
An Enhanced Image Reconstruction Tool for Computed
Tomography on GPUs

Xiaodong Yu, Hao Wang, Wu-chun Feng
Dept. of Computer Science, Virginia Tech

Blacksburg, VA 24060, USA
{xdyu,hwang121,wfeng}@vt.edu

Hao Gong, Guohua Cao
Dept. of Biomedical Engr. and Mechanics, Virginia Tech

Blacksburg, VA 24060, USA
{haog1,ghcao}@vt.edu

ABSTRACT
�e algebraic reconstruction technique (ART) is an iterative algo-
rithm for CT (i.e., computed tomography) image reconstruction that
delivers be�er image quality with less radiation dosage than the
industry-standard �ltered back projection (FBP). However, the high
computational cost of ART requires researchers to turn to high-
performance computing to accelerate the algorithm. Alas, existing
approaches for ART su�er from ine�cient design of compressed
data structures and computational kernels on GPUs.

�us, this paper presents our enhanced CUDA-based CT image
reconstruction tool based on the algebraic reconstruction technique
(ART) or cuART. It delivers a compression and parallelization so-
lution for ART-based image reconstruction on GPUs. We address
the under-performing, but popular, GPU libraries, e.g., cuSPARSE,
BRC, and CSR5, on the ART algorithm and propose a symmetry-
based CSR format (SCSR) to further compress the CSR data struc-
ture and optimize data access for both SpMV and SpMV T via a
column-indices permutation. We also propose sorting-based and
sorting-free blocking techniques to optimize the kernel computa-
tion by leveraging the sparsity pa�erns of the system matrix. �e
end result is that cuART can reduce the memory footprint signi�-
cantly and enable practical CT datasets to �t into a single GPU. �e
experimental results on a NVIDIA Tesla K80 GPU illustrate that
our approach can achieve up to 6.8x, 7.2x, and 5.4x speedups over
counterparts that use cuSPARSE, BRC, and CSR5, respectively.

CCS CONCEPTS
•Computingmethodologies→Linear algebra algorithms; Par-
allel algorithms; •Applied computing → Life and medical
sciences;

KEYWORDS
GPU, Computed Tomography, Image Reconstruction, Algebraic
Reconstruction Technique, Sparse Matrix-Vector Multiplication,
SpMV, Transposition

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permi�ed. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci�c permission and/or a
fee. Request permissions from permissions@acm.org.
CF’17, Siena, Italy
© 2017 ACM. 978-1-4503-4487-6/17/05. . . $15.00
DOI: h�p://dx.doi.org/10.1145/3075564.3078889

ACM Reference format:
Xiaodong Yu, Hao Wang, Wu-chun Feng and Hao Gong, Guohua Cao. 2017.
An Enhanced Image Reconstruction Tool for Computed Tomography on
GPUs. In Proceedings of CF’17, Siena, Italy, May 15-17, 2017, 10 pages.
DOI: h�p://dx.doi.org/10.1145/3075564.3078889

1 INTRODUCTION AND MOTIVATION
�e x-ray computed tomography (CT) scan is an indispensable
medical imaging diagnostic tool. Its usage has sharply increased
over the past few decades [13]. �ere are two categories of CT
image reconstruction: analytical methods, e.g., �ltered back pro-
jection (FBP), and iterative methods, e.g., algebraic reconstruction
technique (ART) [7]. Currently, FBP is the industry standard due
to its fast reconstruction speed. Although FBP can start recon-
structing images once the �rst projection is acquired, it is sensitive
to projection noise and requires more X-ray �ux to deliver be�er
reconstructed image quality. In contrast, ART is insensitive to the
noise and can provide be�er image quality with fewer projection
views and less radiation dosage. However, the usage of ART is
hindered by its high computational cost, especially for clinical ap-
plications that require instantaneous image reconstruction. As a
result, the acceleration of ART is of paramount importance.

Signi�cant research e�ort has already been invested on the ac-
celeration of ART, both algorithmically and at runtime. Some try
to accelerate ART by modifying the algorithm [10, 21, 38], while
others try to map ART to high-performance computing (HPC) plat-
forms, e.g., multicore processors [15], Beowulf clusters [19], and
FPGAs [9]. Recently, GPUs have been employed as viable accelera-
tors for ART-based CT image reconstruction [11, 16, 24, 39], due
to their superior energy e�ciency and performance, e.g., kernel-
only speedups of 10x to 15x over CPU-based solutions, when the
compressed sparse row (CSR) format is used to compress data and
advanced linear algebra subroutines (e.g., cuSPARSE [16]) are used
to accelerate computations. However, a practical CT system matrix
stored in the CSR format may still exceed a GPU’s memory capacity.
Moreover, applying the approaches found in existing libraries to
ART may result in sub-optimal performance [3, 4, 17].

In this paper, we propose our own enhanced CUDA-accelerated
algebraic reconstruction technique (i.e., cuART), which provides a
complete compression and parallelization solution for ART-based
CT image reconstruction on GPUs. Our preliminary work [33]
brie�y introduced the basic idea of our symmetry-based compres-
sion and sorting-based format transformation. In this paper, we
provide detailed methodologies and designs of our symmetry-based,
CSR format (SCSR) and a global, sorting-based, blocking technique
as well as comprehensive analyses of their bases, i.e., the symmetries
and global-level sparsity pa�ern of the system matrix. Moreover,

ACM Computing Frontiers, Siena, Italy, 2017

CF’17, May 15-17, 2017, Siena, Italy X. Yu et. al.

we propose three new designs for this enhanced cuART that are
not found in [33].

First, we propose a column-indices permutation in SCSR in order
to optimize data-access pa�erns for sparse matrix-vector (SpMV)
multiplication and its transpose (SpMV T). Second, beyond the
sorting-based blocking scheme in [33], we propose a sorting-free
blocking mechanism to transform the SCSR format into multiple
dense sub-matrices at runtime by leveraging the view-level spar-
sity pa�erns of the system matrix and aiming to reduce the pre-
processing overhead. �ird, we address the data dependencies in
the original ART algorithm and propose a parallelized ART. �ough
our parallelized ART slightly sacri�ces convergence speed, we ver-
ify that it does not a�ect the reconstruction accuracy and can deliver
overall speedup that surpasses the original ART algorithm. Based
on these optimizations, we then provide a transpose-free GPU ker-
nel to achieve signi�cant performance improvements over other
general SpMV schemes on GPUs. Our major contributions can be
summarized as follows:

• A SCSR format that leverages the symmetries of a system
matrix to further compress CSR-based data and optimize
the data access for both SpMV and SpMV T by permuting
column indices.

• A sorting-free blocking technique to convert SCSR to dense
sub-matrices at runtime by leveraging view-level sparsity
pa�erns of the system matrix.1

• A parallelized ART algorithm, along with the design of a
transpose-free GPU kernel.2

• A prototype and performance evaluation of our approach
on the NVIDIA Kepler K80 GPU, which in turn, can achieve
up to 6.8, 7.2, and 5.4-fold speedups over its counterparts
that use cuSPARSE, BRC, and CSR5, respectively.

2 BACKGROUND AND RELATEDWORK
2.1 CT Rational & System Matrix
A CT scan constructs cross-sectional images of a scanned object,
relying on a series of X-ray projection data. Figure 1 shows a
schematic diagram of a spiral CT, the dominant structure of com-
modity CT scanners. For such a structure, the object is placed
between a X-ray light source and detector. �e X-ray source emits
multiple rays that pass through the object, and the detector collects
radiation that is not absorbed by the object. �e X-ray source and
detector spin around the central axis of the object with constant
step length, and multiple one-dimensional (1D) projection data at
varying views are collected.

According to Beer’s law, the mathematical model of CT is a Radon
transform of the object image to the projection data. It has a discrete
form as a linear equation system: WF=P, where F is the image pixel
vector of object image, W is the pre-computed system matrix, and
P is the collected projection vector. Typically, the object image is a
square with N = n × n pixels, in which the pixel values represent
a�enuations of tissue; accordingly, F is N × 1. �e X-ray light

1Compared to the approaches in [33], our view-level, sparsity-based, sorting-free
blocking mechanism delivers faster preprocessing time and less data padding and can
also enable the adapted algorithm to converge faster.
2�is kernel leverages the merits of our SCSR format and blocking techniques to
provide signi�cant performance improvements.

p1 p2 p3

p4 p5 p6

p7 p8 p9

X-ray
source

Detector

view 1

view n

object

Figure 1: Schematic diagram of the spiral CT structure.

source emits l rays and each scan hasv projection views, hence P is
M × 1, where M = l ×v . W is a M ×N matrix that stores weighting
factors; its elementwi j represents the contribution proportion of jth
pixel to ith projection data. A real-world scenario would estimate
a 1024 × 1024 image through a 1024 × 720 projection vector, then
the corresponding system matrix would have 10243 × 720 elements
and require several terabytes (TB) to be stored.

2.2 Algebraic Reconstruction Technique (ART)
CT image reconstruction is based on the inverse Radon transform.
Such an inversion is practically impossible to be done via the an-
alytical algebraic method [14]. So, Gordon et al. [7] proposed the
algebra reconstruction technique (ART), which is an iterative solver
for systems of linear equations. ART starts from an initial guess of
an image vector F (0) , then repeatedly updates the estimated image
until its pixel values are convergent, according to some criteria.
Each iteration of ART can be mathematically de�ned as follows:

f
(i)
j = f

(i−1)
j + λ

pi −
∑N
j=1 (f

(i−1)
j wi j)∑N

j=1w
2
i j

wi j (1)

where i = 1, 2, ...,M ; j = 1, 2, ...,N ; λ is the relaxation parameter;
f
(i)
j is jth pixel of the estimated image a�er i iterations (f (0) is an

all-zero vector), pi is ith element of the projection vector, and wi j
is the element of the system matrix at ith row and jth column that
represents the weighting factor of the jth pixel to the ith projection
data. Iterating i in Equation (1) from 1 to M is one round of ART, in
which the ith iteration will update the whole estimated image f (i−1)

based on the corresponding projection data (pi) and weighting
factors (wi). ART repeats until the estimated image F is convergent.
Equation (1) shows that the heaviest computational burden of ART
is the matrix-vector multiplication, i.e., ∑N

j=1 (f
(i−1)
j wi j).

Two parallel variants, derived from ART, include (1) simultaneous
iterative reconstruction technique (SIRT) [6] and (2) simultaneous
algebraic reconstruction technique (SART) [1]. �e former, i.e.,
SIRT, updates the estimated image a�er going through all the rays
to process all system matrix rows at the same time (rather than
using a ray-by-ray approach). However, SIRT takes longer to con-
verge than ART. �e la�er, i.e., SART, is a tradeo� between ART
and SIRT; it updates the image a�er going through rays within a
certain angle, and hence, can simultaneously process system matrix
rows that belong to the same view. SART converges faster than
SIRT.

ACM Computing Frontiers, Siena, Italy, 2017

An Enhanced Image Reconstruction Tool for Computed Tomography on GPUs CF’17, May 15-17, 2017, Siena, Italy

2.3 Sparse Matrix Compression and SpMV
As described in Section 2.1, storing the entire system matrix in a sin-
gle GPU is infeasible. Existing proposals use dynamic approaches
that calculate the system matrix on the �y [24, 39]. However, these
approaches introduce large computational overhead due to repeated
on-the-�y computations during iterative image reconstruction [11].
Fortunately, system matrices are sparse due to the physical char-
acteristics of the weighting factors; hence, the design space for
storage and computational optimizations can be explored.

Figure 2 shows the Area Integral Model (AIM) [38] of CT on a
n × n object image. In this model, X-rays are considered as narrow
fan-beams, and weighting factors are de�ned as the ratios of ray-
pixel interaction area to pixel area. For example, the shaded area Si j
in Figure 2 is the interaction area of ith ray ri and jth pixel fj . With
the square pixel area being δ2, hence the corresponding weighting
factor is wi j = Si j/δ

2. Intuitively, each ray just interacts with a
few pixels, and only these interactions result in nonzero weighting
factors. �is means only a few elements of each system matrix row
are nonzero, e.g., a system matrix density of only 10%. Hence, the
matrix-vector multiplication from Equation (1) falls into category
of sparse matrix-vector multiplication (SpMV).

Sij

fj

pi

object image
X-ray light source

detector

f1 f2 fn

fn+1 fn+2 f2n

fn^2

δ
narrow
fan-beam
ray ri

Figure 2: Fan-beam area integral model of CT.

Sparse matrix compression and SpMV have been well studied
over the past few decades. For example, the compressed sparse
row (CSR) format is one of the most widely-used formats that com-
presses a matrix in row-major format and stores non-zero elements
of the sparse matrix into contiguous memory locations. It consists
of three vectors: val, col idx, and row ptr, which store non-zero
elements, column indices, and o�sets of rows, respectively. Fig-
ure 5(a)-(b) shows an system matrix and its compressed format
in CSR. Although CSR is memory e�cient because it stores no
redundant elements, it is not computationally e�cient because it
requires indirect addressing step for each query.

In recent years, many CSR variants have been proposed. Blocked
row-column (BRC) [3] scans the sparse matrix in two dimensions
and groups neighboring rows to the several small blocks, in order
to be�er balance the workload and reduce the amount of padding
needed. CSR5 [17] evenly partitions non-zero elements into multi-
ple 2D tiles to achieve load balance and avoid storing unnecessary
data; and its extension [18] directly uses the CSR format for load
balanced SpMV and also considers CPU-GPU heterogeneous pro-
cessors. Compressed sparse blocks (CSB) [4] partitions a matrix

into multiple equal-sized blocks and stores the non-zero elements
within each block using Morton order; it can support equally ef-
�cient SpMV and SpMV T using a uniform format. yaSpMV [29]
provides an e�cient segmented sum algorithm for the blocked com-
pressed common coordinate (BCCOO) format with an auto-tuning
framework for parameter selection. ACSR [2] leverages binning and
dynamic parallelism techniques provided by modern GPUs to re-
duce thread divergence for the standard CSR. CSR-Adaptive [8] uses
local scratchpad memory and dynamically assigns various number
of rows to GPU compute units. More recently, NVIDIA proposed
a merge-based parallel SpMV [20], which uses CSR to minimize
preprocessing overhead and applies equitable multi-partitioning on
the inputs to ensure load balance. Although these proposals lever-
age the hardware features of the CPU or GPU to improve SpMV
performance, they do not take any speci�c sparsity structures into
consideration. Furthermore, a recent study indicates that sparse
matrix transposition (SpMV T) may become a performance bo�le-
neck, especially when SpMV has been highly optimized [27]. �us,
transpose-free methods for SpMV and SpMV T are in urgent need.

2.4 GPU-based CT Image Reconstruction
GPUs continue to be used to accelerate a myriad of applications [5,
12, 28, 30–32, 34–37]. For CT image reconstruction, many re-
searchers have also looked into how to leverage GPUs. For ex-
ample, Pang et al. [24] propose a ray-voxel hybrid driven method
to map SART onto GPU architecture, while Zhao et al. [39] propose
a CUDA-based GPU approach that includes empty-space skipping
and a multi-resolution technique to accelerate ART. However, both
approaches require a signi�cant amount of memory due to their
lack of awareness of the sparse algebra computational pa�ern and
the need to have to calculate weighting factors on the �y. Such
on-the-�y calculation wastes the computational resources. Guo
et al. [11] propose a stored system matrix (SSM) algorithm to re-
duce the size of the system matrix in GPU memory by leveraging
shi� invariance for projection and backprojection under a rotat-
ing coordinate. However, this approach does not optimize the
kernel performance on the GPU. Liu et al. [16] accelerate SART
with cuSPARSE [22] a�er compressing the system matrix into CSR.
�ey report their GPU implementation achieves around a 10-fold
computational-kernel-only speedup over its single-threaded CPU
counterpart, which is much lower than the cuSPARSE speedups
claimed for other sparse applications. As a result, there exist poten-
tial opportunities to optimize such an application on the GPU by
leveraging CT-speci�c characteristics. In the remaining sections of
this paper, we utilize the NVIDIA GPU architecture and its Compute
Uni�ed Device Architecture (CUDA) [23] programming model.

3 SCSR FORMAT FOR SYSTEM MATRIX
�e �rst and foremost challenge for cuART is how to e�ciently
store non-zero elements of the system matrix. Even though CSR is
one of the most e�cient compressed formats for a sparse matrix,
the data size of the CSR-based CT system matrix may still be much
larger than the memory capacity of a commodity GPU. Table 1
shows the sizes of some real-world system matrices in CSR format.
A CSR format system matrix for a �ne image, e.g., 720 views and
20482 pixels, can exceed the memory capacity of the commodity

ACM Computing Frontiers, Siena, Italy, 2017

CF’17, May 15-17, 2017, Siena, Italy X. Yu et. al.

NVIDIA Tesla K80 GPU, which has 24GB global memory. Although
partitioning the rows of the system matrix into multiple groups
can alleviate the memory pressure, it introduces additional data-
transfer overhead. Moreover, the ART algorithm requires both
SpMV and SpMV T, and transposing the matrix at runtime could
incur sign�cant overhead.

Table 1: Sizes of CSR-based compressed system matrices

projection view# 360 720
image size(pixel#) 5122 10242 20482 5122 10242 20482

matrix size (GB) 2.34 6.19 18.44 4.82 11.97 37.41

In this section, we propose SCSR, a variant of CSR format that is
dedicated to the CT system matrix. SCSR leverages the symmetries
in the system matrix in order to further compress CSR data and
properly permute the column indices to avoid matrix transpositions
during kernel computation in cuART.

3.1 Symmetry-Based System Matrix
Compression

Our preliminary work [33] introduced the basic idea of symmetry-
based compression in addition to the data structure-level compres-
sion e.g. CSR. In this subsection, we elaborate on the physical
symmetry characteristics of CT scan and provide a detailed method-
ology for reducing the number of elements that must be stored for
our SCSR format.

As introduced in the background, the weighting factors do not
relate to pixel indices; they only correlate to the interacted areas
of X-rays and pixels. Accordingly, two symmetric X-rays can have
symmetric weighting factors. Weighting-factor symmetries appear
as the same numerical values at symmetric pixel positions. We �nd
that X-rays can have two kinds of symmetry: re�ection symmetry
and rotational symmetry. Figure 3 demonstrates the symmetries
among views (X-rays): X-rays from view v1 and view v3 visually
have re�ection symmetry, while X-rays from view v2 and v4 have
rotational symmetry. Speci�cally, assuming each view has m X-
rays, if ray ri in view v1 has weighting factor value |w | for pixel I1,
then ray r (m−i) in view v3 should have the same weighting factor
value |w | for pixel I2; meanwhile, if ray ri in view v2 has weighting
factor value |w ′ | for pixel I1, then ray ri in view v4 should have the
same weighting factor value |w ′ | for pixel I3.

Based upon these symmetry characteristics, we propose a method-
ology to reduce the number of elements that have to be stored in
in the system matrix in order to further compress the CSR data.
Speci�cally, we equally divide the working area into eight zones
(or eight sectors, as in Figure 3). Only weighting factors coming
from the views within one zone need to be stored; all the other
weighting factors can then be easily obtained via simple index map-
pings. Figure 3 shows a coordinate system for the CT scan model
on a n × n object image. Obviously, rays from zone II are re�ection
symmetric to their corresponding rays from zone I, while rays from
zone III are rotationally symmetric to rays from zone I. A pixel at
coordinate (x1,y1) (we denote its pixel index as I1 = n ∗ y1 + x1)
should have corresponding pixels at symmetric positions; the in-
dices of these corresponding pixels can be obtained through the

𝑣1

𝑣2

𝑣3

𝑣4

(𝑥1,𝑦1)

(𝑥2,𝑦2)

(𝑥3,𝑦3)

𝐼1

𝐼2

𝐼3 0,𝑛 𝑛,𝑛

𝑛, 0 0,0

I

II

III IV

V

Figure 3: Schematic diagram of views/X-rays symmetries.

following mapping rule:



I2 = n ∗ y2 + x2 = n ∗ (n − y1) + x1: re�ection symmetry
I3 = n ∗ y3 + x3 = n ∗ (n − x1) + y1: rotational symmetry

(2)

Based on the analyses in the last paragraph, the weighting factors
determined by a ray in zone I on pixel I1 and its rotational symmetric
ray in zone II on pixel I2 are numerically identical. Similarly, a
ray in zone I with pixel I1 and its rotationally symmetric ray in
zone III with pixel I3 determine weighting factors having identical
numerical value as well. Hence we only need to store the weighting
factors (i.e., corresponding rows of the system matrix) coming
from rays within zone I. �en during runtime, we can restore the
weighting factors (i.e., rows) coming from rays in zone II and III
via the stored rows by using the rule described in Equation (2). We
can restore rows from zone IV and V via rows from zone III using
the same method, a�er clockwise rotating the coordinate system
90◦. We can also analogously restore rows from all other zones.
Applying this symmetry-based compression to CSR data can further
compress it to one eighth of its original size. Table 2 shows the data
sizes of some SCSR-based system matrices. Compared to data sizes
in Table 1, SCSR can �t into the global memory of a single GPU
even in our largest case.

Table 2: Sizes of SCSR-based compressed system matrices

projection view# 360 720
image size(pixel#) 5122 10242 20482 5122 10242 20482

matrix size (GB) 0.29 0.77 2.31 0.60 1.50 4.68

3.2 Column Indices Based Permutation for
SCSR

As shown in Equation (1), ART iteration requires multiplications
of system matrix W and its transposition with the vector. One
approach to process SpMV and SpMV T is to transposeW toWT

in advance. However, thisincreases the memory footprint dra-
matically, especially given the fact that the system matrix needs
several GB of memory even in SCSR format. Another method is
to transpose the compressed matrix at the runtime, however, that
signi�cantly increases the computation time if multiple iterations
are needed. An advanced data structure, CSB [4], proposes an uni-
form compressed matrix format to support fast SpMV and SpMV T
at the same time. However, it is not e�cient to apply CSB on the

ACM Computing Frontiers, Siena, Italy, 2017

An Enhanced Image Reconstruction Tool for Computed Tomography on GPUs CF’17, May 15-17, 2017, Siena, Italy

system matrix for ART for two reasons: (1) Transforming the orig-
inal system matrix to CSB format will break the index mapping
rule in Equation (2) that we use to compress the symmetric data
and also destroy the sparse pa�erns that we use to generate dense
sub-matrices (as discussed in the next section); (2) CSB is reported
to be e�cient on multi-core CPU but ine�cient on GPU due to the
overhead of handling divergent branches for dynamic parallelism
and binary search [26].

Instead we propose an optimization using column indices based
permutation, that is compatible to SCSR and can support both SpMV
and SpMV T at the same time. It is transpose-free and will not de-
grade cuART kernel performance. �e conventional CSR-based
transpose-free SpMV T has to accumulate element-wise products to
vector y. �is approach requires atomic operations when multiple
threads operate on the same y’s element; otherwise, it results in a
race condition. For example, in Figure 5(c), the last two elements in
the second column with “4” (i.e., “4” is the column index in original
SM) have element-wise products that need to be accumulated to
the resultant vector element y4 at the same time, which can result
in a race condition. In order to avoid using atomic operations, we
propose the column indices based permutation. Speci�cally, as
shown in Figure 5(d) and (e), we permute nonzero elements in each
row in a round-robin manner to make elements in the same (SCSR)
column have di�erent (original SM) column indices. For example,
elements in last two rows are rearranged in order to change their
(original SM) column indices sequences from “3456” to “5364” and
from “3456” to “6435” respectively. A�er such permutation, race
condition will never happen during SpMV T, since di�erent threads
always accumulate their products to di�erent resultant vector ele-
ments at the same point in time. On the other hand, since elements
are permuted inside each row, this method will not a�ect the cor-
rectness and e�ciency of SpMV, as well as the matrix symmetry
and sparsity.

4 BLOCKING TECHNIQUES FOR
COMPUTATION OPTIMIZATION

�e distribution of nonzero elements along system matrix rows is
irregular. In our test cases, the longest CSR row can be four times
longer than the shortest one. Hence directly apply either CSR or
our SCSR format to cuART can result in a lower performance than
the expectation, due to threads workload imbalance. In this section,
we propose two blocking techniques to re-organize SCSR data into
multiple dense sub-matrices by utilizing system matrix sparsity
pa�erns in di�erent granularities.

4.1 Global-level Blocking
Inspired by SIRT [6], we know that processing the whole system
matrix simultaneously is feasible. [33] introduced the preliminary
idea of a sorting-based blocking. In this subsection, we provide
the methodology of leveraging the global-level sparsity pa�ern of
system matrix and detailed design of the blocking technique.

Figure 4 shows the methodology. A�er shi�ing all nonzero
elements to the le�, the system matrix has a global sparsity pa�ern
as shown in (a). We can make two observations about this pa�ern:
1)number of nonzero elements(nnz) of each row falls into a narrow
range; 2)the average of these nnz is close to the median of such

…

View 0

View 1

View 2

…

sort Linear
fitting

(a) (b) (c) (d) (e)

Figure 4: Schematic diagram for the methodology of lever-
aging the global sparsity pa�ern to block the SCSR data.

range. Accordingly, a�er sorting the rows by nnz, the nonzero
elements chunk will have a shape as shown in (b). Such shape can
approximate to a right trapezoid as shown in (c). �is trapezoid
can then be transformed to a rectangle (dense block) by cu�ing
the acute angle along a proper vertical line and rotating the cut o�
triangle 180◦ to �ll the top-right indentation, as illustrated in (c)-(e).

Following the methodology, we provide the detailed design of
the global-level blocking technique to transform CSR data to dense
sub-matrices, as illustrated in Figure 5. Figure 5(a) and (b) are the
layouts of system matrix in original representation and CSR format
respectively. Figure 5(c) shows the rearranged layout of the CSR-
based representation, a�er all nonzero elements have been shi�ed
to the le� and the rows have been sorted based on their nnz. We
pair the sorted rows following this rule: pair the �rst row to the
last row, the second row to the second last row and so on. �en
we concatenate and bisect each pair and pad them with zeros to
get the dense matrix as shown in Figure 5(d). A�er permuting
(as introduced in section 3.2) the nonzero elements in (d) to (e),
we divide the matrix in (e) (assuming the size is M × N) to three
dense sub-matrices as shown in Figure 5(f): Sub SM1 (with size
M × N ′, where N ′ is the length of shortest row in (c)), Sub SM2,
and Sub SM3 (both with size M

2 × (N −N
′)). Only elements of each

Sub SM2 row may come from two di�erent rows in (c). In order to
record the junction point in each Sub SM2 row, we use an auxiliary
bitmask matrix, in which 1s indicate junction point positions. For
example, in the second row of Sub SM2 in (f), element with “1”
comes from the second row in (c) while elements with “7” and “8”
come from the ninth row in (c), hence the corresponding bitmask
is 010.

Compared to BRC and CSR5, our global-level blocking scheme
minimizes atomic operation penalty, thanks to the pairing tech-
nique we used that always groups nonzero elements into three
dense sub matrices. Our proposed scheme also has no additional
addressing step since the compressed rows can be directly mapped
from row indices of the original system matrix. Last but not least,
it only has one third of the sub-matrices (i.e., Sub SM2) that may
cause slight divergences, since there is only at most one junction
point in each row of that sub-matrix.

4.2 View-level Blocking
Although our global-level blocking works be�er than existing gen-
eral blocking techniques in terms of CT image reconstruction per-
formance, it remains two drawbacks: a) the heavy preprocessing
overhead due to the sorting step which may become a performance

ACM Computing Frontiers, Siena, Italy, 2017

CF’17, May 15-17, 2017, Siena, Italy X. Yu et. al.

0

9 10 11

1 2

8 9
3 4 5 6 7 8

11 12

93 4 5 6 7 8

0

2 3

1

4 5

0

9

1 2

3 4 5 6
3 4 5 6

0

2 3

1

4

97 8
7 8

5

010 11 12

11 1210

11 12 12

1110
10 11 12

8 9 10 11

0

9

2 1

5 3 6 4
6 4 3 5

1

3 2

0

4

97 8
7 8

5
11 12 12

1110
10 11 12

8 9 10 11

0

9

2

5
6

1

3

12

11

8

sorting

Sub_SM1
Sub_SM2

Sub_SM3

pairing
averaging

padding
labeling

splitting

perm
uting

(a) (b) (c) (d) (e)

1

0

97 8
7 8

5
12 12

1110

0

3 6 4
4 3 5

2 4
11 12

9 10 11

0 9

0

3 4 5 6 7 8 11 129 101 2 0 3 4 5 6 7 8 8 92 31 4 511 1110 1210 11 12

1 3 9 1214 16 20 27 32 35

Original SM

Row Pointer

Column Index

Value

CSR

(f)

0 0 0
0 0
0 0
0
0

0
00

1
1
1

BitMask1 30 4 5 7 8 10 11 12 1 30 45 7 8 101112
Row Index Row Index

Figure 5: Schematic diagram of CSR to dense matrix based on global sparsity pattern of CT system matrix. White elements
are zero paddings, numbers are column indices.

bo�leneck of cuART if the system matrix is refreshed frequently.
b) the slow convergence speed due to the compromised averaging
approach on intermediate results. cuART with global-level blocking
accumulates all intermediate results and averages the accumulation
a�er processing all rays. �is approach does not naturally comply
with the principle of original ART algorithm, and hence degrades
convergence speed. Intrinsically, in the ART, projection data from
one view alone can estimate the whole object image. As a result,
di�erent views can provide di�erent estimations of the object im-
age. Hence a more natural averaging approach should accumulate
and average intermediate estimation results right a�er processing
the rays within each view.

SART [1] theoretically approves the feasibility of simultaneously
processing the projection data and corresponding system matrix
rows within one view. Accordingly, we propose a view-level block-
ing scheme, that is sorting-free and based on view-level sparsity
pa�erns of the system matrix. We introduce this scheme starting
from the illustration of view-level sparsity pa�erns. As introduced
in the last section, a�er applying symmetry-based compression,
only 90 out of 720 views are demanded to be stored. Figure 6 shows
the sparsities of six typical views in the case of 1024 rays per view
with 10242 image. �e characteristics of view-level sparsity pat-
terns can be summarized as: a) most views’ smallest row nnz are
similar(around 1000 in example case), and largest row nnz are pro-
gressive(gradually increase from 2000 to 3500 in example case); b)
each view pa�ern has a steady area in the middle with le�/right
linear increasing/decreasing areas in the sides respectively; c) the
slopes of right areas increase gradually along views change, while
the slopes of le� areas �rst decrease then increase. �ese charac-
teristics are determined by the shape of overlaps of X-rays and the
object image at each view position. Two in�ection points on each
shape are determined by two separator rays: one is the right-most
ray and the other is the one going through lower-right image vertex.

We then provide the mathematical analyses for two non-visualized
characteristics: a) positions of in�ection points on shapes from ad-
jacent views have constant distance, and b) view 5 is the border
view that its le� area of sparsity pa�ern has the valley slope (refer
to characteristic (c) in last paragraph).

Figure 7 shows a sample viewV , in which x is the light source, y
is the center of both the image and virtual circle and on the midline
of projection triangle, and z is lower-right vertex of image. Edge
xy, yz and xz have length a, b and c respectively. Exploring how

Figure 6: Sparsities of six typical projection views.

α

β
γ

a

b

x

y

z

c

Figure 7: Schematic diagram of a sample view V .

right in�ection point position changes between di�erent views is
equivalent to understanding how ∠β changes. Since ∠β + ∠γ is
�xed, we can analyze how ∠γ changes instead.

According to the law of cosine, the edge lengths satisfy equations:
c2 = a2+b2−2ab cosα and b2 = a2+c2−2ac cosγ . A�er applying
substitutions to them, we have

γ = arccos(a − b cosα
√
a2 + b2 − 2ab cosα

) (3)

According to the di�erential formula d(arccos x) = (1/
√

1 − x 2)dx , if
∠γ ′ is angularly similar enough to ∠γ , there is a equation:

arccosγ − arccosγ ′

γ − γ ′
≈

1√
1 − γ 2

(4)

Assuming ∠γ ′ is the angle at the same position in viewV ′ which is
adjacent to V , we substitute Equation (3) into (4) and get:

γ − γ ′ =

a−b cosα√
a2+b2−2ab cosα

− a−b cosα ′√
a2+b2−2ab cosα ′√

1 − (a−b cosα√
a2+b2−2ab cosα

)2
(5)

ACM Computing Frontiers, Siena, Italy, 2017

An Enhanced Image Reconstruction Tool for Computed Tomography on GPUs CF’17, May 15-17, 2017, Siena, Italy

In practice, the X-ray light source moves with 0.5◦ angular step
i.e. ∠α ′ = ∠α + 0.5◦; hence the values of cosα ′ and cosα are
close enough. a and b are �xed number once CT device is set.
Accordingly, we approximately simplify Equation (5) and get:

∆γ ≈
(cosα ′ − cosα)
√

1 − cos2 α
≈ cotα ′ − cotα (6)

Equation (6) shows, although ∆γ is not constant, it can be reason-
ably approximated to a �xed number due to the fact that cot is
roughly linear within [3π

2 , 2π] interval. �e le� in�ection point
change can by analyzed analogously and lead to similar results.
�rough these analyses, we discover that in�ection point positions
change with constant row interval along views. In our case, the
right in�ection points move right with �ve rows per step along
views; the le� in�ection points �rst move le� with �ve rows per
step; then a�er view 5, they start to move right with six rows per
step.

Based on all above analyses, we propose the view-level blocking
that transforms SCSR to dense sub-matrices at runtime. Figure 8
shows the schematic diagram for the view-level sparsities based
transformation. Such blocking scheme has four steps: (a) Since
all views have a similar smallest nnz, we calculate a split point
for each view to divide the non-zeros to a dense matrix and a
trapezoid. (b) Based on the fact that two neighboring views have
nearly the same sparsity pa�erns, we pair adjacent views then cut
and combine the le� and right side triangles of the trapezoids along
in�ection point to transform them to rectangles. According to the
mathematical proof in the last paragraph, in�ection point positions
change regularly, hence can be directly addressed without sorting.
When SpMV kernels access these dense rectangles, they can map
their elements to the original system matrix without any indirect
addressing. (c) Since the largest row nnz of each view gradually
increases, we then average row lengths of each view pair (viewa,
view(90-a-1), where a is an integer less than 45) by moving elements
and add �ags. (d) We �nally pad, combine the rows and generate
three dense blocks for every two view pairs: sub SM1 that has 4M ′
rows without �ags, sub SM2 that has 2M ′ rows with at most four
�ags per row, and sub SM3 that has less than 2M ′ rows with at
most one �ag per row, where M ′ is the number of system matrix
rows for each view.

Compared to the global-level blocking, the view-level blocking
may have slightly more thread divergences due to more �ags and
lower occupancy (sub SM3 has less than 2M ′ rows). However, it
has much less padding data than the global-level blocking due to the
utilization of �ner-grained sparsities. Moreover, cuART with view-
level blocking can converge faster than with global-level blocking
since the former updates the estimated image more frequently.

5 GPU-BASED ART
5.1 Data Dependencies Decoupling
According to Equation (1), each ART iteration starts with the esti-
mated image updated by previous iterations. It updates the image
using corresponding element of the projection vector and row of
the system matrix. �is implies that any two ART iterations have
data dependency, and the system matrix rows should be accessed
sequentially. On the other hand, both SIRT and SART suggest that

v
iew

 3
0

v
iew

 3
1

v
iew

 5
8

v
iew

 5
9

1) split 2) pair 3) average

Sub_SM1

Sub_SM2

Sub_SM3

4) generate

Figure 8: Schematic diagram of sample view for mathemati-
cal analysis. White areas are zero paddings.

system matrix rows can somehow be simultaneously processed. In
our GPU-based design, we �rst decouple the data dependencies and
rewrite the ART iteration as:

F (r+1) = F (r) +WT (C . ∗ (P −WF (r))) (7)
where F is N × 1 pixel vector of the estimated image, its superscript
r represents the index of parallelized ART round;W isM×N system
matrix; P is M × 1 projection vector; C is M × 1 constant vector
whose elements are ci = λ/(M ∑N

j=1 w
2
i j), where wi j are system matrix

elements;WT is the transpose of system matrix and .∗ is element-
wise multiplication. Notice thatW could be either the whole (with
global-level blocking) or a portion (with view-level blocking) of the
system matrix; the portion should be the rows that belong to the
same view. In the la�er case, all M should change to M ′ = M/v ,
where v is the number of views.

Guan and Gordon [10] prove that changing the access order
of X-rays and projection data will not a�ect the reconstructed
image quality that ART can achieve. �is is because X-rays are not
overlapped and each projection data just corresponds to a single
ray. Hence, Equation (7) can achieve the same reconstructed image
quality to Equation (1) a�er running adequate iterations. Although
Equation (7) has slower convergence speed than Equation (1), our
experiments show that the performance improvement ge�ing from
parallelization on GPU can o�set the overhead caused by the slower
convergence speed.

5.2 GPU Kernel of cuART
�e GPU kernel of our cuART could support both SpMV and
SpMV T at the same time, by using the SCSR based system matrix
with our blocking techniques. Algorithm 1 shows such kernel.

Figure 9 (a) illustrates the memory layout of an example dense
sub-matrix Sub SM3 (with the size p * q) and the data access pa�ern
using multiple GPU threads for SpMV. In this �gure, x is the projec-
tion vector, col idx andw val are the column index (in original SM)
and value arrays of Sub SM3, andy is the resultant vector. Our task-
mapping scheme is assigning one sub-matrix row to one thread,

ACM Computing Frontiers, Siena, Italy, 2017

CF’17, May 15-17, 2017, Siena, Italy X. Yu et. al.

*

x

y

(a)

… … …

11 3 6 44 3 52 4129 10 11
T0 T1 T2 T3 T4 T0 T1 T2 T3 T4 T0 T1 T2 T3 T4

… … …col_idx

w_val

p p p

y’

*
*

T0 T1 T2 T3 T4 T0 T1 T2 T3 T4 T0 T1 T2 T3 T4

x

… … …

11 3 6 44 3 52 4129 10 11
T0 T1 T2 T3 T4 T0 T1 T2 T3 T4 T0 T1 T2 T3 T4

… … …col_idx

w_val

p p p

Len
gth

=p
*q

T0 T1 T2 T3 T4 T0 T1 T2 T3 T4 T0 T1 T2 T3 T4

+

+

-1 -1

*

*

(b)
-1 -1

Figure 9: Matrix memory layout and (a) SpMV data access
pattern and (b) SpMV T data access pattern.

and each thread is demanded to compute the product of assigned
row and x . �is One-�read-to-One-Row mapping can fully utilize
the hardware resources, since the number of rows (e.g. 92160 in
720 views with 1024 rays per view case) is usually much larger
than the number of commodity GPU cores (e.g. 4992 in Tesla K80).
Moreover, in order to achieve coalesced memory access on GPU,
we store the matrix in column major order. �e SpMV computation
can be executed following the statement in line 6 of Algorithm 1.
For example, as shown in Figure 9 (a), the thread 2(T2) handles the
row 2 in the dense sub-matrix; T2 calculates the product of each
row 2 element and its corresponding (based on value in col idx)
element of x , accumulates these products, and then adds the result
to corresponding element of y (y2 in this case).

When the kernel computes SpMV T, it can leverage the same data
layout used for SpMV. Figure 9 (b) illustrates the data access pa�ern
for SpMV T: each thread still processes a compressed row; however,
instead of accoplishing the accumulation of element-wise products
within each thread, threads need to accumulate the product to
corresponding elements of y′ addressed using col idx . For example,
thread 1(T1) in Figure 9(b) multipliesw val10 by x1 and accumulates
the product to y′2, then multiplies w val11 by x1 and accumulates
the product to y′4, and so on. Since we permute data inside each
sub-matrix row to make the elements of a col idx segment that for
one sub-matrix column to have di�erent values (e.g. elements of
the �rst col idx segment that for sub-matrix column 1 has the value
“11”, “2”, “9”, “3”, “4”), di�erent threads will always accumulate the
products to di�erent positions in y′ at the same time point. Hence
we can avoid the atomic operations.

Algorithm 1: SpMV and SpMV T Kernel in cuART

1 Kernel MULTIPLICATION (w val, col idx, x, y, y’)
2 tid ←− blockIdx.x ∗ blockDim.x + threadIdx.x;
3 /* SpMV */
4 sum←− 0;
5 for j←− 0 to q do
6 sum←− sum + w val[j∗p+tid] ∗ x[col idx[j∗p+tid]];
7 end
8 y[tid]←− sum;
9 /* SpMV T */
10 for j←− 0 to q do
11 y’[col idx[j∗p+tid]]←− w val[j∗p+tid] ∗ x[tid];
12 end

6 EVALUATION
We evaluate our cuART on the platform that has Intel Xeon E5-2697
multicore CPU running on 2.70GHz, 256GB system memory, and
NVIDIA Tesla K80 GPU. �e K80 is the newest model of Kepler

0

5

10

15

20

25

30

2048^2 1024^2 512^2

sp
e

e
d

u
p

image size

CSR+trans

BRC+trans

CSR5+trans

g-l SCSR

v-l SCSR

Figure 10: Performance comparisons between GPU versions
of ART-based CT image reconstructions using CSR, BRC,
CSR5, and SCSR respectively. �e baseline is the single
threaded CPU counterpart.

architecture-based Tesla GPU, which has a total of 4992 CUDA
cores and 24GB GDDR5 global memory. Our experimental data
includes both standard test dataset – Shepp-Logan phantom [25]
that serves as the human head model, and two real-world mouse
datasets: mouse437 and mouse459. �e cuART reconstructs images
with 2048× 2048, 1024× 1024 and 512× 512 resolutions respectively
for each dataset. �e parameters of the CT device are con�gured
to 720 views and 1024 rays per view for each scan.

We �rst make a performance comparison between cuART and
existing approaches. We take an existing single threaded CPU im-
plementation [38] as baseline; it implements the original ART algo-
rithm as shown in Equation 1, which has a faster convergence speed
but is not feasible to be parallelized. We compare cuART with GPU
counterparts using CSR (cuSPARSE), BRC, and CSR5 respectively.
As mentioned in Table 1, when using CSR format, we need 37.41
GB memory to hold such compressed system matrix for images at
2048 × 2048 resolution, which exceeds the global memory size of
NVIDIA K80. BRC and CSR5 formats require even more memory
spaces than CSR. As a result, in all GPU counterparts, we have to
partition the system matrix into multiple groups and pipeline GPU
computations and host-device data transfers, although this method
leads to additional overhead. Furthermore, all counterparts use the
csr2csc function in cuSPARSE to explicitly transpose the system
matrix for SpMV T. �ese transpositions make the overhead larger
since we have to also pipeline GPU computations and data transfers
for the transposed matrix. All GPU versions implement the adapted
ART algorithm in Equation 7 that is easier to be parallelized but
needs more iterations to reach convergence.

Figure 10 shows the performance comparisons. Both the CPU
and GPU versions run adequate iterations to reach convergence.
We �nd that only the image resolution a�ects reconstruction ef-
�ciency independent of the datasets; hence we don’t distinguish
the performances for di�erent datasets. �e �gure shows CSR and
BRC can achieve up to 3.7-fold speedup over CPU version, while
CSR5 can achieve up to 4.8-fold speedup. Our cuART with SCSR
and global-level blocking (g-l SCSR) can achieve up to 6.1, 6.6, 4.2-
fold speedup against cuSPARSE, BRC and CSR5 respectively, while
cuART with SCSR and view-level blocking (v-l SCSR) can achieve

ACM Computing Frontiers, Siena, Italy, 2017

An Enhanced Image Reconstruction Tool for Computed Tomography on GPUs CF’17, May 15-17, 2017, Siena, Italy

0.762

0.763

0.764

0.765

0.766

0.767

0.768

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64

R
M

SE

no. of iterations

Original ART

v-l SCSR

g-l SCSR

Figure 11: Convergence speed comparison between the orig-
inal ART and the parallelized ART.

up to 6.8, 7.2, 5.4-fold speedup over aforementioned counterparts.
BRC and CSR5 underperform their claimed best achievements be-
cause of (1) the slower convergence speed than the CPU version,
(2) the overhead of processing a mass of control tags and �ags
inside the data structures, (3) the time spent on the explicit trans-
position from CSR to CSC, and (4) the overhead in the pipeline
mode to overlap GPU computations and host-device data transfers.
On the other hand, SCSR can avoid or reduce all these overheads;
hence g-l SCSR and v-l SCSR can acheive signi�cantly improved
performances compared to the GPU counterparts.

All GPU implementations use the parallelized ART that sacri-
�cing the convergence speed for the parallelism. Among these
GPU implementations, our cuART with v-l SCSR compensates the
convergence speed loss to some extent due to the leveraging of
�ner sparsities hence converges faster than the others. Figure 11
is the comparison of Root Mean Square Error (RMSE) a�er each
iteration between the original ART on CPU, the parallelized ART
with g-l SCSR (same results with BRC or CSR5) and v-l SCSR re-
spectively on GPU. It shows that original ART reaches convergence
a�er running about 15 iterations, while parallelized ART needs 50
iterations when using g-l SCSR or 30 iterations when using v-l SCSR
to converge. Since a single iteration on GPU is 62.4 times faster
than one iteration on CPU, the GPU version with g-l SCSR can
achieve 18.7-fold overall speedup over the CPU version. Although
a single GPU iteration with v-l SCSR is slightly slower than one
iteration with g-l SCSR, v-l SCSR based GPU implementation can
achieve 1.3-fold overall speedup against g-l SCSR based one due to
the 1.7 times faster convergence speed.

Both the SCSR data format and the parallelized ART do not a�ect
the quality of reconstructed image. Figure 11 shows, although g-l
SCSR and v-l SCSR require 50 and 30 iterations while the original
ART requires 15 iterations to reach convergence, the di�erences
of convergent RMSEs between the original ART and parallelized
ART with either g-l SCSR or v-l SCSR are negligible. Hence we
can claim that parallelized ART with our SCSR achieves the same
reconstruction quality as the original ART.

Figure 12 shows the memory footprint (dominated by system
matrix) comparison between di�erent compressed data formats.
�e memory footprint is dominated by the system matrix whose
size is determined by image resolution and CT device con�guration

0

5

10

15

20

25

30

35

40

45

512^2 1024^2 2048^2

d
at

a
si

ze
 (

G
B

)

image size

CSR

BRC

CSR5

g-l SCSR

v-l SCSR

Figure 12: Memory footprint comparison in all schemes.

0

20

40

60

80

100

120

512^2 1024^2 2048^2

p
re

p
ro

ce
ss

in
g

co
st

 (
s)

image size

CSR

BRC

CSR5

g-l SCSR

v-l SCSR

Figure 13: Preprocessing cost comparison. Vertical axis rep-
resents the preprocessing time in seconds.

independent of the datasets. �e g-l SCSR requires 7.8, 7.7 and
7.6 times less memory space than CSR for 20482, 10242 and 5122

image respectively, while the v-l SCSR requires 7.9, 7.9 and 7.8 times
less memory space than CSR. BRC requires slightly larger memory
space than CSR due to the zero paddings, and CSR5 requires nearly
the same memory size as CSR since both two are padding-free.
By leveraging the symmetry characteristics in the system matrix,
SCSR doesn’t store symmetric nonzero elements and needs only
very few zero-paddings and a small bitmask, hence can achieve the
best memory e�ciency. Overall, SCSR is the only one data format
that can make all system matrices in our experiments �t into the
global memory of a single NVIDIA Tesla K80 GPU.

We also evaluate the preprocessing time to transform original
system matrices to corresponding compressed data formats. Similar
to the memory footprint, the preprocessing time positively corre-
lates to image resolution independent of the datasets. Figure 13 is
the preprocessing time comparison. It shows that CSR needs the
least preprocessing time and can be treated as the baseline because
all the other formats are its variants. It also shows BRC and g-l
SCSR require substantial preprocessing time due to the sorting step.
Preprocessing time of CSR5 is up to 2.9 times slower than CSR due
to the dense sub matrices generation. Our v-l SCSR has nearly the
same preprocessing cost as CSR because it doesn’t spend much time
on the dense sub matrices generation, thanks to the direct mapping
by leveraging the sparsity pa�ern in each view.

ACM Computing Frontiers, Siena, Italy, 2017

CF’17, May 15-17, 2017, Siena, Italy X. Yu et. al.

7 CONCLUSIONS AND FUTUREWORK
In this work, we propose cuART, an enhanced tool to acceler-
ate ART-based computed tomography image reconstruction using
GPUs. It consists of the SCSR data format and transpose-free GPU
kernel for ART. SCSR is a variant of CSR that further compresses
the CSR-based system matrix of CT scan by leveraging symme-
try characteristics, and it optimizes data access for both SpMV and
SpMV T through column indices permutation. We also propose two
blocking techniques to convert SCSR to several dense sub matrices
by taking advantage of various sparsities of the system matrix; both
blocking techniques can optimize workload distributions and com-
putations. A transpose-free GPU kernel is designed to implement
parallel ART algorithm by applying SCSR and blocking techniques
to it. Our experiments illustrate cuART can achieve up to 6.8, 7.2
and 5.4-fold speedup over the GPU counterparts using cuSPARSE,
BRC, and CSR5 on NVIDIA Tesla K80, respectively.

In the future, we will extend our cuART to reconstruct the 3D
image. Iterative 2D and 3D image reconstruction algorithms essen-
tially have the same basis, and hence our memory and computation-
ally e�cient approach may also signi�cantly bene�t the 3D cases.
We also plan to implement cuART on large-scale GPU clusters by
using modern parallel and distributed programming models, e.g.
MPI, to satisfy the demands in the BIGDATA era.

8 ACKNOWLEDGMENT
�is work was supported in part by the NSF XPS program via
CCF-1337131 and the Institute for Critical Technology and Applied
Science (ICTAS), an institute dedicated to transformative, inter-
disciplinary research for a sustainable future. �e authors also
acknowledge Advanced Research Computing at Virginia Tech for
providing computational resources.

REFERENCES
[1] A.H. Andersen and A.C. Kak. 1984. Simultaneous Algebraic Reconstruction

Technique (SART): A Superior Implementation of the ART Algorithm. Ultrasonic
Imaging 6, 1 (1984), 81 – 94.

[2] A. Ashari, N. Sedaghati, J. Eisenlohr, S. Parthasarath, and P. Sadayappan. 2014.
Fast Sparse Matrix-Vector Multiplication on GPUs for Graph Applications. In
SC14. 781–792.

[3] A. Ashari, N. Sedaghati, J. Eisenlohr, and P Sadayappan. 2014. An E�cient
Two-Dimensional Blocking Strategy for Sparse Matrix-Vector Multiplication on
GPUs. In 28th ACM Int’l Conf. on Supercomputing. 273–282.

[4] A. Buluç, J. T Fineman, M. Frigo, J. R Gilbert, and C. E Leiserson. 2009. Parallel
Sparse Matrix-Vector and Matrix-Transpose-Vector Multiplication using Com-
pressed Sparse Blocks. In 21st ACM Symposium on Parallelism in Algorithms and
Architectures. 233–244.

[5] X. Cui, T. R. W. Scogland, B. R de Supinski, and W. Feng. 2016. Directive-Based
Pipelining Extension for OpenMP. In IEEE Cluster Computing. 481–484.

[6] P. Gilbert. 1972. Iterative Methods for the �ree-Dimensional Reconstruction of
an Object from Projections. Journal of �eoretical Biology 36, 1 (1972).

[7] R. Gordon, R. Bender, and G. T Herman. 1970. Algebraic Reconstruction Tech-
niques (ART) for �ree-Dimensional Electron Microscopy and X-ray Photogra-
phy. Journal of �eoretical Biology 29, 3 (1970), 471–481.

[8] J. L Greathouse and M. Daga. 2014. E�cient Sparse Matrix-Vector Multiplication
on GPUs using the CSR Storage Format. In SC14. 769–780.

[9] F. Grüll, M. Kunz, M. Hausmann, and U. Kebschull. 2012. An implementation
of 3D Electron Tomography on FPGAs. In 2012 International Conference on
Recon�gurable Computing and FPGAs (ReConFig). 1–5.

[10] H. Guan and R. Gordon. 1994. A Projection Access Order for Speedy Conver-
gence of ART (Algebraic Reconstruction Technique): A Multilevel Scheme for
Computed Tomography. Physics in Medicine and Biology 39, 11 (1994), 2005.

[11] M. Guo and H. Gao. 2017. Memory-E�cient Algorithm for Stored Projection
and Backprojection Matrix in Helical CT. Medical Physics (2017).

[12] K. Hou, H. Wang, and W. Feng. 2017. GPU-UniCache: Automatic Code Genera-
tion of Spatial Blocking for Stencils on GPUs. In ACM Int’l Conf. on Computing

Frontiers (CF).
[13] IMV Medical Information Division. 2007. IMV 2006 CT Market Summary Report

Table of Contents. (2007). h�p://www.imvinfo.com/user/documents/content
documents/nws rad/MS CT DSandTOC.pdf

[14] A. C Kak. 1984. Image Reconstruction from Projections. Digital Image Processing
Techniques (1984), 111–171.

[15] C. Laurent, F. Peyrin, J.-M. Chassery, and M. Amiel. 1998. Parallel Image Recon-
struction on MIMD Computers for �ree-Dimensional Cone-Beam Tomography.
Parallel Comput. 24, 9 (1998), 1461–1479.

[16] R. Liu, Y. Luo, and H. Yu. 2014. GPU-Based Acceleration for Interior Tomography.
Access, IEEE 2 (2014), 757–770.

[17] W. Liu and B. Vinter. 2015. CSR5: An E�cient Storage Format for Cross-Platform
Sparse Matrix-Vector Multiplication. In 29th ACM Int’l Conf. on Supercomputing
(ICS ’15). 339–350.

[18] W. Liu and B. Vinter. 2015. Speculative segmented sum for sparse matrix-vector
multiplication on heterogeneous processors. Parallel Comput. 49 (2015), 179–193.

[19] C. Melvin. 2006. Design, Development and Implementation of a Parallel Algorithm
for Computed Tomography Using Algebraic Reconstruction Technique. University
of Manitoba (Canada). h�ps://books.google.com/books?id=Hih7hwkoFY4C

[20] D. Merrill and M. Garland. 2016. Merge-based Sparse Matrix-vector Multiplica-
tion (SpMV) Using the CSR Storage Format. In 21st ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming (PPoPP ’16). Article 43, 2 pages.

[21] K. Mueller, R. Yagel, and J F. Cornhill. 1997. �e Weighted-Distance Scheme: A
Globally Optimizing Projection Ordering Method for ART. IEEE Transactions on
Medical Imaging 16, 2 (1997), 223–230.

[22] M. Naumov, L.S. Chien, P. Vandermersch, and U. Kapasi. 2010. cuSPARSE Library.
In GPU Technology Conference.

[23] J. Nickolls, I. Buck, M. Garland, and K. Skadron. 2008. Scalable Parallel Program-
ming with CUDA. �eue 6, 2 (March 2008), 40–53.

[24] W.-M. Pang, J. Qin, Y. Lu, Y. Xie, C.-K. Chui, and P.-A. Heng. 2011. Accelerating
Simultaneous Algebraic Reconstruction Technique with Motion Compensation
using CUDA-enabled GPU. International Journal of Computer-Assisted Radiology
and Surgery 6, 2 (2011), 187–199.

[25] L.A. Shepp and B.F. Logan. 1974. �e Fourier reconstruction of a head section.
IEEE Transactions on Nuclear Science 21, 3 (June 1974), 21–43.

[26] Y. Tao, Y. Deng, S. Mu, Z. Zhang, M. Zhu, L. Xiao, and L. Ruan. 2014. GPU-
Accelerated Sparse Matrix-Vector Multiplication and Sparse Matrix-Transpose
Vector Multiplication. Concurrency and Comp.: Practice and Experience (2014).

[27] H. Wang, W. Liu, K. Hou, and W. Feng. 2016. Parallel Transposition of Sparse
Data Structures. In 30th ACM Int’l Conf. on Supercomputing. ACM, 33.

[28] H. Wu, D. Li, and M. Becchi. 2016. Compiler-Assisted Workload Consolidation
for E�cient Dynamic Parallelism on GPU. In 2016 IEEE International Parallel and
Distributed Processing Symposium (IPDPS). 534–543.

[29] S. Yan, C. Li, Y. Zhang, and H. Zhou. 2014. yaSpMV: Yet Another SpMV Frame-
work on GPUs. In Proceedings of the 19th ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming (PPoPP ’14). ACM, 107–118.

[30] X. Yu. 2013. Deep packet inspection on large datasets: algorithmic and paral-
lelization techniques for accelerating regular expression matching on many-core
processors. Master’s thesis. University of Missouri–Columbia.

[31] X. Yu and M. Becchi. 2013. Exploring Di�erent Automata Representations for
E�cient Regular Expression Matching on GPUs. In Proceedings of the 18th ACM
SIGPLAN Symposium on Principles and Practice of Parallel Programming (PPoPP
’13). ACM, New York, NY, USA, 287–288.

[32] X. Yu and M. Becchi. 2013. GPU Acceleration of Regular Expression Matching
for Large Datasets: Exploring the Implementation Space. In ACM Int’l Conf. on
Computing Frontiers (CF ’13). ACM, New York, NY, USA, Article 18, 10 pages.

[33] X. Yu, H. Wang, W. Feng, H. Gong, and G. Cao. 2016. cuART: Fine-Grained
Algebraic Reconstruction Technique for Computed Tomography Images on GPUs.
In 16th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing.
165–168.

[34] Y. Yuan, R. Lee, and X. Zhang. 2013. �e Yin and Yang of Processing Data
Warehousing �eries on GPU Devices. Proceedings of the VLDB Endowment 6,
10 (2013), 817–828.

[35] Y. Yuan, F. Salmi, Y. Huai, K. Wang, R. Lee, and X. Zhang. 2016. Spark-GPU:
An Accelerated In-Memory Data Processing Engine on Clusters. In 2016 IEEE
International Conference on Big Data (Big Data). IEEE, 273–283.

[36] J. Zhang, H. Wang, and W.-c. Feng. 2015. cuBLASTP: Fine-Grained Parallelization
of Protein Sequence Search on CPU+GPU. IEEE/ACM Transactions on Computa-
tional Biology and Bioinformatics PP, 99 (2015), 1–1.

[37] K. Zhang, K. Wang, Y. Yuan, L. Guo, R. Lee, and X. Zhang. 2015. Mega-KV: A
Case for GPUs to Maximize the �roughput of In-Memory Key-Value Stores.
Proceedings of the VLDB Endowment 8, 11 (2015), 1226–1237.

[38] S. Zhang, D. Zhang, H. Gong, O. Ghasemalizadeh, G. Wang, and G. Cao. 2014.
Fast and Accurate Computation of System Matrix for Area Integral Model-Based
Algebraic Reconstruction Technique. Optical Engineering 53, 11 (2014).

[39] X. Zhao, J.-J. Hu, and T. Yang. 2013. GPU-Based Iterative Cone-Beam CT Recon-
struction using Empty Space Skipping. Journal of X-ray Science and Technology
21, 1 (2013), 53–69.

ACM Computing Frontiers, Siena, Italy, 2017

http://www.imvinfo.com/user/documents/content_documents/nws_rad/MS_CT_DSandTOC.pdf
http://www.imvinfo.com/user/documents/content_documents/nws_rad/MS_CT_DSandTOC.pdf
https://books.google.com/books?id=Hih7hwkoFY4C

	Abstract
	1 Introduction and motivation
	2 Background and related work
	2.1 CT Rational & System Matrix
	2.2 Algebraic Reconstruction Technique (ART)
	2.3 Sparse Matrix Compression and SpMV
	2.4 GPU-based CT Image Reconstruction

	3 SCSR Format for System Matrix
	3.1 Symmetry-Based System Matrix Compression
	3.2 Column Indices Based Permutation for SCSR

	4 Blocking Techniques for Computation Optimization
	4.1 Global-level Blocking
	4.2 View-level Blocking

	5 GPU-Based ART
	5.1 Data Dependencies Decoupling
	5.2 GPU Kernel of cuART

	6 Evaluation
	7 Conclusions and Future Work
	8 Acknowledgment
	References

