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Abstract
The algebraic reconstruction technique (ART) is an iterative algorithm for CT (i.e., computed tomography) image
reconstruction that delivers better image quality with less radiation dosage than the industry-standard filtered back projection
(FBP). However, the high computational cost of ART requires researchers to turn to high-performance computing to
accelerate the algorithm. Alas, existing approaches for ART suffer from inefficient design of compressed data structures
and computational kernels on GPUs. Thus, this paper presents our CUDA-based CT image reconstruction tool based on the
algebraic reconstruction technique (ART) or cuART. It delivers a compression and parallelization solution for ART-based
image reconstruction on GPUs. We address the under-performing, but popular, GPU libraries, e.g., cuSPARSE, BRC, and
CSR5, on the ART algorithm and propose a symmetry-based CSR format (SCSR) to further compress the CSR data structure
and optimize data access for both SpMV and SpMV T via a column-indices permutation. We also propose sorting-based
global-level and sorting-free view-level blocking techniques to optimize the kernel computation by leveraging different
sparsity patterns of the system matrix. The end result is that cuART can reduce the memory footprint significantly and
enable practical CT datasets to fit into a single GPU. The experimental results on a NVIDIA Tesla K80 GPU illustrate
that our approach can achieve up to 6.8x, 7.2x, and 5.4x speedups over counterparts that use cuSPARSE, BRC, and CSR5,
respectively.

Keywords GPU · Computed tomography · Image reconstruction · Algebraic reconstruction technique · Sparse
matrix-vector multiplication · Transposed SpMV

1 Introduction andMotivation

The x-ray computed tomography (CT) scan is an indispens-
able medical imaging diagnostic tool. Its usage has sharply
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increased over the past few decades [1]. There are two cate-
gories of CT image reconstruction: analytical methods, e.g.,
filtered back projection (FBP), and iterative methods, e.g.,
algebraic reconstruction technique (ART) [2]. Currently,
FBP is the industry standard due to its fast reconstruction
speed. Although FBP can start reconstructing images once
the first projection is acquired, it is sensitive to projection
noise and requires more X-ray flux to deliver better recon-
structed image quality. In contrast, ART is insensitive to the
noise and can provide better image quality with fewer pro-
jection views and less radiation dosage. However, the usage
of ART is hindered by its high computational cost, espe-
cially for clinical applications that require instantaneous
image reconstruction. As a result, the acceleration of ART
is of paramount importance.

Significant research effort has already been invested
on the acceleration of ART, both algorithmically and at
runtime. Some try to accelerate ART by modifying the
algorithm [3–5], while others try to map ART to high-
performance computing (HPC) platforms, e.g., multicore
processors [6], Beowulf clusters [7], and FPGAs [8].
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Recently, GPUs have been employed as viable accelerators
for ART-based CT image reconstruction [9–12], due to
their superior energy efficiency and performance, e.g.,
kernel-only speedups of 10x to 15x over CPU-based
solutions, when the compressed sparse row (CSR) format
is used to compress data and advanced linear algebra
subroutines (e.g., cuSPARSE [11]) are used to accelerate
computations. However, a practical CT system matrix
stored in the CSR format may still exceed a GPU’s
memory capacity. Moreover, applying the approaches found
in existing libraries to ART may result in sub-optimal
performance [13–15].

Our previous research [16, 17] propose the CUDA-
accelerated algebraic reconstruction technique (i.e.,
cuART), which provides a complete compression and paral-
lelization solution for ART-based CT image reconstruction
on GPUs. The cuART includes our symmetry-based, CSR
format (SCSR), two blocking techniques, parallelized ART
and a transpose-free GPU kernel. The SCSR is a CSR
variant dedicated for the System matrix. It compresses
data by leveraging CT physical characteristics. We also
propose a column-indices permutation in SCSR in order
to optimize data-access patterns for sparse matrix-vector
(SpMV) multiplication and its transpose (SpMV T). The
blocking techniques in cuART transform the system matrix
in SCSR format to several dense sub-matrices. We provide
two blocking techniques leveraging two different levels of
system matrix sparsities. The sorting-based global-level
blocking leverages global-level sparsity pattern and is intu-
itive and easy to be implemented. On the other hand, the
view-level blocking requires more a complicated transfor-
mation algorithm, but is sorting-free and converges faster
due to leveraging finer grained (local) view-level sparsity
pattern. Moreover, we address the data dependencies in
the original ART algorithm and propose a parallelized
ART. Though our parallelized ART slightly sacrifices
convergence speed, we verify that it does not affect the
reconstruction accuracy and can deliver overall speedup
that surpasses the original ART algorithm. Based on these
optimizations, we then provide a transpose-free GPU kernel
in cuART to achieve significant performance improvements
over other general SpMV schemes on GPUs.

This paper extends our previous work in four aspects:
firstly, we add two subsections to provide elaborate analyses
and rigorous mathematical proof on view-level sparsity
characteristics. These characteristics are essential to view-
level blocking. We also provide the detailed view-level
blocking algorithm. Secondly, we thoroughly evaluate
the quality of our reconstructed images using advanced
statistical measurements (e.g SSIM, line profile). Thirdly,
we discuss the future work regarding how our symmetry-
based compression mutually benefits the Low-Dose CT, a
new trend in medical imaging research. Finally, we add

some new proposed researches to the related work to reflect
the most recent advances in the community. Our major
contributions include:

– A SCSR format that leverages the symmetries of a
system matrix to further compress CSR-based data and
optimize the data access for both SpMV and SpMV T
by permuting column indices.

– Two blocking techniques to convert SCSR to dense
sub-matrices at runtime by leveraging different level
sparsity patterns of the system matrix.1

– A parallelized ART algorithm, along with the design of
a transpose-free GPU kernel.2

– A prototype and performance evaluation of our
approach on the NVIDIA Kepler K80 GPU, which in
turn, can achieve up to 6.8, 7.2, and 5.4-fold speedups
over its counterparts that use cuSPARSE, BRC, and
CSR5, respectively.

2 Background and RelatedWork

2.1 CT Rational & SystemMatrix

A CT scan constructs cross-sectional images of a scanned
object, relying on a series of X-ray projection data. Figure 1
shows a schematic diagram of a spiral CT, the dominant
structure of commodity CT scanners. For such a structure,
the object is placed between a X-ray light source and
detector. The X-ray source emits multiple rays that pass
through the object, and the detector collects radiation that is
not absorbed by the object. The X-ray source and detector
spin around the central axis of the object with constant step
length, and multiple one-dimensional (1D) projection data
at varying views are collected.

According to Beer’s law, the mathematical model of CT
is a Radon transform of the object image to the projection
data. It has a discrete form as a linear equation system:
WF=P, where F is the image pixel vector of object image,
W is the pre-computed system matrix, and P is the collected
projection vector. Typically, the object image is a square
with N = n × n pixels, in which the pixel values represent
attenuations of tissue; accordingly, F is N × 1. The X-ray
light source emits l rays and each scan has v projection
views, hence P is M × 1, where M = l × v. W is a
M × N matrix that stores weighting factors; its element
wij represents the contribution proportion of j th pixel to

1The sorting-based global-level blocking is easy to be implemented,
while the sorting-free view-level blocking delivers faster preprocessing
time and less data padding and can also enable the adapted algorithm
to converge faster.
2This kernel leverages the merits of our SCSR format and blocking
techniques to provide significant performance improvements.
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Figure 1 Schematic diagram of the spiral CT structure.

ith projection data. A real-world scenario would estimate
a 1024 × 1024 image through a 1024 × 720 projection
vector, then the corresponding system matrix would have
10243 × 720 elements and require several terabytes (TB) to
be stored. Obviously, the approach that stores and utilizes
the whole system matrix may dominate the reconstruction
efficiency.

2.2 Algebraic Reconstruction Technique (ART)

CT image reconstruction is based on the inverse Radon
transform. Such an inversion is practically impossible to be
done via the analytical algebraic method [18]. So, Gordon et
al. [2] proposed the algebra reconstruction technique (ART),
which is an iterative solver for systems of linear equations.
ART starts from an initial guess of an image vector F (0),
then repeatedly updates the estimated image until its pixel
values are convergent, according to some criteria. Each
iteration of ART can be mathematically defined as follows:

f
(i)
j = f

(i−1)
j + λ

pi − ∑N
j=1(f

(i−1)
j wij )

∑N
j=1w

2
ij

wij (1)

where i = 1, 2, ..., M; j = 1, 2, ..., N ; λ is the relaxation
parameter; f

(i)
j is j th pixel of the estimated image after

i iterations (f (0) is an all-zero vector), pi is ith element
of the projection vector, and wij is the element of the
system matrix at ith row and j th column that represents
the weighting factor of the j th pixel to the ith projection
data. Iterating i in Eq. 1 from 1 to M is one round of ART,
in which the ith iteration will update the whole estimated
image f (i−1) based on the corresponding projection data
(pi) and weighting factors (wi). ART repeats until the
estimated image F is convergent. Equation 1 shows that the

heaviest computational burden of ART is the matrix-vector
multiplication, i.e.,

∑N
j=1(f

(i−1)
j wij ).

Two parallel variants, derived from ART, include (1)
simultaneous iterative reconstruction technique (SIRT) [19]
and (2) simultaneous algebraic reconstruction technique
(SART) [20]. The former, i.e., SIRT, updates the estimated
image after going through all the rays to process all
system matrix rows at the same time (rather than using
a ray-by-ray approach). However, SIRT takes longer to
converge than ART. The latter, i.e., SART, is a tradeoff
between ART and SIRT; it updates the image after
going through rays within a certain angle, and hence,
can simultaneously process system matrix rows that
belong to the same view. SART converges faster than
SIRT.

2.3 Sparse Matrix Compression and SpMV

As described in Section 2.1, storing the entire system
matrix in a single GPU is infeasible. Existing proposals
use dynamic approaches that calculate the system matrix
on the fly [9, 10]. However, these approaches introduce
large computational overhead due to repeated on-the-fly
computations during iterative image reconstruction [12].
Fortunately, system matrices are sparse due to the physical
characteristics of the weighting factors; hence, the design
space for storage and computational optimizations can be
explored.

Figure 2 shows the Area Integral Model (AIM) [5] of CT
on a n×n object image. In this model, X-rays are considered
as narrow fan-beams, and weighting factors are defined as
the ratios of ray-pixel interaction area to pixel area. For
example, the shaded area Sij in Fig. 2 is the interaction area
of ith ray ri and j th pixel fj . With the square pixel area
being δ2, hence the corresponding weighting factor is wij =
Sij /δ

2. Intuitively, each ray just interacts with a few pixels,
and only these interactions result in nonzero weighting

Sij

fj

pi

object image
X-ray light source

detector

f1 f2 fn
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fn^2

δ
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Figure 2 Fan-beam area integral model of CT.
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factors. This means only a few elements of each system
matrix row are nonzero, e.g., a systemmatrix density of only
10%. Hence, the matrix-vector multiplication from Eq. 1
falls into category of sparse matrix-vector multiplication
(SpMV).

Sparse matrix compression and SpMV have been well
studied over the past few decades. For example, the
compressed sparse row (CSR) format is one of the most
widely-used formats that compresses a matrix in row-major
format and stores non-zero elements of the sparse matrix
into contiguous memory locations. It consists of three
vectors: val, col idx, and row ptr, which store non-zero
elements, column indices, and offsets of rows, respectively.
Figure 5a and b shows an system matrix and its compressed
format in CSR. Although CSR is memory efficient because
it stores no redundant elements, it is not computationally
efficient because it requires indirect addressing step for each
query.

In recent years, many CSR variants have been proposed.
Blocked row-column (BRC) [13] scans the sparse matrix
in two dimensions and groups neighboring rows to the
several small blocks, in order to better balance the workload
and reduce the amount of padding needed. CSR5 [15]
evenly partitions non-zero elements into multiple 2D tiles
to achieve load balance and avoid storing unnecessary
data; and its extension [21] directly uses the CSR
format for load balanced SpMV and also considers CPU-
GPU heterogeneous processors. Compressed sparse blocks
(CSB) [14] partitions a matrix into multiple equal-sized
blocks and stores the non-zero elements within each block
using Morton order; it can support equally efficient SpMV
and SpMV T using a uniform format. yaSpMV [22]
provides an efficient segmented sum algorithm for the
blocked compressed common coordinate (BCCOO) format
with an auto-tuning framework for parameter selection.
ACSR [23] leverages binning and dynamic parallelism
techniques provided by modern GPUs to reduce thread
divergence for the standard CSR. CSR-Adaptive [24] uses
local scratchpad memory and dynamically assigns various
number of rows to GPU compute units. More recently,
NVIDIA proposed a merge-based parallel SpMV [25],
which uses CSR to minimize preprocessing overhead
and applies equitable multi-partitioning on the inputs to
ensure load balance. Steinberger et al. [26] present an
uncompromising approach for GPU-based SpMV. Their
approach has no preprocessing overhead and is directly
applicable to standard CSR. It exhibits efficient memory
access patterns and steady per-thread workload from a
global perspective, and avoids divergence execution from
a local perspective by using an efficient encoding to
reduce on-chip temporary data. It achieves 20% average
improvement against CSR, and can significant benefit
SpMV T as well with the adaption. Hou et al. [27]

propose a machine learning-based auto-tuning framework,
to determine the optimal binning schemes and kernel for
parallelized CSR-based SpMV. Although these proposals
leverage the hardware features of the CPU or GPU to
improve SpMV performance, they do not take any specific
sparsity structures into consideration. Furthermore, a recent
study indicates that sparse matrix transposition (SpMV T)
may become a performance bottleneck, especially when
SpMV has been highly optimized [28]. Thus, transpose-free
methods for SpMV and SpMV T are in urgent need.

2.4 GPU-Based CT Image Reconstruction

Nowadays, researchers invest large effort on accelerating
domain applications using High-Performance Computing
platforms [29–32] in addition to mathematically optimizing
the algorithms [33, 34]. GPU, one of the most popular HPC
devices, has been used to accelerate a myriad of applications
and achieved significant performance improvements [35–
39]. For CT image reconstruction, many researchers have
also looked into how to leverage GPUs. For example,
Keck et al. [40] propose an efficient implementation of
SART on CUDA-enabled GPU. Pang et al. [9] propose
a ray-voxel hybrid driven method to map SART onto
GPU architecture, while Zhao et al. [10] propose a
CUDA-based GPU approach that includes empty-space
skipping and a multi-resolution technique to accelerate
ART. However, both approaches require a significant
amount of memory due to their lack of awareness of
the sparse algebra computational pattern and the need
to have to calculate weighting factors on the fly. Such
on-the-fly calculation wastes the computational resources.
Guo et al. [12] propose a stored system matrix (SSM)
algorithm to reduce the size of the system matrix in GPU
memory by leveraging shift invariance for projection and
backprojection under a rotating coordinate. However, this
approach does not optimize the kernel performance on the
GPU. Liu et al. [11] accelerate SART with cuSPARSE
[41] after compressing the system matrix into CSR. They
report their GPU implementation achieves around a 10-
fold computational-kernel-only speedup over its single-
threaded CPU counterpart, which is much lower than the
cuSPARSE speedups claimed for other sparse applications.
As a result, there exist potential opportunities to optimize
such an application on the GPU by leveraging CT-specific
characteristics. Similar strategy is applied to accelerating
other applications on GPUs: for example, Aktulga et al. [42]
accelerate nuclear configuration interaction calculations on
GPUs through improving both SpMM and SpMM T by
leveraging domain-specific characteristics. In the remaining
sections of this paper, we utilize the NVIDIA GPU
architecture and its Compute Unified Device Architecture
(CUDA) [43] programming model.
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3 SCSR Format for SystemMatrix

The first and foremost challenge for cuART is how to
efficiently store non-zero elements of the system matrix.
Even though CSR is one of the most efficient compressed
formats for a sparse matrix, the data size of the CSR-based
CT system matrix may still be much larger than the memory
capacity of a commodity GPU. The third row of Table 1
shows the sizes of some real-world system matrices in CSR
format. A CSR format system matrix for a fine image,
e.g., 720 views and 20482 pixels, can exceed the memory
capacity of the commodity NVIDIA Tesla K80 GPU,
which has 24GB global memory. Although partitioning
the rows of the system matrix into multiple groups can
alleviate the memory pressure, it introduces additional data-
transfer overhead. Moreover, the ART algorithm requires
both SpMV and SpMV T, and transposing the matrix at
runtime could incur signficant overhead.

In this section, we propose SCSR, a variant of CSR
format that is dedicated to the CT system matrix. SCSR
leverages the symmetries in the system matrix in order
to further compress CSR data and properly permute the
column indices to avoid matrix transpositions during kernel
computation in cuART.

3.1 Symmetry-Based SystemMatrix Compression

CSR format already removes all zero elements of the system
matrix but still can’t fit into GPU global memory. This
fact motivates us to exploit another compression method in
addition to the data structure level compression. specifically,
we try to reduce the number of storing necessary elements
of the system matrix by leveraging physical characteristics
of CT scan.

As introduced in the background, the weighting factors
do not relate to pixel indices; they only correlate to the
interacted areas of X-rays and pixels. Accordingly, two
symmetric X-rays can have symmetric weighting factors.
Weighting-factor symmetries appear as the same numerical
values at symmetric pixel positions. We find that X-rays
can have two kinds of symmetry: reflection symmetry and
rotational symmetry. Figure 3 demonstrates the symmetries
among views (X-rays): X-rays from view v1 and view v3
visually have reflection symmetry, while X-rays from view
v2 and v4 have rotational symmetry. Specifically, assuming

Figure 3 Schematic diagram of views/X-rays symmetries.

each view has m X-rays, if ray ri in view v1 has weighting
factor value |w| for pixel I1, then ray r(m−i) in view v3
should have the same weighting factor value |w| for pixel I2;
meanwhile, if ray ri in view v2 has weighting factor value
|w′| for pixel I1, then ray ri in view v4 should have the same
weighting factor value |w′| for pixel I3.

Based upon these symmetry characteristics, we propose a
methodology to reduce the number of elements that have to
be stored in in the systemmatrix in order to further compress
the CSR data. Specifically, we equally divide the working
area into eight zones (or eight sectors, as in Fig. 3). Only
weighting factors coming from the views within one zone
need to be stored; all the other weighting factors can then
be easily obtained on the fly via simple index mappings.
Figure 3 shows a coordinate system for the CT scan model
on a n × n object image. Obviously, rays from zone II
are reflection symmetric to their corresponding rays from
zone I, while rays from zone III are rotationally symmetric
to rays from zone I. A pixel at coordinate (x1, y1) (we
denote its pixel index as I1 = n ∗ y1 + x1) should have
corresponding pixels at symmetric positions; the indices
of these corresponding pixels can be obtained through the
following mapping rule:

{
I2 = n ∗ y2 + x2 = n ∗ (n − y1) + x1: reflection symm
I3 = n ∗ y3 + x3 = n ∗ (n − x1) + y1: rotational symm

(2)

Table 1 Size comparison
between the CSR-based and
SCSR-based compressed
system matrices.

projection view# 360 720

image size (pixel#) 5122 10242 20482 5122 10242 20482

CSR-based matrix size (GB) 2.34 6.19 18.44 4.82 11.97 37.41

SCSR-based matrix size (GB) 0.29 0.77 2.31 0.60 1.50 4.68
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Based on the analyses in the last paragraph, the weighting
factors determined by a ray in zone I on pixel I1 and
its rotational symmetric ray in zone II on pixel I2 are
numerically identical. Similarly, a ray in zone I with pixel
I1 and its rotationally symmetric ray in zone III with pixel
I3 determine weighting factors having identical numerical
value as well. Hence we only need to store the weighting
factors (i.e., corresponding rows of the system matrix)
coming from rays within zone I. Then during runtime, we
can restore the weighting factors (i.e., rows) coming from
rays in zone II and III via the stored rows by using the
rule described in Eq. 2. We can restore rows from zone IV
and V via rows from zone III using the same method, after
clockwise rotating the coordinate system 90◦. We can also
analogously restore rows from all other zones. Applying
this symmetry-based compression to CSR data can further
compress it to one eighth of its original size. The forth row
of Table 1 shows the data sizes of some SCSR-based system
matrices. Compared to data sizes in third row, SCSR can fit
into the global memory of a single GPU even in our largest
case.

3.2 Column Indices Based Permutation for SCSR

As shown in Eq. 1, ART iteration requires multiplications
of system matrix W and its transposition with the vector.
One approach to process SpMV and SpMV T is to transpose
W to WT in advance. However, this increases the memory
footprint dramatically, especially given the fact that the
system matrix needs several GB of memory even in SCSR
format. Another method is to transpose the compressed
matrix at the runtime, however, that significantly increases
the computation time if multiple iterations are needed. An
advanced data structure, CSB [14], proposes an uniform
compressed matrix format to support fast SpMV and
SpMV T at the same time. However, it is not efficient to
apply CSB on the system matrix for ART for two reasons:
(1) Transforming the original system matrix to CSB format
will break the index mapping rule in Eq. 2 that we use to
compress the symmetric data and also destroy the sparse
patterns that we use to generate dense sub-matrices (as
discussed in the next section); (2) CSB is reported to be
efficient on multi-core CPU but inefficient on GPU due to
the overhead of handling divergent branches for dynamic
parallelism and binary search [44].

Instead we propose an optimization using column indices
based permutation, that is compatible to SCSR and can
support both SpMV and SpMV T at the same time.
It is transpose-free and will not degrade cuART kernel
performance. The conventional CSR-based transpose-free
SpMV T has to accumulate element-wise products to vector
y. This approach requires atomic operations when multiple
threads operate on the same y’s element; otherwise, it

results in a race condition. For example, in Fig. 5c, the
last two elements in the second column with “4” (“4”
is the column index in original SM) have element-wise
products that need to be accumulated to the resultant vector
element y4 at the same time, which can result in a race
condition. In order to avoid using atomic operations, we
propose the column indices based permutation. Specifically,
as shown in Fig. 5d and (e), we permute nonzero elements
in each row in a round-robin manner to make elements
in the same (SCSR) column have different (original SM)
column indices. For example, elements in last two rows
are rearranged in order to change their (original SM)
column indices sequences from “3456” to “5364” and from
“3456” to “6435” respectively. After such permutation,
race condition will never happen during SpMV T, since
different threads always accumulate their products to
different resultant vector elements at the same point in
time. On the other hand, since elements are permuted inside
each row, this method will not affect the correctness and
efficiency of SpMV, as well as the matrix symmetry and
sparsity.

4 Blocking Techniques for Computation
Optimization

The distribution of nonzero elements along system matrix
rows is irregular. In our test cases, the longest CSR row
can be four times longer than the shortest one. Hence
directly apply either CSR or our SCSR format to cuART
can result in a lower performance than the expectation,
due to threads workload imbalance. In this section, we
propose two blocking techniques to re-organize SCSR data
into multiple dense sub-matrices by utilizing system matrix
sparsity patterns in different granularities.

4.1 Global-Level Blocking

Inspired by SIRT [19], we know simultaneously process-
ing the whole system matrix is feasible. In this subsection,
we provide a sorting-based blocking approach by lever-
aging the global-level sparsity pattern of system matrix.
Figure 4 shows the methodology. According to the phys-
ical interpretation of system matrix, after shifting all its
nonzero elements to the left, it has a global sparsity pat-
tern as shown in (a). We can make two observations about
this pattern: 1) number of nonzero elements(nnz) of each
row falls into a narrow range; 2) the average of these nnz is
close to the median of such range. Accordingly, after sort-
ing the rows by nnz, the nonzero elements chunk will have
a shape as shown in (b). Such shape can approximate to a
right trapezoid as shown in (c). This trapezoid can then be
transformed to a rectangle (dense block) by cutting the acute
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Figure 4 Schematic diagram for
the methodology of leveraging
the global sparsity pattern to
block the SCSR data.
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angle along a proper vertical line and rotating the cut off tri-
angle 180◦ to fill the top-right indentation, as illustrated in
(c)–(e).

Following the methodology, we provide the global-level
blocking technique to transform CSR data to dense sub-
matrices, as illustrated in Fig. 5. Figure 5a and b are the
layouts of system matrix in original representation and CSR
format respectively. Figure 5c shows the rearranged layout
of the CSR-based representation, after all nonzero elements
have been shifted to the left and the rows have been sorted
based on their nnz. We pair the sorted rows following this
rule: pair the first row to the last row, the second row to
the second last row and so on. Then we concatenate and
bisect each pair and pad them with zeros to get the dense
matrix as shown in Fig. 5d. After permuting (as introduced

in Section 3.2) the nonzero elements in (d) to (e), we divide
the matrix in (e) (assuming the size is M × N) to three
dense sub-matrices as shown in Fig. 5f: Sub SM1 (with size
M × N ′, where N ′ is the length of shortest row in (c)),
Sub SM2, and Sub SM3 (both with size M

2 × (N − N ′)).
Only elements of each Sub SM2 row may come from two
different rows in (c). In order to record the junction point in
each Sub SM2 row, we use an auxiliary bitmask matrix, in
which 1s indicate junction point positions. For example, in
the second row of Sub SM2 in (f), element with “1” comes
from the second row in (c) while elements with “7” and “8”
come from the ninth row in (c), hence the corresponding
bitmask is 010.

Compared to BRC and CSR5, our global-level blocking
scheme minimizes atomic operation penalty, thanks to the
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Figure 5 Schematic diagram of CSR to dense matrix based on global sparsity pattern of CT system matrix. White elements are zero paddings,
numbers are column indices.
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pairing technique we used that always groups nonzero
elements into three dense sub matrices. Our proposed
scheme also has no additional addressing step since the
compressed rows can be directly mapped from row indices
of the original system matrix. Last but not least, it only has
one third of the sub-matrices (i.e., Sub SM2) that may cause
slight divergences, since there is only at most one junction
point in each row of that sub-matrix.

4.2 View-Level Blocking

Although our global-level blocking is easy to be imple-
mented and works better than existing general blocking
techniques, it remains two drawbacks: a) the heavy
preprocessing overhead due to the sorting step, which may
become a performance bottleneck of cuART if the sys-
tem matrix is refreshed frequently. b) the slow convergence

speed due to the compromised averaging approach on inter-
mediate results. cuART with global-level blocking accumu-
lates all intermediate results and averages the accumulation
after processing all rays. This approach does not naturally
comply with the principle of original ART algorithm, hence
degrades convergence speed. Intrinsically, in the ART,
projection data from one view alone can estimate the whole
object image. As a result, different views can provide differ-
ent estimations of the object image. Hence a more natural
averaging approach should accumulate and average inter-
mediate estimation results right after processing the rays
within each view.

SART [20] approves in theory the feasibility of simul-
taneously processing the projection data and corresponding
system matrix rows within one view. Accordingly, we pro-
pose a view-level blocking scheme, that is sorting-free and
based on view-level sparsity patterns of the system matrix.

Figure 6 Sparsities of six typical projection views.

J Sign Process Syst (2019) 91:321–338328

Journal of Signal Processing Systems 2018



Figure 7 Schematic diagrams of
view positions and shapes of
projection/image overlap.
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4.2.1 Overview of the View-level Sparsity

We start the introduction from the illustration of view-
level sparsity patterns. As introduced in the last section,
after applying symmetry-based compression, only 90 out
of 720 views are demanded to be stored. Figure 6 shows
the sparsities of six typical views in the case of 1024 rays
per view with 10242 image. The characteristics of view-
level sparsity patterns can be summarized as: a)most views’
smallest row nnz are similar (around 1000 in example case),
and largest row nnz are progressive (gradually increase
from 2000 to 3500 in example case); b) each view pattern
has a steady area in the middle with left/right linear
increasing/decreasing areas in the sides respectively; c) the
slopes of right areas increase gradually along views change,
while the slopes of left areas first decrease then increase.

These characteristics are determined by the shape of
overlaps between the X-rays and the object image at each
view position. Figure 7 shows the corresponding view
positions and overlap shapes of six typical views in Fig. 6.
The overlapped region on each view is split to several
sub-regions by the rays passing through image vertices.
Specifically, view0 and view4 are divided to three sub-
regions by the rays passing through two lower vertices.
Along with light source moving anticlockwise, region I
of the views go smaller. After a certain view, region Is
will no longer be determined by the ray going through
lower-left vertex; instead, the ray going through upper-
left vertex will partition the region Is of the following
views such as view22, view 45 and view77. Region Is
in these views go larger along with light source moving
anticlockwise. Finally in view 89, the ray passing through
upper-left vertex will also go through lower-right vertex;

consequently, region II is squashed and only two sub-
regions: I and III are left. We can also observe that region
IIs go smaller and region IIIs go larger all the way from
view0 to view 89. The region Is map to the left trapezoids,
the region IIIs map to the right trapezoids, and the region
IIs result in the steady areas in Fig. 6. In other words,
two inflection points on each shape are determined by two
separator rays for each view. Accordingly, since the physical
interpretation of the nnz of each row is the number of
pixels overlapped with the corresponding ray, the largest and
smallest row nnz of each view are determined by the lengths
of separator rays (i.e. the line segments overlapping with the
object image); largest nnz of the views go larger along with
light source moving anticlockwise, while smallest nnz can
keep approximately the same.

4.2.2 Mathematical Analyses of the View-Level Sparsity
Characteristics

The above observed characteristics are not specific enough
to make the view-level sparsity applicable to the blocking
scheme design. In order to leverage the view-level sparsity
patterns, we reveal three non-intuitive characteristics
through mathematical analyses: a) positions of inflection
points on shapes from adjacent views have constant
distance, b) view 5 is the border-view that its left area of
sparsity pattern has the valley slope (refer to characteristic
(c) in first paragraph of section 4.2.1), and c) the right
inflection points move right with five rows/step along views;
the left inflection points first move left with five rows/step,
then after view 5, they start to move right with six rows/step.

Figure 8 shows a sample view V , in which x is the light
source, y is the center of both the image and virtual circle
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Figure 8 Schematic diagram of a sample view V .

and on the midline of projection triangle, and z is lower-
right vertex of image. Edge xy, yz and xz have length a, b
and c respectively. α, β, γ are three angles as indicated in
figure; exploring how right inflection point position changes
between different views is equivalent to understanding how
∠β changes. Since ∠β + ∠γ is fixed, we can analyze how
∠γ changes instead.

According to the law of cosine, the edge lengths satisfy
equations:
{

c2 = a2 + b2 − 2ab cosα

b2 = a2 + c2 − 2ac cos γ
(3)

After applying substitutions to them, we have

γ = arccos

(
a − b cosα√

a2 + b2 − 2ab cosα

)

(4)

According to the differential formula

d(arccos x) = 1√
1 − x2

dx (5)

if ∠γ ′ is angularly similar enough to ∠γ , there is an
approximate equation:

arccos γ − arccos γ ′

γ − γ ′ ≈ 1
√
1 − γ 2

(6)

Assuming ∠γ ′ is the angle at the same position in view V ′
which is adjacent to V , we substitute Eq. 4 into Eq. 6 and
get:

γ − γ ′ =
a−b cosα√

a2+b2−2ab cosα
− a−b cosα′√

a2+b2−2ab cosα′
√

1 −
(

a−b cosα√
a2+b2−2ab cosα

)2
(7)

In practice, the X-ray light source moves with 0.5◦ angular
step i.e.∠α′ = ∠α+0.5◦; accordingly, the numerical values

of cosα′ and cosα are close enough. a and b are fixed
number once CT device is set, and won’t change much even
if device’s physical parameters changing. Consequently, we
approximately simplify Eq. 7 and get:

�γ ≈ b(cosα′−cosα)√
a2+b2−2ab cosα−(a−b cosα)2

= (cosα′−cosα)√
1−cos2 α

≈ cotα′ − cotα
(8)

Equation 8 shows, although �γ is not constant, it can be
reasonably approximated to a fixed number due to the fact
that cot is roughly linear within [ 3π2 , 2π ] interval. The left
inflection point change can by analyzed analogously and
lead to similar results. Through these analyses, we discover
that inflection point positions change with constant row
interval along views. In our case, the right inflection points
move right with five rows per step along views; the left
inflection points first move left with five rows per step; then
after view 5, they start to move right with six rows per
step.

4.2.3 View-Level Blocking Design

Based on all above analyses, we propose the view-level
blocking that transforms SCSR to dense sub-matrices at
runtime. Figure 9 shows the schematic diagram for the
view-level sparsities based transformation. Algorithm 1 is
the concrete method of the transformation using view-level
blocking. Such blocking scheme has four steps: (a) Since all
views have a similar smallest nnz, we calculate a split point
for each view to divide the non-zeros to a dense matrix and
a trapezoid (line 3-7 in algorithm 1). (b) Based on the fact
that two neighboring views have nearly the same sparsity
patterns, we pair adjacent views then cut and combine the
left and right side triangles of the trapezoids along inflection
point to transform them to rectangles (line 8-29; according
to first paragraph of Section 4.2.2, the border-view is
view 5, the c is 5 and the c′ is 6). Since inflection point
positions change regularly, they can be directly addressed
without sorting. When SpMV kernels access these dense
rectangles, they can map their elements to the original
system matrix without any indirect addressing. (c) Since
the largest row nnz of each view gradually increases, we
then average row lengths of each view pair (e.g. {viewi,
view(89-i-1)}, {view(i+1), view(89-i)}, where i is an integer
less than 45) by moving elements and add flags (line 30–
33). (d) We finally pad, combine the rows and generate
three dense blocks for every two view pairs: sub SM1 that
has 4M ′ rows without flags, sub SM2 that has 2M ′ rows
with at most four flags per row, and sub SM3 that has
less than 2M ′ rows with at most one flag per row, where
M ′ is the number of system matrix rows for each view
(line 34).
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Compared to the global-level blocking, the view-level
blocking may have slightly more thread divergences due to
more flags and lower occupancy (sub SM3 has less than
2M ′ rows) in each single iteration. However, it has much
less padding data than the global-level blocking due to
the utilization of finer-grained sparsities. Moreover, cuART
with view-level blocking can converge faster than with
global-level blocking since the former updates the estimated
image more frequently.

5 GPU-Based ART

5.1 Data Dependencies Decoupling

According to Eq. 1, each ART iteration starts with the
estimated image updated by previous iterations. It updates
the image using corresponding element of the projection
vector and row of the system matrix. This implies that any
two ART iterations have data dependency, and the system
matrix rows should be accessed sequentially. On the other
hand, both SIRT and SART suggest that system matrix rows
can somehow be simultaneously processed. In our GPU-
based design, we first decouple the data dependencies and
rewrite the ART iteration as:

F (r+1) = F (r) + WT (C. ∗ (P − WF(r))) (9)

where F is N × 1 pixel vector of the estimated image,
its superscript r represents the index of parallelized ART
round; W is M × N system matrix; P is M × 1 projection

Figure 9 Schematic diagram of
sample view for mathematical
analysis. White areas are zero
paddings.
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Figure 10 Matrix memory layout and a SpMV data access pattern and b SpMV T data access pattern.

vector; C is M × 1 constant vector whose elements are
ci =λ /

(M
∑N

j=1 w2
ij )
, where wij are system matrix elements;

WT is the transpose of system matrix and .∗ is element-
wise multiplication. Notice thatW could be either the whole
(with global-level blocking) or a portion (with view-level
blocking) of the system matrix; the portion should be the
rows that belong to the same view. In the latter case, all
M should change to M ′ = M/v, where v is the number
of views; accordingly, W has the size M ′ × N , and P and
C should be M ′ × 1 vectors. Guan and Gordon [3] prove
that the access order of X-rays and projection data change
will not affect the reconstructed image quality that ART can
achieve. This is because X-rays are not overlapped and each
projection data just corresponds to a single ray. Hence, Eq.
9 can achieve the same reconstructed image quality to Eq. 1
after running adequate iterations. Although Eq. 9 has slower
convergence speed than Eq. 1, our experiments show that
the performance improvement getting from parallelization
on GPU can offset the overhead caused by the slower
convergence speed.

5.2 GPU Kernel of cuART

The GPU kernel of our cuART could support both SpMV
and SpMV T at the same time by using the SCSR
based system matrix with our blocking techniques, and
is transpose-free and race-free. Algorithm 2 shows such
kernel, and Fig. 10 shows memory layout of system matrix
(using one dense sub-matrix as example) and data access
pattern.

Specifically, Fig. 10a illustrates the memory layout of
an example dense sub-matrix Sub SM3 (with the size p *
q) and the data access pattern using multiple GPU threads
for SpMV. In this figure, x is the projection vector, col idx

and w val are the column index (in original SM) and
value arrays of Sub SM3, and y is the resultant vector.
Our task-mapping scheme is assigning one sub-matrix row
to one thread, and each thread is demanded to compute
the product of assigned row and x. This One-Thread-to-
One-Row mapping can fully utilize the hardware resources,

since the number of rows (e.g. 92160 in 720 views with
1024 rays per view case) is usually much larger than the
number of commodity GPU cores (e.g. 4992 in Tesla K80).
Moreover, in order to achieve coalesced memory access on
GPU, we store the matrix in columnmajor order. The SpMV
computation can be executed following the statement in line
6 of Algorithm 2. For example, as shown in Fig. 10a, the
thread 2(T2) handles the row 2 in the dense sub-matrix;
T2 calculates the product of each row 2 element and its
corresponding (based on value in col idx) element of x,
accumulates these products, and then adds the result to
corresponding element of y (y2 in this case).

When the kernel computes SpMV T, it can leverage the
same data layout used for SpMV. Figure 10b illustrates the
data access pattern for SpMV T: each thread still processes
a compressed row; however, instead of accoplishing the
accumulation of element-wise products within each thread,
threads need to accumulate the product to corresponding
elements of y′, with the element indices determined by
col idx. For example, thread 1(T1) in Fig. 10b multiplies
w val10 by x1 and accumulates the product to y′

2, then
multiplies w val11 by x1 and accumulates the product to y′

4,
and so on. Since we permute data inside each sub-matrix
row to make the elements of a col idx segment that for one
sub-matrix column to have different values (e.g. elements
of the first col idx segment that for sub-matrix column 1
has the value “11”, “2”, “9”, “3”, “4”), different threads
will always accumulate the products to different positions
in y′ at the same time point. Hence we can avoid the atomic
operations.
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6 Evaluation

We evaluate our cuART on the platform that has Intel
Xeon E5-2697 multicore CPU running on 2.70GHz, 256GB
system memory, and NVIDIA Tesla K80 GPU. The K80
is the newest model of Kepler architecture-based Tesla
GPU, which has a total of 4992 CUDA cores and 24GB
GDDR5 global memory. Our experimental data includes
both standard test dataset – Shepp-Logan phantom [45] that
serves as the human head model, and two real-world mouse
datasets: mouse437 and mouse459. The cuART reconstructs
images with 2048 × 2048, 1024 × 1024 and 512 × 512
resolutions respectively for each dataset. The parameters of
the CT device are configured to 720 views and 1024 rays
per view for each scan.

We first make a performance comparison between
cuART and existing approaches. We take an existing single
threaded CPU implementation [5] as baseline; it implements
the original ART algorithm as shown in Eq. 1, which
has a faster convergence speed but is not feasible to be
parallelized. We compare cuART with GPU counterparts
using CSR (cuSPARSE), BRC, and CSR5 respectively. As
mentioned in the third row of Table 1, when using CSR
format, we need 37.41 GBmemory to hold such compressed
system matrix for images at 2048 × 2048 resolution, which
exceeds the global memory size of NVIDIA K80. BRC
and CSR5 formats require even more memory spaces than
CSR. As a result, in all GPU counterparts, we have to
partition the systemmatrix into multiple groups and pipeline
GPU computations and host-device data transfers, although
this method leads to additional overhead. Furthermore, all
counterparts use the csr2csc function in cuSPARSE to
explicitly transpose the system matrix for SpMV T. These
transpositions make the overhead larger since we have to
also pipeline GPU computations and data transfers for the
transposed matrix. All GPU versions implement the adapted
ART algorithm in Eq. 9 that is easier to be parallelized but
needs more iterations to reach convergence.

Figure 11 shows the execution time of reconstruction
schemes, and Fig. 12 shows the performance comparisons.
Both the CPU and GPU versions run adequate iterations
to reach convergence. We find that only the image
resolution affects reconstruction efficiency independent of
the datasets; hence we don’t distinguish the performances
for different datasets. The figure shows CSR and BRC can
achieve up to 3.7-fold speedup over CPU version, while
CSR5 can achieve up to 4.8-fold speedup. Our cuART with
SCSR and global-level blocking (g-l SCSR) can achieve up
to 6.1, 6.6, 4.2-fold speedup against cuSPARSE, BRC and
CSR5 respectively, while cuART with SCSR and view-level
blocking (v-l SCSR) can achieve up to 6.8, 7.2, 5.4-fold
speedup over aforementioned counterparts. BRC and CSR5
underperform their claimed best achievements because of
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Figure 11 Execution time of ART-based CT image reconstructions on
CPU and on GPU using CSR, BRC, CSR5, and SCSR respectively.

(1) the slower convergence speed than the CPU version, (2)
the overhead of processing a mass of control tags and flags
inside the data structures, (3) the time spent on the explicit
transposition from CSR to CSC, and (4) the overhead in
the pipeline mode to overlap GPU computations and host-
device data transfers. On the other hand, SCSR can avoid or
reduce all these overheads; hence g-l SCSR and v-l SCSR
can acheive significantly improved performances compared
to the GPU counterparts.

All GPU implementations use the parallelized ART
that sacrificing the convergence speed for the parallelism.
Among these GPU implementations, our cuART with v-
l SCSR compensates the convergence speed loss to some
extent due to the leveraging of finer sparsities hence
converges faster than the others. Figure 13 is the comparison
of Root Mean Square Error (RMSE) after each iteration
between the original ART on CPU, the parallelized ART
with g-l SCSR (same results with BRC or CSR5) and v-
l SCSR respectively on GPU. It shows that original ART
reaches convergence after running about 15 iterations, while
parallelized ART needs 50 iterations when using g-l SCSR
or 30 iterations when using v-l SCSR to converge. Since
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based CT image reconstructions using CSR, BRC, CSR5, and SCSR
respectively. The baseline is the single threaded CPU counterpart.
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a single iteration on GPU is 62.4 times faster than one
iteration on CPU, the GPU version with g-l SCSR can
achieve 18.7-fold overall speedup over the CPU version.
And, albeit one single GPU iteration with v-l SCSR is
slightly slower than one iteration with g-l SCSR, v-l
SCSR based GPU implementation can achieve 1.3-fold
overall speedup against g-l SCSR based implementation and
consequently 24.8-fold speedup against CPU counterparts,
due to the 1.7 times faster convergence speed.

Both the SCSR data format and the parallelized ART do
not affect the quality of reconstructed image.

Figure 14 shows the images reconstructed through (b)
global-level (g-l) SCSR and (c) view-level (v-l) SCSR
respectively, compared to (a) original phantom image.
The differences among these images are already too
subtle to be recognized by human eye perception. We
then use three statistical measurements to quantitatively
evaluate the reconstructed images’ quality. We measure
the images both globally and locally. Root Mean Square
Error (RMSE) is one of the most commonly used metric
for measuring global differences of the images. From
Fig. 13 we can see, although g-l SCSR and v-l SCSR

Table 2 SSIM contrast using Phantom as reference.

g-l SCSR v-l SCSR Phantom

SSIM 0.9878 0.9901 1

have different convergence speed, they finally achieve
approximately the same RMSE compared to original
ART after running adequate iterations. We further apply
the structural similarity (SSIM) index method to verify
the global evaluation. SSIM [46] is considered as the
improvement of RMSE by eliminating the inconsistence
between RMSE and human eye perception. Instead of
estimating absolute errors by RMSE, SSIM adopts the
perception-based model considering image degradation as
perceived change in structural information. Table 2 shows
the SSIM of the images to the reference. SSIM value
is within the range from 0 to 1, and the closer to 1
means more similar to the reference. The results indicate
our reconstructed images can be considered structurally
the same as original phantom image. Finally, we locally
measure the image qualities through line profiling. Line
profile provides pixel-wise evaluations along an arbitrary
line segment on the images (at the same relative positions on
different images). Figure 15 shows the profiling results. The
x-axis represents the indices of profile points along the line
segment; the y-axis represents the average numerical value
of the sample pixels around each profile point. From the
figure we can see, except some slight noises at the edges, the
reconstructed images are considered highly consistent to the
original image. Based on above analyses, we can summarize
that parallelized ART with our SCSR achieves the same
reconstruction quality as the original ART.

Figure 16 shows the memory footprint (dominated by
system matrix) comparison between different compressed
data formats. The memory footprint is dominated by
the system matrix whose size is determined by image
resolution and CT device configuration independent of the
datasets. The g-l SCSR requires 7.8, 7.7 and 7.6 times
less memory space than CSR for 20482, 10242 and 5122

Figure 14 Reconstructed
images using b g-l SCSR, c v-l
SCSR respectively, compared to
a original Phantom image. All
images are in size 10242.

(a) (b) (c)
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Figure 15 Line profiling on reconstructed images using g-l SCSR and
v-l SCSR respectively, compared to original Phantom image.

image respectively, while the v-l SCSR requires 7.9, 7.9
and 7.8 times less memory space than CSR. BRC requires
slightly larger memory space than CSR due to the zero
paddings, and CSR5 requires nearly the same memory size
as CSR since both two are padding-free. By leveraging
the symmetry characteristics in the system matrix, SCSR
doesn’t store symmetric nonzero elements and needs only
very few zero-paddings and a small bitmask, hence can
achieve the best memory efficiency. Overall, SCSR is the
only one data format that can make all system matrices
in our experiments fit into the global memory of a single
NVIDIA Tesla K80 GPU.

We also evaluate the preprocessing time to transform
original system matrices to corresponding compressed data
formats. Similar to the memory footprint, the preprocessing
time positively correlates to image resolution independent
of the datasets. Figure 17 is the preprocessing time
comparison. It shows that CSR needs the least preprocessing
time and can be treated as the baseline because all the
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other formats are its variants. It also shows BRC and g-
l SCSR require substantial preprocessing time due to the
sorting step. Preprocessing time of CSR5 is up to 2.9 times
slower than CSR due to the dense sub matrices generation.
Our v-l SCSR has nearly the same preprocessing cost as
CSR because it doesn’t spend much time on the dense
sub matrices generation, thanks to the direct mapping by
leveraging the sparsity pattern in each view.

7 Conclusions

In this work, we propose cuART, an enhanced tool
to accelerate ART-based computed tomography image
reconstruction using GPUs. It consists of the SCSR data
format and transpose-free GPU kernel for ART. SCSR
is a variant of CSR that further compresses the CSR-
based system matrix of CT scan by leveraging symmetry
characteristics, and it optimizes data access for both SpMV
and SpMV T through column indices permutation. We
also propose two blocking techniques to convert SCSR to
several dense sub matrices by taking advantage of various
sparsities of the system matrix; both blocking techniques
can optimize workload distributions and computations. A
transpose-free GPU kernel is designed to implement parallel
ART algorithm by applying SCSR and blocking techniques
to it. Our experiments illustrate cuART can achieve up to
6.8, 7.2 and 5.4-fold speedup over the GPU counterparts
using cuSPARSE, BRC, and CSR5 on NVIDIA Tesla K80,
respectively.

8 Discussions and FutureWork

The Low-Dose CT following the well-known ALARA (as
low as reasonably achievable) principle gradually becomes
one of the popular research topics in the medical imaging
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domain [47]. This trend is led by the raising concerns on
the side effect of radiations inducing genetic, cancerous
and other diseases. In order to reduce the radiation
exposures to the patients, one of the major methods in
Low-Dose CT is reducing the scanning angles. Obviously,
albeit we are not initially targeting the Low-Dose CT,
our symmetry-based compression is naturally beneficial
to the Low-Dose CT case since we reduce the required
projection data for reconstructions and accordingly reduce
the necessary scanning angles to one eighth of regular
CT. On the other hand, we can consider to apply the
state-of-the-art algorithms in Low-Dose CT such as total
variation (TV) [48], Haar transform [49], and Shearlet-
based regularization [50] to our cuART, to further reduce
the data residing in device global memory.

In the future, we will also extend our cuART to reconstruct
the 3D image. Iterative 2D and 3D image reconstruction
algorithms essentially have the same basis, and hence
our memory and computationally efficient approach may
also significantly benefit the 3D cases. We also plan to
implement cuART on large-scale GPU clusters by using
modern parallel and distributed programming models, e.g.
MPI, to satisfy the demands in the BIGDATA era.
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8. Grüll, F., Kunz, M., Hausmann, M., Kebschull, U. (2012).
An implementation of 3d electron tomography on fpgas. In
2012 International Conference on Reconfigurable Computing and
FPGAs (ReConFig) (pp. 1–5).

9. Pang, W.-M., Qin, J., Lu, Y., Xie, Y., Chui, C.-K., Heng, P.-
A. (2011). Accelerating simultaneous algebraic reconstruction
technique with motion compensation using cuda-enabled gpu.

International Journal of Computer-Assisted Radiology and
Surgery, 6(2), 187–199.

10. Zhao, X., Hu, J.-J., Yang, T. (2013). Gpu-based iterative cone-
beam ct reconstruction using empty space skipping. Journal of
X-ray Science and Technology, 21(1), 53–69.

11. Liu, R., Luo, Y., Yu, H. (2014). Gpu-based acceleration for interior
tomography. IEEE Access, 2, 757–770.

12. Guo, M., & Gao, H. (2017). Memory-efficient algorithm for
stored projection and backprojection matrix in helical ct. Medical
Physics, 44(4), 1287–1300.

13. Ashari, A., Sedaghati, N., Eisenlohr, J., Sadayappan, P. (2014).
An efficient two-dimensional blocking strategy for sparse matrix-
vector multiplication on gpus. In 28th ACM Int’l Conf. on
Supercomputing (pp. 273–282).
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