
Parallel Transposition of Sparse Data Structures

Hao Wang†, Weifeng Liu§‡, Kaixi Hou†, Wu-chun Feng†

†Dept. of Computer Science, Virginia Tech, Blacksburg, VA, USA, {hwang121, kaixihou, wfeng}@vt.edu
§Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark, weifeng.liu@nbi.ku.dk
‡Scientific Computing Department, STFC Rutherford Appleton Laboratory, Harwell Oxford, UK

ABSTRACT
Many applications in computational sciences and social sci-
ences exploit sparsity and connectivity of acquired data.
Even though many parallel sparse primitives such as sparse
matrix-vector (SpMV) multiplication have been extensively
studied, some other important building blocks, e.g., paral-
lel transposition for sparse matrices and graphs, have not
received the attention they deserve.

In this paper, we first identify that the transposition oper-
ation can be a bottleneck of some fundamental sparse matrix
and graph algorithms. Then, we revisit the performance and
scalability of parallel transposition approaches on x86-based
multi-core and many-core processors. Based on the insights
obtained, we propose two new parallel transposition algo-
rithms: ScanTrans and MergeTrans. The experimental re-
sults show that our ScanTrans method achieves an average
of 2.8-fold (up to 6.2-fold) speedup over the parallel transpo-
sition in the latest vendor-supplied library on an Intel multi-
core CPU platform, and the MergeTrans approach achieves
on average of 3.4-fold (up to 11.7-fold) speedup on an Intel
Xeon Phi many-core processor.

CCS Concepts
•Computing methodologies → Linear algebra algo-
rithms; Parallel computing methodologies;

Keywords
Sparse Matrix; Transposition; CSR; SpMV; SpGEMM; Graph
Algorithms; AVX; Intel Xeon Phi

1. INTRODUCTION
A large amount of applications in computational sciences

and social sciences exploit sparsity and connectivity of ac-
quired data. For example, finite element methods construct
sparse matrices of linear systems and solve them by using
direct or iterative methods [19, 40]; genomic workflows an-
alyze the functional and connective structure of genomes

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ICS ’16, June 01-03, 2016, Istanbul, Turkey
c© 2016 ACM. ISBN 978-1-4503-4361-9/16/05. . . $15.00

DOI: http://dx.doi.org/10.1145/2925426.2926291

assembled in various graph data structures [14, 23]. In
addition, graph theory has been extensively used to ana-
lyze the sparsity of system matrices and processing them [2,
31]. Because of its importance, many sparse data structures
(e.g., storage formats such as BRC [4], ACSR [3], CSR5 [34]
and automatic selection tools [42]), basic linear algebra sub-
programs (BLAS) (e.g., sparse matrix-vector multiplication
(SpMV) [8, 12, 34, 35] and sparse matrix-matrix multiplica-
tion (SpGEMM) [9, 10, 33, 38]), and graph algorithms (e.g.,
strongly connected components (SCC) [27, 37]) have been
thoroughly researched on modern parallel platforms.

However, not all important sparse building blocks have
received the attention they deserve. Computing the trans-
position of a sparse matrix or a graph is one such important
building block. In particular, the parallel performance and
scalability of the transposition operation have been largely
ignored. As a result, some routines using transposition as a
building block show degraded performance on parallel hard-
ware. Such routines include, but are not limited to, transpose-
based BLAS operations (e.g., sparse matrix-transpose-vector
multiplication and sparse matrix-transpose-matrix multipli-
cation) and transpose-based graph algorithms (e.g., finding
strongly connected components). Later in this paper, we
will further elaborate on the status of transposition in Sec-
tion 2.2 and present some performance numbers in Figure 2.

In this paper, we present our research on the parallel
transposition of sparse data structures, in particular, the
mostly used compressed sparse row/column (CSR/CSC) for-
mats. We first revisit the serial transposition scheme and
two basic parallel transposition approaches: the atomic-
based method and the sorting-based method. To overcome
their shortcomings, we propose two new parallel transposi-
tion algorithms: ScanTrans and MergeTrans. We also imple-
ment the above four parallel methods on x86-based multi-
and many-core systems with the latest parallel techniques.
We evaluate these methods and compare with the multi-
threaded sparse matrix transposition from the Intel MKL
library on the Intel Haswell multi-core CPU and the Intel
Xeon Phi many-core processor.

Our experimental results demonstrate that in all five afore-
mentioned methods, ScanTrans has the best performance on
Haswell, while MergeTrans has the best performance on Xeon
Phi. Compared to the counterpart from the Intel MKL li-
brary, our ScanTrans method achieves up to 5.6-fold speedup
and 6.2-fold speedup on Haswell for input data in single pre-
cision and double precision, respectively; while on Xeon Phi,
our MergeTrans method achieves up to 11.7-fold speedup and
9.9-fold speedup, respectively.

30th International Conference on Supercomputing (ICS), Istanbul, Turkey, June 2016

This paper makes the following contributions:

• We identify that transposition operation can be a bot-
tleneck of some basic sparse matrix and graph algo-
rithms.

• We propose two new parallel transposition algorithms:
ScanTrans and MergeTrans.

• We implement and optimize all known parallel trans-
position algorithms both on multi-core and on many-
core processors.

• We conduct thorough experiments to demonstrate that
the proposed methods can significantly improve the
performance of parallel transposition on two very dif-
ferent x86 platforms, and the faster transposition can
also largely accelerate higher-level algorithms.

The remainder of this paper begins by describing the CSR
and CSC formats and analyzing the performance issues of
existing sparse transposition method on modern multi-core
processors in Section 2. Next, we present the algorithm
of serial sparse transposition and two parallel algorithms:
atomic-based and sorting-based in Section 3. We propose
ScanTrans and MergeTrans in Section 4 as well as present
the parallel implementation details in Section 5. We conduct
the evaluations in Section 6 and discuss the relevant related
work in Section 7. We conclude by summarizing this paper
and arguing that higher-level routines should consider sparse
transposition as a first-class concern in Section 8.

2. BACKGROUND AND MOTIVATION

2.1 Preliminaries
The compressed sparse row (CSR) and compressed sparse

column (CSC) representations are the most widely used stor-
age formats for sparse matrix and graph data. The CSR for-
mat consists of three arrays: (1) csrRowPtr stores the start-
ing and ending pointers of nonzero elements of the rows.
Its length is m + 1, where m is the number of the rows of
the sparse matrix. (2) csrColIdx stores the column indices
of nonzero elements. Its length is nnz, where nnz is the
number of nonzero elements in the sparse matrix. (3) csr-
Val array stores nnz values of the nonzero elements. The
number of nonzero elements in a row i, denoted as nnzi,
can be computed as csrRowPtr[i + 1] − csrRowPtr[i]. The
column indices of nonzero elements in this row can be com-
puted as csrColIdx[csrRowPtr[i]], ... csrColIdx[csrRowPtr[i +
1] − 1]. Similar to the CSR format, the CSC format also
uses three arrays, cscColPtr, cscRowIdx, and cscVal, for stor-
ing the starting and ending pointers of nonzero elements of
the columns, the row indices of nonzero elements, and the
corresponding values, respectively.

Matrix transposition transforms the m × n matrix A to
the n×m matrix AT . For a matrix, the transposition is to
transform the row-major storage to the column-major stor-
age. Therefore, the CSC representation of a matrix is actu-
ally equivalent to the CSR representation of its transpose.
Figure 1 illustrates the two formats for sparse matrices A of
size 4× 6 and its transpose AT of size 6× 4. We can see the
equivalency in the CSR and CSC formats from both sides
(Figures 1a and 1b). For brevity, in this paper, we use the
statement “from CSR to CSC” to denote the transposition
operation.

0 a 0 b 0 0

c d e f 0 0

0 0 g h i j

0 k l m n p csrVal

0csrRowPtr

csrColIdx

2 6 10 15

1 3 0 1 2 3 423 5 3 421

a b c d e h igf j m nlk

5

p

CSR

cscVal

0cscColPtr

cscRowIdx

1 4 7 11 1513

1 0 1 3 1 0 132 2 3 223

c a d k e b flg h n jim p

3

CSC

A =

(a) A in the CSR and CSC formats.

cscVal

0cscColPtr

cscRowIdx

2 6 10 15

1 3 0 1 2 3 423 5 3 421

a b c d e h igf j m nlk

5

p

CSC

csrVal

0csrRowPtr

csrColIdx

1 4 7 11 1513

1 0 1 3 1 0 132 2 3 223

c a d k e b flg h n jim p

3

CSR0 c 0 0

a d 0 k

0 e g l

b f h m

0 0 i n

0 0 j p

𝐴𝑇 =

(b) AT in the CSR and CSC formats.

Figure 1: Transposition from A to AT

Because graphs can be represented by adjacency matrices
and vice versa [16], they can share the same low-level algo-
rithms [11]. Therefore, in this paper, we use the word“trans-
position”to denote sparse matrix transposition or graph trans-
position, graph conversion, or graph reversion.

2.2 Motivation
Many higher-level graph and linear algebra algorithms use

sparse matrix transposition as a building block in their pre-
processing and processing stages. While considering a sce-
nario consuming a fixed graph or sparse matrix, the over-
head of preprocessing (including matrix transposition) may
be amortized within subsequent tens or hundreds of itera-
tions. Some iterative linear system solvers, such as biconju-
gate gradient (BiCG) [20] and standard quasi-minimal resid-
ual (QMR) [22], computing sparse matrix-vector multiplica-
tion (SpMV), both on A and on AT , are examples of this
scenario. Moreover, Buluç and Gilbert [10] utilized transpo-
sition as a part of preprocessing for fast sparse matrix-matrix
multiplication (SpGEMM).

However, some other algorithms and applications do not
have an iteration phase or have to process a changed sparse
matrix in each iteration. For example, finding a graph’s
strongly connected components (SCCs) [44] depends on its
sparsity structure, thus merely runs once for an input. Some
recently proposed fast SCC algorithms, such as FW-BW-
Trim methods [27, 37], show good scalability, but require
both original graph A and its transpose AT as input. In
this case, the transposition operation can be a bottleneck of
detecting SCCs, if it scales not so well.

Another example is the simultaneous localization and map-
ping (SLAM) problem [32], which is one of the most impor-
tant approaches to enable an autonomous robot to explore,
map, and navigate in previously unknown environments.
The method acquires and analyzes a new information ma-
trix (sparse) in each step of a whole robot trajectory, which
is commonly a long process that includes a large number
of steps. In an efficient SLAM implementation proposed by
Dellaert and Kaess [17], the authors pointed out that com-

30th International Conference on Supercomputing (ICS), Istanbul, Turkey, June 2016

web-Google SpMV web-Google SpGEMM

Figure 2: Performance and scalability of SpMV and SpGEMM in
the Intel MKL Sparse BLAS, running on a dual-socket 2×14-core
Intel Haswell Xeon platform for matrix web-Google. To simulate
real scenarios, SpGEMM is executed once, while SpMV is iterated
50 times.

puting ATA (where A is the information matrix constructed
in each step) is about six times more expensive than QR fac-
torization, thus dominating the overhead of SLAM. When
SpGEMM scales well by running the latest fast methods [9,
38], computing ATA will limit the overall efficiency. (Note
that SLAM demands as fast as possible, even real-time, data
processing.)

To further demonstrate the motivation of this work, we
benchmark the most used level 2 and level 3 sparse BLAS
routines, SpMV and SpGEMM, in both non-transpose and
transpose patterns and see how transposition influences the
performance. For the SpMV operation, we evaluate three
patterns: (1) ordinary SpMV y1 ← Ax, (2) SpMV T with
implicit transposition y2 ← ATx, and (3) SpMV T with
an explicit transposition stage i.e., B ← AT then y2 ←
Bx. We also run the same three patterns for the SpGEMM
operations.

Figure 2 shows the latest Intel MKL sparse BLAS perfor-
mance of matrix web-Google, downloadable from the Uni-
versity of Florida Sparse Matrix Collection [16]. Note that
the SpMV operations are iterated 50 times to simulate a real
scenario in sparse iterative solvers such as BiCG. We can see
that ordinary SpMV and SpGEMM operations scale well on
the used 2×14-core Intel Xeon E5-2695 v3. However, the
transposition operation itself does not show good scalabil-
ity. Similarly, the implicit transposition versions of SpMV
and SpGEMM do not scale well. For example, the implicit
SpMV T operation stops scaling when more than eight cores
are used. However, if the matrix is explicitly transposed in
advance, both SpMV T and SpGEMM T scale as well as
the ordinary versions.

On the other hand, we can see that when more cores are
utilized, the cost of the transposition operation is not negligi-
ble. Taking the SpGEMM operation as an example, a serial
transposition uses 620 ms when a serial SpGEMM uses 2756
ms. However, when all 28 cores are utilized, the transposi-
tion still needs 139 ms but the SpGEMM requires only 260
ms. Consequently, if the transposition operation can scale
better, the performance of SpMV T and SpGEMM T can
be naturally improved.

3. EXISTING METHODS

3.1 Serial Transposition
Serial sparse matrix transposition is straightforward to

implement. For a matrix A of size m× n, the method uses
the cscColPtr array to count the number of nonzero elements
in each column. After that, the algorithm uses exclusive scan
(i.e., prefix sum) on the histogram to set the starting and
ending pointers in cscColPtr. Then, all nonzero elements
are traversed again and moved to their final positions cal-
culated by the column offsets in cscColPtr and the current
relative positions in curr. Algorithm 1 illustrates the serial
implementation.

Algorithm 1: Serial Sparse Transposition

Function csr2csc_serial(m, n, nnz, csrRowPtr, csrColIdx, csrVal,
cscColPtr, cscRowIdx, cscVal)

// construct an array of size n to record current
available position in each column

1 ∗curr = new int[n]();
2 for i←0; i < m; i++ do
3 for j ←csrRowPtr[i]; j <csrRowPtr[i+1]; j++ do
4 cscColPtr[csrColIdx[j] + 1] + +;

5 // prefix_sum
6 for i←1; i < n + 1; i++ do
7 cscColPtr[i]+=cscColPtr[i− 1];
8 for i←0; i < m; i++ do
9 for j ←csrRowPtr[i]; j <csrRowPtr[i+1]; j++ do

10 loc = cscColPtr[csrColIdx[j]] + curr[csrColIdx[j]] + +;
11 cscRowIdx[loc] = i;
12 cscVal[loc] = csrV al[j];

13 delete[] curr;
14 return;

3.2 Atomic-based Transposition
The serial algorithm can be parallelized with multithread

programming models that support atomic operations on mod-
ern processors. In Algorithm 2, we show the implementation
when applying OpenMP directives. In contrast to the serial
algorithm, we allocate the array dloc of size nnz to record
the relative position for each nonzero element in correspond-
ing column. We can see that multiple threads may update
the same relative position stored in dloc. Therefore, in the
first for loop (that counts the number of nonzero elements in
each column), we use the atomic operation fetch_and_add

for updating dloc. As a result, all threads obtain conflict-free
relative positions and can safely run the rest calculations.

Even though atomic operations have been used in some
graph algorithms [6] to support parallelism, there still re-
mains several potential performance bottlenecks. The first
one is that atomic operations are inherently serial when mul-
tiple threads try to update the same memory address. In this
case, the atomic operations actually degrade overall perfor-
mance. Second, the atomic operation fetch_and_add can-
not guarantee the relative order of nonzero elements in each
column. For some algorithms that strictly require the or-
der in each column [15], a compensation using the key-value
sort [41] to reorder cscRowIdx and cscVal in each column is
necessary. This leads to additional overhead.

3.3 Sorting-based Transposition
A sorting-based serial transposition method was first pro-

posed by Gustavson [26]. This approach sorts column in-
dices (i.e., the array csrColIdx in the CSR format) to gather
all nonzero entries with the same column index to contigu-

30th International Conference on Supercomputing (ICS), Istanbul, Turkey, June 2016

Algorithm 2: Atomic-based Parallel Sparse Transposition

Function csr2csc_atomic(m, n, nnz, csrRowPtr, csrColIdx, csrVal,
cscColPtr, cscRowIdx, cscVal)

// construct an array of size nnz to record the relative
position of a nonzero element in corresponding column

1 ∗dloc = new int[nnz]();
2 #pragma omp parallel for schedule(dynamic)
3 for i←0; i < m; i++ do
4 for j ←csrRowPtr[i]; j <csrRowPtr[i+1]; j++ do
5 dloc[j] =

fetch and add(&(cscColPtr[csrColIdx[j] + 1]), 1);

6 prefix sum(cscColPtr, n + 1);
7 #pragma omp parallel for schedule(dynamic)
8 for i←0; i < m; i++ do
9 for j ←csrRowPtr[i]; j <csrRowPtr[i+1]; j++ do

10 loc = cscColPtr[csrColIdx[j]] + dloc[j];
11 cscRowIdx[loc] = i;
12 cscVal[loc] = csrV al[j];

13 // sort cscRowIdx,cscVal in each column
14 #pragma omp parallel for schedule(dynamic)
15 for i←0; i < n; i++ do
16 begin=cscColPtr[i];
17 end =cscColPtr[i + 1];
18 sort key value(being, end, cscRowIdx, cscVal);

19 delete[] dloc;
20 return;

ous places in the ascending order. At the same time, each
nonzero entry records a position in which it will be moved to.
Then the algorithm permutes the nonzero entries (i.e., their
row indices and values) to the corresponding new positions.
Finally, the contiguous and possibly replicated column in-
dices are used to generate cscColPtr as part of the CSC for-
mat. If a stable sorting algorithm (i.e., method maintains
the relative order of nonzero entries in A) is used, entries in
each column of AT will be naturally ordered.

Parallel implementation of the sorting-based transposition
is possible to achieve better performance than the atomic-
based method since it avoids atomic transactions (which
may be degraded to serial writes on csrRowPtr). Further-
more, this method may have good scalability since it works
in the nonzero entry space of size O(nnz), which is not re-
lated with the number of parallel threads. If a good parallel
sorting method is utilized, the sorting-based transposition is
expected to be efficient.

However, because of the O(nnz lognnz) complexity, the
sorting-based method may encounter significant performance
degradation when the total number of nonzero elements in-
creases. Under such a circumstance, the additional memory
transactions that are needed in the sorting algorithm may
kill the performance.

4. PROPOSED TRANSPOSITION METHODS

4.1 Performance Considerations
To realize an efficient transposition operation, we have to

consider three aspects. First, the algorithm is required to
be sparsity independent. That is to say, the nonzero entries
should be evenly divided to threads. Thus transposing ir-
regular data, such as power-law graphs, will not be affected
by load imbalance (e.g., some of their very long rows are
assigned to one single core and short ones to the others).

Second, because the atomic operations may serialize op-
erations expected to be parallel, they should be avoided de-
spite their simplicity. If required, some auxiliary arrays can
be allocated to eliminate race conditions. Also, the relative
order of nonzero entries should be guaranteed naturally to

avoid an extra stage of sorting indices inside a row/column.
Third, the work complexity should be lower than O(nnz log

nnz) of the sorting-based method. Consider the serial method
has linear complexity O(m+n+nnz), it may be possible to
design parallel methods to achieve somewhere closer to it.

4.2 ScanTrans
We first introduce the scan-based sparse matrix transpo-

sition called ScanTrans. The basic idea of this algorithm is
to partition nonzero elements evenly among threads, count
the numbers of column indices as well as the relative po-
sition of each nonzero element in corresponding column by
each thread, and finally get the absolute offset of a nonzero
element in output cscRowIdx and cscVal after two rounds
of scan. We construct two auxiliary arrays here: a two-
dimensional array inter of size (nthreads + 1) ∗ n, and the
one-dimensional array intra of size nnz. Each row i, i > 0,
in inter stores the number of column indices observed by
the thread i− 1. Each element in intra is used to store the
relative offset in the column of the corresponding nonzero el-
ement by the thread. After obtaining such histograms, the
algorithm applies the column-wise scan, which is called ver-
tical scan in Figure 3, on the inter, followed by the prefix
sum on the last row of the inter. After that, the values in
the last row of inter are the starting and ending pointers
of row indices of the transposed matrix (cscColPtr). Finally,
the algorithm calculates the absolute offset of each nonzero
element in cscRowIdx and cscVal by adding the correspond-
ing values in cscColPtr, inter, and intra.

Figure 3 shows the process of ScanTrans on the matrix A
shown in Figure 1. In the initial stage, the algorithm allo-
cates memory for the inter and intra arrays and generates
the row indices for nonzero elements in csrRowIdx. In the
histogram step, each thread gets column indices from csr-
ColIdx in its own partitions and sets the values of inter and
intra. For example, the nonzero element h, whose column
index is 3 and row index is 2, is the second nonzero ele-
ment in column 3 of the partition proceeded by thread 1,
where f is the first element in column 3. Thus, the corre-
sponding element in intra is set to 1 by thread 1. Because
there are two nonzero elements, i.e., f and h, in column 3 of
this partition, the corresponding element 15 of inter, i.e.,
(tid+ 1)∗n+ colIdx = (1 + 1)∗6 + 3 = 15, is set to 2. With
the vertical scan on the two-dimensional array inter, the al-
gorithm gets the total numbers of nonzero elements in each
column, “1,3,3,4,2,2” as shown in the last row of inter. The
vertical scan also generates the numbers of nonzero elements
in each column proceeded by previous threads. For exam-
ple, after the vertical scan, column 3 of inter is “0,1,3,3,4”,
which means before thread 0, no element in column 3 is pro-
ceeded; before thread 1, there is one element in column 3
is proceeded; and so on. In the third step, the algorithm
applies the prefix sum on the last row of inter and gets the
start and end pointers of row indices in CSC (cscColPtr). Af-
ter that, the algorithm can calculate the absolute offset in
cscRowIdx and cscVal for any nonzero element. For example,
for h whose column index is 3 and position in csrColIdx is 7,
the absolute offset in cscRowIdx and cscVal is 7 + 1 + 1 = 9
calculated by the following equation:

off = cscColPtr[colIdx] + inter[tid ∗ n + colIdx] + intra[pos].

Finally, its value and row index are written back to the
position 9 of cscRowIdx and cscVal, respectively, which are

30th International Conference on Supercomputing (ICS), Istanbul, Turkey, June 2016

tagged by the gray color in the figure.

t0 t1 t2 t3

intra 0 0 0 1 0 1 010 0 0 000 0

0 0 0 0 0 0

1 2 0 1 0 0

0 0 2 2 0 0

0 1 1 0 1 1

0 0 0 1 1 1

t0

t1

t2

t3

inter

vertical_scan

prefix_sum

1 4 7 11 13 150cscColPtr

histogram (Count numbers of column indices per thread)

cscRowIdx

cscVal

write back
④

①

③

csrVal

csrRowPtr

csrColIdx

0 2 6 10 15

1 3 0 1 2 3 423 5 3 421 5

a b c d e h igf j m nlk p

csrRowIdx 0 0 1 1 1 2 221 2 3 333 3

0 0 0 0 0 0

1 2 0 1 0 0

1 2 2 3 0 0

1 3 3 3 1 1

1 3 3 4 2 2

②

1 0 1 3 1 0 132 3 223 3

c a d k e b flg h n jim p

2

off = 7 + 1 + 1

Figure 3: ScanTrans

Compared to the atomic-based sparse matrix transposi-
tion, ScanTrans avoids the usage of atomic operations, and
also keeps the order of nonzero elements in each column
(thus no complementary sort stage is needed). However,
this method cannot avoid the random memory access. After
getting the absolute offset of a nonzero element, the method
copies data from csrRowIdx and csrVal to cscRowIdx and csc-
Val. Even though the data read on csrRowIdx and csrVal is
contiguous in each thread, having the spatial locality, the
data write on cscRowIdx and cscVal is totally random. It is
interesting to check whether there is improved performance
if we change the sequential read, random write pattern to
the random read, sequential write pattern. As a result,
we implement an alternative of ScanTrans: different with
Algorithm 3, instead of calculating the absolute offset in
cscRowIdx and cscVal, each thread calculates the absolute
position for a nonzero element in csrRowIdx and csrVal re-
versely. Then, the data access pattern is changed to the
random read on nonzero elements in CSR, and sequential
write on data in CSC.

4.3 MergeTrans
In order to mitigate the random memory access in ScanT-

rans and better leverage the shared LLC (Last Level Cache)
in multi- and many-core processors, we design another paral-
lel sparse matrix transposition, called MergeTrans, as shown
in Figure 4. The MergeTrans method consists of two stages,
the transposition stage and the merge stage. In the trans-
position stage, this method partitions the nonzero elements
into multiple blocks (the block number is configurable), and
transposes a block of nonzero elements from CSR to CSC by
using the serial algorithm 3.1 or the single threaded sorting-
based algorithm. For example, if we use the sorting-based
method to transpose nonzero elements in the partition of
thread 0, the method (1) sorts the column indices “1,3,0,1”
to“0,1,1,3”; (2) accordingly moves their values from“a,b,c,d”
to “c,a,d,b” in cscVal; (3) sets the row indices of nonzero el-
ements to corresponding positions in cscRowIdx as “1,0,1,0”;
and (4) based on the sorted column indices “0,1,1,3”, gen-
erates the cscColPtr “0,1,3,3,4,4,4” (one elements in the col-

Algorithm 3: ScanTrans: Scan-based Parallel Sparse Matrix

Transposition

Function ScanTrans(m, n, nnz, csrRowPtr, csrColIdx, csrVal, cscColPtr,
cscRowIdx, cscVal)

// construct auxiliary data arrays
1 ∗intra = new int[nnz]();
2 ∗inter = new int[(nthreads + 1) ∗ n]();
3 ∗csrRowIdx = new int[nnz]();
4 #pragma omp parallel for schedule(dynamic)
5 for i←0; i < m; i++ do
6 for j ←csrRowPtr[i]; j <csrRowPtr[i+1]; j++ do
7 csrRowIdx[j] = i;

8 #pragma omp parallel
9 // partition nnz evenly on threads, get start in csrColIdx

and len for each thread
10 for i←0; i < len; i++ do
11 intra[start + i]=inter[(tid + 1) ∗ n + csrColIdx[start +

i]] + +;

12 // vertical scan
13 #pragma omp parallel for schedule(dynamic)
14 for i←0; i < n; i++ do
15 for j ←1; j < nthread + 1; j++ do
16 inter[i + n ∗ j]+ = inter[i + n ∗ (j − 1)];

17 #pragma omp parallel for schedule(dynamic)
18 for i←0; i < n; i++ do
19 cscColPtr[i + 1]=inter[n ∗ nthread + i];
20 prefix sum(cscColPtr, n + 1);
21 #pragma omp parallel
22 for i←0; i < len; i++ do
23 loc = cscColPtr[csrColIdx[start + i]] + inter[tid ∗ n +

csrColIdx[start + i]] + intra[start + i];
24 cscRowIdx[loc] = csrRowIdx[start + i];
25 cscVal[loc] = csrVal[start + i];

26 // free intra, inter, csrRowIdx
27 return;

umn 0, two elements in the column 1, and one elements in
the column 3). If the size of a block is small enough, the
random memory access can be mitigated because the data
is expected to reside in the cache.

In the merge stage, the algorithm merges generated mul-
tiple CSC iteratively in parallel, until there is only one left.
Two merge functions merge_mcsc_sthread and merge_pcsc_

mthread are designed to merge multiple CSC by a single
thread and merge a pair of two CSC by multiple threads,
respectively, as shown in Algorithm 4. In Figure 4, we set
the number of blocks equal to the number of threads to sim-
plify the figure. After getting multiple CSC, this method
uses two rounds of merge_pcsc_mthread to merge four CSC.
The merge algorithm directly adds cscColPtr of two CSC to
get the merged cscColPtr, and then moves nonzero elements
in each column of cscRowIdx and cscVal to the column of
the merged CSC with an interleaved manner. For example,
in step 3, we use all four threads to merge two CSC, de-
noted as (t0, t1) and (t2, t3). The algorithm first gets the
merged cscColPtr “0,1,4,7,11,13,15” by adding “0,1,3,5,8,8,8”
and“0,0,1,2,3,5,7”correspondingly. The second and third el-
ements “1,4” in the merged cscColPtr means there are three
elements at the column 1. Two of them come from the CSC
(t0, t1) because the corresponding elements in cscColPtr of
CSC (t0, t1) are “1,3”, while one element comes from the
CSC (t2, t3) because of “0,1” in the second and third posi-
tions of cscColPtr. Thus, the algorithm copies corresponding
nonzero elements a,d from (t0, t1) and k from (t2, t3) as well
as their row indices. In this figure, we use two colors to tag
data from two CSC; and it shows the interleaved data access
pattern. Furthermore, because the algorithm can move suc-
cessive data, e.g., a,d, to contiguous positions of the merged
CSC, such sequential read and write pattern can increase

30th International Conference on Supercomputing (ICS), Istanbul, Turkey, June 2016

the data locality.
In our implementation, several optimizations have been

applied on. Multiple successive columns may be checked to
enable the block data copy. For example, after “5,8,8,8” in
cscColPtr of the CSC (t0, t1) is checked, we move all nonzero
elements pointed by “2,3,5,7” in the CSC (t2, t3) instead of
checking them column by column. Other optimizations, in-
cluding dynamic binding of thread to task, will be discussed
in Section 5.3.

csrVal

csrRowPtr

csrColIdx

t0 t1 t2 t3

0 2 6 10 15

1 3 0 1 2 3 423 5 3 421

a b c d e h igf j m nlk

5

p
①

②

csr2csc_sort

③

0 1 3 3 4 44

1 0 1 0

c a d b

0 0 0 2 4 44

1 2 1 2

e g f h

0 0 1 2 2 43

3 3 2 2

k l i j

0 0 0 0 1 32

3 3 3

m n p

0 1 3 5 8 88

1 0 1 1

c a d e

2 0 1 2

g b f h

0 0 1 2 3 75

3 3 3 2

k l m i

3 2 3

n j p

cscVal

cscColPtr

cscRowIdx

t3

t0

t1

t2

t0 t1 t2 t3merge_pcsc_mthread

merge_pcsc_mthread t0 t1 t2 t3

cscVal

cscColPtr

cscRowIdx

1 4 7 11 13 150

c a d k e b flg h n jim p

1 0 1 3 1 0 132 3 223 32

Figure 4: MergeTrans

Algorithm 4 illustrates the details of MergeTrans. The
algorithm needs to construct auxiliary buffers to hold inter-
mediate CSC. The total memory usage is 2 ∗ (nblocks ∗ (n+
1)+nnz) for cscColPtrA, cscRowIdxA, and cscValA, where ‘A’
means Auxiliary, and ‘2’ is for the double buffering mech-
anism because the algorithm is not the in-place transposi-
tion [43, 13]. Compared to other algorithms, MergeTrans has
better memory access patterns both in the transposition and
merge stage.

5. PARALLEL IMPLEMENTATION DETAILS

5.1 Parallel Prefix Sum
Prefix sum is an important building blocks used by mul-

tiple transposition methods, e.g., serial, atomic-based, and
ScanTrans. However, due to the data dependency in suc-
cessive elements, as shown in Line 7 of Algorithm 1, the
compiler directives cannot optimize such a loop efficiently.
As a result, we implement a parallel scan by following the
scan-scan-add strategy [45] and vectorizing it with ISA in-
trinsics.

Manually programming with ISA intrinsics is non-trivial,
and the code may not be portable across ISAs. For exam-
ple, implementing the same functionality on Intel Haswell
and Intel Xeon Phi requires 256-bit and 512-bit SIMD in-
trinsics, respectively. Thus, we implement a framework to
automatically generate the vector codes for the prefix sum
function on different ISAs. The basic idea is similar to the
previous research [36, 28, 29]. We implement a template
function for the prefix sum, and define the data reordering

Algorithm 4: MergeTrans: Bottom-up Transposition and Merge

Function MergeTrans(m, n, nnz, csrRowPtr, csrColIdx, csrVal,
cscColPtr, cscRowIdx, cscVal)

// partition nnz evenly to blocks
1 // allocate cscRowIdxA, cscV alA with size 2*nnz
2 // allocate cscColPtrA with size 2*nblocks*(n+1)
3 // use serial/sort transposing blocks in parallel
4 while nblock!=1 do
5 #pragma omp parallel
6 if nblocks > 2 ∗ nthread then
7 merge mcsc sthread(...);
8 else
9 merge pcsc mthread(...);

10 return;

// merge multi csc by single thread
11 Function merge_mcsc_sthread(nblocks, n, colPtrIn, rowIdxIn, valIn,

colPtrOut, rowIdxOut, valOut)
12 for i←0; i < n + 1; i++ do
13 for j ←0; j <nblocks; j++ do
14 colPtrOut[i]+ = colPtrIn[i + (n + 1) ∗ j];

15 for i←0; i < n + 1; i++ do
16 // sin/sout are start positions for input/output
17 // cin/cout are current positions for input/output
18 // set sin, sout, cin, cout to 0
19 sout = colPtrOut[i];
20 for j ←0; j <nblocks; j++ do
21 sin = colPtrIn[i + (n + 1) ∗ j];
22 cin+ = colPtrIn[j ∗ n];
23 for k ←0; k < colPtrIn[i + 1 + (n + 1) ∗ j]− sin; k++

do
24 rowIdxOut[sout+cout+k] = rowIdxIn[sin+cin+k];
25 valOut[sout + cout + k] = valIn[sin + cin + k];

26 cout+ = colPtrIn[i + 1 + (n + 1) ∗ j]− sin;

27 return;

28 // merge a pair of csc by multi threads
29 // partition columns evenly on threads
30 // each thread works on begin to end columns
31 Function merge_pcsc_mthread(begin, end, colPtrA, rowIdxA, valA,

colPtrB, rowIdxB, valB, colPtrC, rowIdxC, valC)
32 for i←begin; i <= end; i++ do
33 colPtrC[i] = colPtrA[i] + colPtrB[i];
34 for i←begin; i < end; i++ do
35 sa = colP trA[i]; la = colP trA[i + 1]− sa;
36 // similarly get sb, lb, sc, lc
37 for j ←0; j < la; j++ do
38 rowIdxC[sc + j] = rowIdxA[sa + j];
39 valC[sc + j] = valA[sa + j];

40 sc+ = la;
41 for k ←0; k < lb; k++ do
42 rowIdxC[sc + k] = rowIdxB[sb + k];
43 valC[sc + k] = valB[sb + k];

44 return;

and computation patterns as building blocks of the tem-
plate. The framework takes the data patterns as the input,
searches corresponding ISA intrinsics, e.g., load, store, add,
permutation, shuffle, etc., and selects intrinsics that can im-
plement desired patterns to construct the building blocks. In
current Intel architectures, a vector register consists multi-
ple lanes, each of which has multiple elements, e.g., a 256-bit
wide register of Intel Haswell has two lanes and each lane has
four 32-bit elements. We use the intra-lane and inter-lane
intrinsics to implement the desired pattern.

Figure 5 shows the data reordering and computation pat-
terns of the prefix sum on vector registers. On the vector
registers whose width is w, the in-register prefix sum needs
logw steps and each step i consists of four stages: (1) intra-
lane shuffle that rotates 2i positions to left in each lane, (2)
inter-lane permute that shifts lanes to left, (3) blend two
vectors that will mask 2i elements of the first vector, and
(4) add two vectors. When w is 8, there are 3 steps to imple-
ment the in-register prefix sum. For the step 0, after loading
8 elements into the register v0, the stage 1 will rotate 20 po-

30th International Conference on Supercomputing (ICS), Istanbul, Turkey, June 2016

a6 a5 a4 a3 a2 a0a1a7

a5 a4 a7 a2 a1 a3a0a6

a1 a0 a3 0 0 00a2

a5 a4 a3 a2 a1 0a0a6

v0

v1

v2

v3

a1+a0 a0a3+a2a2+a1a5+a4a4+a3a7+a6a6+a5

a3+a2 a2+a1a1+a0 a0a7+a6a6+a5a5+a4a4+a3

a3+a2 a2+a1a1+a0 a0 0 00 0

0 0a1+a0 a0a5+a4a4+a3a3+a2 a2+a1

v0

v1

v2

v3

v1: intra-lane shuffle v0① v2: inter-lane permute v1② v3: blend v1, v2③ next v0: add v0, v3④

a7+…+a4 a6+…+a3 a5+…+a2 a4+…+a1 a3+…+a0 a2+…+a0 a1+a0 a0v0

0 0 0 0a3+…+a0 a2+…+a0 a1+a0 a0v2

a7+…+a0 a6+…+a0 a5+…+a0 a4+…+a0 a3+…+a0 a2+…+a0 a1+a0 a0v0

v1 = v0

v3 = v2

step i = 0 step i = 1

step i = 2

Figure 5: Prefix Sum: in-register data permutation and compu-
tation patterns (on registers with 8 elements)

sition to left and set the output into the register v1. The
stage 2 will shift lanes in v1 to left and set the output into
the register v2. The stage 3 will blend v1 and v2 by masking
20 position in each lane of v1. In this case, the stage 3 will
select a6, a5, and a4 from v1 and a3 from v2. The output is
set into the register v3. The method will add v0 and v3 to
v0 in the stage 4, and enter the stage 1 of next step. Note
that, in the step 2, we can skip the stage 1 and 3, because
the stage 1 in the step 2 that rotates 22 positions to left in
each lane will make v1 to be equal to v0, and the stage 3
in the step 2 that masks 22 positions in each lane of v2 will
make v3 to be equal to v2. In such cases, for this step, we
directly comment out the corresponding lines of the gener-
ated code and change the names of register variables in the
following lines. The patterns are same on vector registers
whose width is 16 (Intel Xeon Phi), but the number of steps
is changed from 3 to 4. Once we get the patterns, we set
the patterns into the framework to search ISA intrinsics and
generate the vector codes on the targeted ISA.

5.2 Parallel Sort
We implement the sorting-based transposition algorithm

following a sort-merge manner: (1) halve data into two seg-
ments until the segment meets the predefined threshold, (2)
sort each segment, and (3) merge segments with a multi-
way merge manner until one segment is left. We implement
each stage in parallel with multiple threads. When sorting
a segment in one thread, we load data into vector registers
and use the bitonic sort to sort data, because the vectorized
bitonic sort has shown good performance and scalability on
multi- and many-core processors in previous research [41,
30, 28]. In the merge stage, when the number of segments is
larger than the number of threads, we use multiple threads
to merge one pair of sorted segments. In this case, we use
the mergepath method [24] to partition two segments, mak-
ing each thread to merge same sized data and the merged
data in each thread to be ordered among threads.

5.3 Dynamic Scheduling
In multiple transposition methods, e.g., the sorting-based

method and MergeTrans method, we need to schedule threads
for data chunks. The dynamic schedule directives of OpenMP
are used to optimize the for loops in the atomic-based method
and ScanTrans method, but they are not efficient to schedule
threads for blocked tasks, e.g., the sort and merge tasks in
the sorting-based method, and the transposition tasks and
merge tasks in MergeTrans. For such cases, we use OpenMP

tasking mechanism introduced in OpenMP 3.0 to dynami-
cally schedule threads to execute tasks. The tasking of the
OpenMP runtime system has supported the dynamic task
binding, even for the recursive algorithms. Better load bal-
ance is expected by using this mechanism.

Because the column indices in each row of CSR are al-
ready in order, we only need to merge rows to get the sorted
column index array. However, we did not observe better
performance of the merging-based method in our evalua-
tion. The major reason is because the numbers of nonzero
elements in different rows are usually not equal, this method
has the imbalance problem even with the OpenMP tasking.
As a result, we only show the performance numbers of the
sorting-based method in Section 6.

6. EXPERIMENTS

6.1 Experimental Setup
In this paper, we evaluate five parallel transposition meth-

ods: (1) the sparse BLAS method mkl_sparse_convert_csr

with the inspector-executor pattern from the latest Intel
MKL 11.3, (2) the atomic-based method from the graph
analysis package [27], (3) the sorting-based method opti-
mized by using the parallel sort with SIMD [28], (4) the
proposed ScanTrans method described in Section 4.2, and (5)
the proposed MergeTrans method described in Section 4.3.
We benchmark the above five methods on Intel Haswell
(HSW) and Knights Corner (KNC), respectively. The HSW
node is a dual-socket Intel Xeon E5-2695 v3 multi-core plat-
form (2×14-core Haswell, 2.3 GHz, 128 GB ECC DDR4,
2×68.3 GB/s), and the KNC node has an Intel Xeon Phi
5110P many-core processor (60 cores, 1.05 GHz, 8 GB GDDR5,
320 GB/s). All methods are compiled using Intel compiler
icpc 16.1. On HSW, we use the compiler option -xCORE-
AVX2 to enable AVX2. On KNC, we run the experiments
using the native mode and compile the codes with -mmic.
All codes in our evaluations are optimized in the level of
-O3.

To better cover various real-world scenarios, we transpose
a given matrix stored in three data types: symbolic (i.e.,
no value thus only sparsity structure is transposed), 32-bit
single precision and 64-bit double precision. But note that
the Intel MKL parallel transposition routine does not sup-
port symbolic transposition thus this group of numbers are
leaved blank.

6.2 Benchmark Suite
The University of Florida Sparse Matrix Collection [16]

now includes near 3000 matrices from a variety of research
fields, but most of them are symmetric. To benchmark our
work described in this paper, we choose 21 unsymmetric
matrices from a broad of applications such as computa-
tional fluid dynamics, communication network, economics,
and DNA electrophoresis. We also add the matrix Dense
to the suite to better understand performance behavior of
transposition algorithms, even though it is not download-
able from the Collection and is actually symmetric. Table 1
shows the 22 matrices.

6.3 Transposition Performance
Figure 6 shows transposition performance, i.e., archived

bandwidth in GB/s, of the above five methods on the multi-
core CPU platform running for the 22 matrices in the three

30th International Conference on Supercomputing (ICS), Istanbul, Turkey, June 2016

Table 1: The list of selected matrices

Name #Rows/Cols #Nonzeros Kind
ASIC 680k 682,862 3,871,773 Circuit simulation

cage14 1,505,785 27,130,349
Weighted directed
graph

circuit5M 5,558,326 59,524,291 Circuit simulation

Dense 2,000 4,000,000
Dense matrix in
CSR format

Economics 206,500 1,273,389 Economic

eu-2005 862,664 19,235,140 Directed graph

flickr 820,878 9,837,214 Directed graph

FullChip 2,987,012 26,621,990 Circuit simulation

language 399,130 1,216,334
Weighted directed
graph

memchip 2,707,524 14,810,202 Circuit simulation

para-4 153,226 5,326,228 Semiconductor device

rajat21 411,676 1,893,370 Circuit simulation

rajat29 643,994 4,866,270 Circuit simulation

sme3Dc 42,930 3,148,656 Structural problem

Stanford Berkeley 683,446 7,583,376 Directed graph

stomach 213,360 3,021,648 2D/3D problem

torso1 116,158 8,516,500 2D/3D problem

transient 178,866 961,790 Circuit simulation

venkat01 62,424 1,717,792
Computational
fluid dynamics

webbase-1M 1,000,005 3,105,536
Weighted directed
graph

web-Google 916,428 5,105,039 Directed graph

wiki-Talk 2,394,385 5,021,410 Directed graph

data types. Figure 7 plots the same groups of performance
numbers on the Intel Xeon Phi device.

We can see that the performance of atomic-based method
highly depends on matrix sparsity structure. It can be very
fast if the input matrix is relatively regular and has less write
conflicts on the same memory addresses. Taking the matrix
memchip as an example, the atomic-based method achieves
the best performance and obtained 17.2% and 33.9% per-
formance improvement over the ScanTrans and the Merge-
Trans methods (which are the second fastest) on CPU and
Xeon Phi, respectively. But for irregular inputs (e.g., matrix
FullChip in a power-law shape), the atomic-based method
gives much lower performance (up to 16.6x as slow as the
MergeTrans method on the Xeon Phi).

In contrast, the sorting-based method gives relatively sta-
ble but modest efficiency. Because of its O(nnz lognnz)
complexity, the method achieves stable bandwidth through-
put. For example, on the CPU platform, single precision
transposition using the method almost always obtains 1 GB/s
bandwidth utilization, and double precision version almost
always stands on 1.5 GB/s. Moreover, we can see that al-
though this approach never achieves the best performance in
the benchmark suite, it is on average faster than the atomic-
based method.

On the CPU platform, the ScanTrans method is the clear
winner. It outperforms all the other methods on all ma-
trices except memchip. Compared to multi-threaded In-
tel MKL transposition, the ScanTrans method can achieve
up to 5.6-fold and 6.2-fold speedup on circuit5M and wiki-
Talk for single precision and double precision, respectively.
Compared to the atomic-based method, the better perfor-
mance of ScanTrans comes from two aspects: (1) ScanTrans
does not need the atomic operations; (2) ScanTrans does
not require additional segmented sort. Compared to the
sorting-based method, ScanTrans has the time complexity

O((nnz/p) + (n/p) + n), where p is the number of paral-
lel threads; and the sorting-based method with p threads
has the time complexity O(nnz/p lognnz/p) for sort and
O(nnz/p log p) for merge, which is larger than that of ScanT-
rans when nnz is larger than n.

Because the cache miss penalty on Intel Xeon Phi is much
higher than that on multi-core CPU [39], the ScanTrans
method has obvious performance degradation. Under such
a circumstance, the MergeTrans method that mitigating the
cache miss has become the overall winner. Compared to the
counterpart from Intel MKL, the MergeTrans can achieve up
to 11.7-fold and 9.9-fold speedups for the single precision and
double precision both on wiki-Talk. Compared to its perfor-
mance on Intel Xeon Phi, the MergeTrans performs relatively
poor on Intel Haswell, as shown in Figure 6. This is because
the MergeTrans uses multiple iterations to move nonzero el-
ements from two input CSC to the merged one, and more
memory accesses are needed compared to the ScanTrans.
On Intel Haswell, the benefit of eliminating irregular mem-
ory access patterns and avoiding accompanying cache miss
penalties in the MergeTrans is offset by extra memory access
operations. This can also explain the observation on Intel
Xeon Phi: when the matrices become dense, the ScanTrans
will retake the leadership from the MergeTrans, as shown in
sme3Dc, torso1, and dense of Figure 7.

Note that in our experiments, we tuned all five methods
with different values of parameters, e.g., the thread affinity
and the number of threads, and showed their best perfor-
mance numbers in the figures. On Xeon Phi, the best per-
formance could be achieved for all methods when we set the
thread affinity type to balanced and the number of threads
to 60. On Haswell, the thread affinity type compact could
provide better performance than scatter, while the numbers
of threads achieving the peak performance were diverse. We
observed that the ScanTrans method could achieve the peak
performance when using 16 - 22 cores, while the Intel MKL
transposition stopped scaling after 8 - 14 cores. For exam-
ple, for torso1 with single precision, the Intel MKL method
scaled up to 14 cores, and the ScanTrans method could ob-
tain 2.5-fold bandwidth when using 22 cores. Although the
scalability of parallel transposition for sparse data structures
is improved by the ScanTrans method, it is still an issue on
multi-core processors and further optimizations are needed.

6.4 Transposition in Higher Level Routines
As sparse matrix transposition is normally used as a build-

ing block for higher level problems, we construct a rou-
tine suite composed of four representative graph and lin-
ear algebra algorithms requiring transposition operation: (1)
sparse matrix-transpose-matrix addition, i.e., C = AT + A,
(2) sparse matrix-transpose-vector multiplication, i.e., y =
ATx, (3) sparse matrix-transpose-matrix multiplication, i.e.,
C = ATA, (4) strongly connected components problem, i.e.,
SCC(A). We briefly introduce them below.

(1) The operation AT +A adds two sparse matrices A and
its transpose AT . Applications of this fundamental opera-
tion include symmetrizing unsymmetric sparse matrices for
graph partitioning [6] and sparsity preserving pre-ordering
(such as the approximate minimum degree (AMD) order-
ing [2]) in prior to numerical factorizations.

(2) The operation y = ATx multiples a matrix AT and a
dense vector x. It is commonly used in iterative methods for
sparse solvers such as BiCG and QMR. Because of this, we

30th International Conference on Supercomputing (ICS), Istanbul, Turkey, June 2016

ASIC 680k cage14 circuit5M

Dense Economics eu-2005 flickr

FullChip language memchip para-4

rajat21 rajat29 sme3Dc Stanford Berkeley

stomach torso1 transient venkat01

webbase-1M web-Google wiki-Talk Harmonic mean

Figure 6: Bandwidth utilization of transposing the 22 matrices using five parallel algorithms on the dual-socket Intel Haswell Xeon
platform.

choose a scenario requires 50 iterations and report 50 SpMV
cost.

(3) The operation ATA multiplies a sparse matrix’s trans-
pose AT and itself. Both ATA arises in sparse least-squares
problems [7] (e.g., the above mentioned SLAM method [17]
in robotics). Moreover, finite element assembly problem can
also be implemented by calculating ATA [26].

(4) The operation SCC(A) detects strongly connected com-
ponents in a given directed graph A. An SCC is a maximal
subgraph where there exists a path between any two ver-
tices in the subgraph. The classic sequential SCC method
designed by Tarjan [44] only works on A. But another classic
serial algorithm from Kosaraju [1] and several efficient par-
allel SCC methods [27, 37] require connection information
from both A and AT .

Figures 8 and 9 demonstrate performance improvement
while using the ScanTrans and MergeTrans methods pro-
posed in this paper. For brevity, we only select four ma-
trices (Economics, stomach,venkat01 and web-Google) from
our benchmark suite of 22 matrices. We compare the par-
allel transposition method in the MKL library with ScanT-
rans and MergeTrans methods on the CPU and Xeon Phi
platforms, respectively. In Figure 2, we already show that
the explicit methods (i.e., transpose in advance and conduct
SpMV or SpGEMM computations) are much faster than the
implicit methods. Therefore we only evaluate the explicit
methods from the newest Intel MKL library.

We can see that all scenarios achieve better performance
when using our methods. Taking matrix venkat01 as an
example, the SCC operation obtains 202% performance im-
provement by our ScanTrans method on the CPU platform.
On average, the four matrices achieve 26.8%, 30.7%, 26.2%
and 62.7% improvement on the CPU device. On the Xeon
Phi, the overall performance improvement is also noticeable.

6.5 Discussion
Symmetric Matrix: Except for the matrix Dense, all

matrices used in our evaluations are unsymmetric. We did
not show the performance numbers for symmetric matri-
ces in the figures because sparse matrix algorithms usually
use different solvers to handle symmetric and unsymmet-
ric matrices, and those for symmetric matrices may process
the transposition implicitly [21, 46]. Actually, in our ob-
servation, the proposed ScanTrans and MergeTrans can also
provide competitive benefits for symmetric cases. For ex-
ample, for the symmetric matrices delaunay n21, hollywood-
2009, and gupta3 from [16], ScanTrans can achieve 1.4-fold,
3.4-fold, and 4.0-fold speedups over the multi-threaded Intel
MKL version on Haswell, respectively; and MergeTrans can
deliver 5.4-fold, 3.6-fold, and 5.0-fold speedups on Xeon Phi.

Auto-Selection: Although ScanTrans and MergeTrans il-
lustrate best performance on Intel Haswell and Xeon Phi,
respectively, it is ideal to provide an adaptive method that
can automatically select a proper transposition method for

30th International Conference on Supercomputing (ICS), Istanbul, Turkey, June 2016

ASIC 680k cage14 circuit5M

Dense Economics eu-2005 flickr

FullChip language memchip para-4

rajat21 rajat29 sme3Dc Stanford Berkeley

stomach torso1 transient venkat01

webbase-1M web-Google wiki-Talk Harmonic mean

Figure 7: Bandwidth utilization of transposing the 22 matrices using five parallel algorithms on the Intel Xeon Phi processor.

more sparse matrices and hardware platforms. It is non-
trivial because the performance depends on combinations of
many configurable factors, including the characteristics of
the input sparse matrix A, e.g., m, n, nnz, sparsity, devia-
tion, etc., the targeted platforms, e.g., architecture of pro-
cessors, cache and memory hierarchy, etc., the parameters
in the transposition methods, e.g., predefined segment size
in the sorting-based method, configurable number of blocks
in MergeTrans, etc. We have observed many graph applica-
tions have put the sparse matrix transposition kernel inside
for loops before calling the SpMV and SpMM T because
the A and AT are updated within each iteration. For these
applications, it is possible to switch between different trans-
position methods by using performance data and statistical
data from earlier calls to the transposition function. We
leave the research for the adaptive transposition selection
mechanism in the future.

7. RELATED WORK
Parallel transposition of dense matrix [25, 13, 43]

has received much attention because of its widespread use in
leveraging the SIMD working pattern and accelerating dense
numerical linear algebra. Dotsenko et al. [18] pointed out
that explicitly transposing dense data can significantly in-
crease the overall performance of parallel FFT. In this paper,
we show that transposing sparse data structures requires
more complex algorithm design and can improve many higher-

level routines as well.
A serial method for transposing sparse matrix has

been designed by Gustavson [26]. The approach uses sta-
ble sorting as the main primitive. Even though its parallel
implementation scales well on modern multi-core and many-
core machines when fast parallel sorting algorithm [28] is
used. It does not give the best observed performance in
our experiments because of inherently more memory trans-
actions.

Because the historically high cost of transposition, several
transposition-avoid algorithms and data structures
have been implemented. Freund developed a method [21]
to avoid SpMV T in quasi-minimal residual (QMR) algo-
rithm. Buluç et al. [8, 12] proposed a unified sparse matrix
format called compressed sparse blocks (CSB) to accelerate
both SpMV and SpMV T operation in one single framework.
However, it may be hard to find general approaches to re-
design algorithms and data structures for avoiding transpo-
sition in a range of sparse matrix and graph applications.
In contrast, the work described in this paper transposes the
widely used CSR/CSC format thus can be easily adopted by
a majority of existing libraries.

Transposition can be implemented by using some parallel
primitives. Ashkiani et al. [5] recently designed a multisplit
method which in theory can be used for sparse matrix trans-
position. In their experiments, the new method behaves very
well when the number of buckets is 64 or smaller. When the
number of buckets grows to 65536, the new method is actu-

30th International Conference on Supercomputing (ICS), Istanbul, Turkey, June 2016

AT + A AT x (#iter=50) ATA SCC(A)

Figure 8: Execution time of the four higher level routines using the two transposition algorithms on the dual-socket Intel Haswell Xeon
platform.

AT + A AT x (#iter=50) ATA SCC(A)

Figure 9: Execution time of the four higher level routines using the two transposition algorithms on the Intel Xeon Phi processor.

ally slower than sorting-based method. However, the num-
ber of buckets in sparse matrix transposition must be the
number of rows/columns, which is up to multiple millions in
our test suite. In this scenario, performance of using multi-
split method decreases very fast and can be further slower
than sorting-based method. In contrast, we show that the
ScanTrans and MergeTrans methods proposed in this paper
can be much faster than the sorting-based method. More-
over, we believe that our method can be potentially general-
ized to further accelerate the multisplit problem with a large
amount of buckets.

8. CONCLUSIONS
In this paper, we proposed two new methods, ScanTrans

and MergeTrans, for parallel sparse matrix and graph trans-
position, and implemented and optimized them for mod-
ern x86-based multi- and many-core processors. By us-
ing 22 sparse matrices from diverse application domains,
we evaluated the two methods with the existing parallel
transposition methods, including the atomic-based method,
the sorting-based method, and the routine from the Intel
MKL library, on Intel Haswell multi-core CPU and Xeon
Phi many-core processor. Our experimental results showed
that ScanTrans has the best performance on Intel Haswell
CPUs, while MergeTrans has the best performance on Intel
Xeon Phi. Compared to the counterpart from the Intel MKL
library, the ScanTrans method achieved up to 5.6-fold and
6.2-fold speedups on Intel Haswell for single and double pre-
cision datatype, respectively; while on Intel Xeon Phi, the
MergeTrans method achieved up to 11.7-fold and 9.9-fold
speedups.

Because of the observed performance improvement on higher
level routines using the new transposition methods, we be-
lieve more computation kernels for sparse matrix computa-
tions or graph processing can obtain benefits from this work.

9. ACKNOWLEDGEMENT
This research was supported in part by the NSF BIG-

DATA program via IIS-1247693, the NSF XPS program via
CCF-1337131, the Department of Computer Science at Vir-
ginia Tech, and the Elizabeth and James Turner Fellowship.
This research was also supported in part by the EU’s Horizon
2020 program under grant number 671633. Finally, we ac-
knowledge Advanced Research Computing at Virginia Tech
for access to high-performance computational resources and
thank Kaiyong Zhao for helpful discussions about the simul-
taneous localization and mapping (SLAM) problem.

10. REFERENCES
[1] A. V. Aho, J. E. Hopcroft, and J. Ullman. Data

Structures and Algorithms. Addison-Wesley Longman
Publishing Co., Inc., 1983.

[2] P. R. Amestoy, T. A. Davis, and I. S. Duff. An
Approximate Minimum Degree Ordering Algorithm.
SIAM Journal on Matrix Analysis and Applications,
17(4):886–905, 1996.

[3] A. Ashari, N. Sedaghati, J. Eisenlohr,
S. Parthasarathy, and P. Sadayappan. Fast Sparse
Matrix-Vector Multiplication on GPUs for Graph
Applications. In Proceedings of the International
Conference for High Performance Computing,
Networking, Storage and Analysis, SC ’14, pages
781–792. IEEE, 2014.

[4] A. Ashari, N. Sedaghati, J. Eisenlohr, and
P. Sadayappan. An Efficient Two-Dimensional
Blocking Strategy for Sparse Matrix-vector
Multiplication on GPUs. In Proceedings of the 28th
ACM International Conference on Supercomputing,
ICS ’14, pages 273–282. ACM, 2014.

[5] S. Ashkiani, A. Davidson, U. Meyer, and J. D. Owens.
GPU Multisplit. In Proceedings of the 21st ACM

30th International Conference on Supercomputing (ICS), Istanbul, Turkey, June 2016

SIGPLAN Symposium on Principles and Practice of
Parallel Programming, PPoPP ’16. ACM, 2016.

[6] D. A. Bader, H. Meyerhenke, P. Sanders, and
D. Wagner. Graph Partitioning and Graph Clustering.
American Mathematical Soc., 2013.

[7] Å. Björck. Numerical Methods for Least Squares
Problems. Society for Industrial and Applied
Mathematics, 1996.

[8] A. Buluç, J. T. Fineman, M. Frigo, J. R. Gilbert, and
C. E. Leiserson. Parallel Sparse Matrix-Vector and
Matrix-Transpose-Vector Multiplication Using
Compressed Sparse Blocks. In Proceedings of the
Twenty-first Annual Symposium on Parallelism in
Algorithms and Architectures, SPAA ’09, pages
233–244. ACM, 2009.

[9] A. Buluç and J. R. Gilbert. Challenges and Advances
in Parallel Sparse Matrix-Matrix Multiplication. In
Proceedings of the 37th International Conference on
Parallel Processing, ICPP ’08, pages 503–510. IEEE,
2008.

[10] A. Buluç and J. R. Gilbert. On the Representation
and Multiplication of Hypersparse Matrices. In
Proceedings of the 2008 IEEE International
Symposium on Parallel and Distributed Processing,
IPDPS ’08, pages 1–11. IEEE, 2008.

[11] A. Buluç and J. R. Gilbert. The Combinatorial BLAS:
Design, Implementation, and Applications.
International Journal of High Performance Computing
Applications, 25(4):496–509, 2011.

[12] A. Buluç, S. Williams, L. Oliker, and J. Demmel.
Reduced-Bandwidth Multithreaded Algorithms for
Sparse Matrix-Vector Multiplication. In Proceedings of
the 2011 IEEE International Parallel and Distributed
Processing Symposium, IPDPS ’11, pages 721–733.
IEEE, 2011.

[13] B. Catanzaro, A. Keller, and M. Garland. A
Decomposition for In-place Matrix Transposition. In
Proceedings of the 19th ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming,
PPoPP ’14, pages 193–206. ACM, 2014.

[14] D. Church, V. Schneider, K. Steinberg, M. Schatz,
A. Quinlan, C.-S. Chin, P. Kitts, B. Aken, G. Marth,
M. Hoffman, J. Herrero, M. L. Mendoza, R. Durbin,
and P. Flicek. Extending Reference Assembly Models.
Genome Biology, 16(1):13, 2015.

[15] T. A. Davis. Direct Methods for Sparse Linear
Systems. Society for Industrial and Applied
Mathematics, 2006.

[16] T. A. Davis and Y. Hu. The University of Florida
Sparse Matrix Collection. ACM Trans. Math. Softw.,
38(1):1:1–1:25, dec 2011.

[17] F. Dellaert and M. Kaess. Square Root SAM:
Simultaneous Localization and Mapping via Square
Root Information Smoothing. The International
Journal of Robotics Research, 25(12):1181–1203, 2006.

[18] Y. Dotsenko, S. S. Baghsorkhi, B. Lloyd, and N. K.
Govindaraju. Auto-tuning of Fast Fourier Transform
on Graphics Processors. In Proceedings of the 16th
ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming, PPoPP ’11, pages
257–266. ACM, 2011.

[19] I. S. Duff, A. M. Erisman, and J. K. Reid. Direct

Methods for Sparse Matrices. Oxford University Press,
Inc., 1986.

[20] R. Fletcher. Conjugate Gradient Methods for
Indefinite Systems. In Numerical Analysis, Lecture
Notes in Mathematics, pages 73–89. Springer Berlin
Heidelberg, 1976.

[21] R. W. Freund. A Transpose-Free Quasi-Minimal
Residual Algorithm for Non-Hermitian Linear
Systems. SIAM Journal on Scientific Computing,
14(2):470–482, 1993.

[22] R. W. Freund and N. M. Nachtigal. QMR: a
Quasi-Minimal Residual Method for Non-Hermitian
Linear Systems. Numerische Mathematik,
60(1):315–339, 1991.

[23] E. Georganas, A. Buluç, J. Chapman, S. Hofmeyr,
C. Aluru, R. Egan, L. Oliker, D. Rokhsar, and
K. Yelick. HipMer: An Extreme-scale De Novo
Genome Assembler. In Proceedings of the
International Conference for High Performance
Computing, Networking, Storage and Analysis, SC ’15,
pages 14:1–14:11. IEEE, 2015.

[24] O. Green, R. McColl, and D. A. Bader. GPU Merge
Path - A GPU Merging Algorithm. In Proceedings of
the 26th ACM International Conference on
Supercomputing, ICS ’12, pages 331–340. ACM, 2012.

[25] F. Gustavson, L. Karlsson, and B. K̊agström. Parallel
and Cache-Efficient In-Place Matrix Storage Format
Conversion. ACM Trans. Math. Softw.,
38(3):17:1–17:32, 2012.

[26] F. G. Gustavson. Two Fast Algorithms for Sparse
Matrices: Multiplication and Permuted Transposition.
ACM Trans. Math. Softw., 4(3):250–269, 1978.

[27] S. Hong, N. C. Rodia, and K. Olukotun. On Fast
Parallel Detection of Strongly Connected Components
(SCC) in Small-world Graphs. In Proceedings of the
International Conference on High Performance
Computing, Networking, Storage and Analysis, SC ’13,
pages 92:1–92:11. IEEE, 2013.

[28] K. Hou, H. Wang, and W.-c. Feng. ASPaS: A
Framework for Automatic SIMDization of Parallel
Sorting on x86-based Many-core Processors. In
Proceedings of the 29th ACM International Conference
on Supercomputing, ICS ’15, pages 383–392. ACM,
2015.

[29] K. Hou, H. Wang, and W.-c. Feng. AAlign: A SIMD
Framework for Pairwise Sequence Alignment on
x86-based Multi- and Many-core Processors. In
Proceedings of the 2016 IEEE International Parallel
and Distributed Processing Symposium, IPDPS ’16.
IEEE, 2016.

[30] H. Inoue and K. Taura. SIMD- and Cache-Friendly
Algorithm for Sorting an Array of Structures.
Proceedings of the VLDB Endowment,
8(11):1274–1285, 2015.

[31] H. Kabir, J. D. Booth, G. Aupy, A. Benoit, Y. Robert,
and P. Raghavan. STS-k: A Multilevel Sparse
Triangular Solution Scheme for NUMA Multicores. In
Proceedings of the International Conference for High
Performance Computing, Networking, Storage and
Analysis, SC ’15, pages 55:1–55:11. IEEE, 2015.

[32] J. J. Leonard, H. F. Durrant-Whyte, and I. J. Cox.
Dynamic Map Building for an Autonomous Mobile

30th International Conference on Supercomputing (ICS), Istanbul, Turkey, June 2016

Robot. Int. J. Rob. Res., 11(4):286–298, 1992.

[33] W. Liu and B. Vinter. A Framework for General
Sparse Matrix-Matrix Multiplication on GPUs and
Heterogeneous Processors. Journal of Parallel and
Distributed Computing, 85:47–61, 2015.

[34] W. Liu and B. Vinter. CSR5: An Efficient Storage
Format for Cross-Platform Sparse Matrix-Vector
Multiplication. In Proceedings of the 29th ACM
International Conference on Supercomputing, ICS ’15,
pages 339–350. ACM, 2015.

[35] W. Liu and B. Vinter. Speculative Segmented Sum for
Sparse Matrix-Vector Multiplication on Heterogeneous
Processors. Parallel Computing, 49:179–193, 2015.

[36] D. S. McFarlin, V. Arbatov, F. Franchetti, and
M. Püschel. Automatic SIMD Vectorization of Fast
Fourier Transforms for the Larrabee and AVX
Instruction Sets. In Proceedings of the 25th ACM
International Conference on Supercomputing, ICS ’11,
pages 265–274. ACM, 2011.

[37] W. McLendon III, B. Hendrickson, S. J. Plimpton,
and L. Rauchwerger. Finding Strongly Connected
Components in Distributed Graphs. J. Parallel
Distrib. Comput., 65(8):901–910, 2005.

[38] M. M. A. Patwary, N. R. Satish, N. Sundaram,
J. Park, M. J. Anderson, S. G. Vadlamudi, D. Das,
S. G. Pudov, V. O. Pirogov, and P. Dubey. Parallel
Efficient Sparse Matrix-Matrix Multiplication on
Multicore Platforms. In High Performance Computing,
volume 9137, pages 48–57. Springer, 2015.

[39] S. Ramos and T. Hoefler. Modeling Communication in
Cache-Coherent SMP Systems - A Case-Study with
Xeon Phi. In Proceedings of the 22nd International
Symposium on High-Performance Parallel and
Distributed Computing, HPDC ’13, pages 97–108.
ACM, 2013.

[40] Y. Saad. Iterative Methods for Sparse Linear Systems.
Society for Industrial and Applied Mathematics,
Philadelphia, PA, USA, 2nd edition, 2003.

[41] N. Satish, C. Kim, J. Chhugani, A. D. Nguyen, V. W.
Lee, D. Kim, and P. Dubey. Fast Sort on CPUs and
GPUs: A Case for Bandwidth Oblivious SIMD Sort.
In Proceedings of the 2010 ACM SIGMOD
International Conference on Management of data,
SIGMOD ’10, pages 351–362. ACM, 2010.

[42] N. Sedaghati, T. Mu, L.-N. Pouchet, S. Parthasarathy,
and P. Sadayappan. Automatic Selection of Sparse
Matrix Representation on GPUs. In Proceedings of the
29th ACM International Conference on
Supercomputing, ICS ’15. ACM, 2015.

[43] I.-J. Sung, J. Gómez-Luna, J. M. González-Linares,
N. Guil, and W.-M. W. Hwu. In-place Transposition
of Rectangular Matrices on Accelerators. In
Proceedings of the 19th ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming,
PPoPP ’14, pages 207–218. ACM, 2014.

[44] R. Tarjan. Depth-First Search and Linear Graph
Algorithms. SIAM Journal on Computing,
1(2):146–160, 1972.

[45] S. Yan, G. Long, and Y. Zhang. StreamScan: Fast
Scan Algorithms for GPUs without Global Barrier
Synchronization. In Proceedings of the 18th ACM
SIGPLAN Symposium on Principles and Practice of
Parallel Programming, PPoPP ’13, pages 229–238.
ACM, 2013.

[46] X. Yu, H. Wang, W.-c. Feng, H. Gong, and G. Cao.
cuART: Fine-Grained Algebraic Reconstruction
Technique for Computed Tomography Images on
GPUs. In Proceedings of the 2016 IEEE/ACM
International Symposium on Cluster, Cloud and Grid
Computing, CCGrid ’16. IEEE, 2016.

30th International Conference on Supercomputing (ICS), Istanbul, Turkey, June 2016

