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Abstract—The exponential growth of genomic data presents
challenges in analyzing and computing on such biological data
at scale. While NCBI’s BLAST is a widely used pairwise
sequence alignment tool, it does not scale to large datasets
that are hundreds of gigabytes (GB) in size. To address this
scalability problem, mpiBLAST emerged and became widely
used, enabling scaling to 65,536 processes. However, mpiBLAST
suffers from being tightly coupled with a specific implementation
of BLAST, rendering it difficult to upgrade with the ever-evolving
NCBI BLAST code. To address this shortcoming, recent parallel
BLAST tools, such as SparkBLAST, consist of wrappers that are
decoupled from the BLAST code but suffer from poor scalability
with large sequence databases. Thus, there does not exist any
parallel BLAST tool that can simultaneously address the issues
of performance, scalability, programmability, and upgradability.
To address this void, we propose SparkLeBLAST, a parallel
BLAST tool that leverages our performance modeling and the
Spark framework to deliver the performance and scalability of
mpiBLAST and the ease of programming and upgradability of
SparkBLAST, respectively. Ultimately, SparkLeBLAST delivers
a 10x speedup relative to the state-of-the-art SparkBLAST and
nearly a 2x speedup relative to the latest version of mpiBLAST.

Index Terms—scalable genome analysis, BLAST, Spark, dis-
tributed computing, parallel computing, bioinformatics, sequence
alignment, mpiBLAST, SparkBLAST

I. INTRODUCTION

Advances in genome sequencing technology [1] have led to
an exponential growth in the size of genomic databases. On
the one hand, this wealth of data has created a plethora of
opportunities for groundbreaking research in multiple fields,
including cancer research and evolutionary biology. On the
other hand, it has created a “big data” bottleneck for high-
performance computing (HPC) systems that perform such
large-scale genomic analysis. This, in turn, provides the mo-
tivation for continued research into scalable genomic analysis
tools that are easy to develop, maintain, and upgrade while
also being easy to use.

The Basic Local Alignment Search Tools (BLAST) is a
widely used pairwise sequence alignment algorithm. Pairwise
sequence alignment is a fundamental building block in the
genomic analysis that finds similarities between biological
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sequences. BLAST uses a heuristic approach to identify re-
gions of similarity between pairs of sequences. The heuristic
nature of BLAST makes it significantly faster than exact
sequence alignment algorithms such as Smith-Waterman [2]
and Needleman-Wunsch [3].

The input to a BLAST search is a set of query sequences
and a database of known sequences. The query size typically
runs in the range of hundreds of megabytes (MB), while
a single genomic database can be as large as hundreds of
gigabytes (GB), three orders of magnitude larger than the
typical query size. The output for every pair of query and
database sequences consists of a description of the regions of
similarity, the similarity score, and the statistical significance
of the similarity.

BLAST is implemented and maintained by the National
Center for Biotechnology Information (NCBI) [4]. Despite the
performance advantage of BLAST over the locally optimal
Smith-Waterman algorithm, it suffers from being bottlenecked
on large, “big data” genomic databases. Specifically, the
performance of BLAST on pairwise sequence alignment is
limited by a computer system’s memory wall [5] and I/O wall.
For example, a typical BLAST search can take more than two
weeks to complete a sequential BLAST search for a genome
against a large genomic database. However, with the advances
in parallel and distributed computing back in the 2000s, a
paralle]l BLAST tool like mpiBLAST can complete the search
in one hour [6].

As a consequence, mpiBLAST rapidly garnered significant
popularity and has been widely used in many biological studies
due to its high scalability and accuracy [6], [7]. Specifically,
mpiBLAST easily scales up to 65,536 processors [8]; however,
due to the tight coupling with a specific version of NCBI
BLAST, mpiBLAST requires significant effort and expertise
to maintain and upgrade. For instance, the latest release of
mpiBLAST, which wraps around NCBI BLAST in a semi-
custom way, was in 2012; since then, NCBI has released
multiple updated versions of the BLAST code, but mpiBLAST
has not been updated in tandem to the changes in the NCBI
BLAST code, thus arguably obsolescing mpiBLAST. Despite
that, the latest version of mpiBLAST [7] continues to be the
most scalable among all parallel BLAST tools, including [9],
[10], and [11].
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SparkBLAST [12], a more recent parallel BLAST tool,
uses Spark [13] to parallelize pairwise sequence alignment.
SparkBLAST leverages the programmability of Spark to par-
allelize NCBI BLAST by using a wrapper that consists of
only 10 lines of code. As a consequence, SparkBLAST
is highly maintainable and upgradable with minimal effort.
However, SparkBLAST only parallelizes BLAST by using
a technique called query segmentation, an embarrassingly
parallel approach that partitions a query file into individual
queries to run in parallel across compute nodes while having
to replicate the database on each node. Query segmentation
has two major limitations. First, it incurs significant 1/O
overhead for databases that are larger than the system memory
of a single compute node. Second, parallelizing via query
segmentation results in a significant load imbalance between
parallel workers. Based on previous studies, the BLAST search
times of different sequences of the same genome can vary
significantly [14]. A similar tool to SparkBLAST is Cloud-
BLAST [15], a parallel BLAST tool based on Hadoop [16]
instead of Spark. However, CloudBLAST suffers from the
same limitations as SparkBLAST does.

Other tools include PCJ-BLAST [17], HPC-BLAST [18],
and the data-parallel BLAST for commodity clusters [19].
PCJ-BLAST uses query segmentation with static load bal-
ancing, hence lacking scalability with large databases. On the
other hand, HPC-BLAST and the data-parallel BLAST use
database segmentation; however, they still suffer from poor
scalability due to centralized output processing.

In this paper, we present SparkLeBLAST, a parallel
BLAST tool that leverages our performance model to deliver
the performance and scalability of mpiBLAST with the pro-
grammability and upgradability of SparkBLAST. Our main
contributions are summarized below:

« SparkLeBLAST, an open-source' parallel BLAST tool
based on Spark that delivers performance, scalability,
programmability, and maintainability.

o A performance model of distributed parallel BLAST that
estimates its execution time based on input size and basic
characteristics of the system architecture.

o Performance that is up to 10x faster than SparkBLAST
and nearly 2x faster than the latest version of mpiBLAST
using a large-scale biological database, i.e., the non-
redundant protein sequence dataset (nr) [20].

The rest of this paper is organized as follows: Section II
describes and validates our performance model of parallel
BLAST for different data partitioning approaches. Section III
describes the design and implementation of SparkLeBLAST.
Section IV evaluates the performance of SparkLeBLAST,
compared to SparkBLAST and mpiBLAST. Section V con-
cludes the paper and highlights future directions.

II. PARALLEL BLAST PERFORMANCE MODEL

The main design goals of SparkLeBLAST are to leverage
its programmability, upgradability and fault tolerance while

Uhttps://github.com/vtsynergy/SparkLeBLAST

also scaling to large databases that do not fit in the memory
of a single compute node. The intuitive solution is to partition
the database such that each partition fits in memory.

Database segmentation would address two main issues in-
curred by SparkBLAST’s query segmentation approach. The
first issue is load imbalance, which is caused by variation in
the execution time of each query sequence; the second issue
is the I/O paging overhead for databases that do not fit in the
memory of a single node. However, database segmentation
comes at the expense of additional overhead to merge and
sort the final output.

Previous studies, including [21], [7], [22], and [23], have
extensively analyzed the performance of data-parallel BLAST
for different partitioning schemes. The most comprehensive
study was performed by Lin et al. [7], which analyzed the
trade-off between load balance, I/0, and communication. This
study yielded the sophisticated implementation of mpiBLAST
v1.6 that enabled hierarchical partitioning with a wide range
of configurations and some heuristics that guided the choice
of the optimal configuration. However, Lin et al. emphasized
that the optimal configuration is highly system and workload
dependent. Since the characteristics of computer clusters, e.g.
I/O performance, network bandwidth, memory size, evolve
continuously, the heuristics provided by Lin et al. need to be
revisited over and over. To address this problem, we devised a
simplified model for the performance of data-parallel BLAST
that estimates the total execution time as a function of input
data and basic characteristics of distributed computing clusters.

We begin by describing the main components and parame-
ters of our performance model. After that, we describe and val-
idate the performance model for parallel query segmentation
and database segmentation. We then highlight new insights
gleaned from our model to conclude this section.

A. Model Parameters

BLAST is sequence similarity algorithm that uses a heuris-
tic approach to identify regions of local similarity between
pairs of sequences. The asymptotic upper bound of running
a BLAST search on two sequences ¢ and d is O(|q||d|),
where |g| denotes the number of characters in sequence gq.
Hence, for a query @ = {¢1,42,...,qn} and a database
D = {dy,ds,...,dy}, the asymptotic upper bound execution
time is O(|Q||D|), where |Q)] is the total number of characters
in the query, i.e. |Q| = >""", |¢;|, and likewise for |D| [24].

The heuristic nature of BLAST prunes the search space to a
small fraction of the total |Q||D|. Thus, a simplified expression
for the total execution time of a sequential BLAST search can
be expressed as follows:

Ts :Cs*tc*|Q|*|D‘ (1)

earChsequential

where cg denotes the fraction of explored search space and ¢,
denotes the time per comparison of a pair of characters. We
explain how to estimate the values of ¢y and t. later in this
section.

At a high level, the total execution time of the data-parallel
BLAST can be expressed as follows:
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Tparallel = Tsearch + TI/O + Tcomm (2)

where Tqq,ch, denotes the (maximum) search time of a pair of
sequences, 17,0 denotes the I/O time needed to transfer data
between secondary memory (e.g., disk) and main memory, and
Teomm denotes the communication time necessary for query
splitting, broadcasting, and then merging of final results.

To estimate each of the terms in Equation (2), we need to
identify the input size, number of cores, number of nodes,
memory size, file system characteristics, network bandwidth,
and many other parameters. Table I provides a description of
these parameters that are needed for our performance model.

TABLE I: Parameters of parallel BLAST performance model

Term | Description

Q| total number of characters in query

D] total number of characters in DB

k number of query sequences

P total number of processors

N number of nodes

M memory per node in bytes

B disk block size in bytes

Pp number of blocks transferred in parallel from disk to memory
Cs average number of aligned characters in a BLAST search
te average time per comparison (seconds/pair of chars)

ty average time per block transfer (seconds/block)

By interconnect bandwidth

B. Performance Model

With query segmentation, the query file is partitioned into
P segments, where each segment is processed by a single
processor (or equivalently, P/N segments per node), and the
database is replicated onto each node. Because the compu-
tations of an individual query sequence are independent of
computations of other query sequences, query segmentation is
embarrassingly parallel. It does not incur any communication
overhead other than concatenating the output files of all
partitions. However, query segmentation suffers from two main
drawbacks. First, query segmentation creates a load imbalance
between parallel workers because the search time of different
sequences differs significantly. Second, query segmentation
suffers from significant paging overhead when the database
does not fit in the memory of a single compute node.

To model the load imbalance in search time, we express the
search time of query segmentation as follows in Equation (3):

Tsearchqs = Cstc mf%X(‘QJ)‘D‘ (3)

For large query files where the number of sequences is much
larger than the number of processors available, it is possible to
partition the query file such that every partition has a balanced
mix of short and long sequences (approximately % characters
per processor). However, if the number of sequences is not
much larger than P, the distribution of the average length per
partition will be similar to the distribution of the lengths per
sequence, resulting in a significant load imbalance.

As for I/O time, because the database is replicated onto each
node, the I/O time complexity of query segmentation, in terms

of the number of blocks that are transferred from secondary
memory to main memory, is Q(%) in the best case. When
the database does not fit in memory (i.e., |D| > M), this
complexity becomes much higher. Specifically, the worst case
would be that Ig‘*;]BV[ blocks would need to be swapped
k times between main memory and secondary memory. An
approximation of Tj,o for query segmentation when the

database does not fit in memory can be expressed as follows:

NM + k(|D| + & — m)
Bmln(PBap)

Equation (4) estimates the total number of disk blocks trans-
ferred from disk to memory and multiplies this total by
the time per block transfer. NM represents the aggregate
memory of the cluster, assuming that the database replicas
fill the system memory at the beginning of execution. The
term k(|D| + % — M) represents an approximation of the
number of blocks that will be swapped during execution as
memory becomes full, where % represents the approximate
length of query segments per node. (For simplicity, we do not
consider the intermediate output of BLAST, which is expected
to further increase the I/O overhead.)

Finally, the T¢,,,,,, component consists of the query split
and broadcast at the start of the job and the concatenation of
the final output partitions at the end. Preliminary experiments
show that this component is constant and insignificant (i.e.,
less than 1%) for up to 1024 processors.

We validate our model for query segmentation by estimating
the execution time from Equations (3) and (4) and comparing
it with actual execution time of SparkBLAST, when running
on the Cascades supercomputer at Virginia Tech, which comes
equipped with a high-bandwidth interconnect of 100 Gbps and
a GPFS file system. A detailed description of Cascades is
provided in Section IV. The input data used in the model
validation consists of the non-redundant protein database [20]
and a random sample of 1000 query sequences from the same
database.

We evaluate the values of ¢, and . empirically by running
and profiling the sequential NCBI BLAST using the data out-
lined above. The output of NCBI BLAST shows the number of
aligned characters, which is usually much less than |Q| * | D).
The value of ¢, represents an average of the ratio of aligned
characters to the total number of characters (6.36 x 10~® from
our experiment); the value of ¢. represents an average for
the total search time divided by the total number of aligned
characters (5.1 x 10~* from our experiment). We obtain the
values of t;, B, and Pp from the GPFS performance sheet
and file system configurations on Cascades. Figure 1 shows
the actual and predicted execution times.

Database segmentation, on the other hand, works by par-
titioning the database among compute nodes and replicating
the query on each node. The goal of database segmentation is
to fit the database in the aggregate memory of the computing
cluster. That is, if there are enough resources, each database
partition (or segment) fits in the memory of a single compute
node, which eliminates the paging overhead incurred by query

Tijo, = th( ) @
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Fig. 1: Estimated (Model) vs. Actual (SparkBLAST) execution times
on Cascades. The average prediction error is 3.29%, while the maxi-
mum prediction error is 5.61%.

segmentation. Database segmentation also yields more load
balance than query segmentation, since the computations of
the longest query sequences are distributed among more than
one processor. However, these optimizations comes at the cost
of communication overhead to merge and sort the final output
of each query sequence.

The search time for database segmentation can be modeled
in a way similar to that of query segmentation. It can be
represented as follows:

Tsem'chdbs - Cstc|Q| mZaX(|Dz|) (5)

However, since the number of sequences in the database
is usually much larger than that of the query, more load
balance would be guaranteed for a larger number of partitions.
Accordingly, the search time for database segmentation can be
approximated to:

|D;|
P

This assumption was validated by previous work. For in-
stance, [7] showed that the “search” component of the old
mpiBLAST which used database segmentation scaled nearly
linearly.

As for T7 0, if there exist enough resources such that the
database partitions fit in the memory of a single node, the I/O
complexity for reading the database will not exceed O(|D]).

The communication time in case of database segmentation
consists of the time taken to merge and sort the final output.
The merge step includes exchanging data between all compute
nodes in order to collect the results of each query sequence or
set of sequences in one node. This data exchange time would
increase with the number of nodes as it causes interconnection
network contention. The merge overhead depends on the
output size, number of processors, and interconnect bandwidth.
It is challenging to theoretically estimate the merge time as it is
hard to estimate the output size as a function of input size [7].

Tsearchdbs = Cstc|Q‘ (6)

Accordingly, we conducted an empirical analysis to estimate
this overhead. We implemented the logic of processing the
output of BLAST in the Spark framework. Our implementation
processes the output by grouping results by query ID then
sorting all the results in parallel. Details of the implementation
are provided in section III. We first ran a BLAST job and
collected its output. We then partitioned the output as if it
was generated by a parallel BLAST job. And finally, we ran
our Spark output processing code and measured the wall-clock
time.

We measured the execution time of the merge step from
32 up to 1000 processors on Cascades supercomputer. We
used these results to fit a linear regression model to estimate
Teomm from the number of processors. The parameters of
the regression model were 0.018 (slope), 7.87 (intercept),
and 0.955 (R?). Using these results along with equation 6,
we estimated the performance of database segmentation in
Spark. Figure 2 shows the estimated execution time versus
the number of cores on a log-log scale. Our model estimates
that such system would scale for up to 8192 cores before the
communication overhead would start affecting scalability.

Execution Time (s)
E E B & B &

=

5 7 8 9 1 1 12 1B 1 B
Number Of Cores

Fig. 2: Estimated execution time for database segmentation (log-log
scale). The merge time starts to affect scalability after 8192 cores.

C. Insights

The main insights gained from modeling the performance of
parallel BLAST are the trade-offs between I/O overhead, load
balance, and communication overhead. There are two main
insights gleaned from our model:

1) By modeling system and workload characteristics, we
automate identifying near-optimal partitioning of input
data.

2) We showed that on a fairly modern supercomputer, the
number of processors at which communication over-
head starts slowing down the performance of database
segmentation is pushed further away from what was
identified by previous studies including [7].
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III. DESIGN AND IMPLEMENTATION OF SPARKLEBLAST

The main design goal of is to combine the scalability of
mpiBLAST with the upgradability of SparkBLAST. The scala-
bility of mpiBLAST is due to database and query segmentation
in a way that optimizes /O, load balance, and communi-
cation between parallel workers. However, mpiBLAST was
developed by modifying multiple components of a specific
version of NCBI BLAST code, which makes it costly to
upgrade with the ever-evolving NCBI BLAST code. On the
other hand, SparkBLAST is a highly upgradable system that
consists of a Spark wrapper around unchanged NCBI BLAST
code; however, query segmentation limits its scalability with
databases that do not fit in the memory of a single compute
node.

To achieve upgradability and scalability, we combined the
design of SparkBLAST, in terms of building a Spark wrapper
around unchanged NCBI BLAST code, with database seg-
mentation. Moreover, we revisited the design of mpiBLAST
and leveraged our performance model to identify the trade-
off point between communication, I/O, and load balance.
Our performance model estimated that database segmentation
scales up to 8192 cores on a supercomputer with a high-
bandwidth interconnect of 100 Gbps and a parallel file system.
Accordingly, the current version of SparkLeBLAST adopted
database segmentation for parallelization.

In order to scale beyond 8192 cores, the next version of
SparkLeBLAST will realize hybrid segmentation. SparkLe-
BLAST 2.0 will leverage the performance model to estimate
the maximum scalability of database segmentation on a given
system, and then running a coordinator task that will partition
the query and launch two or more SparkLeBLAST jobs on
each query partition. This design is similar to mpiBLAST
v1.6; however, it does not impose a maximum limit on the
number of database segments and uses the model to identify
the optimal partitioning as a function of the system and the
workload characteristics.

The rest of this section describes the software architecture
and implementation of SparkLeBLAST. It also describes
its workflow and usage. The section organization is as fol-
lows. First, we provide a brief background of the Spark
programming model. After that, we describe the main system
components, workflow, and implementation of each compo-
nent of SparkLeBLAST. Finally, we describe the usage of
SparkLeBLAST on a supercomputer.

A. Spark Programming Model

The motivation behind choosing the Spark framework is
its efficient in-memory data processing, programmability, and
fault tolerance. Spark abstracts distributed memory comput-
ing through the concept of Resilient Distributed Datasets
(RDDs) [25]. An RDD is an in-memory immutable distributed
collection of objects. The Spark programming model defines
computations on RDDs in terms of transformations (e.g., map)
and actions (e.g., collect). Transformations perform computa-
tions on RDDs and produce new RDDs, while actions produce
and write the final output. One of the RDD transformations

supported by Spark is called pipe(). Spark supports the calling
of an external process (e.g., a script) via an API called pipe(),
which passes the entries of an RDD object to the external
process, and passes its output back to the Spark code as a
new RDD. SparkBLAST used the pipe() API to call the NCBI
BLAST binary as an external process. In SparkLeBLAST, we
used the same approach with a small adaptation to work with
database segmentation. A detailed description of how pipe()
was used in SparkLeBLAST implementation is provided later
in this section.

A Spark program typically runs on a Spark cluster. A
Spark cluster consists of a master node and a set of worker
nodes. The master node runs a driver program that coordinates
tasks between workers, while each worker runs an executor
program in parallel that performs computations on one or
more segments of the input dataset. Spark features multi-node
parallelism using multiple parallel worker nodes, as well as
single node parallelism using multiple parallel tasks on the
CPU cores of a single worker. Spark also features a fault-
tolerance mechanism that efficiently reschedules failed tasks.

B. SparkLeBLAST Implementation

SparkLeBLAST  consists of two main compo-
nents, SparkLeMakeDB, and SparkLeBLASTSearch. SparkLe-
MakeDB takes as input a BLAST database in FASTA or
FASTQ format, partitions the database into P segments
where P is a user-defined parameter, formats each segment
into NCBI BLAST format, then stores the formatted
segments. SparkLeBLASTSearch takes as input a query file
in FASTA or FASTQ format, as well as a formatted and
partitioned BLAST database. It runs parallel NCBI BLAST
search by distributing database segments among parallel
workers, replicating the query to each worker, then calling
NCBI BLAST binary using pipe() on each worker, with the
database segment and the entire query as inputs. We provide
a more detailed description of the two components below.

1) SparkLeMakeDB: The SparkLeMaketDB program par-
titions the database into segments and formats each segment
using the makedb command from NCBI BLAST tool. This
step is required once per database, and the formatted database
can then be reused for subsequent BLAST searches. For
this reason, we implemented SparkLeMaketDB as a separate
program that only does the partitioning and formatting and
should be called once before starting a BLAST search on a
new database. The formatted and partitioned database could
then be reused for subsequent searches with different queries.
The input to SparkLeMaketDB consists of a path to a sequence
database in FASTA or FASTQ format, and a num_segments
argument that specifies the required number of segments. A
preliminary experiment indicated that the optimal number of
segments is equal to the number of available processors. An
experiment with finer-grained segmentation was performed
with dynamic load balancing in Spark but showed poor perfor-
mance. The implementation of SparkLeMaketDB consists of
three steps. First, reading the sequence database into an RDD
and partitioning it according to the specified num_segments
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argument. This step is implemented using the newAPIHadoop-
File() Spark API that takes as arguments the path to the FASTA
or FASTQ database as well as the number of segments. Next,
the RDD.pipe() API is called which pipes each partition to
the NCBI BLAST makedb command (also called formatdb in
older versions of BLAST). The output of makedb is returned
by pipe() as a new RDD of formatted database segments.
Formatted segments are then written in a persistent storage lo-
cation specified as an input argument to the SparkLeMaketDB
program. It is worth noting that the performance evaluation
of SparkLeBLAST does not take into consideration the time
taken by this step as it is a one time cost.

2) SparkLeBLASTSearch: The SparkLeBLASTSearch pro-
gram performs a parallel BLAST search on the query file and
the database segments by invoking NCBI BLAST in parallel
using the pipe() APL Figure 3 describes the procedure of
parallel BLAST search in SparkLeBLAST. This approach is
similar to SparkBLAST. However, in SparkBLAST, the query
file is first read by Spark, then the query segments are passed to
the NCBI BLAST binary via pipe(). SparkBLAST’s approach
creates two steps of I/O, which could affect performance
for large segments. In order to avoid this extra overhead in
SparkLeBLAST, the driver program of SparkLeBLASTSearch
initializes a list, segmentsIDs = [ "part-0000”, ”part-00001",
..., 'part-P”], where P is the number of database segments.
Each segment ID is then concatenated with the root path
of the partitioned database. An RDD is then generated from
the segmentsIDs list, which is distributed across worker nodes.
The segments IDs RDD is then piped to the external NCBI
BLAST binary command along with the path to the query
file. This step runs on every task on every worker node
in parallel. The invoked NCBI BLAST code then reads its
assigned partition, performs the BLAST search, and returns
the results as a new RDD to SparkLeBLASTSearch.

After all of the workers complete the BLAST search, the
output of every query sequence need to be grouped and
sorted by alignment score and e-value score (a measure of
statistical significance of the alignment). In SparkLeBLAST,
merging and sorting final output is performed in parallel using
Spark’s reduceByKey() and sortBy() APIs. The reduceByKey()
API groups all values with the same key into a single worker,
where the key is the query ID. After that, the SortBy()
API sorts the grouped output of every query in parallel by
alignment score then by e-value score, where each worker
sorts its assigned group of query sequences. Figure 4 describes
the merging process. As will be shown in the results section,
the merging process is relatively fast and only represents a
tiny fraction of the total execution time. It is also worth
noting that Spark writes the final output into separate blocks
in parallel, which makes the I/O overhead for writing the
final output insignificant. Parallel merge and parallel /O
contribute significantly to the scalability of SparkLeBLAST
by minimizing the bottlenecks of output merging and writing.

3) Correctness of Search Results: One challenge of paral-
lelizing BLAST using database segmentation is the correct
computation of the e-value scores. The e-value score is a

statistical significance score that is a function of the entire
lengths of the query and the database [24]. The NCBI BLAST
code computes the lengths of the query and the database on
the fly, which leads to an incorrect e-value score with database
segmentation. Hence, the total length of the database needs to
be known before the start of the BLAST search. The NCBI
BLAST code provides the option of supplying the effective
length of the database as a program argument. When provided,
the code skips the computation of the length and uses the
effective length instead. To get the total length of the database
before launching the SparkLeBLAST search, we implemented
a MapReduce job at the beginning of SparkLeMakeDB pro-
gram that counts the number of sequences and the number
of characters of the target database and saves them into a
database specification file. The SparkLeBLASTSearch program
then reads the database specification file and provides the total
lengths to the NCBI BLAST code via the pipe() call as a
command argument. This technique results in e-value scores
that exactly match the output of sequential NCBI BLAST.

C. SparkLeBLAST Usage on a Supercomputer

SparkLeBLAST can run on any cluster that has Spark
installed. In this section, we describe the usage of SparkLe-
BLAST on a Linux supercomputer governed by SLURM
workload manager [26]. The workflow of running SparkLe-
BLAST on such a system consists of three steps. Deploy-
ing a Spark cluster, running SparkLeMakeDB, then run-
ning SparkLeBLASTSearch. 1t is worth noting that these same
steps can be used to run SparkLeBLAST on other types of
clusters, with the only difference of how the Spark cluster
is deployed. SparkLeBLAST requires the installation of any
version of the NCBI BLAST code. The version tested and
used in our experiments is 2.2.21. This section provides a high-
level overview of the usage and workflow of SparkLeBLAST.
SparkLeBLAST code is shipped with a detailed step-by-step
user guide for installation and usage.

1) Deploying a Spark Cluster Using SLURM: Most of the
supercomputers at research institutions are shared between
multiple research groups, where resources are managed by a
workload manager like SLURM [26]. In such a setup, a user
gains access to computing resources by submitting a job re-
quest that specifies the needed resources (e.g., cores, memory,
and time). Since the resources are temporary, SparkLeBLAST
requires the deployment of a Spark cluster via a SLURM
job each time a user intends to use it. SparkLeBLAST code
provides a script for deploying a Spark cluster using SLURM.
The script is called start_spark_slurm.sh and was adapted
from [27]. This script takes as input the resources needed for
the Spark cluster (e.g., number of nodes, number of cores per
node, memory, and time). The script deploys a Spark cluster
and saves the address of the master node in a location specified
by the user as input.

2) Running SparkLeMakeDB: This step assumes that a
Spark cluster is already deployed. A script named SparkLe-
MakeDB.sh launches the Spark job that partitions and for-
mats the BLAST database. This script takes as input the
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Fig. 3: SparkLeBLAST parallel BLAST search using database segmentation. The master node runs the driver program that assigns database
segments to workers. Every worker runs the executor program on its allocated database segment(s). The executor program spawns multiple
parallel tasks, where every task performs NCBI BLAST search on its allocated segment.
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Fig. 4: For each query sequence, the output consists of a High-scoring
Segment Pair (HSP), an alignment score, and a statistical significance
score (e-value). Results of every query sequence are grouped and
sorted by score and e-values in parallel.

address of the Spark Master node, the path to a BLAST
database in FASTA or FASTQ format, the number of segments,
and any NCBI BLAST command-line option. The output
of SparkLeMakeDB is a directory containing the partitioned
and formatted database. The output path is passed to the script
as a command-line option.

3) Running SparkLeBLASTSearch: This step assumes that
there is a Spark cluster deployed and that there is a BLAST
database formatted and partitioned using SparkLeMakeDB.sh.
To run a Parallel BLAST search, a script named SparkLe-
BLASTSearch.sh is used that takes as input the address of a
Spark Master node, the paths to the query and the partitioned
and formatted database, and any NCBI BLAST command-line

options. The output of SparkLeBLASTSearch follows the same
output formats of NCBI BLAST and is stored in a file specified
by the user.

IV. PERFORMANCE EVALUATION

A. Hardware Platform Description

The performance evaluation of SparkLeBLAST was con-
ducted on two clusters with different characteristics that are
described below:

1) BlueRidge: BlueRidge is a Cray CS300 cluster of 408
nodes. Each node consists of two octa-core Intel Sandy Bridge
CPUs and 64 GB of memory. For storage, the cluster is con-
nected with a shared Lustre file system. BlueRidge is shared
amongst multiple research groups. The maximum allowed
cores per user is 1040 cores. In the experiments described
below, 1024 cores were used for parallel BLAST search, and
the rest of the cores were used to run the master node for
SparkBLAST and SparkLeBLAST, and the super-master +
master nodes for mpiBLAST [7].

2) Cascades: Cascades consists of 236 nodes. Each node is
equipped with two 16-cores Intel Broadwell CPUs and 128 GB
of memory. The storage consists of a shared GPFS file system.
Cascades is equipped with a 100 Gbps Infiniband interconnect
between nodes, and a 10 Gbps Ethernet interconnect with the
file system servers. The maximum allowed number of cores
per user is 1024. Our experiments demonstrated scaling for up
to 1000 cores.
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B. Data Description

The performance of SparkLeBLAST was evaluated using
actual genome data. The query used is a bacterial genome
called Geobacter metallireducens [28], which consists of 3,592
sequences, and a total of 1,233,413 base pairs (i.e., charac-
ters). The total size of the query is 1.5 MB. The database
consisted of the non-redundant protein database (nr) [20].
The total size of the formatted nr database is 130 GB. The
nr database consists of 175,193,827 sequences and a total
of 63,927,145,901 base pairs. It is worth noting that the
experiments of SparkBLAST inspired the use of the query
above. On the other hand, the use of the nr protein database
was motivated by the fact that it is the largest open-access
protein database to date.

C. Spark Configurations

Spark was configured to run one node as the master and all
other nodes as workers. The number of cores per worker was
set to the total number of cores per node. The memory per
worker was set to be the maximum available memory on each
node (124.6GB on Cascades). The number of cores reported
in figures 5 and 6 represent the sum of the number of cores of
all workers. Spark’s event log was enabled in order to collect
profiling information (e.g., the execution time of each task and
each stage per task).

D. Results

As described in section III, the main performance goals of
SparkLeBLAST are to eliminate non-search overhead (i.e.,
I/O and communication) and to achieve more load balance
between parallel executors. Accordingly, the performance of
SparkLeBLAST is evaluated based on two metrics; total exe-
cution time and imbalance percentage [29]. The total execution
time is broken down into BLAST search time and non-search
time. The number of cores is varied, ranging from 128 up
to 1024 cores on BlueRidge and 1000 cores on Cascades to
evaluate scaling.

SparkLeBLAST was compared with SparkBLAST and
mpiBLAST. As described in section III, SparkBLAST adopts
query segmentation to parallelize BLAST. It was assumed that
the performance of SparkBLAST would suffer when the size
of the database is larger than the size of the main memory
of a compute node. The goal of comparing SparkBLAST with
SparkLeBLAST was to quantify the I/O overhead incurred by
query segmentation and how it would be mitigated by using
database segmentation instead. This comparison also analyzed
the merging overhead of database segmentation compared to
the I/O overhead of query segmentation. This analysis showed
that the latter is insignificant compared with the former.
SparkBLAST is an open-source tool. SparkBLAST code was
used without modifications except for using a different version
of NCBI BLAST to match the version on top of which
mpiBLAST was built.

The latest version of mpiBLAST (mpiBLAST-1.6) was built
around NCBI BLAST version 2.2.21. While SparkLeBLAST
and SparkBLAST support any version of NCBI BLAST,

version 2.2.21 was used in order to avoid any performance
variations caused by different versions. The mpiBLAST tool
supports a wide variety of configurations in terms of data
partitioning, ranging from query segmentation, to query and
database segmentation, to only database segmentation. Ac-
cording to our performance model, on modern HPC clusters,
database segmentation yielded the best performance. Hence,
we configured mpiBLAST to use the maximum allowed num-
ber of database segments.

Scalability of SparkLeBLAST, SparkBLAST, and mpi-
BLAST is shown in Figure 5. It was observed that SparkLe-
BLAST is the fastest among the three tools. On 128 nodes of
BlueRidge, SparkLeBLAST is 2.5 times faster than Spark-
BLAST and 1.85 times faster than mpiBLAST. By increasing
the number of cores, it was observed that mpiBLAST and
SparkLeBLAST are scaling nearly linearly, while Spark-
BLAST scales sub-linearly for up to 512 processors, then in-
curs a slowdown afterward. On 1024 processors, the difference
between SparkLeBLAST and mpiBLAST became smaller
with an advantage for SparkLeBLAST being 1.5 times faster.
SparkBLAST incurred a slowdown on 1024 nodes where
SparkLeBLAST was 11 times faster. On Cascades, though
still significant, it was observed that the differences are less
significant compared with BlueRidge. SparkLeBLAST ran
3.5 times faster than SparkBLAST and 1.35 times faster than
mpiBLAST. These observations support the insights that were
drawn from our performance model. Query segmentation suf-
fers from significant I/O overhead that leads to poor scalability,
while database segmentation scales nearly linearly. A further
analysis was conducted to separate the search time from non-
search time. Figure 6 shows the execution time breakdown
into NCBI BLAST time and non-search time.

It was observed that for both SparkLeBLAST and mpi-
BLAST, the NCBI BLAST time is the dominating component.
On BlueRidge, The average percentage of non-search time
is 16.2% for SparkLeBLAST and 6% for mpiBLAST. For
SparkBLAST, the non-search time is dominating the execution
time, with an average percentage of 54.18%. While on Cas-
cades, the average percentages of non-search time are 15.5%,
7.4%, and 48.5%, respectively.

Another factor that significantly contributes to the perfor-
mance of parallel BLAST is the load balance between parallel
workers. The imbalance percentage metric [29] was used to
evaluate and compare the load balance in SparkLeBLAST,
SparkBLAST, and mpiBLAST. The definition of imbalance
percentage is as follows. In a parallel application with n
workers, given the maximum worker time t,,,, and the
average worker time t,,4, the imbalance percentage is equal
to W * —=. The value of the imbalance percentage
ranges from O to 1. A parallel application with a perfectly
balanced workload will yield an imbalance percentage equal
to 0 (i.e, lower is better). Figure 7 shows the imbalance
percentage for the three tools run on 128, 256, 512, and 1024
cores on BlueRidge. SparkLeBLAST maintained the lowest
imbalance percentage of all the three systems. Also, that the
imbalance percentage of SparkLeBLAST is nearly constant.
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These observations suggest that database segmentation in
parallel BLAST yields the most balanced workload. As for
mpiBLAST, the load imbalance decreased when more cores
were added. A suggested explanation of the decrease in load
imbalance is that for a higher number of cores, there was
more database segmentation and hence more load balance.
For SparkBLAST, when more cores were added, there was a
significant increase in imbalance percentage. This imbalance
is due to the significant variance between BLAST search
times of different query sequences. With a larger number of
query partitions, there will be a small number of significantly
slow workers that will bound the total execution time. At
some point, there will be no significant gain in performance
from adding more processors as slow workers will bound the
speedup.

Finally, it is worth noting that the performance benefits
of SparkLeBLAST were achieved with a significantly lower
programming effort compared to mpiBLAST. The Spark wrap-
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per in SparkLeBLAST consists of around 50 source lines
of code, including the code to launch parallel workers, and
the code for final output merging. On the other hand, the
MPI code that parallelizes BLAST in mpiBLAST consists
of over a thousand source lines of code. Also, the cost of
upgrading SparkLeBLAST to work with newer versions of
NCBI BLAST is zero lines of code, compared to nearly a
thousand lines of code to upgrade mpiBLAST.

V. CONCLUSION AND FUTURE WORK

This paper presents SparkLeBLAST, an efficient paral-
lelization of NCBI BLAST sequence alignment using Spark.
SparkLeBLAST combines the scalability of mpiBLAST,
the most scalable parallel BLAST tool to date, with the
upgradability of more recent tools such as SparkBLAST.
SparkLeBLAST leverages our performance modeling, which
demonstrated that on modern clusters, database segmentation
with parallel output processing is estimated to scale for up to
8192 cores as it minimizes I/O overhead and increases load
balance.

Performance evaluation on two different clusters demon-
strated that SparkLeBLAST runs up to 10 times faster than
SparkBLAST, and nearly 2 times faster than mpiBLAST for
up to 1024 cores. In terms of upgradability and maintainability,
SparkLeBLAST is completely decoupled from NCBI BLAST,
leading to a zero cost of upgrading to newer versions, com-
pared to a thousand line of code for mpiBLAST.

Subsequent future work includes (1) realizing hybrid (i.e.,
query and database) segmentation and leveraging the perfor-
mance model to automatically predict the optimal partitioning,
(2) generalizing SparkLeBLAST approach to other sequence
alignment tools such as DIAMOND [30], and (3) extending the
performance model as well as SparkLeBLAST to efficiently
leverage heterogeneous computing systems (e.g., CPUs and
GPUs) in order to achieve the maximum attainable speedup
for sequence alignment.
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