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Abstract—We present a composable workflow to enable highly-
productive heterogeneous computing on FPGAs. The workflow consists
of a trio of static analysis and transformation tools: (1) a whole-
program, source-to-source translator to transform existing parallel code
to OpenCL, (2) a set of OpenCL kernel linters, which target FPGAs to
detect possible semantic errors and performance traps, and (3) a whole-
program OpenCL linter to validate the host-to-device interface of OpenCL
programs. The workflow promotes rapid realization of heterogeneous par-
allel code across a multitude of heterogeneous computing environments,
particularly FPGAs, by providing complementary tools for automatic
CUDA-to-OpenCL translation and compile-time OpenCL validation in
advance of the very expensive compilation, placement, and routing on
FPGAs, respectively. The proposed tools perform whole-program analysis
and transformation to tackle real-world, large-scale parallel applications.
The efficacy of the workflow tools is demonstrated via a representative
translation and analysis of a sizable CUDA finite automata processing
engine as well as the analysis and validation of an additional 96 OpenCL
benchmarks and applications.

I. INTRODUCTION

Heterogeneous computing has become a frontrunner in the com-
putational race for performance and energy efficiency. FPGAs, in
particular, have gained increasing attention in the general-purpose
computing community due to the emergence of high-level synthesis
(HLS) tools based on OpenCL [1], [2]. Ideally, heterogeneous code
should be “write once, run anywhere” regardless of the target device.
In practice, however, productivity is limited by the community
fragmentation between programming languages and the significant in-
vestment in the existing heterogeneous code implemented in vendor-
specific languages such as CUDA [3]. Therefore, FPGAs could signif-
icantly benefit from automated tools to port the vendor-specific code
to the vendor-agnostic OpenCL, thus allowing devices to be procured
on the basis of performance, energy efficiency, and cost, rather than
language compatibility only. Further, the FPGA is a new platform
for many GPGPU and CPU-only software developers, presenting
an opportunity for productivity tools to reduce the learning curve
by providing advisories about the unique semantic and performance
pitfalls present in OpenCL-on-FPGA development.

More importantly, the translation between programming languages
should be done statically at the source-code level to support software
maintainability, i.e., code modifications, adaptations, and extensions,
on the new target platforms. To automate such a daunting task,
researchers have created several source-to-source translators with a
specific focus on CUDA-to-OpenCL translation [4]–[7] to leverage
the wealth of the existing CUDA code on alternative heterogeneous
platforms such as FPGAs. However, these tools only work on a single
translation unit (TU) — i.e., a single source file and all the included
headers — at a time, which limits their ability to propagate code
transformations broadly across large, multi-file parallel codes.

Real-world applications follow a modular design methodology
that separates the application’s functionality into multiple software
components (modules) to improve software maintainability and to
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promote code reuse. Thus, there exists a compelling need for tools
that examine applications holistically (e.g., spanning all source files
in the codebase at once) to observe possible inconsistencies and affect
wide-reaching global transformations.

As such, this paper presents a workflow of automated tools that
provides whole-program analysis and transformation both within and
across source files in support of productive OpenCL programming on
heterogeneous parallel systems with FPGAs, GPUs, and/or CPUs.
Whole-program analysis and transformation (e.g., refactoring and
translation) is difficult to perform in the context of separately com-
piled and linked languages, such as C/C++ and derivatives (CUDA
and OpenCL), because of the traditionally hard separation between
TUs at compile time. However, robust cross-TU tools can be realized
by restricting the problem to only the necessary explicitly-shared
interfaces that bridge between TUs at link time or runtime (i.e., via
shared headers).

Specifically, we make the following research contributions:
• A workflow of automated, composable tools to rapidly accel-

erate the development process of heterogeneous parallel code.
Specifically, CU2CL-MAST1 is a whole-program source-to-source
translator that holistically transforms existing heterogeneous ap-
plications from the vendor-specific CUDA to the vendor-agnostic
OpenCL. FLOCL2 and FLOCL-MAST3 are static code analyzers
(i.e., linters) for single-file, kernel code and cross-file, host-to-
device code, respectively, which detect possible semantic errors,
runtime failures, and performance traps before investing time in
expensive compilation and debugging/profiling (see §II).

• A case study of transforming a finite automata code (iNFAnt)
from CUDA to OpenCL via CU2CL-MAST and validation of the
resulting code with the FLOCL and FLOCL-MAST linters, thus
enabling iNFAnt to run on other accelerators (e.g., FPGAs and
AMD GPUs) in addition to NVIDIA GPUs (see §III).

• An analysis of common semantic faults detected by the workflow
tools in OpenCL benchmark suites. Specifically, FLOCL identifies
over 155 potential kernel performance and semantic faults within
the kernel files of five common OpenCL benchmark suites. In
addition, FLOCL-MAST detects inconsistent kernel calls between
statically-compiled host code and JIT-compiled device code, which
can result in undefined run-time behavior (see §III).

II. WHOLE-PROGRAM WORKFLOW

Figure 1 presents an overview of the proposed workflow and
explains how the tools interact. To migrate an existing CUDA code to
OpenCL for execution on an FPGA or alternative OpenCL platform,
CU2CL-MAST (§II-D) expands an existing CUDA-to-OpenCL trans-
lator to the whole-program scope to tackle large-scale applications.
OpenCL kernel files (handwritten or translated by CU2CL-MAST)

1CUDA-to-OpenCL translator with Multi-Abstract Syntax Trees
2FPGA Linters for OpenCL
3FLOCL with Multi-Abstract Syntax Trees
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Fig. 1: The workflow consists of three tools that can be used in concert or isolation: 1) CU2CL-MAST, to migrate existing CUDA codes to OpenCL, 2)
FLOCL, to advise of possible flaws in OpenCL kernels, and 3) FLOCL-MAST, to ensure OpenCL kernels have a consistent interface between host and device.

are individually analyzed with FLOCL (§II-A) to detect OpenCL-
and FPGA-specific semantic and performance faults. Next, the entire
OpenCL application (i.e., all host and kernel files) is further inspected
with FLOCL-MAST (§II-C2) to validate the separately-compiled,
host-to-device interface. Changes suggested by the linter are then
manually implemented by the developer. Finally, after these rapid
refinement stages at the source-code level, the long kernel compilation
process is performed to execute the OpenCL application on the FPGA
device.

The following subsections detail the design and implementation
of the workflow tools, including our multi-AST (abstract syntax
tree) framework that enables cross-file operations, how we leverage
Clang’s libTooling for code management, as well as the FLOCL,
FLOCL-MAST, and CU2CL-MAST tools themselves.

A. Multi-AST Framework

A secondary contribution underlying the CU2CL-MAST and
FLOCL-MAST tools is our multi-AST framework that allows the
tools to operate across all the source files in an application within
a single invocation. This framework is necessitated by the design
of C, C++, and other parallel C-like languages (e.g., CUDA and
OpenCL), in which the source files (i.e., translation units or TUs)
are separately compiled into individual object files, and then linked
into a single binary/executable file, as shown in Figure 2. These
TUs are only aware of each other based on explicit interfaces (i.e.,
declarations) provided by the programmer via shared header files.
While the division of a software program into multiple TUs improves
software maintainability, it complicates the design of any tool that
operates on an entire application. Thus, we create a framework for
transformation and analysis across multiple TUs that traverses the
ASTs of all source files and enables the elements present in a given
AST to affect actions elsewhere in other source files’ ASTs.
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Fig. 2: Typical separate compilation of object files before linking together.

Figure 3 shows the design of the framework that provides several
critical components to enable the creation of source-level, cross-
file tools. First, it leverages the Clang [8] compiler’s libTooling
API and frontend to parse the individual source files and translate
them into navigable ASTs for use in later stages. The libTooling
library provides control and modification of the behavior of Clang’s
compiler frontend, providing fine-grained control over the processing

of individual TUs into ASTs. Second, the framework uses custom per-
file logic to perform local AST analysis and source transformation
and to record interesting AST features for use in the following cross-
file stage. Finally, the cross-file stage relies on the minimal shared
interface between link units to connect across ASTs and to process
the cross-file interactions recorded in the per-file stage. The following
subsections detail the design of each framework stage and their roles
in creating the multi-AST transformation and analysis tools.
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Fig. 3: Multi-AST tools coordinate across invocations of the Clang frontend
to provide whole-program translation or analysis.

B. AST Generation and Management

The Clang compiler acts as the framework’s driver that translates
source files into ASTs, and the libTooling API provides a mechanism
to manage multiple invocations of Clang, customize the Frontend-
Actions they apply to process source code into ASTs, and access
the resulting ASTs and auxiliary data structures.

Algorithm 1 Skeleton of multi-AST Tool execution.
START
Custom option processing
Pre-Clang actions
for each source file from command line do

Customize frontend invocation via callback
Invoke Clang frontend
Frontend parsing, lexing, AST-generation
Post-frontend, per-file actions, record deferred work

end for
Multi-AST actions (consume deferred work)
END

Algorithm 1 provides a skeleton of the execution phases of our
multi-AST tools. The cross-file tools customize the frontend behavior
on a per-file basis (i.e., to provide different compilation options for
OpenCL device and host files) via pre-frontend callbacks. Next, Clang
performs the parsing, lexing, semantic analysis, and AST generation
for each file. The custom FrontendActions implement the tool-
specific, per-file processing and then traverse the ASTs to record
the potential cross-file work in a tool scope above the individual
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1 s t r u c t m i s a l i g n e d {
2 c h a r a ;
3 do ub l e b ;
4 c h a r c ;
5 } ;
6
7 s t r u c t p a c k e d a n d a l i g n e d {
8 c h a r a ;
9 do ub l e b ;

10 c h a r c ;
11 } a t t r i b u t e ( ( packed ) )
12 a t t r i b u t e ( ( a l i g n e d ( 1 6 ) ) ) ;

(a) Example of a misaligned and
unpacked struct that would use
24 bytes as well as an equivalent
packed and aligned struct that
uses 16 bytes.

1 F inde r−>addMatcher (
2 r e c o r d D e c l (
3 i s S t r u c t ( )
4 ) . b ind ( ” s t r u c t ” ) , t h i s ) ;

(b) The ASTMatcher used to
find inefficient struct that may
be misaligned or poorly packed.

1 S t r u c t = R e s u l t . Nodes . getNodeAs<RecordDecl >(” s t r u c t ” ) ;
2 / / Sum t h e b i t wid th o f a l l f i e l d s i n t h e r e c o r d
3 f o r each f i e l d i n t h e r e c o r d { minWidth += f i e l d W i d t h }
4 / / Compute min . e f f i c i e n t member a l i g n m e n t ( l a r g e s t f i e l d member )
5 / / Compute min . a l l o w a b l e wid th ( even m u l t i p l e o f minAlignment <= sumWidth )
6 i f ( c u r r W i d t h > minWidth ) {
7 Emit ’ ’ p o o r l y packed ’ ’ d i a g n o s t i c
8 }
9 / / Compute t h e minimum e f f i c i e n t s t r u c t a l i g n m e n t

10 / / ( s m a l l e s t power o f two up t o t h e dev i ce ’ s l o a d wid th >= minWidth )
11 i f ( minAl ign != c u r r A l i g n ) {
12 Emit ’ ’ p o o r l y a l i g n e d ’ ’ d i a g n o s t i c
13 }

(c) Skeleton of the Match Callback used to filter out only problematic structs.
Alignment and packed width calculations omitted for clarity.

Fig. 4: Example code for the inefficient struct alignment and packing check.

Clang invocations. (The different FrontendActions are detailed
further in subsequent sections.) After all Clang invocations, the tool
utilizes the generated ASTs and deferred work to perform the cross-
file analysis and/or transformation.

C. FLOCL and FLOCL-MAST

FLOCL and FLOCL-MAST improve the productivity of program-
mers in developing OpenCL applications for FPGAs by providing
additional compile-time advisories about potential semantic or per-
formance faults. The single-file, kernel linters are implemented as a
set of modules for the clang-tidy [9] tool. However, many of the
complexities of OpenCL development arise because the OpenCL
specification necessitates separate compilation of the host and de-
vice codes to support portability across platforms. Therefore, the
additional cross-file FLOCL-MAST is devised to detect interface
inconsistencies between the separately-compiled OpenCL host and
device codes.

1) FLOCL: The clang-tidy [9] tool provides a robust framework
for building linters that target C-like languages and already supports
a number of common linting passes (such as refactoring deprecated
API usages and identifying dead code). However, as a sub-dialect of
C, general OpenCL kernels as well as FPGA-specific kernels have
special constraints that require unique linting passes. Thus, new linter
modules for OpenCL and FPGA (i.e., “FLOCL”) are devised.

Modules to clang-tidy are written using the Clang ASTMatchers
interface, which provides a way to target specific abstract syntax
sub-trees (Sub-ASTs — essentially restricted-scope subsets of the
application code, such as a single function call, a nested if/else
tree, or entire function definition) that are defined in terms of the node
types and their relationships. Once matches are found, a user-defined
callback is triggered to analyze each match. Hence, each FLOCL
check is implemented as a matcher for a specific OpenCL construct
and a callback to diagnose it. These checks typically implement
guidelines or restrictions from the OpenCL standard, OpenCL SDK
documentations, and/or literature. To create a new linter, a synthetic
code example is manually constructed to exhibit the behavior, and
then the AST representation of the code is examined for the minimum
matchable Sub-AST. A matcher to catch the symptomatic Sub-ASTs
is constructed, and then a match callback is implemented to provide
further refinement and diagnostics.

We currently provide checks for inefficiently aligned/packed structs
(§II-C1a), barriers in single-threaded kernels (§II-C1b), possibly-
unreachable barriers inside conditionals (§II-C1d), and ID-dependent
backward branching (§II-C1e). These checks are derived from re-
strictions in the OpenCL specification and the Intel/Altera FPGA best
practices guides. Additionally, a technique was developed (§II-C1c)
to track variable assignments to ensure that a given variable never

held a thread-dependent value, which is necessary to significantly
reduce the false positive rate of checks (§II-C1d) and (§II-C1e).

a) Inefficient struct alignment and packing: Ensuring efficient
device memory access can improve the performance of an OpenCL
kernel. When targeting Intel FPGAs, a minimum memory alignment
of four (4) bytes is desired, and an optimal 128-byte alignment is
suggested [10]. Users who are unfamiliar with OpenCL may not be
aware of the importance of memory alignment and packing or the
exposed attributes used to override the compiler defaults. Therefore,
a linter is implemented to identify structs that do not use optimal
packing and alignment and suggest appropriate attributes for the
developer to add. Figure 4 provides an example of a struct that could
benefit from both explicit packing and alignment attributes; it shows
a skeleton of the linter used to identify it.

The linter’s ASTMatcher detects every struct identified in the
device code. Next, the match callback examines the default packing
and alignment inferred by Clang and then computes the minimum
efficient size and alignment based on the size of individual struct
elements. Specifically, it computes the minimum size of the struct
as if the elements are stored contiguously; it then computes the
minimum alignment sufficient to fit the contiguous elements. If the
Clang-generated size is larger than this computed minimum size,
a diagnostic is emitted advising the use of a packed attribute. If
the minimum computed alignment differs from the Clang-generated
alignment, a similar diagnostic is emitted, suggesting the proper
alignment attribute to use. (Since we are targeting Intel FPGA
devices, this value is bounded by a maximum 128-byte alignment.)

b) Single-work item barriers: The Intel FPGA OpenCL plat-
form synthesizes hardware differently during kernel compilation if
an OpenCL kernel is suited for execution across multiple work items
(NDRange) versus a single work item (SWI). It determines suitability
based on calls to OpenCL kernel functions and/or compiler attributes;
it also varies with the version of the device compiler. For example,
calls to either get_global_id or get_local_id result in
compilation as an NDRange kernel [10], [11]. If the user intends
the kernel for SWI execution, any barrier synchronization should
instead be relaxed to a mem_fence. Consequently, we developed
a linter to address the presence of barriers in potential SWI kernels.
The matcher detects any OpenCL kernel function with barriers but
without calls to a global or local ID function. The callback then
provides a custom message, based on the target compiler version, to
indicate that either the barrier must be removed or should be replaced
with a mem_fence for performance.

c) Thread-dependency tracking: Several performance and se-
mantic issues result from divergent threads within a OpenCL kernel.
When threads take separate paths, performance suffers due to seri-
alization and/or generation of less-efficient FPGA hardware. Further,
such divergence can result in deadlocks when barrier semantics are
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Fig. 5: Conceptual overview of FLOCL-MAST execution. Host and device files are recognized by file type (1) and each go through a separate instance of
the Clang Frontend to be processed to ASTs. After the ASTs are generated, they each use AST Matchers and callbacks to record relevant AST nodes for
the cross-file stages (2). After all per-file actions are completed the cross-AST portion of the tool iterates over saved information (3) to pair kernel function
prototypes to their host-side representations (4) and their uses (5) & (6), then inspects them for type consistency between arguments and parameters (7).

required but improperly used. Therefore, we created a helper linter
to track the variables that may contain thread-dependent values and
to flag any conditionals that reference these variables.

The helper linter detects all variable declarations within a kernel.
When a variable is assigned the return value from a global or local
ID function, it is marked as thread-dependent by the match callback.
Further, the linter tracks the flow of the thread-dependency through
multiple assignments to mark all the thread-dependent variables. This
helper is used by the next two linters to determine if conditional
expressions have a risk of being thread-dependent.

d) Possibly-unreachable barriers: A barrier is a common and
often necessary synchronization mechanism; however, it is also a
potential source of deadlocks that can be hard to debug at runtime.
(On FPGA platforms with long kernel compilation, the productivity
cost to resolve such a deadlock is further exacerbated.) A source
of barrier deadlocks is the unintentional violation of the OpenCL
specification by placing a barrier within a conditional region that is
not reliably executed by all threads in a work-group.

The helper linter discussed in §II-C1c, is used to flag the “risky”
(potentially thread-dependent) conditional expressions. It looks for
any of the five primitive branch types (if/else, switch/case,
do/while, while and for) that contain both a risky conditional
expression and a call to a barrier function. The match callback
identifies what type of branch is present (for emitting a precise
diagnostic), whether the conditional is in fact thread-dependent, and
if so, whether it is due to a direct call to a global/local ID function
or a reference to an ID-dependent variable. However, barriers can
still be used safely (if inefficiently) in a thread-dependent manner, if
all branches reliably encounter the barrier. ID-dependency tracking
reduces the false-positive hits, but it does not address such valid in-
branch barriers. To address this case, the linter includes a refinement
step to reduce the false positives even further in if/else and
switch/case statements, where all the possible paths execute the
same number of barriers. (A full explanation is omitted for brevity.)

e) ID-dependent backward branches: In the context of FPGAs,
OpenCL kernels are synthesized as hardware pipelines. For efficiency
reasons, the Intel compiler tries to collapse branch statements into a
single bit indicating if a functional unit is active [10]. This is straight-
forward for “forward” branches (without loops), resulting in flat
control structures. However, looped (i.e., “backward”) branches are
more difficult to implement and can significantly reduce performance,
and so they should be avoided. While some algorithms may require
backward branches, many can be removed via algorithmic refactoring.
Therefore, a linter has been designed to recognize the potential ID-
dependent backward branching to advise users to consider refactoring
their kernels.

ID-dependent backward branches, by definition, cannot be resolved
and optimized at compile time, and thus, result in more complex
hardware-generated FPGA logic. Therefore, the linter needs to make
use of the thread-dependency tracker that we have previously detailed.
As before, the linter matches on any loop with a risky conditional
expression, and then the callback determines if the conditional may
be thread-dependent and emits a diagnostic.

2) FLOCL-MAST: FLOCL-MAST expands on FLOCL by pro-
viding a standalone multi-AST framework for developing new linters
that require simultaneous access to multiple TUs. An important
example is linters that work across the host and device TUs to ensure
semantic consistency. In large-scale applications, it can be difficult
to ensure that modifications to the host-device interface are applied
consistently in the whole program, which can lead to burdensome
runtime bugs. For example, if the type, number, or position of kernel
parameters changed, the application will crash and OpenCL’s runtime
can report an error (granted that proper error checking is implemented
in the code), wasting valuable compilation and execution time. Thus,
our Multi-AST linter, the first to apply the multi-AST technique to
OpenCL, implements a check to ensure the semantic consistency of
each of the arguments provided to a device kernel invocation.

FLOCL-MAST operates in two distinct phases: (1) a per-file phase
that records information from each kernel or host file and (2) a
cross-file phase that validates this information and reports potential
problems. Figure 5 provides a conceptual overview of the flow from
source code to diagnostics. Similar to FLOCL, the per-file recording
phase is implemented as a set of ASTMatchers and callbacks that
identify the code components of each stage of the OpenCL kernel
invocation. It records kernel function declarations from device ASTs
and the host-side kernel object (cl_kernel) binding, argument
assignment, and launch functions from host ASTs. Further, each time
a cl_kernel is declared, the storage space is checked; if it is global
(and possibly extern) it is stored in a special cross-file data structure
that maps global externs to their real definition (i.e., the object file
that will actually store the variable) for compatibility with CU2CL-
MAST-generated applications.

After completing the per-file analysis on all device and host ASTs,
the multi-AST portion of the tool combines information from each
of the kernel invocation stages. First, each cl_kernel binding
is checked for an exact match of the kernel name argument in
its clCreateKernel call to the name of a prototype from a
device AST. When such a match is found, FLOCL-MAST stores
a “binding” of the prototype declaration from the device AST to the
assigned cl_kernel in the host AST. Next, all kernel-argument
assignment (clSetKernelArg) calls are “clustered” to kernel
launches heuristically by finding the lexically-next kernel launch with
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a matching cl_kernel object. Lexically-next refers to the next
launch encountered when scanning the source code from beginning
to end, and it is highly effective as the argument specifications
directly precede the kernel invocations in typical use cases. Following
argument clustering, the next stage iterates over every kernel launch
and attaches them to a prototype with a matching cl_kernel
object, if one exists.

Finally, each kernel launch is compared to its attached device
prototype to ensure that (1) all arguments are provided and (2) each
argument has a compatible type to that of the declared parameter in
the same position. This comparison must account for the difference
between the pass-by-reference semantics of clSetKernelArg and
the pass-by-value semantics of the kernel. Hence, the copy-from void
pointer arguments to clSetKernelArg must be resolved to a non-
void pointee type, if possible. (Typically the address of variables to
copy is taken and type-cast to void within the call, which is easy
to resolve.) Pointer parameters on the device must be assigned as
either cl_mems (for global and constant memory) or a NULL
pointer with a custom size argument for local memory. The former
currently uses a wildcard match of any pointer to a cl_mem, and the
latter is currently unsupported; both will be refined as future work.

This cross-file linter is useful as a demonstration of the complexity
of multi-AST analysis in comparison to the per-file analysis provided
by basic FLOCL. While both FLOCL and FLOCL-MAST use the
same underlying ASTMatcher technology, the complexity of the
analysis dramatically increases once the tool works across the ASTs
of different translation units (TUs).

D. CU2CL-MAST

CU2CL [6] is an automated CUDA-to-OpenCL translator that
performs AST-driven, string-based translation, i.e., CU2CL walks
the AST generated by Clang to identify CUDA expressions and
then translates the code by replacing the relevant text directly. This
has the benefit of preserving preprocessor directives, comments,
and formatting in the generated OpenCL source files. However, the
original CU2CL was restricted to a single translation unit (TU) — it
could not deal with the extra complexity of a multi-file application
without tedious manual pre- and post-processing (e.g., merging the
generated OpenCL boilerplate), and translations spanning files would
be impossible to fully complete. Therefore, a primary contribution
of this work is to apply the Multi-AST framework to CU2CL to
support whole-program translation, resulting in the new “CU2CL-
MAST” (Multi-AST).

Applying the multi-AST framework to CU2CL consisted of four
stages. First, a libTooling interface was built to bootstrap and contain
multiple instances of the existing per-file translation functionality, fol-
lowing the design detailed in §II-B. Second, to ensure completeness
of translation, a restriction that translated files had either the .cu or
.cuh extension was relaxed, since CUDA types and runtime calls can
be used with and passed through .c/.h and .cpp/.hpp source
files. Third, per-file boilerplate generation was modified such that
common elements are produced by the cross-file layer and generated
in a shared set of cu2cl_util.c/h/cl utility files. Furthermore,
within each TU, the cross-file layer generates extern declarations
for cl_programs and cl_kernels originating in other TUs to
share newly-generated OpenCL state across object files. Together
the first three stages provide a unified multi-file variant of CU2CL,
which already simplifies post-translation development. However to
demonstrate the new translation capability afforded by the multi-AST
framework, a fourth stage providing a significant new translation was
added. By providing a framework for translations to causally trigger

further translations elsewhere in the codebase (in either the same or
another AST), this novel stage tackles the longstanding incongruity
between OpenCL and CUDA representations of pointers to device-
side buffers: OpenCL stores the host-side pointer to a device buffer
in a cl_mem object, whereas CUDA allows storage of such pointers
in any arbitrary pointer type.

1 ====== C o n t e n t s o f a . h======
2 vo id c r e a t e ( f l o a t ** , s i z e t ) ;
3 vo id l a u n c h ( f l o a t * , f l o a t * ) ;
4 ====== C o n t e n t s o f a . cu======
5 # i n c l u d e ” a . h ”
6 g l o b a l vo id fooKern ( f l o a t * inBuf , f l o a t * ou tBuf ) {
7 ou tBuf [ t h r e a d I d x . x ] = inBuf [ t h r e a d I d x . x ] ;
8 }
9 vo id c r e a t e ( f l o a t ** b u f f e r , s i z e t s i z e ) {

10 cudaMal loc ( b u f f e r , s i z e ) ;
11 }
12 vo id l a u n c h ( f l o a t * inBuf , f l o a t * ou tBuf ) {
13 fooKern<<<1,256>>>(inBuf , ou tBuf ) ;
14 }
15 ====== C o n t e n t s o f b . c======
16 # i n c l u d e ” a . h ”
17 f l o a t *A, *B ;
18 i n t main ( i n t a rgc , c o n s t c h a r * a rgv [ ] ) {
19 i n t c o n d i t i o n = a t o i ( a rgv [ 1 ] ) ;
20 c r e a t e (&A, s i z e o f ( f l o a t ) * 2 5 6 ) ; c r e a t e (&B , s i z e o f ( f l o a t ) * 2 5 6 ) ;
21 f l o a t * inBuf , * ou tBuf ;
22 i f ( c o n d i t i o n ) { i nBuf = A, ou tBuf = B ; }
23 e l s e { i nBuf = B , ou tBuf = A; }
24 l a u n c h ( inBuf , ou tBuf ) ;
25 }

(a) CUDA device pointers used as arguments and aliased. The initial
translation is triggered by the cudaMalloc call on line 10.

1 ====== C o n t e n t s o f a . h−c l . h======
2 vo id c r e a t e ( cl mem * , s i z e t ) ;
3 vo id l a u n c h ( cl mem , cl mem ) ;
4 ====== C o n t e n t s o f a . cu−c l . cpp======
5 . . . ( o m i t t e d b o i l e r p l a t e )
6 # i n c l u d e ” a . h−c l . h ”
7 vo id c r e a t e ( cl mem * b u f f e r , s i z e t s i z e ) {
8 * b u f f e r = c l C r e a t e B u f f e r ( . . . , s i z e , . . . ) ;
9 }

10 vo id l a u n c h ( cl mem inBuf , cl mem outBuf ) {
11 c l S e t K e r n e l A r g ( cu2c l Kerne l fooKern , 0 , s i z e o f ( cl mem ) , &inBuf ) ;
12 c l S e t K e r n e l A r g ( cu2c l Kerne l fooKern , 1 , s i z e o f ( cl mem ) , &outBuf ) ;
13 l o c a l W o r k S i z e [ 0 ] = 256 ;
14 g l o b a l W o r k S i z e [ 0 ] = ( 1 ) * l o c a l W o r k S i z e [ 0 ] ;
15 clEnqueueNDRangeKernel ( . . . , cu2c l Kerne l fooKern , . . . ) ;
16 }
17 ====== C o n t e n t s o f b . c−c l . cpp======
18 . . . ( o m i t t e d b o i l e r p l a t e )
19 # i n c l u d e ” a . h−c l . h ”
20 cl mem A, B ;
21 i n t main ( i n t a rgc , c o n s t c h a r * a rgv [ ] ) {
22 c u 2 c l I n i t ( ) ;
23 i n t c o n d i t i o n = a t o i ( a rgv [ 1 ] ) ;
24 c r e a t e (&A, s i z e o f ( f l o a t ) * 2 5 6 ) ; c r e a t e (&B , s i z e o f ( f l o a t ) * 2 5 6 ) ;
25 cl mem inBuf , ou tBuf ;
26 i f ( c o n d i t i o n ) { i nBuf = A, ou tBuf = B ; }
27 e l s e { i nBuf = B , ou tBuf = A; }
28 l a u n c h ( inBuf , ou tBuf ) ;
29 cu2c l C leanup ( ) ;
30 }

(b) Example of Multi-AST CU2CL’s fully-propagated cl_mem translation

Fig. 6: Propagation of the cl_mem type by CU2CL-MAST. Without the
Multi-AST expansion, only the declaration of “buffer” on line 9 in Fig. 6a is
translated. With Multi-AST propagation, line 9 propagates horizontally to the
forward declaration on line 2. By translating a header shared with b.c’s AST,
the calls to create on line 20 propagate upward to the declarations of “A” and
“B” on line 17. These propagate horizontally through the alias assignments
in lines 22 and 23 to the declarations of “inBuf” and “outBuf” on line 21.
Finally, translating inBuf and outBuf propagate downward through the call
to “launch” on line 24 to launch’s forward declaration on line 3 and then
horizontally to the definition on line 12.

The original per-file CU2CL performs immediate depth-first trans-
lation of the device buffer used in a cudaMalloc expression
by simply navigating to the buffer’s declaration and changing the
type from a pointer to a cl_mem [6]. However, as each AST was
only walked once, if this variable was aliased — either by pointer
assignment or through a function call — propagation to all possible
aliases could not be guaranteed, causing a type inconsistency in
other code regions that were not aware of the translation. (Figure 6a
demonstrates a simple case of aliasing that confounded the original
translator.) Thus, either the variable should not be translated and
instead explicitly cast to a standard pointer variable (as in [7]), or
the translation must be fully propagated to all affected regions. The
latter is a substantially harder problem as it potentially extends across
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scopes and TUs. While the casting solution is expedient, it creates
a software maintainability issue in a broader codebase as the true
types of the casted cl_mem variables are only apparent when used
in OpenCL calls. Therefore, to fully propagate the type translation,
all device pointer translation was raised to the cross-file layer, which
has access to the entirety of the codebase and can track use/definition
relationships to ensure propagation across aliases.

Primarily, cross-file translation relies on forward declarations from
a shared header that resides on all ASTs and thus forms a common
anchor between them. So, we modified the per-file portion of CU2CL
to defer all cl_mem translations by storing them in a cross-file list.
Further, as it traverse each AST it generates a map from all declared
variables and functions to their uses for the cross-file layer to utilize.
Actual translation is then implemented as a consumer of the deferred
translation list. While each translation is performed, the reference
map is checked for other uses to enqueue any further cl_mem
translations that must then be performed (i.e., propagation).

In particular, we address three cases in which a cl_mem type
translation necessitates propagation to some other device pointer:
• Downward propagation: when a translated variable is a function

argument, the type change must be extended down the control flow
graph (CFG) to the callee’s parameters.

• Upward propagation: when a function parameter is translated, the
type change must be propagated up the CFG to any variables
supplied as arguments to that parameter.

• Horizontal propagation: when a function parameter is translated,
it must be applied to any forward declaration in a shared header
to be visible to other ASTs. Pointers aliased through assignment
statements must ensure that both the left- and right-hand sides have
the cl_mem type.

When a necessary propagation is found, the newly-affected variable
is added to the translation list, if it is not already on the list. Once
the list is consumed, all cl_mem translations are fully propagated.
(Effectively, this performs a breadth-first propagation of translations
up and down the control flow graph and across ASTs, starting
at the initial translation site(s).) Figure 6 walks through a typical
propagation cascade from a single initial translation site.

III. CASE STUDIES

We demonstrate the efficacy of the proposed workflow using
common OpenCL mini-apps and benchmarks as well as a CUDA
finite automata processing engine. The following subsections detail
the applications used to test each tool and provide a discussion on the
quality of their respective outputs — translated OpenCL for CU2CL-
MAST and linter warnings for FLOCL and FLOCL-MAST.

A. Target Workloads

1) iNFAnt: iNFAnt is a non-deterministic finite automata (NFA)
regular-expression (regex) matching engine, realized in CUDA [12].
We used an optimized version of the algorithm [13] as a case study
for a CUDA-to-FPGA translation pipeline using both CU2CL-MAST
and FLOCL/FLOCL-MAST. We selected an NFA regex matching
application as it represents a common workload for FPGAs. In
later sections, we discuss the improvement of CUDA-to-OpenCL
translation using CU2CL-MAST and analyze the feedback produced
by FLOCL and FLOCL-MAST on the translated code.

2) Benchmarks: Five OpenCL benchmark suites were selected
to cover a wide range of use cases in terms of both application
domain and OpenCL development style. OpenDwarfs [14], [15],
PolyBench-ACC [16], Rodinia [17], [18], and SHOC [19] come from
the high-performance computing (HPC) and general-purpose GPU

community. CHO [20] targets OpenCL-on-FPGA development and
captures current limitations of offline-compiled FPGA development.
Across these five suites, there are 96 separate OpenCL applications.

B. CU2CL-MAST

1) Translation Analysis: To show how CU2CL-MAST simplified
the translation of large-scale code with multiple TUs, such as opti-
mized iNFAnt, we compare CU2CL-MAST’s translation to the origi-
nal plugin-based, single-AST CU2CL (version 0.6.2b). (The original
CU2CL had to be modified to ensure output files were generated
despite possible errors.) The viability of single-file translation was
demonstrated in [6] and thus we focus only on multi-file translation
here. CU2CL-MAST’s translation improvement was evidenced in
three categories:

a) Improved header file processing: As a prerequisite to multi-
AST translations, CU2CL-MAST ensures that translations that occur
within any file are faithfully reproduced as output. The original
CU2CL translator took an overly conservative approach and limited
translation of header files to non-system header files with either a
.cu or .cuh extension, although many developers declare wrappers
to CUDA kernel and utility functions in .h, .hpp, or other file types
and may pass device buffers through these functions. By expanding
translation to all non-system files regardless of file type, CU2CL-
MAST performs translation in 14 additional header files of the
optimized iNFAnt, which includes portions of the interface that must
have cl_mems propagated through them.

b) Multi-AST boilerplate generation: CU2CL generates cus-
tom boilerplate for each AST, including many redundant features
such as OpenCL emulation of CUDA functions like cudaMemset.
Conversely, CU2CL-MAST defers the boilerplate generation to the
cross-file portion of the tool. As such, it can intelligently generate
shared utility files that concisely provide all shared functionality.
Furthermore, CU2CL-MAST coordinates all explicit initialization
and finalization functionality from each TU, eliminating the need
for post-translation manual merging. CU2CL-MAST generates the
necessary extern declarations to make the optimized iNFAnt’s sole
kernel visible program-wide, which is necessary since it is written
and used in separate source files. In programs with more kernels from
several source files, the value of this automatic propagation across
source files is further increased.

c) cl_mem propagation: §II-D already detailed the significance
of ensuring propagation of type translations. The optimized iNFAnt
code uses wrapper functions around all CUDA allocation and deal-
location functions. This necessitates cl_mem propagation, which
CU2CL-MAST successfully provides.

2) Translation Validation: To validate the auto-translated
OpenCL application, we compared its output to the output from
the original CUDA application, when compiled with the built-in
debugging and validation routines. The built-in test packet generator
was used as synthetic network traffic, and the packaged “big-boy”
transition graph was used to specify the finite automata. The OpenCL
results were consistent with the original CUDA application; in
particular, we successfully reproduced the original results using the
translated OpenCL code on all tested OpenCL platforms: Nvidia
K20Xm GPU, AMD S9150 GPU, and Intel Arria10 FPGA.

C. FLOCL and FLOCL-MAST

1) FLOCL Results: The FLOCL linters produce warnings about
possible semantic or performance faults when examining the 138
kernel files in the benchmarks. Each may have important performance
issues or runtime problems that will only become apparent at runtime,
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TABLE I: FLOCL-MAST dramatically reduces the search space for finding mis-typed arguments in the separately compiled host-to-kernel interface.

Benchmark Evaluated Total Arg. Checked Checked and Difficult True
Suite SLOCs Assignments and Correct Flagged False Positives Positives

CHO 12394 79 (100%) 73 (92%) 6 (8%) 0 0
OpenDwarfs 14574 336 (100%) 281 (84%) 10 (3%) 0 4 (1%)
PolyBench-ACC 9126 248 (100%) 229 (92%) 19 (8%) 0 0
Rodinia 34953 392 (100%) 215 (55%) 3 (1%) 0 1 (<1%)
SHOC 18829 349 (100%) 194 (56%) 37 (11%) 11 (3%) 23 (7%)

Total 89876 1418 (100%) 992 (70%) 75 (5%) 11 (1%) 28 (2%)

after the developer has invested significant time in compilation,
placement, and routing. Table II provides a breakdown of how many
hits each linter found across all the kernels in each suite. The
following describes what each hit identifies:
Possibly unreachable barrier: Barriers that may not be encoun-

tered the same number of times by all threads because they lie
in a thread-dependent conditional region. Figure 7 shows one of the
hits in SHOC/SPMV.

ID-dependent backwards branches: Loop structures that may not
be executed the same number of times by all threads and require
inefficient pipelining on FPGAs.

Inefficient struct alignment: Structs that require multiple poorly-
aligned or poorly-packed accesses to memory, reducing read/write
efficiency in the kernel.

SWI-barrier: An unnecessary barrier in a single-threaded kernel.
(The benchmarks largely consist of applications that are explicitly
designed for multi-threaded NDRange execution rather than single-
thread execution.)

TABLE II: Kernel semantic and performance risks identified by FLOCL
Possibly ID-Dependent Inefficient Single

Benchmark Unreachable Backward Packing / Work-item
Suite Barrier Branch Alignment Barrier

CHO 0 0 8/16 0
OpenDwarfs 2 13 0/4 0
PolyBench-ACC 0 2 0/0 0
Rodinia 3 62 10/21 0
SHOC 1 13 0/0 0

iNFAnt 0 4 2/2 0

1 k e r n e l vo id
2 s p m v c s r v e c t o r k e r n e l ( g l o b a l c o n s t FPTYPE * r e s t r i c t va l ,
3 g l o b a l c o n s t FPTYPE * r e s t r i c t vec ,
4 g l o b a l c o n s t i n t * r e s t r i c t c o l s ,
5 g l o b a l c o n s t i n t * r e s t r i c t r o w D e l i m i t e r s ,
6 c o n s t i n t dim , c o n s t i n t vecWidth ,
7 g l o b a l FPTYPE * r e s t r i c t o u t )
8 {
9 / / Thread ID i n b l o c k

10 i n t t = g e t l o c a l i d ( 0 ) ;
11 / / Thread ID w i t h i n warp
12 i n t i d = t & ( vecWidth−1);
13 / / One row p e r warp
14 i n t v e c s P e r B l o c k = g e t l o c a l s i z e ( 0 ) / vecWidth ;
15 i n t myRow = ( g e t g r o u p i d ( 0 ) * v e c s P e r B l o c k ) + ( t / vecWidth ) ;
16 l o c a l v o l a t i l e FPTYPE p a r t i a l S u m s [ 1 2 8 ] ;
17 p a r t i a l S u m s [ t ] = 0 ;
18 i f (myRow < dim )
19 {
20 / / . . . o m i t t e d p a r t i a l sum loop
21 p a r t i a l S u m s [ t ] = mySum ;
22 b a r r i e r (CLK LOCAL MEM FENCE ) ;
23 / / . . . o m i t t e d r e d u c t i o n and w r i t e
24 }
25 }

Fig. 7: Example of a possibly-unreachable barrier found in SHOC/SPMV. If
a workgroup is configured such that some (but not all) work items’ myRow
exceeds the dim parameter, the barrier after partial summation (line 22)
will not be encountered by the entire workgroup. myRow is marked as thread-
dependent due to the ID calls on lines 10 and 15.

2) FLOCL-MAST Results: We apply FLOCL-MAST to each
OpenCL application, across the five benchmark suites, to detect any
semantic inconsistencies between the host and device code. The host-
device validation linter is designed for in-development applications,

where the interface may be in flux and more likely to exhibit
inconsistencies. However, even with production-ready benchmarks,
FLOCL-MAST still found rare type-consistency bugs that would
not otherwise raise warnings at either compilation or runtime.4

The identified true positives represent potential loss of precision (of
floating point or integer types) or signedness of integers, which would
only exhibit themselves as broken data coming out of a kernel, which
in turn, is laborious to both identify and address.

Table I provides some broad statistics on the benchmarks that we
analyzed and shows how FLOCL-MAST pruned the search space
to identify the type-consistency bugs. The benchmark suites contain
almost 90k source lines of code (SLOC) across 256 primary source
files (i.e., .c, .cpp, and .cl files that include OpenCL kernel or
host/runtime code). Once ASTs are generated for each application
(including all headers and macro/template expansions), FLOCL-
MAST identifies 1418 host-side argument assignments via clSetK-
ernelArg calls, and it safely eliminates 70% of all assignments
from the search space as they have a compatible type between the
host and device codes.

FLOCL-MAST flags around 5% of the total kernel argument
assignments as potential host-device inconsistencies. A third of the
inconsistencies represent true positives, where the type of the data
passed to the kernel from the host is inconsistent with the type
expected in the kernel and may result in data corruption due to the
loss of precision or signedness. Such true positives are the “needles in
the haystack” of 90k SLOC that FLOCL-MAST assists the developer
in finding and resolving, thus demonstrating the viability of a static
analysis approach to automate a significant part of validating the
host-to-device interface of a large-scale codebase.

However, the remaining portion of the flagged inconsistencies
are false positives. For example, SHOC makes use of dynamic
local memory allocation, in which a kernel-side typed pointer
parameter is mapped to a NULL pointer type on the host, preventing a
consistency check and producing a difficult false positive to eliminate.
In addition, runtime-dependent information that cannot be resolved at
static-analysis time prevents a portion of the kernel arguments from
being checked, a limitation of all static-analysis tools. Specifically,
the necessary runtime information for checking such kernel argu-
ments fits into one of the following categories: runtime-dependent
cl_kernel launch, runtime-dependent cl_kernel creation, or
runtime-dependent argument position. In many cases the runtime
dependency is not necessary from a software engineering point of
view, (e.g., a monotonically increasing variable storing the argument
position for a single launch) and simple changes to the host code
could remove the need for runtime-dependent information, and thus
allow for static analysis.

4As the device code is separately-compiled from the host code, the
traditional compiler warning for possible loss of precision cannot be applied
during either host or device compilation. The OpenCL runtime copies data
from the host to device via pass-by-reference from a void pointer, and thus
cannot raise issues at runtime either.
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IV. RELATED WORK

Traditional whole-program analysis and transformation tools suffer
from prohibitive run-time and memory cost due to the quadratic
complexity of the required program representations such as Program
Dependence Graph (PDG) [21], [22]. One approach for designing
such tools is to construct the expensive program representations on
demand using program slicing [22]. However, this demand-driven
technique is limited to software debugging and comprehension tools,
and it is not suitable for performing global source-code transfor-
mation or detecting cross-file inconsistencies. Another approach for
whole-program tools summarizes the critical program representations
to reduce the super-linear run-time and memory complexity at the cost
of less analysis precision, which hinders the ability of these tools to
realize source-code translation and bug detection [23].

Therefore, this work introduces an open-source framework for
whole-program analysis and transformation that utilizes the abstract
syntax tree (AST) representation of software programs and leverages
the Clang and LLVM infrastructure [8], [24]. Unlike other program
representations, the size of the AST is linear in the size of the
software program [21], [22], which makes it a practical representation
for tackling several important problems. Specifically, we demonstrate
the application of a novel multi-abstract syntax tree (multi-AST)
approach to create tools that operate on entire programs composed
of multiple separately compiled and linked C/C++-like source files.

V. CONCLUSION

In this paper, we demonstrate a whole-program workflow for
productive OpenCL programming and analysis on FPGAs and other
heterogeneous OpenCL platforms. The workflow is composed of
three tools: (1) a reconstructed and expanded Multi-AST variation
of an existing CUDA-to-OpenCL translator, (2) per-file linters for
OpenCL kernels on FPGAs, and (3) a cross-file linter for validating
the OpenCL host-to-device kernel interface. The efficacy of the work-
flow is demonstrated by the translation and analysis of a substantial
finite automata code, originally written in CUDA. Further analysis
of the linters is conducted on a suite of 96 OpenCL benchmarks,
successfully identifying over 150 possible errors or performance
faults as well as uncovering opportunities to refine the proposed
heuristics.

Previous work [25], [26] demonstrated the use of dynamically-
linked libraries to hide the complexity of developing and running
HPC applications on heterogeneous platforms. As such, the proposed
workflow can be further expanded to improve the productivity of
end users by generating host-callable, encapsulated modules for the
OpenCL kernels to eliminate the need for developing the host-to-
device interface or dealing with the interoperability across different
devices.
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