
CoreTSAR: Core Task-Size Adapting Runtime
Thomas R.W. Scogland, Student Member, IEEE, Wu-Chun Feng, Senior Member, IEEE,

Barry Rountree, and Bronis R. de Supinski,Member, IEEE Computer Society

Abstract—Heterogeneity continues to increase at all levels of computing, with the rise of accelerators such as GPUs, FPGAs, and

other co-processors into everything from desktops to supercomputers. As a consequence, efficiently managing such disparate

resources has become increasingly complex. CoreTSAR seeks to reduce this complexity by adaptively worksharing parallel-loop

regions across compute resources without requiring any transformation of the code within the loop. Our results show performance

improvements of up to three-fold over a current state-of-the-art heterogeneous task scheduler as well as linear performance scaling

from a single GPU to four GPUs for many codes. In addition, CoreTSAR demonstrates a robust ability to adapt to both a variety of

workloads and underlying system configurations.

Index Terms—Heterogeneous, OpenMP, OpenACC, GPU, coscheduling
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1 INTRODUCTION

WHILE heterogeneous systems are becoming more pop-
ular, their programming models deter many potential

users. Unlike adding more or faster CPUs, where existing
programming models work without code changes, pro-
grams must be explicitly updated to use GPUs and other
accelerators. Rather than grapple with unfamiliar program-
ming models, users often run their CPU-only code on accel-
erated resources, leaving a significant portion of the
computing resources idle. Accelerated OpenMP, our term
for a class of directive-based programming models includ-
ing OpenMP for Accelerators [1] and the PGI accelerator
model [2] among others, can ease this transition by allowing
users to target accelerators with a familiar OpenMP-style
syntax. However, Accelerated OpenMP is not a panacea:
current iterations help one move their computation to a
single accelerator with straightforward syntax. Once moved
however, there is no way to workshare a loop across multi-
ple devices without manually targeting each device.

In order to target, for example, a GPU and four CPU
cores, a user must manually split the work, run that work
on each separate device, and manually merge each result.
Any load balancing, coherency, or runtime adaptation of
any kind must be reimplemented by every user. So, while
Accelerated OpenMP can parallelize serial code via annota-
tion, it lacks the ability to scale and to load-balance work
transparently on the hardware found at runtime.

Our work enables safe and efficient worksharing across
devices in Accelerated OpenMP. To do so, we must address
two primary concerns. First, we manage memory input and

output across multiple address spaces without requiring
alterations to the associated parallel loop. Second, we divide
work across devices with vastly different computational
capabilities fairly and efficiently. In all, our CoreTSAR
(Task-Size Adapting Runtime) library automates the sched-
uling, load balancing, and cross-device data management
for safe and efficient worksharing. This paper presents the
design and implementation of CoreTSAR and the extended
Accelerated OpenMP syntax to integrate its functionality.
Specifically, we make the following contributions:

� The design and syntax of a multi-target, worksharing
construct for Accelerated OpenMP;

� The design, implementation, and optimization of our
scheduling and memory management library, Cor-
eTSAR, which can be used with any Accelerated
OpenMP compiler/runtime or with CUDA and CPU
OpenMP directly;

� Seven adaptive scheduling policies, spanning from a
low-overhead but coarse-grained adaptive approach
to a chunk-based, fine-grained scheduling approach
for distributing work.

� A rigorous performance evaluation of CoreTSAR
that demonstrates how runtime scheduling can sig-
nificantly improve performance while maintaining
programmability.

The rest of the paper is composed as follows. Section 2
offers motivation and background. Section 3 describes the
design of CoreTSAR, including our task management con-
cept, scheduling mechanisms, and memory management.
Details on our implementation follow in Section 4. Section 5
present our results. Related work follows in Section 6 and
conclusions in Section 7.

2 BACKGROUND AND MOTIVATION

As heterogeneous systems spread through the marketplace,
so do programming models that target them. While a vari-
ety of programming models exist, most fit into one of three
categories: (1) loop-offload models; (2) block-and-grid mod-
els; and (3) blocked-task models.
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Loop-offload models include variants of Accelerated
OpenMP [1], OpenACC [3] HMPP [4], PGI accelerator direc-
tives [2], and Intel OpenMP offload extensions for their
Xeon Phi coprocessors. They extend an OpenMP-like anno-
tated, serial, source model with data-movement declara-
tions to offload work to a device with a distinct address
space. The top left of Fig. 1 shows a basic molecular model-
ing kernel (GEMM) implemented serially with OpenMP,
Accelerated OpenMP, and our proposed Accelerated
OpenMP extensions. With no pragmas, the loop runs seri-
ally, as one would expect. The OpenMP pragma on line 4
workshares the loop across CPU cores. Accelerated Open-
MP’s pragma (lines 6-7) adds explicit in copies of the a and
b arrays and an inout copy of c. Each of these first two prag-
mas workshares the loop iterations across a single address
space, either CPU cores or a single GPU. We discuss the third
pragma at the end of this section.

Block-and-grid models include CUDA [5] and OpenCL
[6]. These low-level models specifically target GPU-like
hardware by offloading blocks or groups of threads to an
array of cores, each of which is a SIMD unit. Generally these
cores share memory with one another but not directly with
the CPU. The lower left of Fig. 1 shows an example using
CUDA. In addition to changing the array accesses, explicit
memory allocation and copies are required to move data to
and from the device. The loop is converted into a grid of
threads, each of which executes a single iteration in the
cudag() kernel, which must be called with the number of
blocks and threads per block. As with the loop-offload
example, this code uses exactly one GPU.

Blocked-task models, like OmpSs [7] and StarPU [8],
specify tasks and their dependencies in terms of blocks of

data (and sometimes other tasks). The right-hand code-
block in Fig. 1 uses OmpSs to implement the GEMM kernel
with load balancing across CPUs and GPUs, so it contains
both CPU and CUDA kernels, both aliased to the gemm()

function by the compiler. Each call to gemm is given the start
address of the block, in this case a row, to process. These
calls are converted into tasks, which are enqueued into the
OmpSs runtime with their data. Each task can then be
scheduled, individually, on any device an implementation
is available for. Since the task size is fixed, each task must
encompass enough work to occupy all compute units on a
GPU long enough to amortize the overhead of scheduling
it; on the other hand, each task must also be small enough
not to overload a single CPU core.

Each programming model has its advantages and disad-
vantages. The block-and-grid approach (e.g., CUDA or
OpenCL) is highly efficient on the GPU and offers maxi-
mum control over them. The loop-offload version requires
the least change from serial or OpenMP code, but it offers
less control. Blocked-task models offer control through
direct use of the other models as well as automatic load-bal-
ancing across all compute resources. Unfortunately, they
also require the greatest departure from the original code.

Therefore, we need a programming model that offers
the performance of block-and-grid models, flexibility of
blocked-task models, and programmability of loop-offload
models. Our proposed extensions, along with our prototype
library implementation, brings us closer to this goal by intro-
ducing work-sharing across devices to Accelerated OpenMP
without requiring a specific task granularity from the user.
The third pragma, in the upper left of Fig. 1 (lines 9-11) illus-
trates how our proposed extension would work-share the

Fig. 1. A basic GEMM kernel as implemented in OpenMP variants (top left), CUDA (bottom left) and OmpSs (right).
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GEMM loop across an arbitrary number and type of sup-
ported devices. Thus, it offers more flexibility in the region
than even blocked-task models, while maintaining the serial
loop as written.

3 DESIGN

This section presents the design of our proposed extension,
schedulers and memory management infrastructure. CoreT-
SAR safely divides annotated, un-blocked, serial loops, as
used in many traditional OpenMP applications, and sched-
ules them across heterogeneous resources. We add a clause
to Accelerated OpenMP that is similar to the schedule()

clause. The OpenMP programming model imposes the fol-
lowing constraints on our design:

1) Use existing, unchanged code in the Accelerated
OpenMP loop region;

2) Treat the accelerated loop as a group of related tasks
that are defined by the loop code and the region
directive including its associated clauses;

3) Maintain data consistency outside of the region and
do not alter data accesses in the existing loop body
although we can extend the data copy clauses of the
region.

By following these constraints we preserve programmability

while adding significant new functionality.

3.1 The Proposed Extension

The CoreTSAR interface consists of two parts, which Fig. 2
depicts. The hetero() clause specifies how to schedule the
region and which classes of device should be considered.
For memory management, we add the part_copy()

clauses to provide the runtime with sufficient information
to partition input and output data for the region safely.

Our clauses are permitted on the accelerator directive
or on any top-level accelerator loop construct, with the
same restrictions as existing accelerator loop constructs.
Specifically there must not be inter-iteration dependencies
other than those handled by reductions. Unlike normal
copy clauses, part_copy is not allowed on data clauses
as it only has meaning when directly associated with a
loop. We still support data regions, but only for cases

where complete replication of the input/output is
desired, as opposed to only those data regions that are
required. We define the properties of our clauses in
greater detail in the following sections.

3.2 Scheduling

In order to workshare the iterations in a given region effi-
ciently, we must offer appropriate scheduling policies. Each
policy in CoreTSAR treats the iterations within a loop
region as a group of related tasks, which allows us to select
the scheduling granularity adaptively. For example, CoreT-
SAR can break a region with 10,000 iterations into four
chunks or a thousand or any number less than 10,000 for
scheduling, without modification and without user inter-
vention. This capability is critical for efficiently scheduling
across heterogeneous systems, as a single grain size is rarely
appropriate for all available devices.

Existing OpenMP schedules for CPUs divide the itera-
tion space either evenly across processors statically or into
chunks that are assigned dynamically. The static version is
simple, efficient to implement, and consistent, but does not
load-balance. Alternatively, OpenMP’s chunk based sched-
ules (dynamic and guided) load-balance well in homoge-
neous architectures. However, they suffer high overhead
due to synchronization at each work-request and especially
as a result of the lack of data locality their dynamic algo-
rithms cause. In heterogeneous systems they would also
incur repeated kernel launches and data transfers. We dealt
with these issues in our initial work with CoreTSAR [9], by
designing a set of adaptive schedules that statically divide
the work within each pass through a region but load-balan-
ces across passes. This scheme proved effective, but it does
not tolerate imbalanced workloads well, whereas chunk-
based schemes can. To address that case and broaden our
evaluation, we have developed a number of new chunk-
based designs as well as a hybrid of the two approaches.

3.2.1 Static/Adaptive Schedulers

Our static and adaptive schedulers [9], [10] predict the time
that each device will take to complete an iteration in the
next pass and generate a single task for each device sized
such that all finish the region as close to simultaneously as
possible. These schedulers make two assumptions: (1) the
average runtime of an iteration in the region is constant on a
device; and (2) subsequent passes through the region have
the same performance ratio as the previous pass. Also, our
schedulers begin with a default time per iteration for each
device until we have gathered runtime data. This default is
either a user-defined value, one saved from a previous run,
or one based on the formula 1/(deviceSIMDWidth/baseDevice-
SIMDWidth). While we do not claim that this formula accu-
rately models the relative performance of devices, in
practice we have found it to be accurate for dense floating-
point kernels. We leave further exploration of default values
as future work.

The linear program in Fig. 3 uses the time per iteration
value for each device to calculate the fraction of the total
available iterations that should be allocated to each device.
In words, the program finds the fractions of work that result
in the minimum deviation between predicted execution

Fig. 2. Our proposed extension.
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times. (Our initial version of this linear program calculated
the optimal number of iterations directly as an integer solu-
tion, giving theoretically optimal splits based on our model.
This integer solution, however, was impractical to run
online due to high calculation costs.) The linear program
formulated in Fig. 3 dramatically reduces the calculation
costs and is designed to still yield an optimal fractional
result, allowing the solution to be off by up to one iteration
on each device but decreasing the computation time by sev-
eral orders of magnitude.

Our static schedule applies this linear program to the
default, or supplied, values once at the beginning of the
first pass through a region, then reuses the result thereaf-
ter. The adaptive schedules (adaptive, split and quick) use a
first pass with the static schedule as a training phase. The
first time that we encounter a CoreTSAR region, we
assign work based on the static schedule and then mea-
sure the times on each device. For each following sched-
uling decision, we use measured times per iteration in the
linear program, converging on a more efficient schedule.
Our design intentionally includes all recurring data trans-
fer and similar overheads required to execute an iteration
on a particular device, naturally incorporating data trans-
fer and launch overheads.

Adaptive trains on the first full pass through the region,
then adapts at the beginning of each subsequent pass. Split
is designed to adapt within regions that either cannot toler-
ate a full pass with a poor schedule, or only run once per
application run. Split breaks each pass into several evenly
split subpasses, based on the div input. It treats each sub-
pass as the same as a full pass with adaptive. While split
provides better, and earlier, load-balancing for some appli-
cations, it increases overhead in each pass. Quick balances
between split and adaptive by executing a small subpass for
its first training phase, similarly to split. It then schedules
and runs all iterations remaining in the first pass, and uses
the adaptive schedule for all subsequent passes. This sched-
ule suits applications that cannot tolerate a full pass using
the static schedule or the overhead of extra scheduling steps
in every pass.

3.2.2 Chunk Schedulers

Chunk schedulers are exemplified by the OpenMP dynamic
schedule, in which a chunk size specifies the number of iter-
ations assigned to each thread each time it requests work.
These schedulers effectively use a work queue approach,
which offers natural load balancing. While it is a classic

load balancing approach, it is most effective when used
with homogeneous computing resources with fast synchro-
nization mechanisms, which is not the environment that
CoreTSAR targets. Thus, we present variations on this
method for hybrid systems.

Specifically, we design three new schedules (chunk, chunk
static and chunk dynamic). Chunk serves as our baseline
chunk scheduler, and is functionally identically to Open-
MP’s dynamic schedule. Chunk static scales the chunk size
for each device based on the same scheme used in the static
schedule above. Thus, larger chunks are provided to devi-
ces with greater compute power. Finally, chunk dynamic
begins in the same way as chunk static then dynamically
adapts the chunk size for each device based on their perfor-
mance. Unlike the adaptive schedulers, it does not employ
the linear program to determine the new chunk size since
the chunk schedulers do not have a natural barrier point
where all times have been updated. Instead, it employs an
annealing approach that computes a weighted average of
the time per iteration for each device, and attempts to
reduce the time per iteration by increasing or decreasing the
chunk sizes. For example, if the time per iteration on a
device decreases with an increased chunk size, chunk
dynamic again increases that chunk size. In this design, each
device is independent and does not block on the others in
order to adapt.

3.2.3 Hybrid Scheduler

In addition to the schedulers that are strictly chunk or ratio
based, we also investigate a hybrid chunk schedule that
begins as a chunk dynamic schedule and after the first pass
transitions into the adaptive scheduler. Chunk dynamic
adapts and load balances quickly during the first pass while
refining the split. However, after that first pass, it incurs
unnecessary overhead in contention and memory transfers,
where adaptive excels. Using chunk dynamic in place of static
for the training phase of adaptive naturally fuses the advan-
tages of both schedulers.

3.3 Memory Management

In order to maintain memory coherency across address
spaces while dynamically splitting the region, CoreTSAR
requires information about the memory access pattern of
each iteration of the loop. The primary design goal of our
memory manager is to support unblocked input and output
data naturally. Our interface covers the majority of common
dense storage cases, and can be used at some memory over-
head with various more complex or sparse schemes, while a
method to specify any possible association is an ongoing
topic of research, including our future work. As we discuss
in Section 4, our prototype library implements the memory
management for all examples evaluated in Section 5.

For each variable the part_copy(), or partial copy,
interface requires at least a variable name, one dimension to
copy, and the number of items in that dimension. Given
the clause part_copyin(a[1:N]), a[i] will be copied,
where i is the current loop iteration, to the device that exe-
cutes that iteration. If a range of i from 5-500 is assigned to
a device, a[5-500]will be copied. Thus, the partial copy is
associated with the loop iteration(s) of the loop being split.

Fig. 3. Our adaptive scheduler’s deviation minimization algorithm as a
linear program, variables at left.
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Fig. 4 displays two simple examples of patterns pro-
duced by our memory-association syntax. The top example
specifies that a 10� 10 matrix is being registered to the
region, and the iterator will be associated with the column
dimension, assuming C ordering, since the column
dimension’s condition is true. The lower example selects
the row dimension instead, and additionally specifies that
one halo element is required on either side of that dimen-
sion. This pattern is typical of stencil-type computations,
where halo values are required as input, but are not
updated by the device reading them, having the halo argu-
ment makes supporting such associations natural.

Our interface does not directly support random access out-
put, reverse indices or indirect indices. For input, these can all
be supported at the cost of additional overhead by copying
the entire data set, since the input process is non-destructive.

3.4 Example Usage

Fig. 5 shows how to use our proposed interface to imple-
ment the example in Fig. 1. All options, including those that
use default values, are specified for part_copyin(a...)
and hetero(...) in the example. The minimum neces-
sary to specify the copy correctly are used for part_copy
(c...). In this example, the loop will always be split
across devices using the adaptive scheduler with the default
ratio and a div of 10. The copies specify that the a array is
two-dimensional, of size N by N, made up of elements of
size sizeof(T), and that iteration i requires row i of a but
not column i. The c copy specifies the same as for a except
that it should be copied both in and out. The traditional
copyin() clause from accelerated OpenMP is used for b

since all participating devices need access to the full region.
Complete output, in the form of copyout(), is not allowed
however because there is no way to resolve the changes
between versions. We may investigate this in future work.

4 IMPLEMENTATION

We implement CoreTSAR as a C library on top of Accel-
erated OpenMP, tested with PGI Accelerator and Cray’s
Accelerated OpenMP. Our evaluation in this paper
focuses on PGI Accelerator, so our examples use its direc-
tive format. This section discusses our implementation
including its portability, API and our memory manager
as well as some necessary deviations from the design dis-
cussed in Section 3.

4.1 GPU Back-Off

Some applications are not amenable to being run on
GPUs, or at least the GPUs present in some systems.
While iterations of a region may benefit greatly from
running on an NVIDIA c2075, they may perform poorly
on an NVIDIA GeForce GT 520. In order to maintain
portability across disparate accelerator and CPU capabili-
ties, CoreTSAR implements GPU Back-off support in all
adapting schedulers.

The back-off system is implemented differently for
each of the two scheduler types. In the adaptive schedu-
lers CoreTSAR converts a GPU offload thread into a CPU
thread when the GPU has a higher time per iteration than
the slowest CPU core for a configurable number of passes
(default is two). We use multiple iterations since under
certain circumstances, such as loading large persistent
datasets for the first time, or an inappropriate initial
amount of work, a device can be erroneously classified as
slower than the CPUs. With the chunk schedulers, we
base the decision on whether a given GPU completes
fewer iterations than the slowest CPU core during each
pass of a configurable number of passes. This difference
compensates for the sometimes highly variable time per
iteration when bootstrapping chunk schedulers across
initial data copies, which can cause false conversions
with the adaptive back-off scheme. We discuss the effects
of this extension further in Section 5.

4.2 Memory Management

The existing memory interface of Accelerated OpenMP is
insufficient to express the relationships necessary to handle
certain kinds of memory association. While accelerated
OpenMP does natively support copying a subset of an
array, it does not support copying multiple subsets of one
array, nor does it support non-contiguous rectangular sec-
tions such as a subset of the columns of a 2D array.

In order to support our desired memory association
interface, CoreTSAR implements its own memory manager,
using the deviceptr() clause to pass CoreTSAR managed
memory into Accelerated OpenMP regions. We offer a
straightforward syntax by which users specify the data
required by a given iteration. Given that information, Cor-
eTSAR automatically copies the ranges of data required by
whatever iterations are assigned to a given device for that
pass. When possible the memory manager uses pinned
memory to accelerate copies, as well as asynchronous copies
to and from the device in order to overlap them with sched-
uling and synchronization.

Fig. 4. Example memory association patterns, assuming a pass in which
two iterations are assigned to the CPU device, and four each to two
GPUs.

Fig. 5. Our proposed extension to accelerated OpenMP.
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Currently, the CoreTSAR memory manager handles a
restricted set of partial copies. In addition to the straightfor-
ward one-to-one relations, CoreTSAR also supports stencils
through padding, and row, column or planar associations
on two and three dimensional matrices. In order to support
reductions we provide an API inspired by user-defined
reductions in OpenMP 4.0. We discuss the details further in
Section 4.4. While only a subset of the possible cases, these
mappings are sufficient to implement all benchmarks evalu-
ated in this paper.

4.3 Data Packing and Padding

Our original implementation of the memory interface [9]
had a material weakness. That version of CoreTSAR allo-
cated the full size of each memory region on each device in
order to preserve offset accuracy. In other words, any input
or output array/matrix supplied to CoreTSAR was allo-
cated in full in all participating address spaces. Managing
subset allocation and access without invalidating offsets
and iterator values is a difficult problem, especially in lan-
guages like C.

We have redesigned CoreTSAR to support three kinds
of regions depending on how the data is mapped. The
first, and most simple, case is a one dimensional partial
array or two dimensional array that is associated by
rows. Since all of the resulting subsets are contiguous, the
runtime provides an offset pointer that can be indexed by
the original offsets without issue. No further action or
overhead is required for this case, and a significant
amount of storage on accelerators can be saved. The sec-
ond case is where a two or more-dimensional array is
associated by columns. CoreTSAR can pack these, but
must have control over the calculation of offsets into the
resulting matrix. As such, we handle this case in our
translator for contiguous arrays accessed with array[i]

[j] style syntax, but currently do not support dynami-
cally-allocated C arrays accessed with the array

[i*row_size + j] syntax, though these can be sup-
ported by directly using the C API functions. Third, asso-
ciations can use both the row and column associations,
resulting in a region resembling a plus-sign being
assigned to each device. Since these require the full range
in both rows and columns, even though they may not
need the corners, CoreTSAR is forced to allocate the full
size of such arrays.

By allowing data regions to be packed, CoreTSAR gains
two extra capabilities beyond reducing memory usage on
target devices. The packing functionality allows any chunk-
based scheme to place a low bound onmemory use by select-
ing a small chunk size. This allows large data sets on the host
to be streamed through accelerators without enough mem-
ory to hold even their assigned sub-part of the problem.
When used in this mode however, CoreTSAR becomes simi-
lar to a blocked-task system, including the increased task
management and data-transfer overhead that implies.

Perhaps more importantly however, the capability to
adjust indexing, as described for column-wise associated
multi-dimensional arrays, allows regions not only to be
shrunk to save space, but also padded for alignment. As
is well known, memory alignment is important for the

performance of SIMD computations and coalesced memory
accesses are important to the performance of GPU kernels.
Given the ability to pad rows beyond the data assigned to
each device, or even rows of data that are mis-aligned by
the user, CoreTSAR can ensure that each row is aligned for
most efficient access on each target. We implement this opti-
mization by ensuring that the length of each row in a matrix
is a multiple of the target device’s SIMD width. While in
some cases this choice is more strict than required, it is con-
sistently sufficient to ensure reasonable alignment.

Fig. 6 shows the effect that even small changes in row-
width can have on performance without padding, and how
our auto-padding helps. The figure represents the perfor-
mance of a general matrix multiplication kernel when run
with row and column lengths ranging from 8,192 to 8,223
elements in increments of one, specifically the x-axis values
are the number of elements over 8,192 in each row. On our
primary evaluation system, with four c2070 GPUs, a square
matrix of size 8;192� 8;192 runs in 7.9 seconds. Increasing
that size by only one element on each side more than dou-
bles that runtime to 19.5 seconds. In fact, every odd-num-
bered increase in size takes approximately the same
increased time, while each power of two increase does bet-
ter up to 16, or a total of 8,208, which performs the same as
the original 8,192. Another system with a pair of k20x GPUs
shows a nearly identical stepped pattern as well. The differ-
ence in performance is somewhat smaller, ranging from
10.9 seconds at the zero and 16 positions and 15.2 at the odd
offsets.The L2 read request performance counters provide a
partial explanation for the wide range in performance.
When padding is enabled, the difference in L2 requests
with a multiple of 16 row length is consistently within
10 percent; for any odd length it balloons to 80 percent more
L2 accesses for the un-padded version. This increase is due
to a greater number of reads being required to accommo-
date the mis-aligned read requests of each warp on the
GPUs, increasing contention and lowering cache efficiency
overall. On the right-hand-side of the plot, you can see that
CoreTSAR’s automatic padding smooths out these issues.
Also, when dividing a data-set column-wise, this padding
support can ensure alignment even when the appropriate
amount of work to be assigned is not a multiple of the target
device’s native SIMD width, an important consideration for
several of our benchmarks.

Fig. 6. Runtime of GEMM kernel on square matrices, statically sched-
uled across GPUs only with and without auto-padding.
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4.4 CoreTSAR API and Usage

This section describes the low-level API to the CoreTSAR
library in detail.

ctsar_init. Initializes an instance of the CoreTSAR run-
time, one such instance should be used for each region that
is to be separately scheduled. The parameters allow a user
to set the default scheduler, allowed devices, the default
time per iteration for each accelerator as an array of doubles
(NULL for defaults), and how finely the split and quick
schedulers should divide regions (NULL for default).

ctsar_next Computes the division of work for the region
associated with c based on size total iterations. This func-
tion is also responsible, updating appropriate memory
regions on each target device and starting timers to evaluate
each device’s performance.

ctsar_loop. In order to support split, quick and the chunk
schedulers, CoreTSAR must reevaluate the loop with each
thread repeatedly. The ctsar_loop function serves as the
condition for a do/while loop surrounding each region. In
addition to managing repeats, the loop function is responsi-
ble for synchronization, GPU back-off support, copying
data back from all devices, completing reductions, and
calculating performance statistics at the end of each pass.

ctsar_reg_mem{_2d}. These functions register a host buffer
with CoreTSAR. The full version takes a pointer to CPU
memory, the size of an element of the input data, the num-
ber of element in each row/column, the number of halo ele-
ments required, and a flag option that allows the user to
control copy direction and type. The non-2D version is
shorthand for 1D arrays. The return value is a pointer to the
memory assigned to the calling thread, which may or may
not be identical to the original pointer.

The flags value controls whether memory is copied in or
out or both, as well as whether to copy persistently, partially
by rows or partially by columns and whether padding is to
be allowed, if it is, an extra output parameter for the new
row size is required. Partial copies are integral to the correct
functioning of CoreTSAR as they make automatic merging
of output possible. They also improve performance of input
operations. The 2D interface supports all specifications dis-
cussed in Section 3, except that it does not handle matrices
with dimensionality higher than 2.

Regardless of the flags, CoreTSAR allocates an appropri-
ate size buffer on the device associated with the calling
thread. If the region is set to persistent, data is immediately
and asynchronously copied from the CPU array into the
newly allocated memory, where it resides until it is explic-
itly removed with a call to ctsar_unreg_mem().

ctsar_unreg_mem. De-registers the pointer from the region
instance, frees the memory that stores the state of the data,
and frees persistent regions.

ctsar_retarget_mem. Re-target allows a user to specify that
the region already allocated for pointer old should be used to
store the data pointed to by new on all devices. A typical use
is to swap buffers for double buffering, although it can also be
used to implement blocked data transfers by re-targeting a
pointer to the new start pointer before entering a region.

ctsar_reg_reduc. This function registers a reduction.
Because each memory space will have its own reduction
result, CoreTSAR must safely initialize the temporary varia-
bles in each memory space and combine those results into a

meaningful final value. The identity pointer points to an
appropriate initial value to use on each device. For example,
in a sum the identity would usually be 0, in a product 1, and
so on. The item_size specifies the size of the elements to
be reduced. The reduc argument is function pointer that
should accept two void pointer arguments, the first of
which is both a value to be reduced and the output, the sec-
ond is another value to be reduced. This function is called
repeatedly to accumulate the final value as each device
finishes execution. For simple reductions, the body of the
function can be as simple as *((int*)a)+=*((int*)b).

CSTART/CEND. Macros used to retrieve the start and
end values to use for iteration in the loop region.

Fig. 7 presents an example using this interface to imple-
ment the extension as presented in Fig. 5. In this example,
CoreTSAR is initialized with the adaptive scheduler, default
ratio, and div of 10. The parallel do-while loop allows our
library to reevaluate the code region as necessary by looping
with the ctsar_loop(s) call until done. The data regions
are registered, as partial input, complete input, and partial
input/output, and the appropriate pointers for those data
regions on each device are returned into the local copies of
pointers a, b and c. The ctsar_next() call calculates the
number of iterations to be completed in this pass by each
device. Once it is complete, the CSTART() and CEND()

macros return the appropriate iterator range values for the
device that evaluates them. This syntax can either be used
manually, or generated by our python/libclang-based
source-to-source translator.

While the code is extended significantly around the loop,
we do not replicate or alter any code in the loop body. The
Accelerated OpenMP if() clause determines if a thread
runs on a GPU or CPU core. If the device is a CPU, the loop
is run serially on the associated core completing its assigned
iterations. If it is a GPU-controlling thread, the acc region

directive workshares the assigned iterations across the asso-
ciated GPU. All codes used in our evaluation are imple-
mented in this fashion.

5 EVALUATION

This section evaluates the CoreTSAR library. We compiled
all benchmarks with the PGI Accelerator compiler compiler

Fig. 7. CoreTSAR library version of GEMM.
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suite version 12.9. Optimization flags are -acc -ta=nvi-

dia -O3 -mp=allcores. Table 1 lists our test platforms.
Unless otherwise specified, tests were run on escaflowne. In
tests with GPUs enabled, one CPU core is used to control
each selected GPU and does not do computation. We use
default scheduler parameters unless otherwise specified,
with the initial split calculated at runtime based on the
available resources and a div of 10. We include all schedul-
ing overhead, GPU data transfer time, and synchronization
time in all measurements.

Reported times and speedups include all activity that the
original OpenMP CPU code did not require, such as library
initialization, scheduling, and memory movement. We do
not include application IO or problem setup that is shared
between CPU, GPU and scheduled versions. We also record
the time for each device to complete its assigned iterations,
from which we can compute the time that devices wait for
others to complete, the time spent to calculate the split for
the next pass and, as a subset of that, the time to solve the
linear program. Finally, we track the time per iteration for
each device, as described in Section 3.

5.1 Benchmarks

We use four applications and the PolyBench/GPU [11]
benchmark suite in our evaluation. CG [12] is a direct port
of the NAS conjugate gradient benchmark. GEM [13] is a
molecular modeling application for the study of the elec-
trostatic potential along the surface of a macromolecule
that has been extensively studied for GPU optimization
[14]. Helmholtz is a discrete finite difference code that uses
the Jacobi iterative method to solve the Helmholtz equa-
tion. K-means is a popular iterative clustering method. Our
implementations of the 15 PolyBench/GPU benchmarks
execute each computational kernel 10 times to mimic use
in an iterative scientific application more closely. Tests at
five and 15 kernel executions yield similar relative results.
Since we are evaluating scheduling behavior, and not
computational kernel performance, we made minimal
changes in porting each benchmark. As such, our computa-
tional kernels are not optimized for the GPU other than by
the compiler. Nonetheless, CoreTSAR can easily support
optimized implementations through the same syntax.

For our purposes, benchmarks can be characterized by
the number of passes through the parallel region that
they make, the length of each of these passes, and how
suitable they are to run on the GPU. Table 2 characterizes
these properties for each benchmark. The table exhibits a
wide range in number of passes through the parallel
region �1 to 1,900 passes in the applications, and as high

as 10,240 passes for the GRAMSCHMIDT benchmark.
Our adaptive scheduler operates primarily at the bound-
aries of parallel regions, so this number can greatly affect
our results. For example, in the GEM benchmark, the
adaptive schedulers are identical to the static scheduler
because the training pass is the only pass in the applica-
tion. Conversely, CG performs many short passes, which
allows CoreTSAR to adjust scheduling decisions but
incurs high scheduler overhead and data copy costs.

The table also shows a wide range of performance ratios.
Values range from a 10� slowdown to a 113� speedup
going from eight CPU cores to one GPU. Running GEM on
only one GPU finishes the problem more than 10� faster
than on eight server class Intel CPU cores. CORR and
COVAR also show extreme suitability, largely due to
the static schedule employed in the CPU tests. Because
the workloads are imbalanced, each CPU core performs a
different amount of work. The GPU test, because of the
load-balancing effect of over-provisioning work-groups on
GPUs, handles this variation better. If we use the OpenMP
dynamic schedule, COVAR runs in approximately 150 sec-
onds, 10� faster than the static performance. Alternatively,
GRAMSCHMIDT and Helmholtz are not suited to GPU
computation according to these results. Generally, the suit-
abilities match our expectations, with the exception of CG.
Our previous work, and that of others, has found that CG is

TABLE 1
Test System Specifications, All CPUs and GPUs Are Made by Intel and NVIDIA Respectively

System name CPU
Model

CPU
Cores/die

CPU
Dies

CPU
RAM (MB)

GPU
Model

GPU
Cards

GPU
Cores

GPU
RAM (GB)

amdlow3 E3300 2 1 2,012 Tesla C2050 1 448 3
armor1 E5405 4 2 3,964 GeForce GT 520 1 48 1
dna2 i5-2400 4 1 7,923 GeForce GTX 280 1 240 1
escaflowne X5550 4 2 24,154 Tesla C2070 4 448 6
hokiespeed E6545 6 2 24,154 Tesla M2050 2 448 3

TABLE 2
Benchmark Characteristics, Times in Seconds, Time/Pass

for Static Schedule with CPUs and One GPU

Benchmark Passes Time/
pass

CPU
time

GPU
time

Speedup
on 1GPU

CG 1900 0.045 16.31 92.37 0.17
GEM 1 5.336 71.05 5.65 12.59
Helmholtz 50 0.138 1.18 7.22 0.16
kmeans 7 0.583 5.70 4.33 1.32

ATAX 10 0.646 32.23 6.60 4.88
BICG 10 0.822 21.86 8.78 2.49
CORR 10 0.162 157.73 1.64 96.07
COVAR 10 1.328 1558.30 13.80 112.90
FDTD2D 5000 0.000 0.99 1.23 0.80
GEMM 10 1.262 301.34 3.04 99.18
GESUMMV 10 1.902 2.10 20.38 0.10
GRAMSCHMIDT 10240 0.004 4.21 40.38 0.10
MVT 10 0.058 1.62 0.60 2.72
SYR2K 10 1.461 14.39 15.53 0.93
SYRK 10 0.769 7.86 8.18 0.96
THREEDCONV 10 1.031 5.77 10.95 0.53
THREEMM 30 0.284 126.03 3.78 33.35
TWODCONV 10 0.607 2.86 6.46 0.44
TWOMM 10 1.445 204.66 6.32 32.41
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suitable for GPUs. Some of our experiments on other plat-
forms showed a ratio of approximately 0.55 on one GPU.
Here, the GPU version takes more than 5� longer than the
CPU version. This is due to the high cost of data re-distribu-
tion across GPUs each iteration. We leave optimization of
CG to future work.

5.2 Input Parameters

As mentioned above, we use the default values for our tests
unless otherwise specified. However, chunk size does not
have an obvious default. Fig. 8 illustrates the performance
for the basic chunk scheduler across chunk sizes for each
benchmark using one GPU. We do not report chunk sizes in
terms of absolute iterations, which has little meaning across
benchmarks. Instead, we compare by the number of chunks
into which the region is partitioned. The performance of
some applications varies little based on chunk size. Others,
such as CORR and COVAR, have a range of as much as 3�.
These ranges shift or even reverse in some cases as the num-
ber of GPUs or scheduler changes, creating even more
variability. Due to the sensitivity to this parameter, all sub-
sequent results for chunk-based schedulers use the best
chunk size for that benchmark, scheduler, and GPU count
combination.

5.3 CoreTSAR Performance

We begin with an evaluation of the overall speedup
achieved for benchmarks across schedulers and GPU counts
on escaflowne, as Fig. 9 depicts. All plots are based on the
speedup over a chunk-based CPU schedule equivalent to
OpenMP’s dynamic schedule across the eight CPU cores.
We can group these results roughly into three groups of
behavior: those that scale to all four GPUs; those that benefit
from GPUs but do not scale to more than one; and GPU-
averse applications.

5.3.1 GPU Amenable Applications

Eleven benchmarks scale to four GPUs on escaflowne,
resulting in between 3:5� and nearly 200� speedup. First
GEM, GEMM, kmeans, SYRK, SYR2K, TWOMM and

THREEMM scale nearly linearly from one to four GPUs,
missing linear only because of the use of one CPU core
for the addition of each GPU. Slightly off of linear are
CORR and COVAR, which gain performance at approxi-
mately one quarter of that rate, but consistently up to all
four GPUs. Also in this group are ATAX, BICG, and
MVT, which clearly taper off after two GPUs, since these
benchmarks do not have enough work available at this
problem size, to occupy all four GPUs fully. Further, we
cannot increase the problem size without overflowing
the GPU memory due to the way CoreTSAR’s memory
model currently handles mappings. In another peculiarity
of these three benchmarks, the chunk scheduler performs
almost identically to the CPUs. While all three reap signif-
icant performance benefits when run on GPUs, they are
the only benchmarks that use column-wise partial copies.
The overhead of column-wise copies for each chunk
apparently causes the runtime to deactivate all GPU
threads for the basic chunk scheduler.

In terms of individual benchmark behavior, GEMM
achieves the most speedup, which occurs with the static
GPU-only configuration. While this schedule is not an
adaptive, it is still facilitated by CoreTSAR, and for
extremely GPU suitable applications can outperform the
adaptive schedules. The CORR and COVAR benchmarks
superficially behave similarly, but for a different reason.
In their imbalanced workloads, each iteration i does n� i
units of work. Thus, they violate the assumption of the
adaptive schedulers that the average work per iteration is
constant. We expected one or more of the chunk schedu-
lers would perform best in this scenario, but both CORR
and COVAR are highly sensitive to overhead, and cannot
tolerate the additional launches and copies of the chunk
schedulers. Thus, the static schedulers (GPU and static)
perform best in most cases. In the four GPU case for each,
however, the split scheduler surges ahead. Split stops
using the CPU cores and schedules across the GPUs in the
three and four GPU cases. Our linear program does not
handle varying time per iteration with heterogeneous
hardware, but given relatively homogeneous hardware it
handles the heterogeneous iterations much better. Using
only GPUs, no CPU cores, with the Adaptive schedule
achieves a further 10-20 percent performance improve-
ment over the next best schedule in each case for CORR
and COVAR.

Also unexpectedly, kmeans performs best with the basic
chunk scheduler. With a precisely selected chunk value
kmeans does quite well but, as Fig. 8 shows, its performance
varies by as much as 50 percent across chunk sizes we
tested. The adaptive schedulers are more robust in that they
do not require users to search the input space in order to
find a reasonable initial parameter.

Overall CoreTSAR scales well to at least four GPUs with-
out loop body or memory layout changes for GPU-amena-
ble applications. Further, each scheduler is stronger for
certain tasks than others, and the adaptive scheduler is the
best overall choice, even with the best chunk sizes for chunk
schedulers. It remains stable, and within approximately
10 percent of optimal for all amenable benchmarks with
homogeneous iterations. For heterogeneous iterations, static
and chunk are better options.

Fig. 8. Performance across chunk sizes for each benchmark with the
basic Chunk scheduler.
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Fig. 9. Performance across schedulers and number of GPUs for all benchmarks, normalized to CPU OpenMP across eight cores.
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5.3.2 GPU-Averse Applications

These are applications that do not run well on GPUs. Some
are so sensitive to it that running any part of the job on a
GPU causes slowdown. These are included to evaluate
CoreTSAR’s response to regions that should not use GPUs,
or to running normally amenable applications on a system
where the accelerator is particularly slow. While Jacobi solv-
ers in general, and Helmholtz solvers in particular, are not
GPU averse as a class, the implementation of Helmholtz
that we evaluate is. Our Helmholtz is a generic CPU
OpenMP version that runs correctly but slowly when com-
piled for the GPU. It never performs better by using a GPU
for any work. This category also includes three PolyBench/
GPU benchmarks (FDTD2D, GESUMMV and GRAMSCH-
MIDT). Each runs slower on a GPU than on one CPU or
runs many passes, accentuating copy overhead.

In each case, schedulers that run more often, and thus
convert the GPU threads to CPU threads faster, incur less
performance loss. For the same reason, GPU-averse bench-
marks that run many small passes perform better. For exam-
ple, GESUMMV suffers more than the others by running 10
passes rather than 50 or thousands. For each of these bench-
marks, the ability to convert GPU control threads to CPU
threads is crucial. Without GPU backoff support, the total
runtime of Helmholtz more than doubles for both adaptive
and chunk based schedules, and as much as triples for the
split schedule.

Three other benchmarks (CG, THREEDCONV, and
TWODCONV) fall into this category, but only marginally.
Each can benefit from the first GPU. GPUs complete itera-
tions faster than CPUs for these benchmarks, but they only
have enough work to saturate a single GPU, or face increas-
ing data transfer overhead as more are added. CG passes
through the region enough times (1,900) that all but one
GPU are converted to CPU threads very early in the compu-
tation, so it achieves roughly constant performance from
one to four GPUs. The convolution codes do not run long
enough to hide the overhead of extra GPUs enabled in the
first few passes and show degrading performance.

5.4 Adaptation Across Machines

We now evaluate CoreTSAR’s performance across several
disparate systems. All systems run the same OS image and
execute identical binaries for all tests. Table 1 lists the hard-
ware in each system in detail. Of particular interest are the
GPU-centric system amdlow3, which contains a dual-core
Intel Celeron processor and NVIDIA C2050 GPU, and the
CPU-centric system armor1 with two quad-core Intel Xeon
cores and a low power NVIDIA GT 520 GPU.

As some of our benchmarks require more memory than
the smaller GPUs posses, we selected a representative sub-
set (CG, GEM, kmeans, and SYR2K) with problem sizes that
fit onto all evaluated GPUs. Fig. 10 shows results for these
benchmarks across all five test platforms. The most promi-
nent feature of the results across systems is the significant
change in overall speedup. In particular, amdlow3 exhibits
consistently high speedups using the GPU, partly due to the
extreme imbalance between its Intel Celeron processor and
NVIDIA C2050 GPU. Even CG shows material speedups on
amdlow3, as much as 2�. More importantly, even though

speedup and overall performance shift across the various
systems for each benchmark, the distribution of perfor-
mance by scheduler is similar. Thus, the right CoreTSAR
scheduling algorithm is more related to the application than
the hardware. Allowing the scheduler to be determined
once per region, rather than once per machine. Further,
these results show that the default adaptive scheduler is
effective across hardware configurations, with only GEM as
an issue, as a result of its single iteration. GEM’s strong per-
formance on the other devices also showcases the portabil-
ity of our computed default division of work, which for that
application is consistently near the best.

5.5 Comparison with Blocked Task Schedulers

In order to compare CoreTSAR’s scheduling with a state
of the art heterogeneous task scheduler, we employ those
designed to support blocked task models. Specifically we
port three benchmarks (GEMM, kmeans, and Helmholtz)
to two freely available implementations of this type of
model, OmpSs and StarPU. As with Accelerated OpenMP
and CoreTSAR, we use the most straightforward port
possible, transforming only the loop regions that CoreT-
SAR targets. For example, Fig. 1 lists a literal transcription
of the GEMM implementation on OmpSs, calling func-
tions defined in Fig. 1.

In order to provide an accurate comparison, the CoreTSAR
codes evaluated here use the CUDA and C functions created
for OmpSs and StarPU rather than using Accelerated
OpenMP. In fact these functions were compiled into a single
object file with nvcc that was then linked with the CoreTSAR,
OmpSs and StarPU scheduling code, thus all three are sched-
uling over identical compute kernels. The OmpSs version was
run with the versioning-stack scheduler, to support alterna-
tive implementations, as well as flags to allow prefetching
and overlapping of data transfers for benchmarkswhere these
offered speedup (slowdown was observed in one case). The
StarPU implementations used the “dmda” scheduler with the
history-based performance model, trained on at least 10 runs
before results were collected.

GEMM and Helmholtz run each row of the main outer
loop as an individual task. The outer loop for kmeans is fine
grained, so we block it into chunks of 1,000 iterations for

Fig. 10. CoreTSAR speedup across systems.
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OmpSs and StarPU, and also use 1,000 iteration chunks as the
default for CoreTSAR’s chunk schedulers althoughwe allow it
to adapt at runtime where capable. Each only copies the data
necessary for a given task. For example, we only request the
three rows necessary for a given Helmholtz row. We also dis-
able CoreTSAR’s persistent memory support, since OmpSs
does not provide an equivalent feature, though StarPUdoes.

Fig. 11 presents the speedup results, calculated as
speedup over all eight CPU cores with the OpenMP
dynamic schedule, with OmpSs and StarPU on the far right.
While unrelated to the performance comparison, Helmholts
shows a performance benefit using GPUs in this case. In
truth, the CPU version compiled with gcc is significantly
slower (9�) than the version evaluated earlier, while the
CUDA and OpenACC versions perform similarly.

Each of StarPU and OmpSs are block schedulers, oper-
ating much like our Chunk scheduler, and so we expect
that they would perform similarly. The expectation holds
holds for Helmholtz, wherein OmpSs performs almost
identically to CoreTSAR’s Chunk scheduler with StarPU
trailing by roughly 50 percent. In kmeans and GEMM
each performs quite differently, with OmpSs and StarPU
outperforming Chunk on kmeans and being heavily out-
performed by it in GEMM.

While the computation and data transfers are nearly
identical between the schedulers, the performance of
CoreTSAR using one of the granularity adapting schedulers
is consistently higher due to reduced overheads. Since
CoreTSAR never explicitly creates the individual tasks, it
never pays the cost to allocate or to initialize them, only
paying for the aggregate tasks it runs. This benefit is espe-
cially noticeable in GEMM where CoreTSAR is 3� faster
than OmpSs and 2� faster than StarPU scheduling the same
work. Given the ability to adapt task granularity at runtime,
all three would yield similar performance. It may be worth-
while to consider adding CoreTSAR, or a similar task-
splitting design, to each of OmpSs and StarPU to reduce
overhead for this type of computation.

6 RELATED WORK

With the proliferation of GPUs and other computational
accelerators, several programming models and task schedu-
lers have been proposed specifically for these environments.

In addition to the blocked task schedulers, StarPU [15], [16]
and OmpSs [7], [17], which we discussed in Section 2, other
designs have been proposed. Two major factors distinguish
our work from these schedulers. First, they schedule at the
granularity of discrete tasks, which in each case is defined
by a function call, and forces the user to select the appropri-
ate granularity of work even within a group of related tasks.
Second, they require that the task functions are imple-
mented in terms of blocks of data. These blocks generally
need to be contiguous chunks of data, for common cases
StarPU offers “filters” as a convenient way to divide data
into equal size chunks, and recent work on OmpSS [18] has
added support for potentially non-contiguous rectangular
regions to be passed to tasks. With CoreTSAR, a task granu-
larity may optionally be used, but is not required and often
does not result in the best division of work. As to data
blocks or transformation of tasks to operate on them,
CoreTSAR handles unblocked accelerated OpenMP code,
preserving the semantics of the original parallel region.

More relevant are the approaches taken by Qilin [19] and
the scheduling framework presented by Ravi et al. [20], [21].
These authors present novel heterogeneous programming
APIs that support adaptive scheduling between CPUs and a
GPU. The Qilin API is in the form of a C++ template library
that operates on special array structures and allows runtime
generation of CPU and GPU code. Ravi et al.’s work gener-
ates CPU and GPU code from generalized reduction specifi-
cations. Both require reimplementation of existing codes in
the associated model, constrain the adaptive scheduling
approach to that used by the respective system, and target
only one GPU. Qilin uses an adaptive approach similar to
the one that we used in our previous work on Splitter [10]
to support one GPU. However, they calculate the division
in a training pass and simply reuse it in latter runs. The
framework by Ravi et al. uses a chunk-based mechanism,
with an option to combine chunks for scheduling on the
GPU much in the way our dynamic chunk schedule does.
Alternatively, CoreTSAR handles memory movement and
adaptive scheduling of work while preserving existing code
inside the region. Further it supports a range of scheduling
mechanisms allowing a user to select an adaptive or chunk-
based approach on a per region basis, as well as supporting
an arbitrary number of arbitrarily capable GPUs and CPUs.

Our adaptive scheduling policies are also highly
related to the approach taken by Ayguad�e et al. [22] in
looking for an alternative to the schedule clause
in OpenMP. Rather than employing dynamic, or chunk
style scheduling, they proposed the use of a learning
scheme to do a static split. Their specific prediction meth-
ods and targets were different from ours, but their asser-
tion that the adaptive policies sometimes benefited CPUs
as well may be another reason to incorporate something
like our adaptive schedules into OpenMP.

7 CONCLUSION

We have presented the design and implementation of
CoreTSAR (Task-Size Adapting Runtime). We make four
primary contributions: the design of our scheduler for
adaptive scheduling across arbitrary numbers of hetero-
geneous devices; an implementation and optimization of

Fig. 11. Comparison of CoreTSAR with OmpSs and StarPU.
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that design; the design and evaluation of seven adaptive
scheduling policies; and our evaluation across four
scientific codes, 15 benchmark kernels and a side-by-side
comparison with OmpSs and StarPU. We achieve speed-
ups as high as 3:74� over the best performance that uses
all cores and a single GPU. When compared to the
original CPU performance on eight cores, we achieve as
much as 180� for one benchmark. Further, we present
an extension to our memory management system that
transparently aligns matrices during mapping, improving
performance in some cases by as much as 2:5�. These
results clearly demonstrate the benefits to be gained from
runtime adaptation of task sizes and motivate the addi-
tion of a co-scheduling interface, such as the hetero()

clause that we propose, to Accelerated OpenMP.
As future work, we will investigate more comprehensive

memory association support. Starting from the padding
transformation we presented here, we will pursue more
automatic transformations to allow loop body code to refer-
ence different memory layouts transparently. In the main
scheduler, CoreTSAR could automatically detect NUMA
issues, and the association of GPUs to CPUs and manage
these automatically for greater performance. Finally, the
memory management interface that we present is the first
step towards a general interface for declaring the relation-
ship between tasks and the portions of inputs and outputs
that they require. Given that information, many schedulers,
including ours, could automatically manage input and out-
put, providing significant value especially as computers
become more complex.
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