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Introduction

I Heterogeneity is everywhere
I Accelerators are gaining popularity: GPUs, FPGAs, DSPs etc.
I NUMA memory is proliferating
I Even homogeneous systems are heterogeneous due to OS noise!

I Programming models like OpenMP 4.0 and OpenACC are being created to
address heterogeneity, but do not handle multiple devices

I CPU models like OpenMP handle multiple devices, but do not address

hierarchical memory
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Copy Bandwidth Between Components in a Multi-GPU System

From/To MN 0 MN 1 GPU 0 GPU 1 GPU 2 GPU 3
Memory Node (MN) 0 12,407 8,704 3,851 3,855 3,785 3,758
Memory Node (MN) 1 8,963 17,920 3,795 3,771 4,032 4,096
Interleaved 15,639 14,298 3,454 3,238 3,429 3,457
GPU 0 3,460 2,926 97,469 4,890 N/A N/A
GPU 1 3,460 2,922 4,890 97,619 N/A N/A
GPU 2 2,833 3,971 N/A N/A 97,630 4,890
GPU 3 2,820 4,108 N/A N/A 4,890 97,636

Main Question

How can we address hierarchical memory and multiple accelerators with a single, unified extension to OpenMP (or similar models)

Our Solution: Memory Association and Work Partitioning

I Partition a range across threads or devices
I Parallel regions can be partitioned across threads, much like a
workshared loop

I Target for loops can be partitioned, rather than scheduled, to
split a loop across target devices

I Specify the association between input, output, and a partitioned
range by extending the map clause
I Add a mapping type option, to support indirect and
user-defined mappings

I Bind the partitioning to a mapped variable to partition that
variable along with the data

I Nest partitioned parallel or target regions to address
hierarchical memory systems

I Adaptively partition to achieve load-balance across the devices

Manual Partitioning
1 float arr[WORK_SIZE] = {0};

2 #pragma omp parallel shared(arr)

3 {

4 int tid = omp_get_thread_num();

5 int nt = omp_get_num_threads();

6 int iters = WORK_SIZE / nt;

7 int start = tid * iters;

8 int end = start + iters;

9 do_work(start,end,arr);

10 }

Extended Partitioning
1 float arr[WORK_SIZE] = {0};

2 int start = 0;

3 int end = WORK_SIZE;

4 #pragma omp parallel map(tofrom: arr[:,id]) \

5 partition(adaptive: id=start; id<end; id++)

6 {

7 int tid = omp_get_thread_num();

8 int nt = omp_get_num_threads();

9 do_work(start,end,arr);

10 }

Adaptation: Load-balancing for Partitioned Worksharing
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In Words
Minimize the sum of di↵erences between each device’s predicted runtime and the predicted runtime of

other devices, or minimize waiting/blocking time.

Memory Association Types

{
{Place 0

Place 1

CPU 0
CPU 1

GPU 0 GPU 1

CPU 5
CPU 6

GPU 2 GPU 3

2D Array: Segmented Array:

Target array:

Segments array:
12,16,5,15,10,7,8,11,4,1,9,12,6,10,3,9

Indexed Array:

Target array:

Index array:

Example Usage: GEMM

1 float A[i_size][j_size], B[i_size][j_size];

2 float *C = (float*)malloc(sizeof(C[0])*i_size*j_size);

3 int C_stride = j_size, j_start = 0, j_end = j_size;

4 #pragma omp parallel proc_bind(spread) \

5 num_threads(omp_get_num_places()) \

6 partition(adaptive: j_id=j_start; j_id<j_end; ++j_id)\

7 map(to: A[0:i_size][:,j_id], B[0:i_size][0:j_size]) \

8 map(tofrom: C[0:i_size][:,j_id])

9 {

10 #pragma omp target teams distribute parallel for \

11 devices(OMP_TYPE_ALL,*) map(to: A[:][:], B[:,i][:])\

12 partition(adaptive) map(tofrom: C[:,i,C_stride][:])

13 for (int i = 0; i < i_size; ++i) {

14 #pragma omp bind_partition(j_id) // Optional

15 for (int j = j_start; j < j_end; ++j) {

16 float sum = 0.0;

17 for (int k = 0; k < k_size; ++k) {

18 sum += A[k][j] * B[i][k];

19 }

20 C[i * C_stride + j] = sum;

21 }

22 }

23 }

Lines 4-5 Create one thread on each OpenMP “place” and
partition the devices across them

Line 6 Partition the range j start to j end across devices, binding
the device’s range to j id, partitioning the inner loop

Line 7 Map the B matrix in completely, partition the columns of
the A matrix according to j id

Line 8 Map the C matrix in partitioning the columns with range j id
Line 11 Split this target across all devices, map in all of A from the

outer partitioning and partition B by rows
Line 12 Partition the outer loop with the adaptive schedule,

binding the range to i, map C in and out partitioned to
match the i range with the new stride stored in C stride

Line 14 Bind the timing of the j id partitioning to the inner loop

Results: Co-Scheduling Performance
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Conclusions

I Partitioning simplifies a common pattern, while increasing the capabilities of the compiler and runtime
I Memory association decouples data mapping from devices, allowing the runtime to mutate the data
however is most appropriate

I Our prototype achieves up to a 50⇥ speedup over eight core CPU with four GPUs, and we show a nearly
2⇥ speedup for a previously averse benchmark as well

I When applied to mitigating NUMA a�nity issues, we also see improvements of as much as 40% in the
bandwidth of the stream benchmark, and greater than 3⇥ performance improvement in the performance
of dense matrix multiplication on the CPU with appropriate policies

Results: Data-movement Cost of Frequent Re-Balancing
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Results: Memory-Movement Optimization

Stream Bandwidth with NUMA Policies
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