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Abstract—Graphics processing units (GPUs) have delivered
promising speedups in data-parallel applications. A discrete
GPU resides on the PCIe interface and has traditionally
required data to be moved from the host memory to the GPU
memory via PCIe. In certain applications, the overhead of
these data transfers between memory spaces can nullify any
performance gains achieved from faster computation on the
GPU. Recent advances allow GPUs to directly access data from
the host memory across the PCIe bus, thereby alleviating the
data-transfer bottlenecks.

Another class of accelerators called accelerated processing
units (APUs) mitigate data-transfer overhead by placing CPU
and GPU cores on the same physical die. However, APUs in the
current form provide several different data paths between the
CPU and GPU, all of which can differently affect application
performance. In this paper, we explore the effects of different
available data paths on both GPUs and APUs in the context
of a broader set of computation and communication patterns
commonly referred to as dwarfs.

Keywords-GPU, Accelerated Processing Unit (APU), Hetero-
geneous System Architecture (HSA), data transfer, character-
ization, access methods

I. INTRODUCTION

GPUs have become increasingly popular as an accelerator
platform due to their remarkable performance-price and
performance-power ratios. However, the intrinsic computa-
tional capability of GPUs is not always optimally utilized
because of their imposed data-transfer requirements over the
PCIe interface. The transfer bandwidth of PCIe is limited to
16GB/s whereas the GPU itself can consume data at the rate
of hundreds of GB/s from its memory [1], [2]. Therefore,
only such applications that amortize the cost of these data
transfers will benefit from GPU execution [3]. To overcome
the data-transfer overheads, recent GPU advancements en-
able GPUs to directly access data from the host memory as
well as enable CPUs to directly access data from the GPU
memory. Such data is required to be marked as zero-copy
during allocation.

A novel class of accelerators called accelerated process-
ing units (APUs) place CPU and GPU cores together on
a single silicon die [4]. Unlike a traditional CPU paired
with a discrete GPU (dGPU) connected over PCIe, an APU

unifies the memory address spaces of the CPU and GPU.
Therefore, an APU eliminates the overhead associated with
data transfer, which occurs with dGPUs [5]. In its present
incarnation, an APU provides different data paths between
the CPU and GPU memory spaces depending on (1) where
the data resides, i.e., in host memory or GPU memory and
(2) whether the data is marked as zero-copy. As to be
discussed in Section III, different combinations of the above
result in five possible data-access methods between the CPU
and GPU, all of which can impact application performance.

In this paper, we first propose the data-access methods and
then study their effects on a broad set of applications with
varying characteristics. We then qualitatively ascertain the
best performing method, depending upon the application and
the architecture, and characterize the data-access methods
via the use of three different applications from the OpenD-
warfs benchmark suite [6]: (1) breadth-first search (BFS),
(2) Needleman-Wunsch (NW) dynamic programming, and
(3) speckle-reducing anisotropic diffusion (SRAD).

Figure 1 shows the percentage of time spent in data
transfers and kernel execution for the aforementioned three
dwarfs running on an AMD RadeonTM HD 7970 discrete
GPU. The percentage of time spent in data transfers is more
than twice the kernel execution in the cases of BFS and
SRAD. These cases are representative of applications where
optimizing data transfer would improve overall performance.
Although the data transfer time constitutes less than 20%
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Figure 1. Percentages of data transfer and kernel execution times
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of total time in case of NW, the data dependencies in the
NW algorithm are high, which in turn, limits parallelism.
Thus, optimizing the data transfer in NW would not result
in significant speedup, but including this application can
provide insight into whether any of the optimizations would
suit all kinds of applications. We study these three dwarfs
under different data-access methods to gain insight into the
best performing technique for each dwarf across various
architectures.

We observed that by implementing different data-access
methods, we can achieve up to a 148× speedup in per-
formance over the default data-access method. Our results
demonstrate that APUs consume an order of magnitude less
energy compared to a discrete GPU, e.g., energy consump-
tion on an AMD OpteronTMX2150 APU is up to 114× less
than a discrete GPU.

The rest of the paper is organized as follows. In Section II
we present the background on different data paths in discrete
GPUs and (integrated) APUs. Section III discusses the
different data-access methods. In Section IV we present our
experimental setup, followed by results and observations in
Section V. Section VI discusses related work. We present
conclusions in Section VII.

II. BACKGROUND

This section presents the background information on the
data paths that exist on both discrete GPUs and APUs. We
also present an overview of the APU architecture since it is
a fairly new accelerator platform.

A. Discrete GPUs

A discrete GPU resides on the PCIe interface in the
traditional CPU+GPU setup, as shown in Figure 2. The x86
cores and the unified north bridge (UNB) are part of the
CPU core, whereas the discrete GPU is a separate physical
entity with vector cores and its own memory space. This is
why GPUs must have data copied to their own memory over
the PCIe interface, which leads to significant bottlenecks for
some applications. Modern GPUs mitigate the data-transfer
overheads by allowing the GPU to directly access data from
the host memory. Such data is required to be marked as zero-
copy and is accessed over PCIe. Therefore, two data paths
exist on a discrete GPU: (1) copying the data from the host
memory to GPU memory and then accessing it from the
GPU memory and (2) directly accessing data from the host
memory over the PCIe interface. Because GPU memory has
an order of magnitude higher bandwidth than host memory,
the first data path is preferred if an application can amortize
the cost of the data transfers. Alternatively, data can also be
directly allocated into the GPU memory, which the CPU can
access over PCIe, as required.
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Figure 2. High-level block diagram illustrating a CPU and discrete GPU
setup across PCI Express (PCIe).
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Figure 3. High-level block diagram of an AMD A10-7850K APU. The
different data paths between CPU and GPU are shown using arrows.

B. Accelerated Processing Units (APUs)

An accelerated processing unit (APU) is AMD’s im-
plementation of the emerging heterogeneous system archi-
tecture (HSA) [7]. Fundamentally, an APU combines the
general-purpose x86 scalar cores of a CPU and vector cores
of a GPU onto a single silicon die. Figure 3 depicts a high-
level block diagram of an AMD APU. Having a fused CPU-
GPU allows an APU to provide direct mapping between the
CPU and GPU virtual address space and to enable demand
paging, which allows the GPU to bring pages on-demand
into memory, just like the CPU. The GPU on the current
generation of APUs can access host memory via several
data paths. First, GPUs can directly access a part of host
memory designated as a “GPU frame buffer.” This path at
present provides the highest bandwidth and works similarly
to the GPU memory of a discrete GPU. There also exists
two different paths via the UNB, depending on whether the
data that the GPU is accessing is coherent with the CPU.

III. DATA-ACCESS METHODS

The data to the GPU can be made available through
buffers residing in host memory or device memory. De-
pending on where the buffer is located and how the data
is transferred between the host and device, we present five
different data-access methods, as shown in Figure 4. Table I
summarizes the characteristics of various methods.
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Figure 4. Data-access methods

A. Host Resident (Method 1)

With the Host Resident (HR) method, buffers
are created on the host using the OpenCLTM flag
CL_MEM_ALLOC_HOST_PTR, as shown in Figure 5a.
The host buffer does not require any backing buffer and
is directly initialized with data. This buffer is allocated as
pinned memory, and hence, its contents are not pageable
by the operating system. Since there does not exist any
copy of the buffer on the device, a host-resident buffer is a
zero-copy buffer. Discrete GPUs directly access this buffer
across PCIe, whereas the APUs access it via the unified
north bridge (UNB). There is no explicit data-transfer
involved in this method.

B. Device Resident - Zero Copy - Read Results (Method 2)

With the Device Resident - Zero Copy - Read Results
(DR-ZC-RR) method, buffers are created using the flag
CL_MEM_USE_PERSISTENT_MEM_AMD. As the name
suggests, buffers of this type reside in device memory
without a copy of it on the host as shown in Figure 5b. Data
to such buffers is written directly by the CPU through the
uncached write-combine path, and the results are stored in
the GPU memory after the computation. The CPU accesses
these results by reading directly from the GPU memory
across the PCIe interface and UNB on discrete GPUs and
APUs, respectively. As a result, the CPU reads are very slow.

C. Device Resident - Zero Copy - Copy Results (Method 3)

In the Device Resident - Zero Copy - Copy Results
(DR-ZC-CR) method, the buffer resides in device mem-
ory. The difference between this method and DR-ZC-
RR is that, in this case, the results are copied back to
the host memory as shown in Figure 5c, whereas for
the latter, the results were kept in the GPU memory af-
ter computation. This method is implemented using the
flag CL_MEM_USE_PERSISTENT_MEM_AMD along with
clEnqueueReadBuffer() to copy the results back.

Depending on the size of the results buffer, copying the
results may or may not be beneficial.

D. Device Resident - Copy - Default Copy (Method 4)

In the Device Resident - Copy - Default Copy (DR-C-DC)
method, data is copied into a device buffer created using no
flags. The data and results are copied back and forth as
shown in Figure 5d using clEnqueueWriteBuffer()
and clEnqueueReadBuffer(), respectively.

E. Device Resident - Copy - Pinned Copy (Method 5)

In the Device Resident - Copy - Pinned Copy (DR-C-PC)
method, the data resides in device memory. This method
“copies” the data at the peak interconnect bandwidth to the
device. We use two buffers, a pinned host side buffer created
using the flag CL_MEM_ALLOC_HOST_PTR and a device
buffer created without any flags as shown in Figure 5e. The
data is made accessible to the GPU by first filling the host
buffer and then copying from it to the device buffer. Since
the host buffer is pinned, the data is transferred to the second
buffer at peak interconnect bandwidth.

IV. EXPERIMENTAL SETUP

A. Software Environment

The software environment consists of a Debian Linux 64-
bit kernel v3.2.0 and GCC v4.7.2. We use OpenCLTM to
program the applications on both the discrete GPU
and APUs [8]. The driver versions used are AMD
CatalystTM v14.20 for AMD A10-7850K APU and AMD
Catalyst v13.25 for the remaining systems.

Power measurements for our experiments are taken using
a WattsUp Pro meter. Power readings are taken every second,
and the total power is averaged across an application’s
execution time. Since all the applications run for more than
one second, the accuracy was sufficient. We repeated the
experiment ten times and took the median across the ten
runs. Energy is calculated by taking a product of the power
consumed and the application’s execution time.

B. Hardware Environment

We use four different accelerator platforms to character-
ize the data-access methods: (1) AMD RadeonTMHD 7970
discrete GPU (with AMD Opteron 6272 CPU), (2) AMD
A10-5800K, a second-generation APU, (3) AMD Opteron
X2150, a low-power APU, and (4) AMD A10-7850K, a
third-generation APU that is HSA-compliant. The hardware
specifications of these platforms is shown in Table II.

C. Applications

Breadth-First Search (BFS): BFS is a graph-traversal
algorithm that traverses nodes in a graph in a breadth-first
manner and identifies the unvisited neighbors for each node.
Irregular memory-access patterns arise in BFS as different
nodes can have different numbers of neighbors.
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Figure 5. Illustration of various data-access methods

Table I
CHARACTERISTICS OF DATA-ACCESS METHODS

Method OpenCL Flag Buffer Location Zero-Copy
Host Resident (HR) CL MEM ALLOC HOST PTR Pinned host memory Yes
Device Resident-Zero Copy-Read Results (DR-ZC-RR) CL MEM USE PERSISTENT MEM AMD Device memory Yes
Device Resident-Zero Copy-Copy Results (DR-ZC-CR) CL MEM USE PERSISTENT MEM AMD Device memory Yes
Device Resident-Copy-Default Copy (DR-C-DC) No flags Device memory No
Device Resident-Copy-Pinned Copy (DR-C-PC) CL MEM ALLOC HOST PTR and No flags Device memory No

Table II
HARDWARE SPECIFICATIONS OF ACCELERATORS

Name AMD RadeonTM HD 7970 AMD A10-5800K AMD A10-7850K AMD Opteron X2150
Stream Processors 2048 384 768 128
Compute Units 32 6 12 (4 CPU + 8GPU) 2
Core Clock Frequency 925 MHZ 800 MHZ 720 MHZ 495 MHZ
Memory Bus type GDDR5 DDR3 DDR3 DDR3
Device Memory 3 GB 800MB 3 GB 800MB
Local Memory 32KB 32 KB 32KB 32 KB
Max Work-group size 256 256 256 256
Host Processor AMD Opteron 6272 AMD A10-5800K AMD A10-7850K AMD Opteron X2150
CPU frequency 2.1 GHZ 1.4 GHZ 1.7 GHZ 800 MHZ
System memory 16 GB 8 GB 6 GB 8 GB

Needleman-Wunsch (NW): NW is a dynamic program-
ming algorithm that calculates the optimal global alignment
between two DNA sequences. NW consists of filling a
matrix with weighted scores and tracing it back after it
is filled. NW accesses memory intensely as computing the
score of a cell in the matrix involves accessing all the
neighboring cells.

Speckle Reducing Anisotropic Diffusion (SRAD):
SRAD is an iterative application that removes locally un-
correlated noise using a set of partial-differential equations
(PDEs). SRAD requires synchronization among the GPU ex-
ecution units due to the inter-dependency between iterations.
SRAD finds use in several areas of image compression.

V. RESULTS AND DISCUSSION

This section briefly presents the observations and findings
of the different data-access methods.

A. Graph Traversal: Breadth First Search (BFS)

1) Performance: The performance for BFS on different
platforms across all the data-access methods relative to DR-

C-DC is shown in Figure 6a. The HR method performs the
best for a small dataset (i.e., a graph with 1K nodes) on all
the platforms. Specifically, on the Opteron X2150 APU, HR
provides a speedup of 148× whereas on other platforms,
the speedup ranges between 1.5× and 4.0×. However, the
performance of HR worsens for medium and large datasets,
which consist of 256K and 2M nodes, respectively. This is
because for larger datasets, an increased amount of time is
spent in accessing data from the host memory, which in turn,
adversely affects performance due to numerous irregular
memory accesses that occur in BFS.

Device-resident methods perform the best for medium
and large datasets. We find that the performance of device-
resident methods is dependent on how the results buffer is
accessed by the host after the computation. Reading the
results directly from the host without copying the buffer
first, i.e, DR-ZC-RR, is 20%-30% slower on average. This
is because the CPU reads from the device buffer occur at an
extremely low bandwidth, as shown in Table III.

DR-ZC-CR, DR-C-DC, and DR-C-PC methods all per-
form on par with each other. DR-ZC-CR has a slight edge in
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Figure 6. Performance and Energy for Breadth-First Search (BFS). Baseline for performance is the default data-access method (DR-C-DC).

Table III
BUFFERBANDWIDTH BENCHMARK RESULTS

Platform CPU Read
Bandwidth

AMD Radeon HD 7970 0.01 GB/S
AMD A10-5800K 0.01 GB/S
Opteron X2150 0.02 GB/S
AMD A10-7850K 0.02 GB/S

some cases because of reduced data transfers than the other
two methods. DR-ZC-CR requires data to be transferred only
for copying the results back to the host; no data copies are
required to initiate computation on the GPU. To summarize,
DR-ZC-CR is the best for BFS on all the platforms.

2) Energy: Figure 6b depicts the energy consumption of
BFS for the different access methods across all four plat-
forms. The AMD Opteron X2150 APU, an ultra low-power
GPU designed for data center servers, is the least energy
consuming for datasets which matter in a real scenario.
The AMD A10-7850K APU is best for small datasets. The
HR method consumes the least energy for small datasets,
whereas device-resident methods are the best for larger
datasets.

The HR method consumes the most energy on a discrete
GPU because it requires data to be accessed from the
host memory across PCIe and we suspect that the memory
controller being busy throughout the runtime of application
in case of HR method might be the reason for the high
energy consumption. Since the time taken for the DR-ZC-
RR method is much higher, although the power consumption
is comparable to other device resident methods, the overall

energy consumed is much higher.

B. Dynamic Programming: Needleman-Wunsch (NW)

1) Performance: The performance for NW on different
platforms across all the data-access methods relative to DR-
C-DC is shown in Figure 7a. Since NW is computation-
ally intensive and involves numerous memory accesses, the
performance of HR tends to worsen as the size of the
dataset increases (2× slower for the large dataset in case
of APUs). DR-ZC-RR performs the worst when compared
to all methods. The performance of DR-ZC-RR is almost
10× slower than the other methods. This is because a large
amount of data is read back by the CPU (almost 1/2 of the
total data accessed), and the CPU read bandwidth is low,
as shown in Table III. Since the percentage of data transfer
time is less than 20% for NW, as shown in Figure 1, the
device-resident methods, DR-ZC-CR, DR-C-DC and DR-C-
PC perform the same for almost all of the cases. Overall,
DR-C-CR, DR-C-PC and DR-C-DC methods perform the
best.

2) Energy: Figure 7b shows the energy consumption of
NW for the different access methods across all platforms.
From the figure, we note that the energy consumption of
DR-ZC-RR is 9× to 10× higher (on average) than the other
access methods. The device resident methods do not involve
the host throughout and so the power consumed is fairly
the same. But because of the long time taken to run the
application in case of DR-ZC-RR, its energy consumed is
higher than the other device resident methods. The device-
resident methods DR-ZC-CR, DR-C-DC and DR-C-PC do
not differ much in terms of energy consumption since the
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Figure 7. Performance and Energy for Needleman-Wunsch (NW). Baseline for performance is the default data-access method (DR-C-DC).

performance numbers of these three methods are fairly close.
The host-resident method consumes almost 2× more energy
than the best performing device resident methods because in
HR method GPU has to access the host every time there is
a need of data and as a result memory controllers might be
kept busy throughout, thus consuming more energy.

When energy consumption between the platforms is com-
pared, AMD Opteron X2150 outperforms other GPUs/APUs
by a great margin for all the methods. Energy consumption
on an AMD Opteron X2150 APU for DR-ZC-CR is 114×
less than the discrete GPU and 30× less than the APUs.

C. Structured Grids: Speckle Reducing Anisotropic Diffu-
sion (SRAD)

1) Performance: The performance for SRAD on different
platforms across all the data-access methods relative to DR-
C-DC is shown in Figure 8a. When comparing the data-
access methods, DR-C-PC outperforms the other methods
for the large dataset on all the platforms. HR method
performs sub-optimally because SRAD entails large amount
of data movement even before any computation begins.

So overall, DR-C-PC is an ideal choice when it comes
to performance but it requires the extra pinning step on the
part of the programmer, thereby, trading programmability for
performance

2) Energy: Even in the case of SRAD, out of the four
platforms considered, the AMD Opteron X2150 APU is
clearly a winner in terms of energy consumption, as shown
in Figure 8b. Although the AMD Opteron X2150 APU has
higher energy consumption for a small data set, it consumes

10× less energy than the other APUs and 33× less energy
than the discrete GPU when the HR method is compared.

Out of the five access methods, DR-ZC-CR consumes
least energy for large data sets. For small and medium
datasets, DR-C-DC and DR-C-PC are better at energy con-
sumption than the rest of the methods. Energy for DR-
ZC-RR on AMD Opteron X2150 is high for the SRAD
application because of the higher execution time of SRAD.
DR-ZC-RR consumes more energy incase of SRAD than the
other two applications.

D. Power vs. Performance

Power vs. performance plots give us a way to evaluate
and choose the appropriate platforms and methods based
on the tradeoffs between performance and power consump-
tion. Power vs. performance graphs are plotted on a log-
log scale and consists of power-performance points of the
access methods on the various platforms considered for
small, medium and large datasets. In plotting the Power vs.
performance plots, only the three best performing methods,
DR-ZC-CR, DR-C-DC and DR-C-PC, are considered for
clarity purpose.

1) BFS: The points on the lower left signify high perfor-
mance with low power consumption. AMD Opteron X2150
APU has all the points on the bottom part of the plot
signifying low power consumption. If power consumption
is of more importance, like in data centers, AMD Opteron
X2150 APU is ideal, though it requires some trade-off in
performance. If performance is key then the APUs are ideal
as implied by data points on the left, .e.g. DR-C-PC and
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Figure 8. Performance and Energy for Speckle Reducing Anisotropic Diffusion (SRAD). Baseline for performance is the default data-access method
(DR-C-DC).
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Figure 9. Power vs Performance (Execution Time)

DR-ZC-CR methods for large dataset in the case of AMD
A10-7850K APU and AMD A10-5800K APU.

2) NW: Even for NW, AMD Opteron X2150 APU has
all the data points in the bottom part of the plot signifying
low power consumption. The data points of AMD Opteron
X2150 APU for small and medium datasets on the bottom
left mean the ideal case, i.e., high performance with less
power consumption.

3) SRAD: AMD Opteron X2150 APU’s points lie on the
bottom part in the case of SRAD as well which shows that
the machine is highly power efficient irrespective of the
application and data sizes. However, saving power means
trading off performance.

VI. RELATED WORK

With the advent of GPUs in data centers power and energy
concerns have become of high importance. Data transfers
constitute a significant bottleneck in GPU computing. While
many studies exploiting GPUs claim huge speed-ups, they
more often than not ignore data transfer overhead, which
is an important factor affecting performance [9]. Daga et
al. [10] re-visit Amdahl’s law to account for the parallel
overhead incurred by data transfers, and Boyer et al. [11]
attempt to improve GPU performance prediction with data
transfer modeling.

The fused CPU-GPU core architectures and memory hi-
erarchies partially address the severity of PCIe data transfer
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overheads. Furthermore, more options became available for
both discrete and fused GPUs. Lee et al. have discussed dif-
ferent memory movement techniques of micro-benchmarks
on discrete GPUs and second generation APUs [12]. Spaf-
ford et al. have studied the trade-offs of fused memory
hierarchies in heterogeneous systems [13]. In our work,
we acknowledge that data transfers are an important aspect
in GPU computing and attempt to ameliorate their effects
by systematically studying various data-access methods on
discrete GPUs and APUs. We use three representative cases
to identify the effect of data transfers on specific compu-
tation and communication patterns using applications from
the dwarfs categorization.

Various works have explored the energy efficiency of
GPUs for scientific computing [14], and proposed new met-
rics for evaluating energy efficiency in HPC systems [15].
Kim et al. discussed the efficiency of integrated GPUs in
terms of both performance and energy in data canter work-
loads [16]. Other works have proposed different memory
hierarchies for GPU computing with an emphasis on energy
efficiency [17], [18]. Rofouei et al. conclude that employing
GPUs is only efficient if performance gains exceed a specific
bound [19]. In this work, we shed light on the implications
of different data-access methods on performance gains and
consequently energy consumption.

VII. CONCLUSION

Data transfers are often cited as an impediment towards
the widespread adoption of GPUs for compute. Discrete
GPUs have mitigated the data transfer overhead by allowing
the GPUs to directly access data in the host memory,
albeit over the PCIe interface. Accelerated Processing Units
(or APUs) promise to alleviate data transfer overheads by
combining the CPU and GPU cores on the same silicon
die, thereby, not requiring any data transfers. As such both
discrete GPUs and APUs provide several paths for accessing
data which can contrastingly affect application performance.
In this paper, we present five different data-access methods
and study their performance and energy implications on
three representative classes of computation and communi-
cation patterns using the OpenDwarfs benchmark suite.

Our experiments suggest that it is best to allocate data
directly in the GPU memory (marking it as zero-copy) as
compared to the conventional wisdom of allocating on the
host and then transferring to the GPU. We also find that the
results of GPU computation should be first copied to the
host instead of directly accessing it in the GPU memory. We
illustrate that the use of such method can provide a manifold
speedup compared to the default method of moving data
back and forth between host and GPU memory. We highlight
that APUs consume an order of magnitude less energy than
discrete GPUs for the class of applications we study while
providing comparable performance.
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