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Abstract—BLAST, short for Basic Local Alignment Search
Tool, is a fundamental algorithm in the life sciences that
compares biological sequences. However, with the advent of
next-generation sequencing (NGS) and increase in sequence
read-lengths, whether at the outset or downstream from NGS,
the exponential growth of sequence databases is arguably
outstripping our ability to analyze the data. Though sev-
eral recent studies have utilized the graphics processing unit
(GPU) to speedup the BLAST algorithm for searching protein
sequences (i.e., BLASTP), these studies used coarse-grained
parallel approaches, where one sequence alignment is mapped
to only one thread. Moreover, due to the irregular memory
access patterns in BLASTP, there remain significant challenges
to map the most time-consuming phases (i.e., hit detection
and ungapped extension) to the GPU using a fine-grained
multithreaded approach.

To address the above issues, we propose cuBLASTP, an
efficient fine-grained BLASTP implementation for the GPU
using CUDA. Our cuBLASTP realization encompasses many
research contributions, including (1) memory-access reordering
to reorder hits from column-major order to diagonal-major
order, (2) position-based indexing to map a hit with a packed
data structure to a bin, (3) aggressive hit filtering to elimi-
nate hits beyond the threshold distance along the diagonal,
(4) diagonal-based parallelism and hit-based parallelism for
ungapped extension to extend sequences with different lengths
in databases, and (5) hierarchical buffering to reduce memory-
access overhead for the core data structures. The experimental
results show that on a NVIDIA Kepler GPU, cuBLASTP
delivers up to a 5.0-fold speedup over sequential FSA-BLAST
and a 3.7-fold speedup over multithreaded NCBI-BLAST for
the overall program execution. In addition, compared with
GPU-BLASTP (the fastest GPU implementation of BLASTP
to date), cuBLASTP achieves up to a 2.8-fold speedup for the
kernel execution on the GPU and a 1.8-fold speedup for the
overall program execution.

Keywords-BLAST, BLASTP, GPU, bioinformatics, life sci-
ences, next-generation sequencing, hit detection, ungapped
extension.

I. INTRODUCTION

The “Basic Local Alignment Search Tool” (BLAST) [3] is
a fundamental algorithm in the life sciences that identifies
the most similar sequences from the database for a given
query sequence. The similarities identified by BLAST can
be used to infer functional and structural relationships be-
tween the corresponding biological entities. With the advent
of next-generation sequencing (NGS) and the increase in
sequence read-lengths, whether at the outset or downstream

from NGS, the exponential growth of sequence databases is
arguably outstripping our ability to analyze the data. Con-
sequently, there have been significant efforts in accelerating
sequence-alignment tools on various parallel architectures in
recent years.

Graphics processing units (GPUs) offer the promise
of accelerating bioinformatics tools due to their superior
performance and energy efficiency. Despite the promising
speedups that have been reported for other sequence align-
ment tools such as Smith-Waterman [14], BLAST remains
the most popular sequence analysis tool while also being one
of the most challenging ones to accelerate on GPUs. Due
to its popularity, the BLAST algorithm has been heavily
optimized for CPU architectures over the past two decades.
These CPU-oriented optimizations can create many obsta-
cles when accelerating BLAST on GPU architectures. First,
to improve computational efficiency, BLAST employs input-
sensitive heuristics to quickly eliminate unnecessary search
space. Although this technique is very effective compared to
alignment algorithms that search the entire alignment space,
e.g., Smith-Waterman, it makes the program execution path
unpredictable, thus easily creating many divergent branches
on GPU architectures. Second, to improve memory-access
efficiency, the data structures used in BLAST are finely
tuned to leverage the large CPU cache. Simply reusing
these data structures on GPUs can cause serious inefficiency
in memory access because the cache space on GPUs is
significantly smaller than that on CPUs.

State-of-the-art BLAST implementations on GPUs [16],
[17], [15], [9] all adopt an embarrassingly parallel approach,
where one sequence alignment is scheduled to only one
thread. In contrast, a fine-grained mapping approach, e.g.,
using warps of threads to accelerate one sequence alignment,
could theoretically better leverage the abundant parallelism
offered by GPU architectures. Our experience, however,
shows that designing a fine-grained mapping approach for
BLAST is very difficult, mainly because of the high irreg-
ularity in execution paths and memory-access patterns that
are caused by various CPU optimizations of the BLAST al-
gorithm. Further performance improvements for accelerating
BLAST on GPUs will require a fundamental rethinking of
algorithm design.

Consequently, we propose cuBLASTP, a novel mapping
of the BLAST algorithm onto a GPU. First, we decouple
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stages in the BLAST algorithm and parallelize stages having
different computational patterns with different strategies
on the GPU. Second, in order to eliminate the branch
divergence and irregular memory access, we propose bin-
ning optimizations, including four important techniques: (1)
memory-access reordering to reorder hits from column-
major order to diagonal-major order, (2) position-based
indexing to map a hit with a packed data structure to a
bin, (3) aggressive hit filtering to eliminate hits beyond the
threshold distance along the diagonal, and (4) diagonal-
based parallelism and hit-based parallelism for ungapped
extension to extend sequences with different lengths in
databases. Furthermore, we design a hierarchical buffering
mechanism for the core data structures, e.g., determinis-
tic finite automation (DFA) and position-specific scoring
matrix (PSS matrix), with the latest features provided by
the NVIDIA Kepler architecture, e.g., read-only cache, to
improve the data access bandwidth on GPU.

The experimental results show that when running the most
critical phases of BLASTP, i.e., hit detection and ungapped
extension, on a NVIDIA Kepler GPU, cuBLASTP achieves
up to a 7.8-fold speedup over the highly optimized sequential
FSA-BLAST and 2.9-fold speedup over the multithreaded
NCBI-BLAST on a quad-core CPU. Moreover, for the
overall program execution, cuBLASTP gets up to a 5.0-
fold and 3.7-fold speedup, respectively, over sequential FSA-
BLAST and multithreaded NCBI-BLAST. This is achieved,
in part, by overlapping the data transfer and the kernel
execution. In addition, compared with GPU-BLASTP, the
fastest GPU implementation of BLAST to date, cuBLASTP
achieves up to 2.8-fold speedup for the kernel execution and
1.8-fold speedup for the overall program execution.

II. BACKGROUND

A. Basic Load Alignment Search Tool

BLAST is a family of algorithms with variants used for
different searching alignments, e.g., protein and nucleotide.
BLAST algorithms provide the approximation to the dynam-
ical programming method (i.e., Smith-Waterman algorithm).
Instead of comparing entire sequences, BLAST algorithms
locate high scoring short matches (i.e., hits) between the
query sequence and the subject sequences, and extend hits
to longer alignments. Only having the slight loss of the
accuracy, BLAST algorithms can be significantly faster than
Smith-Waterman algorithm. Among them, BLASTP is used
to compare protein sequences.

We take FSA-BLAST [1], which has been optimized
on CPU for protein sequence searching, as an example to
introduce the BLAST algorithm. There are four stages in
BLAST algorithm: (1) hit detection identifies high scoring
short matches (i.e., hits) with a fixed length between a
query sequence and the subject sequences; (2) ungapped
extension determines whether two or more hits from the hit
detection can form the basis of a local alignment without

insertions and deletions of residues and passes hits with the
requested scores to the next stage; (3) gapped extension
performs the further extension based on alignments from the
previous stage and allows gaps; (4) gapped alignment with
traceback re-scores all alignments from the previous stage
using a traceback algorithm and displays the alignments with
high scores.

The rest of this paper is organized as follows. Section II
provides a brief background about the CUDA programming
model and the BLASTP algorithm. Section III surveys the
related work. Sections IV and V discuss our parallelization of
the BLASTP and our methodologies in optimizing the program
performance, respectively. We then present our performance
evaluation and characterization in Section VI and conclude in
Section VII.

II. BACKGROUND

In this section, we give a brief description of the GPU
architecture, its associated CUDA programming model, and
the BLAST algorithm.

A. GPU Architecture and CUDA Programming Model

Originally, GPUs were designed solely for graphics applica-
tions, which are compute-intensive and data-parallel in nature.
With the elimination of key architectural limitations, GPUs
have evolved from their traditional roots as a graphics pipeline
into programmable devices that can support general-purpose
scientific computation, i.e., general purpose computation on
GPUs (GPGPUs). With the introduction of easy-to-use pro-
gramming models such as NVIDIA’s Compute Unified Device
Architecture (CUDA) [22] and OpenCL [10], more and more
applications continue to be ported to the GPU [8], [18], [20],
[25], [27].

A NVIDIA GPU consists of a set of streaming multiproces-
sors (SMs), where each SM contains a few scalar processors
(SPs) On each SM, there are four types of on-chip memory,
i.e., register, shared memory, constant cache, and texture
cache. This on-chip memory can only be accessed by threads
executing on the same SM. On a GPU card, there are also
two types of off-chip memory, i.e., global memory and local
memory. Global memory can be accessed by all threads on the
GPU; while local memory is used in the same way as registers
except that it is off-chip.

Within the GPU memory hierarchy, on-chip memory has
low access latency but a relatively small size. On the contrary,
off-chip memory has a much larger size but also high access
latency. One way to improve the efficiency of accessing off-
chip global memory is to use coalesced read/write operations.
On the latest NVIDIA Fermi GPU architecture, L1 and L2
caches are provided to improve the efficiency of global mem-
ory access, especially for irregular access patterns.

CUDA is an extension of the C programming language
provided by NVIDIA. It allows compute-intensive and data-
parallel parts of a program to be executed on a GPU to
take the advantage of its computational capability. Specifically,
parallel portions of the program are implemented as kernels
and compiled into device instruction sets. Kernels are called
on the host and executed on the device. Each kernel consists
of a set of blocks, and each block contains a set of threads.

In addition to the above, CUDA provides functions for read-
modify-write atomic operations. We also ensure that all the
device memory that is needed on the GPU is allocated In
CUDA, there are functions provided for read-modify-write
atomic operations. Also, since dynamic memory allocation

is not supported2, all device memory should be allocated
beforehand. Finally, memory address space on the device is
different from that on the host. Consequently, pointers within
host-side data structures such as linked list will become invalid
after transferred to the device memory.

B. Basic Local Alignment Search Tool

BLAST is actually a family of algorithms, with variants
used for searching alignments of different types (i.e., protein
and nucleotide) of sequences. Among them, BLASTP is used
to compare protein sequences against a database of protein
sequences. There are four stages in the BLASTP algorithm:

1) Hit detection. Hit detection identifies high-scoring
matches (i.e., hits) of a fixed length between a query
sequence and a subject sequence (i.e., a database se-
quence).

2) Ungapped extension. Ungapped extension determines
whether two or more hits obtained from the first stage
can form the basis of a local alignment that does not
include insertions or deletions of residues. The align-
ments with scores higher than a certain threshold will
be passed to the next stage.

3) Gapped alignment. This stage performs further exten-
sion on the previously obtained alignments with gaps
allowed. The result alignments will be filtered with
another threshold.

4) Gapped alignment with traceback. In this stage, the final
alignments to be displayed to users are re-scored, and the
alignments are generated using a traceback algorithm.

Figure 1 gives an example of the first three stages of alignment
computation. The fourth stage repeats the third one with
traceback information recorded. BLAST reports alignment
scores calculated based on a scoring matrix and gap penalty
factors. In addition, statistic information such as “expect”
value that measures the significance of each alignment is also
reported.

Sbjct: ...CL-PIXYAALGDLPLIYPFLVNDPABC...
Query: ...CFAJ-PDALLGPLPNIYPFIVNDPGEG...

Ungapped Extension

Gapped Alignment Hit Detection

Fig. 1. First Three Stages of BLAST Execution

Our study in this paper is based on FSA-BLAST 1.05 [7],
a highly optimized sequential BLAST implementation.

III. RELATED WORK

Since the BLAST tool is both compute- and data-intensive,
many approaches have been investigated to parallelize BLAST
in the past. On multi-core platforms, the BLAST implemen-
tation from National Center for Biotechnology Information
(NCBI) has been parallelized with pthreads. On cluster

2We noticed that this feature is added in CUDA 3.2. But when this paper
was submitted, CUDA 3.2 is unavailable.

Figure 1: First Three Stages of BLAST Execution [17]

Figure 1 illustrates the first three stages of alignment
computation. Since the hit detection and ungapped extension
are most compute intensive stages, most of the BLAST
optimizations focus on these two stages. In the hit detection
and ungapped extension, the core data structures, such as
the deterministic finite automaton (DFA) [6], the position-
specific scoring matrix (PSS matrix or PSSM) and the
scoring matrix, are described as below.

• Deterministic Finite Automaton (DFA), also known
as deterministic finite state machine (DFSM), provides
a general method for searching one or more fixed- or
variable-length strings expressed in arbitrary, user-defined
alphabets. In BLAST, the query sequence is decomposed
into fixed-length short words and converted into a DFA.
As shown in Figure 2(a), each word from a subject
sequence goes through the transition of states in DFA. The
matched positions will be obtained after a fixed number
of transitions.

• Position-Specific Scoring Matrix (PSS matrix), also
known as position-specific weight matrix (PSWM), is a
type of scoring matrix built from the query sequence. As
shown in Figure 2(b), a column in PSS matrix represents
a position in a query sequence, and the scores in rows
indicate the similarity of all symbols (i.e., amino acid)
to the symbol in the column of the query sequence. To
obtain the score for ’X’ in the subject sequence and ’Y’ in
the query sequence, the program should get the character
’X’ in the subject sequence based on the column number,
and go to the row for ’X’ with the column number to
get the score ’-1’. Through checking the PSS matrix,
BLAST algorithm can quickly get the similarity between
two symbols in corresponding positions of two sequences.

• Scoring Matrix is an alternative data structure of the
PSS matrix. The scoring matrix has the fixed but smaller
size than that of the PSS matrix, since the elements in
columns represent words instead of positions in the PSS
matrix. The drawback to use the scoring matrix is that
more memory access operations are needed. As shown in
Figure 2(c), to compare the same pair of letters as above,
the program has to load the letter ’X’ from the subject
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sequence and ’Y’ from the query sequence, and then to
find out the score ’-1’ in the column ’X’ and row ’Y’.
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(a) Read Matched Query Position via DFA [6]

Subject: ... E  N  Y  P  I  B  X  Z  Y  M  P...

Query: ... N  E  Y  B  A  B  Y  Z ... M  P  K   

A  ... -1 -2 -1 -2  6 -2 -1 -2 ...-2 -1 -2
        .  .  .  .  .  .  .  .     .  .  .
        .  .  .  .  .  .  .  .     .  .  .
X  ... -1 -2 -1 -2 -2 -2 -1 -2 ...-2 -1 -2
Y  ... -1 -2  7 -2 -2 -2  7 -2 ...-2 -1 -2

All 
Protein 
Letters

(b) Scoring via PSS Matrix [17]

Subject: ... E  N  Y  P  I  B  X  Z  Y  M  P...

Query: ... N  E  Y  B  A  B  Y  Z ... M  P  K   

  A    B    C    D    …      X  Y
A  ...  4 -2 -1 -2  ...-2 -1 
        .  .  .  .      .  . 
        .  .  .  .      .  . 
X  ... -1 -2 -1 -2  ... 4 -1 
Y  ... -1 -2  7 -2  ...-1  7 

All 
Protein 
Letters

(c) Scoring via Scoring Matrix [17]

Figure 2: Core Data Structures in BLAST

B. GPU Architecture and CUDA Programming Model

Due to their superior performance, GPUs have been
widely used for compute- and data-intensive applications.
Since we carry out our evaluations on NVIDIA GPUs, we
refer to NVIDIA GPUs architecture and CUDA program-
ming model in the remaining sections.

A NVIDIA GPU consists of a set of streaming multi-
processors (SMs), each of which consists of multiple cores
as Single Instruction Multiple Data (SIMD) units. There are
two types of memory in GPU, on-chip memory and off-chip
memory. On-chip memory, such as register, shared memory,
constant cache, etc., has low access latency but a relatively
small size. Off-chip memory, including global memory and
local memory, has much larger size but higher access la-
tency. To efficiently access data in the global memory, the
read/write operations are required to be coalesced. The latest
NVIDIA Kepler architecture also offers various caches to
improve the efficiency of global memory access, especially
for those with irregular access patterns. A 48 Kilobytes
cache known as the read-only cache is introduced to improve
irregular memory access performance.

Compute Unified Device Architecture (CUDA) [12] is
the programming model provided by NVIDIA. The CUDA
functions that will be running on GPUs are called GPU

kernels. A kernel will be running in parallel by a large
number of threads on GPU. The threads are grouped into
blocks of threads and grids of blocks. When a kernel is
launched by CPU, the parameters, such as the number of
threads per block and the number of blocks per grid, should
be specified.

III. RELATED WORK

The BLAST tools are compute- and data-intensive ap-
plications, many studies have been proposed to parallelize
them on different parallel architectures. NCBI BLAST+ [5]
has been proposed to use Pthreads to speedup BLAST on
multicore CPU by National Center for Biotechnology Infor-
mation (NCBI). On CPU clusters, several parallel designs,
including TurboBLAST [4], ScalaBLAST [13] and mpi-
BLAST [2], have been proposed. Among them, mpiBLAST
is a widely used design based on NCBI BLAST library.
With the efficient task scheduling mechanism and scalable
I/O subsystem, mpiBLAST can leverage tens of thousands
processors to speedup BLAST. To seek higher throughput,
BLAST has also been implemented on various accelerators,
such as FPGAs [8], [11], [10]. Mahram et al. [10] have
proposed a co-processing approach that leverages both CPU
and FPGA to accelerate BLAST. In their design, FPGAs
are used to pre-filter dissimilar subject sequences; and then
the filtered databases are searched by NCBI BLAST on the
CPU.

GPUs are also used to accelerate BLAST. Four
GPU BLAST designs, including CUDA-NCBI-BLAST [9],
GPU-BLAST [15], CUDA-BLASTP [16] and GPU-
BLASTP [17], have been proposed since 2010. CUDA-
NCBI-BLAST was the first GPU-implemented BLAST
based on NCBI BLAST. The first three steps, including
hit detection, ungapped extension and gapped extension,
were ported on GPU. However, without GPU architecture-
aware optimizations, this implementation achieved only 1.7x
to 2.7x speedup on NVIDIA G80 GPU over a single-core
Pentium4 CPU. Shortly after it, GPU-NCBI-BLAST built on
the NCBI BLAST was proposed. The most time-consuming
stages, including the hit detection and ungapped extension,
were ported on GPU. With the same accuracy results as
NCBI BLAST, the authors claimed approximate four-fold
speedup using NVIDIA Fermi GPU over a single-threaded
CPU implementation, while two-fold speedup over a multi-
threaded CPU implementation on a hexa-core processor.
CUDA-BLASTP was proposed to use a compressed DFA
for the hit detection with an additional step to sort the
sequences in the databases to improve the load balance.
CUDA-BLASTP also ported the gapped extension on GPU.
GPU-BLASTP improved the load balance further via the
runtime work queue design, with which a thread could grab
next sequence after completed processing current subject
sequence. GPU-BLASTP also provided a two-level buffering
for the output of the ungapped extension, where the output
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sizes of different sequences could be different since the
number of output alignments cannot be obtained in advance.
Based on the survey paper [7], GPU-BLASTP is the fastest
GPU implementation to date with two-fold speedup over
CUDA-BLASTP.

While these designs on GPU illustrated significant
speedup over the CPU version, the massively parallel ca-
pability of GPU was constrained by the coarse-grained
parallelism, where one sequence alignment was mapped
to only one thread and different stages of alignment were
executed sequentially by this thread. Although some of these
studies realized the irregular memory access challenge map-
ping multiple threads for one sequence alignment, without
techniques to eliminate the branch divergence and irregular
memory access, the existing research couldn’t provide an
efficient and fine-grained BLAST design on GPU.

IV. DESIGN OF FINE-GRAINED BLASTP

A. Challenges of Mapping BLASTP to GPUs

Figure 3 illustrates the hit detection and ungapped exten-
sion phases in the BLASTP algorithm. In the hit detection,
each subject sequence in the database will be scanned from
left to right, and each word will be compared with all words
in the query sequence. All similar words will be tagged as
hits. The hit detection is in the column-major order in nature,
that means all hits in one column will be tagged at the same
time. The ungapped extension is in the diagonal-major order,
where two or more hits in one diagonal will be checked
to trigger the extension along the diagonal until the gap is
encountered or the diagonal is ended.

Subject Sequence

Q
uery Sequence

(2,
8)

(1,
3)

ABC
ABB

ABB
ABC

ABA

(7,
3)

(6,
8)

(10,
6)

Hit Detection
Search direction

ABA ABBABC

5

3

lasthit_arr records previous 
hits for each diagonal

Dia -4 Dia 2

1

2

…... Dia 6…...

4

(QueryPos, 
SubPos)

Access Order

Figure 3: BLASTP Hit Detection and Ungapped Extension

Algorithm 1 illustrates the algorithm used in existing
BLASTP research on CPU and GPU. When one hit is de-
tected, the corresponding diagonal number will be calculated
as the difference of hit.sub pos and hit.query pos as shown
in Line 5. The previous hit in this diagonal will be obtained
from the lasthit arr array. If the distance between current

hit and previous hit is shorter than a threshold, the ungapped
extension is triggered. After finish the extension in current
column, the algorithm will move to the next word in the
subject sequence.

Algorithm 1 Hit Detection and Ungapped Extension
Input: subject seqs subject sequences from the database
Output: extensions extensions for gapped extension

1: for all seqi in subject seqs do
2: for all wordj in seqi do
3: hit dfa search(wordj)

4: if hit 6= null then
5: diagonal hit.sub pos� hit.query pos

+query length

6: lasthit lasthit arr[diagonal]

7: disance hit.sub pos� lasthit.sub pos

8: if distance < threshold then
9: ext ungapped ext(hit, lasthit)

10: extensions.add(ext)

11: lasthit arr[diagonal] ext.sub pos

12: else
13: lasthit arr[diagonal] hit.sub pos

14: end if
15: end if
16: end for
17: end for

This algorithm illustrates the interleaving execution of the
hit detection and ungapped extension. Due to the heuristic
nature, there exists irregular execution paths for different
words in the subject sequence. Since the number of hits be-
ing able to trigger ungapped extension in different columns
cannot be obtained in advance, it is hard to avoid the
divergence branch when threads in a same warp are mapped
to handle different sequence alignment. Another issue is
the random memory access mode in one thread, since the
current hit and the previous hit could be in any place of
the diagonal. When threads of a warp are used for different
sequence alignment, it is hard to organize the coalesced
memory access, since each thread has its own previous hit
array.

A “fine-grained” multithreaded mode that uses multiple
threads unfolding the “for” loop could also lead to severe
branch divergence on GPU, considering the uncertain hit
number for different words and the uncertain distance with
previous hits in diagonals. Furthermore, since any element in
the previous hit array may be accessed in any iteration, the
“fine-grained” mode may also lead to significant memory ac-
cess conflict in the irregular mode. Due to these challenges,
it is not straightforward to design a fine-grained BLASTP to
fully utilize the capability of GPU. We decouple the stages
of the BLASTP algorithm and use different strategies to
optimize each of them.
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B. Hit Detection with Binning

In the fine-grained hit detection, we use multiple threads
to detect hit positions in current subject sequence. We issue
multiple threads in the column-major order, meaning that
the successive threads will handle the consecutive words
in the subject sequence. In this way, the memory access
for words is efficient in the coalesced pattern. Since the
ungapped extension has to be executed along diagonals, the
output results of hit detection need to be reorganized by the
diagonals. As a result, we introduce the bin data structure
and bin-based algorithms for hit detection and ungapped
extension.

We first allocate the consecutive buffer in the global
memory, and organize the buffer as bins to hold the hit po-
sitions. Although one bin can be allocated for one diagonal,
considering the increasing length of sequence in databases,
we allocate one bin for multiple diagonals to reduce memory
usage.
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Figure 4: Hit Detection and Binning

Figure 4 illustrates the process of fine-grained hit de-
tection, where one word comparison between the subject
sequence and the query sequence will be scheduled to one
thread. A thread will get the word from the corresponding
position (column number) in the subject sequence, search
the word in the DFA to get hit positions (row numbers), and
immediately calculate the corresponding diagonal numbers
as the difference of row numbers and column number. For
example, the thread 3 should get the word “ABC” from
the column 3 of the subject sequence, search “ABC” in the

DFA to get the hit positions 1, 7, and 11, and calculate the
diagonal numbers as 2, -4, and -8. Since different threads
can write hit positions into a same bin simultaneously, we
have to use atomic operations to write hit positions.

Algorithm 2 Warp-based Hit Detection
Input: subject seqs subject sequences from the database
Output: bin bins contains hits

1: tid blockDim.x ⇤ blockIdx.x+ threadIdx.x

2: numWarps gridDim.x ⇤ blockDim.x/warpSize

3: warpId tid/warpSize

4: laneId threadIdx.x mod warpSize

5: i warpId

6: while i < num seqs do
7: j  laneId

8: while j < seq[i].length do
9: hits dfa search(seq[i][j])

10: while hits 6= null do
11: hit hits.current

12: diagonal hit.sub pos� hit.query pos

+query length

13: binId diagonal mod num bins

14: curr  atomicAdd(top[bin id], 1)

15: bin[binId][curr] hit

16: hits hits.next

17: end while
18: j  j + warpSize

19: end while
20: i i+ numWarps

21: end while

Algorithm 2 describes the fine-grained hit detection al-
gorithm. The variable num bins represents the number of
bins, which is a configurable parameter in our fine-grained
BLASTP algorithm. We set the number of bins to 128 in
our experimental evaluation. This algorithm will schedule
a warp of threads for a specific sequence. Each word in
current thread seq[i][j] is handled by the thread with laneId
j. For each hit of the word, the diagonal number will be
calculated and mapped to the bin at Line 13. An array
named top in shared memory is allocated. Each element
of this array is used to store current available position in
corresponding bin. Using atomic operation on top, we can
avoid the heavy overhead of atomic operation directly on
bins that are allocated on global memory. A warp of threads
will be scheduled to next sequence until all words in current
sequence are detected.

C. Hit Reorganization with Sorting and Filtering
After the hit detection, hits are grouped into bins by

diagonal numbers. Since multiple threads could write hits
for different diagonals into a same bin simultaneously, the
sequence of hits in each bin are out of order. Because the
ungapped extension will determine whether continue the
extension based on the distance of two or more neighboring
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hits in a diagonal, we have to reorganize hits in each bin to
avoid irregular memory access.

So
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Figure 5: Sorting and Filtering with Bin Data Structure

The hit reorganization is to sort the hits by diagonal
number with a top-left to bottom-right order. Since one
hit is related with row number, column number, diagonal
number, and sequence number, we design the bin data
structure for the hit to unify the information. As shown
in Figure 5, we pack sequence number, diagonal number,
and subject position (column number) into a 64 bit length
integer. Because more than 99.95% sequences in the most
recent NCBI NR database are shorted than 4K letters and
the longest sequence contains 36,805 letters, it is enough
to use the 16 bit length for the subject position, which can
represent 128K positions. Using this packed data structure,
we can sort hits in each bin once rather than sort hits
twice by diagonal number and subject position, respectively.
Another benefit to use this data structure is that when we
do the ungapped extension, which needs sequence number,
query position (row number) and subject position (column
number), the query position can be easily calculated as
subject position � diagonal number, and the sequence
number can be obtained with the shift operation. With the
sorted hits using the specific data structure, the irregular
memory access in ungapped extension can be reduced sig-
nificantly.

After we finish sorting the hits in bins, we add the filtering
step to eliminate hits whose distances with neighbors are
longer than a threshold, that means these hits can not be used
to trigger the ungapped extension (based on two or more hits
in each diagonal). A warp of threads are used to eliminate
hits for each sequence in one bin. A thread scheduled for
one hit compares the threshold with the distance to the
neighbor on left and then the distance to the neighbor on
right. Only when the distances to two neighbors are longer
than the threshold, the hits will be eliminated. The overall
performance with the additional filtering step is determined
by the ratio of overhead of hit filtering and the overhead
of the branch divergence. For the datasets used in our
experimental evaluation, we have observed only 5% to 11%
hits from the hit detection stage can be used to trigger the
ungapped extension. As a result, the overall performance is
improved with the hit filtering.

D. Fine-grained Ungapped Extension

After the hit reorganization with sorting and filtering, the
hits in each bin are arranged in ascending order by diagonals
and the hits whose distances with neighbors are longer than
the threshold are eliminated. Based on the ordered hits, we
design a diagonal-based ungapped extension algorithm that
is illustrated in Algorithm 3, where one diagonal will be
scheduled to one thread for the ungapped extension. As
shown from Line 6 to Line 8, different thread warps are
scheduled to different bins and threads in a warp are sched-
uled to different diagonals. We get the sequence number
seq id, the column number sub pos, and the row number
query pos from the bin data structure and call ungapped ext
function to extend the diagonal until a gap is encountered
or the diagonal is ended. The variable ext represents the
extension result. Since an extension could cover other hits
along the diagonal, Line 17 is used to determine whether a
hit is covered by the previous extension. Only if a hit is not
covered by the previous extension, we trigger the extension
from this hit.
Algorithm 3 Diagonal-based Ungapped Extension
Input: bin binned hits
Output: extensions extensions for gapped extension

1: tid blockDim.x ⇤ blockIdx.x+ threadIdx.x

2: numWarps gridDim.x ⇤ blockDim.x/warpSize

3: waprId tid/warpSize

4: laneId threadIdx.x mod warpSize

5: i warpId

6: while i < num bins do
7: j  laneId

8: while j < bini.num diagonals do
9: dia start dia offset[j]

10: dia end dia offset[j + 1]

11: ext reach �1
12: for k  dia start to dia end do
13: hit bin[i][k]

14: sub pos hit.sub pos

15: query pos hit.sub pos

�hit.diag num

16: seq id hit.seq id

17: if sub pos > ext reach then
18: ext ungapped ext(seq id,

query pos, sub pos)

19: extensions.add(ext)

20: ext reach ext.sub pos

21: end if
22: end for
23: j  j + warpSize

24: end while
25: i i+ numWarps

26: end while

Since there are still divergence branches in the diagonal-
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Algorithm 4 Hit-based Ungapped Extension
Input: bin binned hits
Output: extensions extensions for gapped extension

1: tid blockDim.x ⇤ blockIdx.x
+threadIdx.x

2: numWarps gridDim.x ⇤ blockDim.x/warpSize

3: waprId tid/warpSize

4: laneId threadIdx.x mod warpSize

5: i warpId

6: while i < num bins do
7: j  laneId

8: while j < bini.num hits do
9: j  j + warpSize

10: hit bin[i][j]

11: sub pos hit.sub pos

12: query pos hit.sub pos� hit.diag num

13: seq id hit.seq id

14: ext ungapped ext(seq id,

query pos, sub pos)

15: extensions.add(ext)

16: j  j + warpSize

17: end while
18: i i+ numWarps

19: end while

based extension algorithm, we design a hit-based ungapped
extension to eliminate the divergence further. Algorithm 4
illustrates the hit-based ungapped extension. We schedule
one thread to one hit and start the extension per hit indepen-
dently. Since the extension results from different hits could
be the same, the hit-based extension may write duplication at
Line 15 with the redundant computation. We leave the result
de-duplication in the following stag running on CPU. The
performance comparison between the hit-based ungapped
extension and the diagonal-based ungapped extension de-
pends on the characters of the sequence. If there are too
many hits that can be covered by the extension from other
hits in diagonals, the diagonal-based ungapped extension
should performs better. As a result, we use a configurable
parameter to allow the user to select the ungapped extension
algorithms at runtime.

Thread 0

(a) Coarse-grained

Thread 0

Thread 0

Thread 2

(b) Diagonal-based

Warp 1

Warp 0

Warp 2

(c) Hit-based

Figure 6: Three Level of Parallelism of Ungapped Extension

Figure 6 compares the parallelism mode of different
ungapped extension algorithms. Figure 6(a) illustrates the
coarse-grained ungapped extension in existing research.
Since the hit detection and ungapped extension are inter-
leaved, the coarse-grained ungapped extension extends hits

from different diagonals in a sequence sequentially. Our
warp-based algorithms can extend hits in a sequence in
parallel.

E. Hierarchical Buffering
To fully utilize memory bandwidth, we propose a hier-

archical buffering for the core data structure DFA used in
the hit detection. As shown in Figure 2(a), DFA consists of
the states in the finite state machine and the query positions
for the states. Both the states and query positions are highly
reused in hit detection for each word. Loading DFA into
shared memory can improve the data access bandwidth.
However, because the number of query positions depend on
the query length, prefetching all positions into the shared
memory may affect the occupancy of GPU kernels and
offset the improvement from higher data access bandwidth,
especially for the long sequences. Thus, we load the states
having relatively fixed and small sizes into the shared
memory, and store query positions on the constant memory.
On the latest NVIDIA Kepler GPU, a 48KB read-only cache
with relaxed memory coalescing rules is introduced for
the reusable but randomly accessed data. We allocate the
query positions in the global memory and tag them with the
keyword “const restrict” for loading them into the read-
only cache automatically.

Shared Memory Read-Only Cache

1 2
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Thread 8
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Figure 7: Hierarchical Buffering for DFA on Kepler GPU

Figure 7 illustrates the hierarchical buffering architecture
for DFA on Kepler GPU. We put the DFA states, e.g., “ABB”
and “ABC”, into the shared memory. For the first access of
“ABC” from thread 3, the positions are set into bins and
loaded into the read-only cache. For the following access of
“ABC” from thread 13, the positions will be obtained from
the cache.

PSS matrix (or scoring matrix) is core data structure
highly reused in the ungapped extension. The number of
column in PSS matrix is equal to the length of the query
sequence. Since each column contains 64 Bytes (32 rows
with 2 Bytes for each), the size of PSS matrix increase
quickly with the query length. The 48KB shared memory
cannot hold the PSS matrix for the query sequence longer
than 768. Furthermore, too many shared memory usage
will degrade the performance due to the degraded GPU
occupancy. On the other hand, if the scoring matrix is used to
substitute the PSS matrix, the scoring matrix with the fixed
2KB size can be always fit into the shared memory, while
more memory accesses using scoring matrix could decrease
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the performance compared with using PSS matrix for short
sequences. Thus, we provide a configurable parameter to
select PSS matrix or scoring matrix. For the PSS matrix, we
put it into the shared memory until a threshold and then we
put it into the global memory. For the scoring matrix, we
always put it into the shared memory. We will compare the
performance using the PSS matrix and the scoring matrix in
Section V.

V. PERFORMANCE EVALUATION

We carry out our experimental evaluation on two com-
pute nodes. Each node has Intel Core i5-2400 quad-core
processor with 6MB shared L3 cache, and 8GB DDR3 main
memory. One node is installed with NVIDIA Fermi GPU,
and the other one is installed with NVIDIA Kepler K20c
GPU. Each node has Debian Linux 3.2.35-2 and NVIDIA
CUDA toolkit 5.0. We use two typical databases from NCBI.
One is env nr database including 6 million sequences with
the total size at 1.7 GB. The average sequence length
is around 200 letters. Another one is swissprot database
including 300,000 sequences with the total size at 150 MB.
The average sequence length is around 370 letters. For
each database, we choose three sequences as the query
sequences, which lengths are 127 Byte, 517 Byte, and
1054 Byte, respectively. They are represented as “query127”,
“query517”, and “query1054” in the following figures.

A. Configurable Parameter Evaluation

Since the configurable parameters are more sensitive to
the query sequence instead of the subject sequence in the
database, we use database env nr to investigate the relation-
ship between the performance and different configurations.
We first compare the performance using the PSS matrix and
the scoring matrix. Figure 8(a) illustrates their performance
comparison on NVIDIA Kepler K20c GPU. Compared with
PSS matrix, we observe -24%, 50%, and 237% perfor-
mance improvement using scoring matrix for “query127”,
“query517”, and “query1054”, respectively. As mentioned
in Section IV-E, PSS matrix size is larger than the shared
memory size when the length of the query sequence is longer
than 768 Byte. For the sequence longer than that, we have
to move PSS matrix to the constant memory. Using scoring
matrix for the medium sequence and long sequence (i.e.,
“query517” and “query1054”), we can reduce the shared
memory usage, in turn improve the occupancy of GPU
kernel. For the short sequence “query127”, the PSS matrix
can be fit into the shared memory. Using the PSS matrix,
we can decrease the memory access operations compared
with using the scoring matrix. As a result, we configure
our algorithm to use the PSS matrix for “query127” and the
scoring matrix for “query517” and “query1057” on NVIDIA
Kepler K20c GPU for the following evaluations. Since we
observe the similar performance comparison on NVIDIA

Fermi GPU, we omit the performance comparison on Fermi
for saving space.
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Figure 8: Performance Comparison with Different Configurations

We also compare the performance using the diagonal-
based ungapped extension and the hit-based ungapped ex-
tension on NVIDIA Kepler K20c GPU. As illustrated in
Figure 8(b), compared with the hit-based extension, the
diagonal-based extension gets -3%, 1%, and 21% per-
formance improvement for “query127”, “query517”, and
“query1054”, respectively. Because the diagonal length sig-
nificantly affects the execution time of ungapped extension
and the diagonal length is only determined by the query
sequence length, less redundant computation is observed
in the hit-based extension in “query127” than “query517”
and “query1054”. We configure our algorithm to use the
hit-based extension for “query127” and the diagonal-based
extension for other two on NVIDIA Kepler K20c GPU in
the following evaluation. We observe the similar tendency on
NVIDIA Fermi GPU and then set the same configurations
in our algorithm.

B. Performance Comparison with Existing BLASTP Algo-
rithms

Figure 9 illustrates the normalized speedup of our
cuBLASTP running on NVIDIA Fermi GPU and Kepler
GPU over the sequential FSA-BLAST on CPU, the mul-
tithreaded NCBI-BLAST on CPU, and GPU-BLASTP on
GPUs, which is the fastest BLAST on GPU to date.

Compared with FSA-BLAST, Figure 9(a) and Figure 9(b)
illustrate on the database env nr, cuBLASTP has up to 7.8-
fold speedup and 4.7-fold speedup for the critical phases,
including the hit detection and ungapped extension, and
the overall performance, respectively. Figure 9(c) and Fig-
ure 9(d) show that on the database swissprot, cuBLASTP has
up to 5.3-fold speedup and 5-fold speedup for the critical
phases and the overall performance, respectively.

Compared with NCBI-BLAST with 4 threads, Figure 9(e)
and Figure 9(f) illustrate on the database env nr, cuBLASTP
has up to 2.9-fold speedup and 1.8-fold speedup for the
critical phases and the overall performance, respectively.
Figure 9(g) and Figure 9(h) show that on the database swis-
sprot, cuBLASTP has up to 2.4-fold speedup and 3.7-fold
speedup for the critical phases and the overall performance,
respectively.

IEEE International Parallel and Distributed Processing Symposium, May 2014, Phoenix, Arizona



0"

1"

2"

3"

4"

5"

6"

7"

8"

9"

NVIDIA"Fermi" NVIDIA"Kepler"

Sp
ee
du

p&
fo
r&c
ri,

ca
l&p
ha

se
s&&
ov
er
&F
SA

4B
LA

ST
&

Database:&env_nr&

query127" query517" query1054"

(a)

0"

1"

2"

3"

4"

5"

NVIDIA"Fermi" NVIDA"Kepler"

O
ve
ra
ll'
sp
ee
du

p'
ov
er
'F
SA

0B
LA

ST
''

Database:'env_nr'

query127" query517" query1054"

(b)

0"

1"

2"

3"

4"

5"

6"

NVIDIA"Fermi" NVIDIA"Kepler"

Sp
ee
du

p&
fo
r&c
ri,

ca
l&p
ha

se
s&&
ov
er
&F
SA

4B
LA

ST
&

Database:&swissprot&

query127" query517" query1054"

(c)

0"

1"

2"

3"

4"

5"

6"

NVIDIA"Fermi" NVIDIA"Kepler"

O
ve
ra
ll'
sp
ee
du

p'
ov
er
'F
SA

0B
LA

ST
'

Database:'swissprot'

query127" query517" query1054"

(d)

0"

0.5"

1"

1.5"

2"

2.5"

3"

3.5"

NVIDIA"Fermi" NVIDIA"Kepler"

Sp
ee
du

p&
fo
r&c
ri,

ca
l&p
ha

se
s&&
ov
er
&N
CB

I6B
LA

ST
&

Database:&env_nr&

query127" query517" query1054"

(e)

0"

0.5"

1"

1.5"

2"

NVIDIA"Fermi" NVIDIA"Kepler"

O
ve
ra
ll'
sp
ee
du

p'
ov
er
'N
CB

I1B
LA

ST
'

Database:'env_nr'

query127" query517" query1054"

(f)

0"

0.5"

1"

1.5"

2"

2.5"

NVIDIA"Fermi" NVIDIA"Kepler"

Sp
ee
du

p&
fo
r&c
ri,

ca
l&p
ha

se
s&&
ov
er
&N
CB

I6B
LA

ST
&

Database:&swissprot&

query127" query517" query1054"

(g)

0"

0.5"

1"

1.5"

2"

2.5"

3"

3.5"

4"

NVIDIA"Fermi" NVIDIA"Kepler"

O
ve
ra
ll'
sp
ee
du

p'
ov
er
'N
CB

I1B
LA

ST
''

Database:'swissprot'

query127" query517" query1054"

(h)

0.0#

0.4#

0.8#

1.2#

1.6#

2.0#

2.4#

2.8#

3.2#

NVIDIA#Fermi# NVIDIA#Kepler#

Sp
ee
du

p&
fo
r&c
ri,

ca
l&p
ha

se
s&o

ve
r&G

PU
5B
LA

ST
P&

Database:&env_nr&

query127# query517# query1054#

(i)

0.0#

0.2#

0.4#

0.6#

0.8#

1.0#

1.2#

1.4#

1.6#

1.8#

2.0#

NVIDIA#Fermi# NVIDIA#Kepler#

O
ve
ra
ll'
sp
ee
du

p'
ov
er
'G
PU

0B
LA

ST
P'

Database:'env_nr'

query127# query517# query1054#

(j)

0.0#

0.2#

0.4#

0.6#

0.8#

1.0#

1.2#

1.4#

1.6#

1.8#

2.0#

2.2#

NVIDIA#Fermi# NVIDIA#Kepler#

Sp
ee
du

p&
fo
r&c
ri,

ca
l&p
ha

se
s&o

ve
r&G

PU
5B
LA

ST
P&

Database:&swissprot&

query127# query517# query1054#

(k)

0.0#

0.2#

0.4#

0.6#

0.8#

1.0#

1.2#

1.4#

1.6#

1.8#

2.0#

NVIDIA#Fermi# NVIDIA#Kepler#

O
ve
ra
ll'
sp
ee
du

p'
ov
er
'G
PU

0B
LA

ST
P'

Database:'swissprot'

query127# query517# query1054#

(l)

Figure 9: Speedup of cuBLASTP over sequential FSA-BLASTP(a-d), NCBI-BLAST with four threads(e-h) and GPU-BLASTP(i-l)

Compared with GPU-BLASTP, Figure 9(i) and Figure 9(j)
illustrate on the database env nr, cuBLASTP has up to 2.8-
fold speedup and 1.8-fold speedup for the critical phases
and the overall performance, respectively. Figure 9(k) and
Figure 9(l) show that on the database swissprot, cuBLASTP
has up to 2.1-fold speedup and 1.7-fold speedup for the
critical phases and the overall performance, respectively.

Our cuBLASTP has overlapped data transfer between
CPU and GPU with the kernel execution to improve the
overall performance. As a result, cuBLASTP has shown
the consistent improvement of the overall performance.
Figure 9(i)- 9(l) illustrate cuBLASTP has better performance
on NVIDIA Kepler than that on Fermi. It is due to the
optimization related with the Kepler architecture, such as
the hierarchical buffer using the read-only cache.

Figure 10(a), Figure 10(b), and Figure 10(c) show the pro-
filing results of GPU-BLASTP and cuBLASTP on NVIDIA
Kepler K20c GPU using NVIDIA Visual Profiling tool. For
the limited space, we only show the results for “query517”
on env nr database. Since the GPU-BLASTP has the inter-
leaved execution mode, we get the profiling number for one
fused kernel; and for cuBLASTP, we can get the profiling
results for separate kernels of hit detection, hit sorting and
filtering, and ungapped extension, respectively.

Figure 10(a) illustrates 67.0%, 46.2%, 6.1% global mem-
ory load efficiency for three cuBLASTP kernels, and 11.5%

for GPU-BLASTP fused kernel. The good efficiency in our
hit detection, and sorting and filtering comes from the coa-
lesced memory access mode: in the hit detection, the threads
in a same warp access positions of the subject sequence
successively; and in the sorting and filtering, the threads
in a same warp also access hits in one bin successively.
However, the load efficiency in our ungapped extension is
low. The ungapped extension needs to load next position
along the diagonal to check whether the extension can be
continued. Thus, any position could be loaded from the sub-
ject sequence by different threads. Due to the random access
mode, we didn’t guarantee to load positions successively by
threads in a same warp. Figure 10(d) illustrates the execution
time breakdown of cuBLASTP for “query517”. The time
spending in the ungapped extension stage is 13% of the total
execution time. As a result, although the load efficiency of
the ungapped extension is only 6.1%, it doesn’t affect our
overall speedup. Specifically, as shown in Figure 10(b) and
Figure 10(c), all three kernels of cuBLASTP have lower
branch divergence overhead and higher GPU occupancy
achieved than the GPU-BLASTP fused kernel. The profiling
number provides the insight to explain why cuBLASTP can
perform better than GPU-BLASTP. Finally, we would like
to mention our accuracy number. The outputs of cuBLASTP
are totally identical to the outputs of FAS-BLAST on CPU.
It illustrates the accuracy of our implementation is same as
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Figure 10: Profiling on cuBLASTP and GPU-BLASTP

VI. CONCLUSION AND FUTURE WORK

In this paper, we propose cuBLASTP, an efficient fine-
grained BLASTP for GPU using the CUDA programming
model. We decompose the hit detection and ungapped ex-
tension into separate phases and use different GPU kernels
to speedup their performance. In order to eliminate the
branch divergence and irregular memory access, we propose
the bin data structure based optimizations, including the
memory access reordering, the position-based indexing, the
hit sorting and filtering, and the diagonal-based and the hit-
based parallelisms for ungapped extension. We also propose
a hierarchical buffering for the core data structures to
take advantage of the latest NVIDIA Kepler architecture.
On NVIDIA Kepler GPU, cuBLASTP has up to 7.8-fold
speedup over FSA-BLAST on a single core and 2.9-fold
speedup over NCBI-BLAST on a quad-core CPU for the
critical phases and up to 5-fold and 3.7-fold speedup and
for the overall performance. Compared with GPU-BLASTP,
the existing fastest GPU BLAST algorithm, cuBLASTP has
up to 2.8-fold speedup for the critical phases and up to 1.8-
fold speedup for the overall performance.

In the future, we would like to extend cuBLASTP on large
scale systems with GPUs to match the requirement of next
generation sequencing in big data era.
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