
On the Robust Mapping of Dynamic Programming
onto a Graphics Processing Unit

Shucai Xiao∗, Ashwin M. Aji†, and Wu-chun Feng∗†
∗Department of Electrical and Computer Engineering

†Department of Computer Science
Virginia Tech

{shucai, aaji, wfeng}@vt.edu

Abstract

Graphics processing units (GPUs) have been widely used
to accelerate algorithms that exhibit massive data paral-
lelism or task parallelism. When such parallelism is not
inherent in an algorithm, computational scientists resort to
simply replicating the algorithm on every multiprocessor of
a NVIDIA GPU, for example, to create such parallelism,
resulting in embarrassingly parallel ensemble runs that
deliver significant aggregate speed-up. However, the funda-
mental issue with such ensemble runs is that the problem
size to achieve this speed-up is limited to the available
shared memory and cache of a GPU multiprocessor.

An example of the above is dynamic programming (DP),
one of the Berkeley 13 dwarfs. All known DP implemen-
tations to date use the coarse-grained approach of em-
barrassingly parallel ensemble runs because a fine-grained
parallelization on the GPU would require extensive com-
munication between the multiprocessors of a GPU, which
could easily cripple performance as communication between
multiprocessors is not natively supported in a GPU.

Consequently, we address the above by proposing a
fine-grained parallelization of a single instance of the DP
algorithm that is mapped to the GPU. Our parallelization
incorporates a set of techniques aimed to substantially
improve GPU performance: matrix re-alignment, co-
alesced memory access, tiling, and GPU (rather than
CPU) synchronization. The specific DP algorithm that we
parallelize is called Smith-Waterman (SWat), which is an
optimal local-sequence alignment algorithm. We then use
this SWat algorithm as a baseline to compare our GPU
implementation, i.e., CUDA-SWat, to our implementation
on the Cell Broadband Engine, i.e., Cell-SWat.

1 Introduction

Today, gains in computational horsepower are no longer
driven by clock speeds. Instead, the gains are increasingly
achieved through parallelism, both in traditional x86
multi-core architectures as well as the many-core archi-
tectures of the graphics processing unit (GPU). Amongst
the most prominent many-core architectures are the
GPUs from NVIDIA and AMD/ATI, which can support
general-purpose computation on the GPU (GPGPU).
Thus, GPUs have evolved from their traditional roots of
graphics pipeline model into programmable devices that
are suited for accelerating scientific applications such as

sequence matching and fast N-body simulation [11–13,15].
In general, only data- or task-parallel applications,

which have little to no inter-multiprocessor communica-
tion, map well to the the many-core GPU architecture [2].
This is mainly due to the lack of explicit hardware or
software support for inter-thread communication between
different multiprocessors across the entire GPU chip.
The current (implicit) synchronization strategy for the
NVIDIA Compute Unified Device Architecture (CUDA)
platform [10] synchronizes via the host CPU and then
re-launches a new kernel from the CPU to GPU, which is
a costly operation.

In addition, another accelerator-based parallel comput-
ing platform that we have studied, the Cell Broadband
Engine (Cell/BE) [3], is also used for general-purpose com-
putation. The Cell/BE is a heterogeneous processor, where
direct data communication is supported among the Power
Processing Element (PPE) and the Synergistic Processing
Elements (SPEs) via the Element Interconnect Bus (EIB).

Dynamic programming (DP) is one of the Berkeley 13
dwarfs, where a dwarf is defined as an algorithmic method
that captures a pattern of computation and communi-
cation.1 Depending on the number of recursive terms
and the data dependency across subproblems, dynamic
programming can be divided into four classes — serial
monadic class, serial polyadic class, nonserial monadic
class, and nonserial polyadic class [4]. In this paper, we
investigate the mapping of the Smith-Waterman (SWat)
local sequence-alignment algorithm [14] — an example of
the dynamic programming algorithm — onto the GPU.
With the affine gap penalty that is used, SWat belongs to
the nonserial polyadic class, which is the most complex of
the four dynamic programming classes.

Specifically, we focus on a fine-grained parallelization of
the SWat algorithm, in which a single problem instance
is processed across all the multiprocessors of the GPU,
thus resulting in a more robust mapping of DP to the GPU
where virtually all sequence sizes within NIH’s GenBank
can be processed. This is in stark contrast to previous
coarse-grained parallelizations [7, 8], where multiple prob-
lem instances are simply replicated onto each multiproces-
sor of a NVIDIA GPU, thus creating an “embarrassingly
parallel ensemble run” that severely restricts the problem
size that can be solved, as shown conceptually in Fig-

1The dwarfs represent different algorithmic equivalence classes,
where membership in an equivalence class is defined by similarity in
computation and communication.

International Conference on Parallel and Distributed Systems (ICPADS’09); Shenzhen; China; Dec; 2009.



ure 1(a). When the sequence sizes exceed 1024 in length,
i.e., a significant portion of the NIH GenBank database,
the sequences cannot be processed by this coarse-grained
parallelization, as shown in Figure 1(b). Our fine-grained
parallelization, however, can process all sequence sizes up
to 8461 in length, as shown conceptually in Figure 1(c). We
then use global memory to store the alignment information
due to the limited size of the shared memory and cache.

(a) Coarse-grained parallelization for small se-
quences (SM: Streaming Multiprocessor) [7, 8, 16].

(b) Coarse-grained parallelization for large sequences
(SM: Streaming Multiprocessor) [7, 8, 16].

(c) Our fine-grained parallelization for arbi-
trarily sized sequences (SM: Streaming Mul-
tiprocessor).

Figure 1. Coarse-Grained vs. Fine-Grained
Parallelization.

Due to the long latency-access times to the global
memory of the GPU, coupled with SWat being a memory-
bound application [6], we propose three techniques to more
effectively access the global memory of the GPU: matrix
re-alignment, coalesced memory access, and tiling. In addi-
tion, to achieve a fine-grained parallelization of DP on the
GPU, data will need to be shared across different blocks,
and hence multiprocessors, of the GPU. Thus, global syn-
chronization across the GPU will be needed. As such, we
propose a GPU synchronization method that does not in-
volve the host CPU, thus eliminating the overhead between
switching back and forth between the GPU and CPU.
As mentioned above, SWat with the affine gap penalty
belongs to the most complex dynamic programming class.
Thus, although the above techniques are proposed for the
SWat algorithm, they can be applied to any of the other
classes of dynamic programming-based algorithms.

The overarching contribution of the paper is the robust
mapping of our fine-grained SWat parallelization onto the
GPU, thus enabling it to support the alignment of virtu-
ally all the sequences in the NIH GenBank. To achieve
the above, we propose the following: (1) techniques for ac-
celerating access to global memory: matrix re-alignment,
coalesced memory access, and tiling; (2) a GPU synchro-

nization method to improve global synchronization time,
and hence, communication between multiprocessors; and
(3) a performance comparison relative to the Cell/BE,
another type of accelerator-based parallel platform.

The rest of this paper is organized as follows: Section 2
presents the related work. Section 3 describes the NVIDIA
GTX 280 architecture and the CUDA programming model.
Section 4 introduces the sequential SWat algorithm. Tech-
niques to accelerate SWat in CUDA are described in Sec-
tion 5. Section 6 compares and analyzes the performance
of the various implementations on the GPU and across the
GPU and the Cell/BE. Section 7 concludes the paper.

2 Related Work

The Smith-Waterman (SWat) algorithm has previously
been implemented on the GPU by using graphics prim-
itives [5, 6], and more recently, using CUDA [7, 8, 16].
Though the most recent CUDA implementations of
SWat [7, 8] report speed-ups as high as 30-fold, they all
suffer from a myriad of limitations. First, each of their
approaches only follows a coarse-grained, embarrassingly
parallel approach that assigns a single problem instance to
each thread on the device, thereby sharing the available
GPU resources among multiple concurrent problem
instances, as shown in Figure 1(a). This approach severely
restricts the maximum problem size that can be solved by
the GPU to sequences of length 1024 or less. In contrast,
we propose and implement a fine-grained parallelization
of SWat by distributing the task of processing a single
problem instance across all the threads on the GPU,
thereby supporting realistic problem size, as large as 8461
in lengths. The above limitation is due to the physical
size of global memory on the GPU. Though the global
memory can support the alignment of a large sequences,
the coarse-grained parallel approach forces the global
memory to be shared amongst multiple instances of SWat
whereas our fine-grained parallel approach leaves the entire
global memory resource available to a single instance of
SWat, allowing larger sequences to be processed. In [16],
Striemer et al. also primarily use shared memory and
constant cache for coarse-grained SWat parallelism on the
GPU. Thus, their implementation is also limited to query
sequences of length 1024 or less because of the limited
shared memory and cache size. Finally, Tan et al. [17]
parallelize the nonserial polyadic dynamic programming
to a multi-core architecture, where they propose a parallel
pipelined algorithm for filling the dynamic programming
matrix by decomposing the computation operators. This
technique tolerates the memory access latency using
multi-thread and it is easily improved with tile technique.

With respect to GPU synchronization, the most closely
related work to ours is that of Volkov et al. [18], who
have also “implemented” a global software synchronization
method to accelerate dense linear-algebra constructs. Our
GPU synchronization differs from Volkov’s in the follow-
ing ways: (1) they have not actually integrated their GPU
synchronization with any of the linear algebra routines.
(2) they have acknowledged a severe drawback in their
synchronization method, i.e., their global synchronization
does not guarantee that previous accesses to all levels of
the memory hierarchy have completed unless a memory
consistency model is assumed. With respect to the first
point, Volkov et al. only provide theoretical estimates of the
performance that could possibly be obtained if their im-
plementation was used in conjunction with their synchro-

International Conference on Parallel and Distributed Systems (ICPADS’09); Shenzhen; China; Dec; 2009.



nization code. In contrast, we have implemented our GPU
synchronization, integrated it in our CUDA-SWat imple-
mentation, and shown actual experimental results. For the
second point, our implementation guarantees that trans-
actions at all levels of the memory hierarchy have been
completed at the end of the synchronization code. This is
due to the introduction of the threadfence() function
in CUDA 2.2, which will block the calling thread until all
prior writes to shared or global memory are visible to all
other threads. With this function called in the barrier func-
tion, correctness of data communication can be guaranteed.

3 The GTX 280 GPU and the CUDA Program-
ming Model

The GTX 280 GPU (or device) consists of a set of 30
Single Instruction Multiple Data (SIMD) streaming mul-
tiprocessors (SMs), where each SM consists of eight scalar
processor (SP) cores running at 1.2 GHz with 16-KB on-
chip shared memory and a multi-threaded instruction unit.

The device memory, which can be accessed by all
the SMs, consists of 1 GB of read-write global memory
and 64 KB of read-only constant memory and read-only
texture memory. However, all the device memory modules
can be read or written to by the host processor. Each
SM has on-chip memory, which can be accessed by all
the SPs within the SM and will be one of the following
four types: a set of 16K local 32-bit registers; 16 KB
of parallel, shared, and software-managed data cache; a
read-only constant cache that caches the data from the
constant device memory; and a read-only texture cache
that caches the data from the texture device memory.
The global memory space is not cached by the device.

CUDA (Compute Unified Device Architecture) [10] is
the parallel programming model and software environment
provided by NVIDIA to run applications on their GPUs.
It abstracts the architecture to parallel programmers via
simple extensions to the C programming language.

CUDA follows a code off-loading model, i.e. data-
parallel, compute-intensive portions of applications
running on the host processor are typically off-loaded onto
the device. The kernel is the portion of the program that
is compiled to the instruction set of the device and then
off-loaded to the device before execution.

In CUDA, threads can communicate and synchronize
only within a thread block via the shared memory of the
SM; there exists no mechanism for threads to communi-
cate across thread blocks. If threads from two different
blocks try to communicate via global memory, inter-block
barrier synchronization is needed. Currently, the launch
of a kernel from the host processor to the GPU serves as
an implicit barrier to all threads that were launched by
the previous kernel.

4 Smith-Waterman (SWat) Algorithm

The SWat algorithm [14] is an optimal local sequence
alignment methodology that follows the dynamic pro-
gramming paradigm, where intermediate alignment scores
are stored in a matrix before the maximum alignment
score is calculated. Next, the matrix entries are inspected,
and the highest-scoring local alignment is generated. The
SWat algorithm can thus be broadly classified into two
phases: (1) matrix filling and (2) backtracing.

To fill out the dynamic-programming (DP ) matrix, the
SWat algorithm follows a scoring system that consists of
a scoring matrix and a gap-penalty scheme. The scoring

matrix, M is a two-dimensional matrix containing the
scores for aligning individual amino acid or nucleotide
residues. The gap-penalty scheme provides the option of
gaps being introduced within the alignments, hoping that
a better alignment score can be generated; but they incur
some penalty or negative score. In our implementation,
we consider an affine gap penalty scheme that consists
of two types of penalties. The gap-open penalty, o is
incurred for starting (or opening) a gap in the alignment,
and the gap-extension penalty, e is imposed for extending
a previously existing gap by one unit. The gap-extension
penalty is usually smaller than the gap-open penalty.

NW N

W

(a) (b)

Figure 2. The SWat Wavefront Algorithm and its
Dependencies.

Using this scoring scheme, the dynamic-programming
matrix is populated via a wavefront pattern, i.e. beginning
from the northwest corner element and going toward the
southeast corner; the current anti-diagonal is filled after
the previous anti-diagonals are computed, as shown in
Figure 2(a). Moreover, each element in the matrix can
be computed only after its north, west, and northwest
neighbors are computed, as shown in Figure 2(b). Thus,
elements within the same anti-diagonal are independent
of each other and can therefore be computed in parallel.
The backtracing phase of the algorithm is essentially a se-
quential operation that generates the highest scoring local
alignment. In this paper, we mainly focus on accelerating
the matrix filling because it consumes more than 99% of
the execution time and it is the object to be parallelized.
5 Techniques for Accelerating SWat on the GPU

In this section, we describe a series of techniques to
accelerate the access of global memory and decrease the
synchronization time, and hence, communication across
thread blocks.
5.1 Accelerating Global Memory Access

There are three techniques proposed for the effective
global memory access, which are: 1) matrix re-alignment
to optimize the sequence of memory accesses; 2) coalesced
memory access to amortize the overhead of loading from
and storing to memory; 3) tiling in order to sufficiently
increase computational granularity so as to amortize the
overhead of global memory access.
5.1.1 Matrix Re-Alignment

To leverage the SIMD processing of the GPU, we store
the matrix in memory in the diagonal-major data format
instead of the row-major data format, as shown in
Figure 3. The matrix in Figure 3(a) is stored as the layout
in Figure 3(b), where all the anti-diagonals are arranged
in sequence. As a result, threads in a block can access
memory in adjacent locations, and data can be transferred

International Conference on Parallel and Distributed Systems (ICPADS’09); Shenzhen; China; Dec; 2009.



in blocks with larger size [10]. An implementation using
this technique is referred to as a simple implementation.

Figure 3. Matrix Representation in Memory.

With the diagonal-major data format, we offload the
data-intensive, matrix-filling part onto the GPU device. If
the CPU implicit synchronization is used, the dependence
between consecutive anti-diagonals of the matrix forces
a synchronization operation, and hence a new kernel
invocation, after the computation of every anti-diagonal.

We distribute the computation of the elements in every
anti-diagonal uniformly across all the threads in the kernel
in order to completely utilize all the SMs on the chip
and support the realistic problem size. To simplify our
implementation, every kernel contains a one-dimensional
grid of thread blocks, where each block further contains a
single dimension of threads, as shown in Figure 4.

Figure 4. Mapping of Threads to Matrix Elements
→ Variation in the Computational Load Imposed
on Successive Kernels.

5.1.2 Coalesced Memory Access

In addition to changing the matrix layout in Figure 3(b)
to improve the effectiveness of global memory access,
we transform non-coalesced data accesses into coalesced
ones. Running the CUDA profiler [9] shows that 63%
of memory accesses are non-coalesced if only the matrix
re-alignment technique (i.e., simple implementation) is
used. In this subsection, we propose a method to improve
percentage of coalesced memory accesses and refer to this
implementation as our coalesced implementation.

Since each anti-diagonal is computed by a new kernel
and each thread accesses an integer (32-bit word), if the
starting addresses of every anti-diagonal is aligned to 64-
byte boundaries, then all the writes are coalesced, as shown

in Figure 5. The skewed dependence between the elements
of neighboring anti-diagonals restricts the degree of coa-
lescing for the read operations from global memory. Also,
we select the block and grid dimensions of the kernel, such
that all the thread blocks have coalesced memory store.

Figure 5. Coalesced Data Representation of
Successive Anti-Diagonals in Memory.

5.1.3 Tiling

In the previous subsections, we proposed techniques for
efficient global memory access. Here we apply the tiled-
wavefront design pattern, which was used to efficiently
map SWat to the IBM Cell/BE [1], to the GPU architec-
ture. This approach amortizes the cost of kernel launches
by grouping the matrix elements into computationally
independent tiles. In addition, shared memory is used to
reduce the amount of data needed to load from and store
to the global memory.

Our tile-scheduling scheme assigns a thread block to
compute a tile, and a grid of blocks (kernel) is mapped to
process a single tile-diagonal, thus decreasing the number
of barriers needed to fill the alignment matrix. CPU
implicit synchronization via new kernel launches or our
proposed GPU synchronization (see Section 5.2) serve
as barriers to threads from the previous tile-diagonal.
Consecutive tile-diagonals are computed one after another
from the northwest corner to the southeast corner of the
matrix in the design pattern of a tiled wavefront, as shown
in Figure 6.

The elements within a tile are computed by a thread
block by following the simple wavefront pattern, starting
from the northwest element of the tile. The threads
within each block are synchronized after computing
every anti-diagonal by explicitly calling CUDA’s local
synchronization function syncthreads().

Each thread block computes its allocated tiles within
shared memory. The processed tile is then transferred
back to the designated location in global memory. This
memory transfer will be coalesced because we handcraft
the allocation of each tile to follow the rules for coalesced
memory accesses.

5.2 GPU Synchronization

Efficient global memory accesses can accelerate the
computation, but it cannot accelerate the synchronization
on the GPU. While the tiled-wavefront technique reduces
the number of kernel launches, it explicitly and implicitly
serializes the computation both within and across tiles,
respectively. One solution to this problem is to introduce

International Conference on Parallel and Distributed Systems (ICPADS’09); Shenzhen; China; Dec; 2009.



Figure 6. Tiled Wavefront.

an efficient synchronization mechanism across thread
blocks. In this way, we avoid both launching the kernel
multiple times and serializing the tiled wavefront.

1 //the mutex variable
2 __device__ volatile int g_mutex;
3
4 //GPU synchronization function
5 __device__ void __GPU_sync(int goalVal)
6 {
7 // thread ID in a block
8 int tid = threadIdx.x * blockDim.y
9 + threadIdx.y;

10 // memory flush to all threads
11 __threadfence ();
12 // only thread 0 is used for
13 // synchronization
14 if (tid == 0) {
15 atomicAdd ((int *)& g_mutex , 1);
16
17 //only when all blocks add 1 to
18 //g_mutex , will it be equal to
19 // goalVal
20 while(g_mutex != goalVal) {
21 //Do nothing
22 }
23 }
24 __syncthreads ();
25 }

Figure 7. Code Snapshot of GPU Synchroniza-
tion.

However, NVIDIA discourages inter-block communi-
cation via global memory because its outcome can be
undefined. Furthermore, a classic deadlock scenario can
occur if multiple blocks are mapped to the same SM, and
the active block waits on a message from the block that is
yet to be scheduled by the CUDA thread scheduler [10].
CUDA threads do not yield the execution, i.e., they
run to completion once spawned by the CUDA thread
scheduler, and therefore, the deadlocks cannot be resolved
in the same way as in traditional processor environments.
This problem can be solved if and only if there exists

a one-to-one mapping between the SM and the thread
block. In other words, if a GPU has ‘X’ SMs, then at most
‘X’ thread blocks can be spawned in the kernel to avoid
deadlock. In this paper, we use the GTX 280, which has
30 SMs, and spawn kernels with at most 30 thread blocks
each. Note that this idea also works on other generations
of the NVIDIA GPU with any number of SMs. To further
ensure that no two blocks can be scheduled to be executed
on the same SM, we can spawn maximum permissible
threads per block or pre-allocate all of the available shared
memory to each block.

We implement our GPU synchronization by first iden-
tifying a global memory variable (g mutex) as a shared
mutex, initialized to 0. At the synchronization step, each
block chooses one representative thread to increment
g mutex by using the atomic function atomicAdd.2 The
synchronization point is considered to be reached when the
value of g mutex equals the goalVal, which is the number
of blocks in the kernel. Figure 7 shows the pseudo-code for
the GPU synchronization function GPU sync(), where
correctness of inter-block communication is guaranteed by
the function threadfence().

In the synchronization function GPU sync(), goalVal
is set to the number of blocks N in the kernel when the
barrier function is first called. The value of goalVal
is then incremented by N each time when the barrier
function is successively called. This design is more efficient
than keeping goalVal constant and resetting g mutex
after each barrier because the former saves the number of
instructions and avoids conditional branching.

6 Performance Analysis

This section presents the performance evaluation of
various SWat implementations. From Section 5, by
combining the three memory-access techniques — matrix
re-alignment, coalesced memory access, and tiled wavefront
— and the two synchronization methods — CPU (implicit)
synchronization and GPU synchronization, we present six
different implementations on the GPU. In addition, we
compare our new GPU implementation (CUDA-SWat) to
our previous Cell/BE implementation (Cell-SWat) [1].3

We use CUDA version 2.2 as our programming interface
to the GTX 280 GPU card, which has 1-GB global mem-
ory and 30 SMs, each running at 1.2GHz. Our Cell/BE
platform is a PlayStation 3 (PS3) game console, which is
powered by the Cell/BE processor. The Linux kernel on
the PS3 runs on top of a proprietary hypervisor that dis-
allows the use of one of the SPE cores while another SPE
core is hardware-disabled. Thus, we can effectively use
only 6 SPE cores for computational purposes. The Cell
processor on the PS3 executes at 3.2 GHz and has a total
main memory of 256MB. For the results presented here, we
choose sequence pairs of size 3K and report their alignment
results. While the GPU can handle sequences of 8K in size,
the Cell/BE cannot since anything larger would not fit into
the 256-MB main memory of the PS3. So, although we can
align sequences as long as 8461 characters in length on the
NVIDIA GTX 280, we do not report these even better
results in this paper in order to ensure a fair comparison
between the Cell/BE and the GTX 280 graphics card.

2Atomic operations are available on the NVIDIA graphics cards
with compute capability 1.2 and up.

3Given the memory constraints of the GPU, and particularly the
Cell, we set the tile size to 32 × 32, and the number of threads per
block to 128.

International Conference on Parallel and Distributed Systems (ICPADS’09); Shenzhen; China; Dec; 2009.



With the above SWat implementations and their associ-
ated computing platforms, we evaluate the performance of
our six different implementations along three dimensions:
(1) total execution (matrix filling) time, (2) profile of the
time spent computing versus synchronizing in the matrix-
filling phase on the GPU, and (3) comparison of the
“compute + data communication” approach of the Cel-
l/BE versus the “compute + synchronization” approach
of the GPGPU, which is necessitated due to the lack of
direct multiprocessor-to-multiprocessor communication.

A final note: As traditionally done, we focus on par-
allelizing the matrix-filling phase. All the results are the
average of three runs.
6.1 Execution (Matrix-Filling) Time

(a) Simple implementation

(b) Coalesced implementation

(c) Tiled wavefront

Figure 8. Total Execution (Matrix-Filling) Time.

Figure 8 presents the total matrix-filling time of the
six GPU implementations. Figure 8(a) shows the matrix-
filling time of the simple implementation with both the
CPU and the GPU synchronization. We set the block
number from 8 to 30 to show the matrix-filling time
change against the block number. Figure 8(b) shows the
results of the coalesced implementation, and Figure 8(c)
is for the tiled wavefront.

Figure 9. Number of Data Transactions to Global
Memory.

Figure 8 illustrates that for the same number of blocks,
the coalesced implementation (with either CPU or GPU
synchronization) is by far the fastest while the tiled
wavefront is the slowest. Why? In the coalesced imple-
mentation, fewer data transactions are needed to fill the
same matrix, thus reducing the aggregate data-access time
to memory and speeding up program execution. Using the
CUDA profiler, we indirectly verify this by showing the
difference in the number of data transactions between the
simple and coalesced implementation, as shown in Figure 9.

Though the tiled wavefront reduces the synchronization
time by reducing the number of kernel launches, each
multiprocessor must now execute a larger computational
granularity. More importantly, the occupancy of the mul-
tiprocessor in the tiled-wavefront implementation is only
0.125, much lower than that of the simple implementation
at 1.000, as shown in Table 1. This means that 0.875 of
the GPU “goes to waste” when using the tiled-wavefront
approach. Thus, while the technique of tiling significantly
improves the performance of SWat on the Cell/BE, it has
the opposite effect on the GTX 280 GPU.

In addition, as mentioned in Section 5.2, the tiled wave-
front serializes the matrix filling explicitly and implicitly.

When using CPU synchronization, the best SWat perfor-
mance is achieved with 30 blocks per kernel launch. With
GPU synchronization, however, only 21 blocks are needed
in the simple implementation and 15 blocks in the coalesced
implementation to achieve the best performance. The lat-
ter can be attributed to the tradeoff between the increase
in synchronization time and the decrease in the computa-
tion time when more blocks are in the kernel. With more
blocks, additional resources can be used for the computa-
tion, which can accelerate the computation; however, at
the same time, more time is needed for GPU synchroniza-
tion because of the “atomic add” in the synchronization
function, which can only execute sequentially even in differ-
ent blocks. With 30 blocks, in the simple and coalesced im-
plementation, the time increase for GPU synchronization is
more than the computation time decrease, when compared
to that of 21 and 15 blocks in the kernel, respectively.

For tiled wavefront, the synchronization time is very
small compared to the computation time. The decrease
in computation time is much larger than the increase in
GPU synchronization time when more blocks are used.
As a result, the best performance for tiled wavefront is
achieved with 30 blocks in the kernel for both the CPU
and GPU synchronization.

International Conference on Parallel and Distributed Systems (ICPADS’09); Shenzhen; China; Dec; 2009.



Table 1. Simple Implementation versus Tiled Wavefront via the CUDA Profiler.

#calls occu- coalesced coalesced branch divergent instruc- warp
pancy load store branch tions serialize

Simple imlementation 10359 1.0 5541640 5950074 737542 118791 4383409 640129
Tiled wavefront 335 0.125 5109771 7507480 3581961 346729 17535715 1529807

Finally, in comparing the performance of only the
synchronization within SWat, GPU synchronization
always outperforms CPU synchronization. With the
CPU synchronization, the best synchronization times are
199.119 ms, 148.123 ms, and 378.263 ms for the simple im-
plementation, coalesced implementation, and tiled wave-
front, respectively, while the corresponding GPU synchro-
nization times are 196.270 ms, 142.409 ms, and 371.780 ms,
respectively. This indicates that performance can be im-
proved with a better synchronization method on the GPU.

6.2 Computation vs. Synchronization on the
GPU

To determine the time spent in computation versus
synchronization on the GPU, we first calculate the total
execution times for all our CUDA-SWat implementations
for both the CPU and GPU synchronization methods.
The total execution time can then be partitioned into the
computation time and the non-computation (synchroniza-
tion) time. We calculate the computation time by running
the SWat implementations with GPU synchronization,
but by commenting out the GPU sync() synchronization
function. Here we assume that the computation time of
all our SWat implementations are the same, irrespective of
the synchronization method used. The non-computation
(synchronization) time for each of the implementations
will then be the difference between the corresponding
total execution time (with either the CPU or the GPU
synchronization) and the computation time.

Figure 10 shows the percentage of the computation time
and the synchronization time corresponding to the best
execution configurations of the six GPU implementations.
Firstly, in Figure 10, we observe that the percentage
of time to synchronize in the simple implementation is
smaller than that in the coalesced implementation for both
CPU and GPU synchronization, respectively. The reason
is the computation time of the coalesced implementation
is smaller, which makes the synchronization time occupy
a larger percentage of the total matrix filling time. Sec-
ondly, percentage of the synchronization time for the GPU
synchronization is always less than that of the CPU syn-
chronization if the memory access technique is the same,
which indicates that the GPU synchronization needs less
time than the CPU synchronization. Thirdly, although
the GPU synchronization can reduce the synchronization
time, the percentage of time spent synchronizing is still
32.63% and 36.17% for the simple and coalesced implemen-
tations, respectively. This means that the synchronization
consumes a large part of the total kernel execution time.

6.3 GPU vs. Cell/BE

In this section, we analyze both the computation and
the non-computation time of SWat on the GPU and
the Cell/BE. Figure 11 shows the composition of the
matrix-filling time of all the implementations on the GPU
and the Cell/BE for their best execution configurations.

Figure 10. Computation vs. Synchronization
Time on the GPU.

From Figure 11, although the tiled wavefront of Cell-SWat
can achieve a good performance [1], the matrix-filling time
(239.13 ms) is larger than that of CUDA-SWat’s simple
implementation (199.12 ms and 196.27 ms for CPU and
GPU synchronization, respectively) and the coalesced im-
plementation (148.12 ms and 142.41 ms for CPU and GPU
synchronization, respectively), but it is less than that of
the tiled wavefront on the GPU (378.26 ms and 371.78 ms).
This indicates that the computational horsepower on the
Cell/BE (PS3) is not as fast as that on the GPU.

However, the data communication time on the Cell/BE
is much less than all the GPU implementations. Although
the GPU tiled wavefront can reduce the synchronization
time to 10.78 ms and 4.29 ms for the CPU and GPU syn-
chronization, respectively, it is still much larger than that
on the Cell/BE at 0.69 ms. Moreover, the synchronization
benefits that are gained from the GPU tiled wavefront pay
the cost of a significant increase in the computation time
on the GPU (370 ms), which is larger than that on the Cel-
l/BE (238.44 ms). In other words, data communication on
the Cell/BE is much more efficient than that on the GPU.
This is because, data communication on the Cell/BE be-
tween the Synergistic Processing Elements (SPEs) is sup-
ported via Direct Memory Access (DMA) primitives over
the Element Interconnect Bus. In contrast, the GPU has
no such direct communication between its “SPEs”, known
as multiprocessors. As a consequence, we used the high-
overhead CPU (implicit) barrier synchronization as well as
constructed our own software-based GPU barrier synchro-
nization to facilitate data communication on the GPU.

7 Conclusions

In this paper, we choose one of the dynamic program-
ming applications — Smith-Waterman — as an example
to accelerate it on the GPU. In contrast to the previous
coarse-grained parallelization, we implement the fine-
grained parallelization of the SWat algorithm. To improve
its performance, techniques to decrease both the computa-

International Conference on Parallel and Distributed Systems (ICPADS’09); Shenzhen; China; Dec; 2009.



Figure 11. Performance Profile of CUDA-SWat
vs. Cell-SWat.

tion time and the data communication time are proposed.
For the former, it mainly focuses on the efficient global
memory access; and for the latter, a new GPU synchro-
nization method is proposed, which can synchronize the
execution across different blocks without the host involved.
These techniques are proposed for SWat, but they can be
applied to any dynamic programming-based algorithms.

To evaluate the performance, we compare the matrix
filling time of each GPU implementation. From the ex-
periment results, compared to the simple implementation,
the coalesced implementation can speedup the execution;
but the tiled wavefront cannot. Also, the proposed GPU
synchronization can achieve a better performance than the
CPU synchronization. From the results, synchronization
time percentage can decrease from 42.46% to 32.63% for
the simple implementation and from 55.32% to 36.17%
for the coalesced implementation with the GPU synchro-
nization. In addition, we compare the computation time
and the data communication time between the Cell/BE
and the GPU. From our results, matrix filling time on
Cell/BE is larger than those of the simple and coalesced
implementations on the GPU, but its data communication
is much less. Though we have a tiled wavefront on the
GPU that can decrease the synchronization time, it is at
the cost of increasing the computation time to much more
than that on the Cell/BE. As a result, for algorithms such
as Dynamic Programming, efficient data communication
mechanism is important for them to be accelerated on
multi-core and many-core architectures.

As future work, we would like to use some cached
memory, e.g., texture memory and constant memory,
to decrease the computation time even more for SWat.
Also, from our experiment results, one problem in the
GPU synchronization is the atomic operation — if more
blocks are in the kernel, more time is needed for the
synchronization. In future, we will try to decrease the
overhead caused by the atomic operations in some degree
or even totally removing them in the GPU synchronization
function. Finally, we would like to extend the proposed
GPU synchronization method to other algorithms.
Acknowledgments

We would like to thank Heshan Lin, Jeremy Archuleta,
Tom Scogland, and Song Huang for their technical support
and feedback on the manuscript.

This work was supported in part by a NVIDIA Professor
Partnership Award and an IBM Faculty Award.

References

[1] A. M. Aji, W. Feng, F. Blagojevic, and D. S. Nikolopou-
los. Cell-SWat: Modeling and Scheduling Wavefront
Computations on the Cell Broadband Engine. In Proc.
of the ACM International Conference on Computing
Frontiers, May 2008.

[2] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer,
and K. Skadron. A Performance Study of General-
Purpose Applications on Graphics Processors Using
CUDA. Journal of Parallel and Distributed Computing,
68(10):1370–1380, 2008.

[3] T. Chen, R. Raghavan, J. Dale, and E. Iwata. Cell Broad-
band Engine Architecture and its First Implementation.
IBM developerWorks, November 2005.

[4] A. Grama, A. Gupta, G. Karypis, and V. Kumar.
Dynamic Programming. In Introduction to Parallel Com-
puting, Second Edition, pages 515–536, January 2003.

[5] W. Liu, B. Schmidt, G. Voss, A. Schroder, and W. Muller-
Wittig. Bio-Sequence Database Scanning on a GPU.
IPDPS, April 2006.

[6] Y. Liu, W. Huang, J. Johnson, and S. Vaidya. GPU
Accelerated Smith-Waterman. In Proc. of the 2006
International Conference on Computational Science,
Lectures Notes in Computer Science Vol. 3994, pages
188–195, June 2006.

[7] S. A. Manavski and G. Valle. CUDA Compatible GPU
Cards as Efficient Hardware Accelerators for Smith-
Waterman Sequence Alignment. BMC Bioinformatics,
2008.

[8] Y. Munekawa, F. Ino, and K. Hagihara. Design and
Implementation of the Smith-Waterman Algorithm
on the CUDA-Compatible GPU. In Proc. of the 8th
IEEE International Conference on BioInformatics and
BioEngineering, pages 1–6, October 2008.

[9] NVIDIA. CUDA Profiler, 2008. http://developer.
download.nvidia.com/compute/cuda/2.0-Beta2/
docs/CudaVisualProfiler_linux_release_notes_1.0_
13June08.txt.

[10] NVIDIA. NVIDIA CUDA Programming Guide-2.0, 2008.
http://developer.download.nvidia.com/compute/
cuda/2_0/docs/NVIDIA_CUDA_Programming_Guide_2.0.
pdf.

[11] L. Nyland, M. Harris, and J. Prins. Fast N-Body
Simulation with CUDA. GPU Gems, 3:677–695, 2007.

[12] C. I. Rodrigues, D. J. Hardy, J. E. Stone, K. Schulten, and
W. W. Hwu. GPU Acceleration of Cutoff Pair Potentials
for Molecular Modeling Applications. In Proc. of the Con-
ference on Computing Frontiers, pages 273–282, May 2008.

[13] M. Schatz, C. Trapnell, A. Delcher, and A. Varshney.
High-Throughput Sequence Alignment Using Graphics
Processing Units. BMC Bioinformatics, 8(1):474, 2007.

[14] T. Smith and M. Waterman. Identification of Common
Molecular Subsequences. In Journal of Molecular Biology,
April 1981.

[15] J. E. Stone, J. C. Phillips, P. L. Freddolino, D. J. Hardy,
L. G. Trabuco, and K. Schulten. Accelerating Molecular
Modeling Applications with Graphics Processors. Journal
of Computational Chemistry, 28:2618–2640, 2007.

[16] G. M. Striemer and A. Akoglu. Sequence Alignment with
GPU: Performance and Design Challenges. In IPDPS,
May 2009.

[17] G. Tan, N. Sun, and G. R. Gao. A Parallel Dynamic
Programming Algorithm on a Multi-core Architecture.
In Proc. of the ACM Symp. on Parallelism in Algorithms
and Architectures, June 2007.

[18] V. Volkov and J. Demmel. Benchmarking GPUs to Tune
Dense Linear Algebra. In Proc. of the 2008 ACM/IEEE
Conference on Supercomputing, November 2008.

International Conference on Parallel and Distributed Systems (ICPADS’09); Shenzhen; China; Dec; 2009.


