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Introduction

Accelerated Backends

Purpose-built to provide single API 
to accelerated kernels for 
current and future devices

Runtime control over 
backends, plugins, 
and accelerator 
device selection

Verbose pass-by-reference C API, 
usable with ISO_C_BINDINGS

Fortran 2003 wrapper to verbose API 
provides simplified, unified calling 
convention for supported real and 
integer types

Uses C API internally, so all runtime 
control variables work equivalently

Performance

Heterogeneity is becoming a fact of life 
in HPC, largely driven by demands for 
increased parallelism and power efficiency 
over what traditional CPUs can provide.

However, extracting the full 
performance of heterogeneous 
systems is non-trivial and 
requires architecture expertise.

Future Work

Retrofitting existing codes for 
heterogeneity is tedious and error-prone, 
architecture experts are in short supply, 
and accelerators are moving targets.

Therefore, a single API for transparently 
executing optimized code on 
accelerators with minimal intervention 
is needed for scientific productivity.

Related Efforts
Solver Frameworks

The heavy-lifters of the library, selected at 
runtime  by  a  “mode”  environment  variable  
from those included at compile-time

Include implementations of all C API-supported 
kernels for a single accelerator model

Standalone libraries in their own right can be used 
and distributed separately from the top-
level API, as long as they are API compliant, 
supporting community development of 
closed- or open-source alternatives

Currently support both CUDA and 
OpenCL, providing access to the 
most popular accelerators

Currently support simple operations on 
subsets of 3D dense matrices: 
reduction-sum, dot-product, 2D 
transpose, pack/unpack of 
subregions

More kernels from computational fluid 
dynamics in the pipeline; extensions 
to other domains to follow, simply a 
matter of adding necessary kernels

Figure of MPI Exchange 
performance testing, of 

packing/unpacking ghost 
regions, in GPUDirect, host-
staged, and mixed-backend  

transfers

Figure of API Plugin overheads 
(timing, Fortran API vs. Strictly C 

API)

All tests performed in-node on a single system 
containing: 2x Intel Xeon X5550 Quad-core 
CPUs, 20GB RAM, and 4x Tesla C2070 GPUs

Continue  expanding  the  API’s  provided  set  of  
kernels and backends with other primitive 
operations underlying fluid simulations. i.e. 
Krylov solvers, stencil computations, and 
various preconditioners

Generalize operations to work on non-3D data, 
and add primitives for computations on 
unstructured grids

Generate a third automatically runtime-scheduled 
backend to transparently execute code 
across entire node, a la CoreTSAR [7].

Solver Libraries

OpenFOAM [1]

MAGMA [3]

PARALUTION [2]

Trilinos [4]

Pros: Support for useful pre- and post-processing (mesh 
generation and visualization); many solvers for many domains

Cons: No internal accelerator support; framework-centric 
development;  cumbersome  API  and  “case”  construction

Pros: Many matrix storage formats; many solvers; many 
preconditioners; support for OpenMP, CUDA, and OpenCL on 
CPUs/GPUs and MIC; plugins for Fortran and OpenFOAM

Cons: Framework-centric development; interop. with existing 
code low; no MPI support (yet), asynchronous operations only 
on CUDA; lack of non-destructive copy to/from C arrays

Pros: Full BLAS and LAPACK support for CUDA, OpenCL, and 
MIC; support for several factorizations and eigenvalue 
problems; smart scheduling of hybrid CPU/GPU algorithms 
with QUARK directed acyclic graph scheduler; Multi-GPU 
methods

Cons: CUDA, OpenCL, and MIC variants are separate 
implementations; no internal MPI support;  MKL/ACML 
dependency poorly documented and cumbersome

Pros: Massive set of capability areas beyond linear algebra, 
solvers, and meshes; built-in distributed memory support; 
some preliminary CUDA/MIC work (e.g. Kokkos, Phalanx, 
Tpetra packages)

Cons: Redundancies of capability between packages; breadth 
of packages difficult to navigate for newcomers
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Figure of dot-product 
performance vs. alternative GPU 
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MPI Exchange Primitives
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