
http://synergy.cs.vt.edu/

Paul Sathre, Wu Feng

{sath6220, feng} @cs.vt.edu

Virginia Tech   --- Center for Synergistic 
Environments for Experimental Computing

Backend
 Lay

er

Plug
in Lay

er

CUDA 
Backend

OpenCL
Backend

Future 
Device 
Backends

Timer 
Plugin

MPI
Plugin

Fortran 
Compat. 
Layer

Fortran 
2003 API

Future 
Plugins

C API

User 
Apps

-D WITH_CUDA -D WITH_OPENCL -D WITH_BACKENDX

-D WITH_TIMERS -D WITH_MPI -D WITH_FORTRAN -D WITH_PLUGINX

...

...

Design
“Make-your-own”  library  from  

modular building blocks

Include only needed plugins 
and backends

Core 1Core 0

Core 5Core 4

Core 3Core 2

Core 7Core 6

AcceleratorNIC

Node 0

Plugins

MPI

NVIDIA GPU - CUDA

Interconnect

Interconnect

PCI-E

Core 1Core 0

Core 5Core 4

Core 3Core 2

Core 7Core 6

AcceleratorNIC

Node 1 NVIDIA GPU - CUDA

PCI-E

Core 1Core 0

Core 5Core 4

Core 3Core 2

Core 7Core 6

AcceleratorNIC

Node 3 Intel MIC - OpenCL

PCI-E

Core 1Core 0

Core 5Core 4

Core 3Core 2

Core 7Core 6

NIC

Node 2 CPU - OpenCL

PCI-E

Core 1Core 0

Core 5Core 4

Core 3Core 2

Core 7Core 6

AcceleratorNIC

Node 4 AMD GPU - OpenCL

PCI-E

MPI
On-device packing of 

ghost regions

GPU Direct option, if 
available with MPI/ 
backend

Fallback to host-staged 
transfers otherwise

Transparently exchange 
device buffers 
between processes, 
regardless of backend

Automatic Profiling

Fortran Compatibility

If compiled in, all kernels 
and transfers are 
timed behind the 
scenes automatically

Environment variable 
controls verbosity

Introduction

Accelerated Backends

Purpose-built to provide single API 
to accelerated kernels for 
current and future devices

Runtime control over 
backends, plugins, 
and accelerator 
device selection

Verbose pass-by-reference C API, 
usable with ISO_C_BINDINGS

Fortran 2003 wrapper to verbose API 
provides simplified, unified calling 
convention for supported real and 
integer types

Uses C API internally, so all runtime 
control variables work equivalently

Performance

Heterogeneity is becoming a fact of life 
in HPC, largely driven by demands for 
increased parallelism and power efficiency 
over what traditional CPUs can provide.

However, extracting the full 
performance of heterogeneous 
systems is non-trivial and 
requires architecture expertise.

Future Work

Retrofitting existing codes for 
heterogeneity is tedious and error-prone, 
architecture experts are in short supply, 
and accelerators are moving targets.

Therefore, a single API for transparently 
executing optimized code on 
accelerators with minimal intervention 
is needed for scientific productivity.

Related Efforts
Solver Frameworks

The heavy-lifters of the library, selected at 
runtime  by  a  “mode”  environment  variable  
from those included at compile-time

Include implementations of all C API-supported 
kernels for a single accelerator model

Standalone libraries in their own right can be used 
and distributed separately from the top-
level API, as long as they are API compliant, 
supporting community development of 
closed- or open-source alternatives

Currently support both CUDA and 
OpenCL, providing access to the 
most popular accelerators

Currently support simple operations on 
subsets of 3D dense matrices: 
reduction-sum, dot-product, 2D 
transpose, pack/unpack of 
subregions

More kernels from computational fluid 
dynamics in the pipeline; extensions 
to other domains to follow, simply a 
matter of adding necessary kernels

Figure of MPI Exchange 
performance testing, of 

packing/unpacking ghost 
regions, in GPUDirect, host-
staged, and mixed-backend  

transfers

Figure of API Plugin overheads 
(timing, Fortran API vs. Strictly C 

API)

All tests performed in-node on a single system 
containing: 2x Intel Xeon X5550 Quad-core 
CPUs, 20GB RAM, and 4x Tesla C2070 GPUs

Continue  expanding  the  API’s  provided  set  of  
kernels and backends with other primitive 
operations underlying fluid simulations. i.e. 
Krylov solvers, stencil computations, and 
various preconditioners

Generalize operations to work on non-3D data, 
and add primitives for computations on 
unstructured grids

Generate a third automatically runtime-scheduled 
backend to transparently execute code 
across entire node, a la CoreTSAR [7].

Solver Libraries

OpenFOAM [1]

MAGMA [3]

PARALUTION [2]

Trilinos [4]

Pros: Support for useful pre- and post-processing (mesh 
generation and visualization); many solvers for many domains

Cons: No internal accelerator support; framework-centric 
development;  cumbersome  API  and  “case”  construction

Pros: Many matrix storage formats; many solvers; many 
preconditioners; support for OpenMP, CUDA, and OpenCL on 
CPUs/GPUs and MIC; plugins for Fortran and OpenFOAM

Cons: Framework-centric development; interop. with existing 
code low; no MPI support (yet), asynchronous operations only 
on CUDA; lack of non-destructive copy to/from C arrays

Pros: Full BLAS and LAPACK support for CUDA, OpenCL, and 
MIC; support for several factorizations and eigenvalue 
problems; smart scheduling of hybrid CPU/GPU algorithms 
with QUARK directed acyclic graph scheduler; Multi-GPU 
methods

Cons: CUDA, OpenCL, and MIC variants are separate 
implementations; no internal MPI support;  MKL/ACML 
dependency poorly documented and cumbersome

Pros: Massive set of capability areas beyond linear algebra, 
solvers, and meshes; built-in distributed memory support; 
some preliminary CUDA/MIC work (e.g. Kokkos, Phalanx, 
Tpetra packages)

Cons: Redundancies of capability between packages; breadth 
of packages difficult to navigate for newcomers

[1] H. Jasak, A. Jemcov, and Z. Tukovic,  “OpenFOAM: A C++ library for complex 
physics  simulations.”
[2] D. Lukarski,  “PARALUTION  project  v0.7.0,”  2012.
[3] J. Dongarra, M. Gates, A. Haidar, J. Kurzak, P. Luszczek, S. Tomov, and I. 
Yamazaki,  “Accelerating  Numerical  Dense  Linear  Algebra  Calculations with GPUs,”  in  

Numerical Computations with GPUs. Springer, 2014, pp. 3–28.
[4] M. A. Heroux, R. A. Bartlett, V. E. Howle, R. J. Hoekstra, J. J. Hu, T. G. Kolda, R. B. 
Lehoucq, K. R. Long, R. P. Pawlowski, E. T. Phipps, A. G. Salinger, H. K. Thornquist, 
R. S. Tuminaro, J. M. Willenbring, A.  Williams,  and  K.  S.  Stanley,  “An  overview  of  the  
Trilinos project,”  ACM Trans. Math. Softw., vol. 31, no. 3, pp. 397–423, 2005.

[5] AMD. clMath (formerly APPML). Accessed 2014.10.17. [Online]. Available: 
http://developer.amd.com/tools-and-sdks/opencl-zone/amd-accelerated-parallel-
processing-math-libraries/
[6] D. K. Panda. MVAPICH: MPI over InfiniBand, 10GigE/iWARPand RoCE. Network-
Based Computing Laboratory, The Ohio State University. Accessed 2014.10.17. 

[Online]. Available: http://mvapich.cse.ohio-state.edu/
[7] T. Scogland, W.-c. Feng, B. Rountree, and B. de Supinski,  “CoreTSAR: Adaptive 
Worksharing for  Heterogeneous  Systems,”  in  Supercomputing, ser. Lecture Notes in 
Computer Science, J. Kunkel, T. Ludwig, and H. Meuer, Eds. Springer International 
Publishing, 2014, vol. 8488, pp. 172–186.

This work was funded in part by the Air Force Office 
of Scientific Research (AFOSR) Basic Research 
Initiative from the Computational Mathematics 
Program via Grant No. FA9550-12-1-0442.

Figure of transpose 
performance vs. alternative GPU 

BLAS libraries

MKL float (CPU)
MKL double (CPU)
MetaMorph+OpenCL float (GPU)
MetaMorph+OpenCL double (GPU)
MetaMorph+CUDA float (GPU)
MetaMorph+CUDA double (GPU)
clMAGMA float (GPU)
clMAGMA double (GPU)
cuMAGMA float (GPU)
cuMAGMA double (GPU)

100

10-1

10-2

10-3

10-4

MetaMorph Transpose vs. Alternatives

Transpose Size

T
im

e 
pe

r e
le

m
en

t (
µs

)

Figure of dot-product 
performance vs. alternative GPU 

BLAS libraries
64 512 4K 32K 256K 2M 16M 128M

PLASMA/MKL float (CPU)
PLASMA/MKL double (CPU)
ATLAS float (CPU)
ATLAS double (CPU)
MetaMorph+OpenCL float (GPU)
MetaMorph+OpenCL double (GPU)
MetaMorph+CUDA float (GPU)
MetaMorph+CUDA double (GPU)
clAmdBlas float (GPU)
clAmdBlas double (GPU)
cuMAGMA float (GPU)
cuMAGMA double (GPU)

100

10-1

10-2

103

104

101

102

MetaMorph Dot Product vs Alternatives

Vector Length

T
im

e 
pe

r e
le

m
en

t 
(µ

s)

MPI Exchange Primitives

Vector Length

T
im

e 
pe

r e
le

m
en

t (
µs

)
0

500

1000

1500

2000

2500

3000

H2D Copy  D2D Copy D2H Copy Dot Product

C+CUDA
C+OpenCL
C+Timers+CUDA
C+Timers+OpenCL
Fortran+CUDA
Fortran+OpenCL
Fortran+Timers+CUDA
Fortran+Timers+OpenCL

MetaMorph Fortran & Timer Plugin Overhead

T
ot

al
 t

im
e 

pe
r c

al
l, 

221
flo

at
s 

(µ
s)

2x2 4x4 8x8 16x16 32x32 64x64
0

5

10

15

20

25

30

35

40

45

50 GPU Direct Pack CUDA Pack
GPU Direct Send CUDA Send
GPU Direct Recv CUDA Recv
GPU Direct Unpack CUDA Unpack
OpenCL Pack CUDA-to-OpenCL Pack
OpenCL Send CUDA-to-OpenCL Send
OpenCL Recv CUDA-to-OpenCL Recv
OpenCL Unpack CUDA-to-OpenCL Unpack

2D Face Size

MetaMorph Transparent Face Exchange Primitive

T
im

e 
p

er
 f

lo
at

 e
le

m
en

t 
(µ

s)

Umar Kalim
SC|14: ACM/IEEE International Conference on High-Performance Computing, Networking, Storage, and Analysis, New Orleans, LA, Nov. 2014.


