(b) Diagonal-based Extension

Warp 1

Warp 0

Warp 2

(c) Hit-based Extension

Win 1

Win 0

Win 2

(d) Window-based Extension

Fig. 9: Four Parallelism Strategies of Ungapped Extension

0	

500	

1000	

1500	

2000	

2500	

FSA-­‐BLAST	
 cuBLASTP	
 w/	

1CPU	

cuBLASTP	
 w/	

4CPU	

Ex
ec
u&

on
	
 &
m
e	

(m

s)
	

Others	

Alignment	
 with	
 traceback	

Gapped	
 extension	

Hit	
 detecIon	
 &	
 ungapped	
 extension	

5%	

13%	

52%	

15%	

75%	

6%	

80%	

13%	

32%	

19%	

Fig. 11: Time Breakdown for Query517 on Swissprot Database

parallelize the gapped extension on GPU, e.g., CUDA-
BLASTP, they had to modify the dynamic program-
ming method of the gapped extension on GPU for
the performance. As a result, we optimize the gapped
extension on CPU with Pthreads. For the alignment
with traceback, due to the data dependency and the
random memory access, we also optimize it on CPU
with multithreading. In order to reduce the overhead
of data transfer between CPU and GPU, we design
a pipeline to overlap the computations on CPU and
GPU, and the data communication on PCIe. Fig. 12
illustrates the pipeline design. Once the kernels of hit
detection and ungapped extension for one block of the
database are finished on GPU, the intermediate data
is sent back to CPU asynchronously for the remaining
phases. At the same time, the kernels for hit detection
and ungapped extension are triggered for the next
data block. With the pipeline design, we can overlap
the computations on CPU and GPU, and the data
transfer on PCIe for different data blocks.

Hit	
 Detec(on	

&	
 Ungapped	

Extension	

Gapped	

Extension	

Alignment	
 	

with	
 Traceback	
 	

GPU

CPU

H2D	

Transfer	

……

……

D2H	

Transfer	

Fig. 12: Overlapping Hit Detection and Ungapped Exten-
sion on GPU and Gapped Extension and Alignment with
Traceback on CPU

Fig. 11 shows that the multithreaded optimiza-
tion (cuBLASTP with four CPU threads) significantly
improves the gapped extension and the alignment
with traceback. Ultimately, the overall performance

improvement is more than four-fold over FSA-BLAST.
Fig. 13 shows multithreaded gapped extension and
alignment with traceback exhibiting strong scaling.

0.0	

0.5	

1.0	

1.5	

2.0	

2.5	

3.0	

3.5	

1	
 2	
 4	

Sp
ee
du

p	

Number	
 of	
 threads	

Gapped	
 Extension	
 Alignment	
 with	
 Traceback	

Fig. 13: Strong Scaling for Gapped Extension and Alignment
with Traceback on Multicore CPU

4 PERFORMANCE EVALUATION

We conduct our experimental evaluation on a com-
pute node that includes an Intel Core i5-2400 quad-
core processor (with 6MB shared L3 cache and 8GB
DDR3 main memory) and NVIDIA Kepler K20c GPU.
The system runs Debian Linux 3.2.35-2 and NVIDIA
CUDA toolkit 5.0. For input data, we use two typical
NCBI databases [4]. The first database is env nr, which
includes about 6-million sequences whose total size is
1.7 GB and where the average length of the sequences
is about 200 letters. The second is swissprot, which
includes 300,000 sequences with a total size of 150
MB. The average length is 370 letters. For the input
query sequences, we choose three sequences, whose
lengths are 127 (“query127”), 517 (“query517”), and
1054 (“query1054”) bytes, to represent short, medium,
and long sequences, respectively.

4.1 Evaluation of Configurable Parameters
We first evaluate the performance of cuBLASTP ker-
nels with different numbers of bins. Fig. 14 shows that
the performances of hit sorting and hit filtering can
be constantly improved if we increase the number
of bins per warp. However, the performance of hit
detection drops dramatically after 128 bins. That is,
because more bins will use more shared memory to
record the current header, and in turn, decrease the

1545-5963 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/TCBB.2015.2489662, IEEE/ACM Transactions on Computational Biology and Bioinformatics

11

occupancy of the kernel. Thus, in order to achieve the
maximum overall performance, the optimal number
of bins per warp should balance the performance of
hit detection with hit sorting and filtering. In our
experimental environment, we set the number of bins
per warp to 128 for the best overall performance.

0	

0.02	

0.04	

0.06	

0.08	

0.1	

0.12	

0.14	

32	
 64	
 128	
 256	

Ex
ec
u&

on
	
 &
m
e	

(s
ec
)	

Number	
 of	
 bins	
 per	
 warp	

Hit	
 Dec1on	
 Hit	
 Sor1ng	

Hit	
 Filtering	
 Total	
 Kernel	
 Time	

Fig. 14: Execution Time of Different Kernels with Different
Numbers of Bins for Query517 on Swissprot Database

Second, in comparing the performance of using
the PSS versus BLOSUM62 matrix, Fig. 15 shows
that the PSS matrix performs better for the short
sequence (query127) whereas the BLOSUM62 matrix
performs better for longer sequences (query517 and
query 1054), as reasoned and predicted in Section 3.5.
In short, we observe a –24%, 50%, and 237% improve-
ment in performance when using the BLOSUM62
matrix. As a result, we configure our algorithm to use
the PSS matrix for “query127” and the BLOSUM62
matrix for “query517” and “query1057” on NVIDIA
Kepler K20c GPU for the following evaluations.

0	

1000	

2000	

3000	

4000	

5000	

query127	
 query517	
 query1054	

Ke
rn
el
	
 e
xe
cu
*o

n	

*m

e	

(m

s)
	

PSS	
 matrix	
 BLOSUM62	
 matrix	

Fig. 15: Performance with Different Scoring Matrices

4.2 Evaluation of our Fine-Grained Algorithms for
cuBLASTP: Diagonal-, Hit-, and Window-Based
Fig. 16(a) shows that window-based extension de-
livers 24%, 20%, and 12% better performance for
query127, query517, and query1054, respectively, when
compared to diagonal-based extension. Similarly,
window-based extension achieves 38%, 36%, and 27%
better performance when compared to hit-based ex-
tension. Fig. 16(b) compares the divergence overhead
of the three algorithms. The window-based algorithm
experiences significant improvement in divergence
overhead, when compared with the other two al-
gorithms. As a result, we configure our cuBLASTP

algorithm to use window-based extension for these
two databases on the NVIDIA Kepler K20c GPU in
the following evaluations.

0	

200	

400	

600	

800	

1000	

query127	
 query517	
 query1054	

Ke
rn
el
	
 e
xe
cu
*o

n	

*m

e	

(m

s)
	
 Diagonal-­‐based	

Hit-­‐based	

Window-­‐based	

(a) Execution Time

0%	

20%	

40%	

60%	

80%	

100%	

query127	
 query517	
 query1054	

Diagonal-­‐based	

Hit-­‐based	

Window-­‐based	

(b) Divergence Overhead

Fig. 16: Performance Numbers with Different Extensions

Fig. 17 illustrates that cuBLASTP performance can
always improve by adopting our hierarchical buffer-
ing mechanism, where the read-only cache is used to
store the DFA for the hit detection.

0	

500	

1000	

1500	

2000	

2500	

3000	

query127	
 query517	
 query1054	

Ke
rn
el
	
 e
xe
cu
*o

n	

*m

e	

(m

s)
	
 Without	
 read-­‐only	
 cache	

With	
 read-­‐only	
 cache	

Fig. 17: Performance with and without Read-only Cache

4.3 Performance Comparison to Existing BLASTP
Algorithms
Fig. 18 presents the normalized speedup of our fine-
grained cuBLASTP over the sequential FSA-BLAST
on CPU, the multithreaded NCBI-BLAST on CPU,
and the state of the art GPU-based implementations
CUDA-BLASTP [29] and GPU-BLASTP [26].

Compared with the single-threaded FSA-BLAST,
Fig. 18(a) shows that on the swissprot and env nr
database, cuBLASTP delivers up to 7.9-fold speedup
and 5.5-fold speedup for the critical phases of
BLASTP, i.e., hit detection and ungapped extension.
Fig. 18(b) shows that for the overall performance,
the corresponding performance improvements using
cuBLASTP are 3.6-fold and 6-fold, respectively.

Compared with NCBI-BLAST with four threads,
Fig. 18(c) shows that on the swissprot and env nr
database, cuBLASTP delivers up to 2.9-fold speedup
and 3.1-fold speedup for the critical phases. Fig. 18(d)
shows that for the overall performance, the
corresponding performance improvements using
cuBLASTP are 2.1-fold and 3.4-fold, respectively.

Compared with CUDA-BLASTP on NVIDIA Kepler
K20c GPU, Fig. 18(e) shows that on the swissprot
and env nr database, cuBLASTP delivers up to a 2.9-
fold speedup and 2.1-fold speedup for the critical
phases. Fig. 18(f) shows that for the overall perfor-
mance, including all stages of BLASTP and the data

1545-5963 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/TCBB.2015.2489662, IEEE/ACM Transactions on Computational Biology and Bioinformatics

12

0	

1	

2	

3	

4	

5	

6	

7	

8	

9	

query127	
 query517	
 query1054	
 Cr
i$
ca
l	
 s
pe

ed
up

	
 o
ve
r	
 F

SA
-­‐B
LA

ST
	

swissprot	
 env_nr	

(a)

0	

1	

2	

3	

4	

5	

6	

7	

query127	
 query517	
 query1054	
 O
ve
ra
ll	

sp
ee
du

p	

ov
er
	
 F
SA

-­‐B
LA

ST
	

swissprot	
 env_nr	

(b)

0	

0.5	

1	

1.5	

2	

2.5	

3	

3.5	

query127	
 query517	
 query1054	

Cr
i$
ca
l	
 s
pe

ed
up

	
 o
ve
r	
 N

CB
I-­‐

BL
AS

T	

swissprot	
 env_nr	

(c)

0	

0.5	

1	

1.5	

2	

2.5	

3	

3.5	

4	

query127	
 query517	
 query1054	

O
ve
ra
ll	

sp
ee
du

p	

ov
er
	
 N
CB

I-­‐
BL
AS

T	

swissprot	
 env_nr	

(d)

0.0	

0.5	

1.0	

1.5	

2.0	

2.5	

3.0	

3.5	

query127	
 query517	
 query1054	

Cr
i$
al
	
 sp

ee
du

p	

ov
er
	
 C
U
DA

-­‐B
LA

ST
P	

swissprot	
 env_nr	

(e)

0.0	

0.5	

1.0	

1.5	

2.0	

2.5	

3.0	

query127	
 query517	
 query1054	
 O
ve
ra
ll	

sp
ee
du

p	

ov
er
	
 C
U
DA

-­‐B
LA

ST
P	

swissprot	
 env_nr	

(f)

0	

0.2	

0.4	

0.6	

0.8	

1	

1.2	

1.4	

1.6	

1.8	

query127	
 query517	
 query1054	

Cr
i$
ca
l	
 s
pe

ed
up

	
 o
ve
r	
 G

PU
-­‐

BL
AS

TP
	

swissprot	
 env_nr	

(g)

0	

0.5	

1	

1.5	

2	

query127	
 query517	
 query1054	

O
ve
ra
ll	

sp
ee
du

p	

ov
er
	
 G
PU

-­‐
BL
AS

TP
	

swissprot	
 env_nr	

(h)

Fig. 18: Speedup for Critical Phases and Overall Performance Respectively of cuBLASTP over FSA-BLAST(a-b), NCBI-
BLAST with Four Threads(c-d), CUDA-BLASTP(e-f) and GPU-BLASTP(g-h)

transfer between CPU and GPU, the corresponding
performance improvements using cuBLASTP are 2.8-
fold and 2.5-fold, respectively.

Finally, with respect to GPU-BLASTP, Fig. 18(g)
shows that on the swissprot and env nr database,
cuBLASTP achieves up to 1.5-fold speedup and 1.6-
fold speedup for the critical phases. Fig. 18(h) shows
that for the overall performance, the corresponding
performance improvements using cuBLASTP are 1.9-
fold and 1.6-fold, respectively.

Fig. 19(a), 19(b), and 19(c) show the profiling re-
sults of global memory load efficiency, divergence
overhead, and occupancy, achieved for cuBLASTP,
CUDA-BLASTP, and GPU-BLASTP on NVIDIA Ke-
pler K20c GPU. Because we observed similar results
on other query sequences, we only report the results
of “query517” for the env nr database.

Fig. 19(a) shows 67.0%, 46.2%, 25.0%, and 81.0%
global memory load efficiency for the four respective
kernels of cuBLASTP; and only 5.2% for CUDA-
BLASTP and 11.5% for GPU-BLASTP, both of them
use a single coarse-grained kernel, where both hit
detection and ungapped extension are interleaved
together. The significantly improved efficiency of our
fine-grained kernels comes from the coalesced mem-
ory access. In hit detection, threads in the same warp
access positions of subject sequences successively. In
sorting and filtering, threads in the same warp access
hits in each bin successively; and in the window-
based ungapped extension, the window-sized set of
threads can access successive positions for one hit to
calculate the prefix sum and check the score change.
In contrast, neither of the coarse-grained kernels of
CUDA-BLASTP or GPU-BLASTP can guarantee such
coalesced memory accesses.

Fig. 19(b) and 19(c) present the divergence overhead
and GPU occupancy, respectively. Our four kernels
of cuBLASTP exhibit much lower divergence over-

0%	

20%	

40%	

60%	

80%	

100%	

Hit	
 Detec/on	
 Hit	
 Sor/ng	

Hit	
 Filtering	
 Ungapped	
 Extension	

CUDA-­‐BLASTP	
 GPU-­‐BLASTP	

cuBLASTP	

Hi
gh
er
	
 is
	
 b
eI

er
	

(a) Global Load Efficiency
0%	

20%	

40%	

60%	

80%	

100%	

Hit	
 Detec/on	
 Hit	
 Sor/ng	

Hit	
 Filtering	
 Ungapped	
 Extension	

CUDA-­‐BLASTP	
 GPU-­‐BLASTP	

cuBLASTP	

Lo
w
er
	
 is
	
 b
eI

er
	

(b) Divergence Overhead

0%	

20%	

40%	

60%	

80%	

100%	

Hit	
 Detec/on	
 Hit	
 Sor/ng	

Hit	
 Filtering	
 Ungapped	
 Extension	

CUDA-­‐BLASTP	
 GPU-­‐BLASTP	

cuBLASTP	

Hi
gh
er
	
 is
	
 b
eI

er
	

(c) Occupancy Achieved
0%	

10%	

20%	

30%	

40%	

Hit	
 Detec.on	
 Hit	
 Sor.ng	

Hit	
 Filtering	
 Ungapped	
 Extension	

Data	
 Transfer	
 Gapped	
 Extension	

Final	
 Alignment	
 Other	

Overlapped	

(d) cuBLASTP Breakdown

Fig. 19: Profiling on cuBLASTP, CUDA-BLASTP, and GPU-
BLASTP

head and higher GPU occupancy than the fused ker-
nels in CUDA-BLASTP and GPU-BLASTP. Fig. 19(d)
shows the breakdown of the overall execution time
when aligning “query517” on env nr database with
cuBLASTP. Although the data transfer between CPU
and GPU, and the gapped extension on CPU have the
non-negligible execution time, we can overlap them
with the kernels running on GPU, as shown in the
shadowed bars of this figure. We also find after we
optimize all stages of BLASTP on GPU and CPU, the
remaining part of BLASTP, denoted as “Other” in this
figure, can occupy near 18% total execution time. This
part includes the time spent on the database read,

1545-5963 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/TCBB.2015.2489662, IEEE/ACM Transactions on Computational Biology and Bioinformatics

13

the DFA and PSS matrix build, and the final results
output. We will further investigate the time spent on
this part when we extend our research to GPU clusters
in the future. Finally, we would like to mention that
the output of cuBLASTP is identical to the output of
FSA-BLAST.

5 RELATED WORK

Many studies have been conducted to parallelize
BLAST tools on different parallel architectures be-
cause of its compute- and data-intensive nature. NCBI
BLAST+ [8] uses pthreads to speedup BLAST on a
multicore CPU. On CPU clusters, TurboBLAST [24],
ScalaBLAST [10], and mpiBLAST [14] have been pro-
posed. Among them, mpiBLAST is a widely-used one
based on NCBI BLAST. With efficient task scheduling
and scalable I/O subsystem, mpiBLAST can leverage
tens of thousands processors to speedup BLAST.

To achieve higher throughput on a per-node basis,
BLAST has also been mapped and optimized onto
various accelerators, such as FPGAs [5], [16], [6] and
GPUs [21], [9], [23], [29], [26], [17]. Relative to FPGAs,
the work of Mahram et al. [6] is notable for its co-
processing approach, which leverages both the CPU
and FPGA to accelerate BLAST. In general, FPGAs
accelerate BLAST search by pre-filtering dissimilar
subject sequences rather than speeding up the actual
algorithm itself. That is, the FPGA eliminates dissim-
ilar sequences and generates a pre-filtered database,
i.e., reduced search space, which the CPU then per-
forms the BLAST search upon.

For GPU accelerators, CUDA-BLASTN [21],
CUDA-NCBI-BLAST [9], GPU-BLAST [23], CUDA-
BLASTP [29], GPU-BLASTP [26], and G-BLASTN [17]
have all been proposed since 2009. CUDA-BLASTN
was the first implementation of BLAST on GPU for
nucleotide sequence alignments. After that, CUDA-
NCBI-BLAST was published for protein sequence
alignment. However, without GPU architecture-
specific optimizations, CUDA-NCBI-BLAST only
achieved 1.7-fold to 2.7-fold speedup on a NVIDIA
G80 GPU over a single-core Pentium 4 CPU. Shortly
thereafter, GPU-NCBI-BLAST built on NCBI BLAST
was proposed. The most time-consuming phases,
including hit detection and ungapped extension,
were ported to the GPU. With the same accuracy as
NCBI BLAST, the authors reported approximately a
4-fold speedup using a NVIDIA Fermi GPU over a
single-threaded CPU implementation and a 2-fold
speedup over a multi-threaded CPU implementation
on a hexa-core processor. CUDA-BLASTP was
proposed to use a compressed DFA for hit detection
with an additional step to sort the subject sequences
by their lengths to improve the load balance. CUDA-
BLASTP also ported the gapped extension on GPU.
GPU-BLASTP improved the load balance further via
a runtime work-queue design, where a thread could

grab the next sequence after processing the current
subject sequence. GPU-BLASTP also provided a two-
level buffering mechanism, which wrote the output of
the ungapped extension first to a local buffer for each
thread and then to a global buffer. This mechanism
avoided global atomics to write the output of different
sequences, whose sizes could not be determined in
advance. Based on the results from the survey
paper [12], CUDA-BLASTP and GPU-BLASTP are
top two fastest GPU implementations of BLAST for
protein sequence search. As a result, we compared
CUDA-BLASTP and GPU-BLASTP with cuBLASTP
proposed in this paper. Most recently, G-BLASTN,
based on NCBI-BLAST, was released for nucleotide
sequence alignment. With optimizations on GPU and
parallelism on CPU, including multithreading and
vectorization, G-BLASTN achieves up to a 7-fold
overall speedup over the multithreaded NCBI-BLAST
for nucleotide sequence search on a quad-core CPU.
Because BLASTN has already been implemented as
a fine-grained algorithm, G-BLASTN did not have
the challenges of BLASTP when mapped to GPU
architectures.

Finally, we note that this paper is most closely
related to our previous research [15]. This paper, how-
ever, differs from the previous work in the following
ways: (1) we further reduce the divergence overhead
in the ungapped extension via a new algorithm, i.e.,
window-based parallelism; (2) we apply a sophisti-
cated segmented sort to optimize hit sorting and fil-
tering; and (3) we optimize the gapped extension and
alignment with traceback on CPU with multithread-
ing; and (4) we overlap and pipeline the computations
on the GPU and CPU as well as the data transfer
between GPU and CPU for better performance.

6 CONCLUSION

In this paper, we propose cuBLASTP, an efficient fine-
grained BLASTP for GPU using the CUDA program-
ming model. We decompose the hit detection and
ungapped extension into separate phases and use
different GPU kernels to speedup their performance.
To significantly reduce the branch divergence and
irregular memory access, we propose binning-sorting-
filtering optimizations to reorder memory accesses in
the BLASTP algorithm. Our algorithms for diagonal-
based and hit-based ungapped extension further re-
duce branch divergence and improve performance.
Finally, we also propose a hierarchical buffering mech-
anism for the core data structures, which takes advan-
tage of the latest NVIDIA Kepler architecture.

We optimize the remaining phases of cuBLASTP
on a multicore CPU with pthreads. On a compute
node with a quad-core Intel Sandy Bridge CPU and
a NVIDIA Kepler GPU, cuBLASTP achieves up to
a 7.9-fold and 3.1-fold speedup over single-threaded
FSA-BLAST and multithreaded NCBI-BLAST with

1545-5963 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/TCBB.2015.2489662, IEEE/ACM Transactions on Computational Biology and Bioinformatics

14

four threads for the critical phases of cuBLASTP,
namely hit detection and ungapped extension, and
up to a 6-fold and 3.4-fold speedup for the overall
performance, respectively. Compared with CUDA-
BLASTP, cuBLASTP delivers up to a 2.9-fold and 2.8-
fold speedup for the critical phases of cuBLASTP
and for the overall performance, respectively. Finally,
compared with GPU-BLASTP, cuBLASTP delivers up
to a 1.6-fold and 1.9-fold speedup for the critical
phases of cuBLASTP and for the overall performance,
respectively.

In summary, our research with cuBLASTP consists
of a novel fine-grained method for optimizing a criti-
cal life sciences application that has irregular memory-
access patterns and irregular execution paths on a
single compute node having CPU and GPU. In the
future, we plan to extend our research for very large
databases on GPU clusters. Our preliminary research
with mpiBLAST [14] revealed that the result sorting,
merging, and ranking from multiple nodes could
become a time-consuming step, which in turn, would
be the performance bottleneck on GPU clusters after
the techniques proposed in this paper are applied to
address irregular compoutation. In addition, we seek
to generalize our optimizations and apply them to
other irregular applications on GPU and manycore
accelerators, such as Intel Xeon Phi.

ACKNOWLEDGMENT

This research was supported in part by NSF IIS-
1247693 (BIGDATA) and NSF CNS-0960081 (MRI),
which resulted in the GPU-accelerated HokieSpeed
supercomputer, operated by Advanced Research
Computing at Virginia Tech.

REFERENCES
[1] CUB Project. http://nvlabs.github.io/cub/.
[2] FSA-BLAST. http://sourceforge.net/projects/fsa-blast/.
[3] Modern GPU. http://nvlabs.github.io/moderngpu/.
[4] NCBI Genbank. ftp://ftp.ncbi.nlm.nih.gov/genbank/.
[5] A. Jacob, J. Lancaster, J. Buhler, B. Harris, and R. Chamberlain.

Mercury BLASTP: Accelerating Protein Sequence Alignment.
ACM Trans. Reconfig. Tech. and Syst., 1(2), 2008.

[6] A. Mahram, and M. C. Herbordt. Fast and Accurate NCBI
BLASTP: Acceleration with Multiphase FPGA-based Prefilter-
ing. In 24th ACM Int’l Conf. on Supercomputing, 2010.

[7] A. Morgulis, G. Coulouris, Y. Raytselis, T. L. Madden, R.
Agarwala, and A. A. Schffer. Database Indexing for Production
MegaBLAST Searches. Bioinformatics, 24(24):2942, 2008.

[8] C. Camacho, G. Coulouris, V. Avagyan, N. Ma, J. S. Pa-
padopoulos, K. Bealer, and T. L. Madden. BLAST+: Archi-
tecture and Applications. BMC Bioinformatics, 10:421, 2009.

[9] C. Ling, and K. Benkrid. Design and Implementation of a
CUDA-compatible GPU-based Core for Gapped BLAST Algo-
rithm. In 10th Int’l Conf. on Computational Science, 2010.

[10] C. Oehmen, and J. Nieplocha. ScalaBLAST: A Scalable Im-
plementation of BLAST for High-Performance Data-Intensive
Bioinformatics Analysis. IEEE Trans. Parallel Distrib. Syst.,
17(8):740–749, 2006.

[11] D. A. Benson, K. Clark, I. Karsch-Mizrachi, D. J. Lipman, J.
Ostell, and E. W. Sayers. GenBank. Nucleic Acids Research,
42:D32–7, 2014.

[12] D. Glasco. An Analysis of BLASTP Implementation on
NVIDIA GPUs. Technical report, Stanford University, 2012.

[13] H. E. Williams. Cafe: An Indexed Approach to Searching
Genomic Databases. In 21st Int’l ACM SIGIR Conf. on Research
and Development in Information Retrieval, New York, NY, USA,
1998.

[14] H. Lin, X. Ma, W. Feng, and N. F. Samatova. Coordinating
Computation and I/O in Massively Parallel Sequence Search.
IEEE Trans. Parallel Distrib. Syst., 22(4):529–543, 2011.

[15] J. Zhang, H. Wang, H. Lin, and W. Feng. cuBLASTP: Fine-
Grained Parallelization of Protein Sequence Search on a GPU.
In 29th IEEE Int’l Parallel & Distrib. Processing Symp., 2014.

[16] K. Muriki, K. D. Underwood, and R. Sass. RC-BLAST: Towards
a Portable, Cost-Effective Open Source Hardware Implemen-
tation. In 19th IEEE Int’l Parallel & Distrib. Proc. Symp., 2005.

[17] K. Zhao, and X. Chu. G-BLASTN: Accelerating Nucleotide
Alignment by Graphics Processors. Bioinformatics, 30:1384–
1391, 2014.

[18] M. Cameron. Efficient Homology Search for Genomic Sequence
Databases. PhD thesis, School of Computer Science and Infor-
mation Technology, RMIT University, Nov 2006.

[19] M. Cameron, H. E. Williams, and A. Cannane. Improved
Gapped Alignment in BLAST. IEEE/ACM Trans. Comput. Biol.
Bioinf., 1(3):116–129, 2004.

[20] M. Cameron, H. E. Williams, and A. Cannane. A Deterministic
Finite Automaton for Faster Protein Hit Detection in BLAST.
Journal of Computational Biology, 13(4):965–978, 2006.

[21] N. Wan, H. Xie, Q. Zhang, K. Zhao, X. Chu, and J. Yu.
A Preliminary Exploration on Parallelized BLAST Algorithm
Using GPU. Computer Engineering & Science, 31(11):98–112,
2009.

[22] NVIDIA Corporation. NVIDIA CUDA C Programming Guide,
2010. Version 3.2.

[23] P. D. Vouzis, and N. V. Sahinidis. GPU-BLAST: Using Graphics
Processors to Accelerate Protein Sequence Alignment. Bioin-
formatics, 27(2):182–188, 2011.

[24] R. D. Bjornson, A. H. Sherman, S. B. Weston, N. Willard, and
J. Wing. TurboBLAST(r): A Parallel Implementation of BLAST
Built on the TurboHub. In 16th IEEE Int’l Parallel & Distrib.
Processing Symp., 2002.

[25] S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J.
Lipman. Basic Local Alignment Search Tool. J. Molecular
Biology, 215(3):403–410, 1990.

[26] S. Xiao, H. Lin, and W. Feng. Accelerating Protein Sequence
Search in a Heterogeneous Computing System. In 25th IEEE
Int’l Parallel & Distrib. Processing Symp., 2011.

[27] T. Smith and M. Waterman. Identification of Common Molec-
ular Subsequences. J. Molecular Biology, 147(1):195–197, 1981.

[28] W. J. Kent. BLAT–the BLAST-like Alignment Tool. Genome
Research, 12(4):656–664, apr 2002.

[29] W. Liu, B. Schmidt, and W. Muller-Wittig. CUDA-BLASTP:
Accelerating BLASTP on CUDA-enabled Graphics Hardware.
IEEE/ACM Trans. Comput. Biol. Bioinf., 8(6):1678–1684, 2011.

[30] Z. Ning and A. J. Cox and J. C. Mullikin. SSAHA: a Fast Search
Method for Large DNA Databases. Genome Res, 11(10):1725–9,
Oct 2001.

Jing Zhang is a Ph.D. candidate in the Dept.
of Computer Science at Virginia Tech. He
received his B.S. in the College of Computer
at the National University of Defense Tech-
nology (NUDT), China.

Hao Wang is a Research Associate in the
Dept. of Computer Science at Virginia Tech.
He received his Ph.D. in the Institute of
Computing Technology at Chinese Academy
of Sciences and completed his postdoctoral
training at the Ohio State University.
Wu-chun Feng is a professor and Elizabeth
& James E. Turner Fellow in the Dept. of
Comp. Science, Dept. of Electrical and Com-
puter Engineering, Health Sciences, and Vir-
ginia Bioinformatics Institute at Virginia Tech.

