
A Runtime Estimation Framework for ALICE

Sarunya Pummaa∗, Wu-chun Fenga, Phond Phunchongharnb, Sylvain
Chapelandc, and Tiranee Achalakulb

aDepartment of Computer Science, Virginia Tech, USA
bDepartment of Computer Engineering, King Mongkut’s University of Technology

Thonburi, Thailand
cDepartment of Physics, European Organization for Nuclear Research (CERN), Switzerland

Abstract

The European Organization for Nuclear Research (CERN) is the largest re-

search organization for particle physics. ALICE, short for A Large I on C ollider

Experiment, serves as one of the main detectors at CERN and produces ap-

proximately 15 petabytes of data each year. The computing associated with an

ALICE experiment consists of both online and offline processing. An online

cluster retrieves data while an offline cluster farm performs a broad range of

data analysis. Online processing occurs as collision events are streamed from

the detector to the online cluster. This process compresses and calibrates the

data before storing it in a data storage system for subsequent offline processing,

e.g., event reconstruction. Due to the large volume of stored data to process,

offline processing seeks to minimize execution time and data-staging time of the

applications via a two-tier offline cluster — the Event Processing Node (EPN)

as the first tier and the World LHC Grid Computing (WLGC) as the second

tier. This two-tier cluster requires a smart job scheduler to efficiently manage

the running of the application. Thus, we propose a runtime estimation method

for this offline processing in the ALICE environment.

Our approach exploits application profiles to predict the runtime of a high-

performance computing (HPC) application without the need for any additional

metadata. To evaluate our proposed framework, we performed our experiment

∗Corresponding author: Phond Phunchongharn

Preprint submitted to Journal of Future Generation Computer Systems July 20, 2017

on the actual ALICE applications. In addition, we also test the efficacy of our

runtime estimation method to predict the run times of the HPC applications on

the Amazon EC2 cloud. The results show that our approach generally delivers

accurate predictions, i.e., low error percentages.

Keywords: Runtime Estimation, ALICE Experiment, Berkeley Dwarfs,

Offline Scheduling, Scheduler, Workload Characterization

1. Introduction

Currently, the European Organization for Nuclear Research (CERN) is the

world’s largest research organization for particle physics. Its most recent particle

accelerator is the Large Hadron Collider (LHC), which serves to boost the energy

of particles to be close to the speed of light. Inside the LHC, two proton beams5

travel in opposite directions in the separated pipes until they are allowed to

cross each other at the detectors, where the collisions between particles occur.

An enormous number of collision events, in the order of 600-million collisions

per second, are detected and recorded by the detectors located along the LHC

ring.10

ALICE, A Large Ion Collider Experiment, is a heavy-ion detector for study-

ing the physics of strongly interacting matter at the CERN LHC [1]. In par-

ticular, it targets the analysis of the properties of Quark-Gluon Plasma, using

proton-proton, nucleus-nucleus, and proton-nucleus collisions at high energies.

In 2018, the ALICE detectors will be upgraded [2, 3], and the associated amount15

of data that will be produced from the detectors will increase by an additional

two orders of magnitude, resulting in a data throughput of approximately 1 TB

per second. In order to keep up with this data deluge, a more powerful and

intelligent computing system must be designed and realized.

This new computing system includes the design, implementation, and opti-20

mization of both online and offline processing capabilities, as outlined by the

data flow in Figure 1. The detectors and online cluster farm normally operate

only 4-8 months per year; the rest of the time is dedicated to offline processing.

2

Figure 1: ALICE’s Online and Offline Processing Data Flow

In ALICE, the online process receives collision events from the detectors and

stores them for further processing. Because the amount of incoming data will25

increase substantially in the next phase of LHC in 2018 (referred to as Run3),

this process will then have to compress and control the data rate so as to not

exceed the capability of the storage system, which provides a data rate of 200

GB/s at peak and 50 GB/s on average.

Based on the data flow from Figure 1, our online data acquisition consists30

of two compute clusters — First-Level Processors (FLP) and Event Processing

Nodes (EPN). The FLP cluster receives the collision events, which are grouped

in a timeframe spanning 0.1 seconds. The resulting data rate is then 100,000

collision events per second or 10 timeframes per second. Due to the limited

network bandwidth, FLPs reduce the data by approximately a factor of five and35

stream it to the EPN cluster. The EPN cluster then aggregates the streamed

sub-time frames into full-time frames, reduces the data size by an additional

factor of four, and then calibrates the data before storing it in the storage

system.

The EPN cluster also processes offline tasks, which include event reconstruc-40

tion, event calibration, event simulation, and data analysis. The offline processes

run on EPN when it is unoccupied by the online processes. Since there are a

large number of applications running on the EPN cluster, an efficient scheduler

is required to manage job executions. The scheduler has to be able to assign

the jobs to efficiently run on machines in the EPN cluster. When EPN is not45

3

available, the offline processes are assigned to the Worldwide LHC Computing

Grid (WLCG) as a second-tier (alternative) cluster. The preference, however,

is to run offline jobs on the EPN cluster rather than on WLGC.

In this work, we focus on the scheduling of offline jobs on the EPN cluster as

WLCG already has its own job scheduler, namely gLite [4]. Our offline sched-50

uler seeks to run the offline jobs on the EPN cluster as efficiently as possible, as

running them on WLCG is more expensive. To implement an efficient sched-

uler, we need to predict the runtimes of applications. However, predicting the

runtimes of the applications in a computer system is a daunting challenge. To

ease this challenge, some computer systems request the expected runtime from55

the user. Although this method is easy, it is inaccurate and inefficient due to

overestimation [5]. In addition, some existing methods for runtime estimation

assume that the same user runs the same application in the system [6]. There-

fore, a user name and a project are used as a key. If the application submitted to

the system has the same key, the runtime is calculated from the actual runtime60

of the previous run. However, the key used in this method is not as informative

as it does not contain any runtime behavior of the application.

We propose a methodology to efficiently estimate the runtime of “black-

box” applications in the ALICE experimental environment. The “black-box”

processes are the applications in which their source codebases are not avail-65

able. In contrast to other approaches, we extract important application char-

acteristics, which capture execution behavior, to predict the runtime for an

application. When the application is submitted to the EPN cluster, these char-

acteristics are sampled for a short period by using workload characterization

tools, namely MICA, short for Microarchitecture-Independent Characterization70

of Applicationsl [7], and the perf tool from the Linux kernel [8], in order to create

a workload profile. Our methodology then creates a model for workload classi-

fication, followed by a model for runtime prediction. The input to both of these

modeling steps is a set of performance metrics collected from the MICA and

perf tools. The workload classification model categorizes the application into a75

certain class based on its characteristics. The characteristics of the applications

4

in each class are classified with respect to the Berkeley Dwarfs taxonomy [9],

where each class of applications has a separate runtime prediction model on a

specific type of machine. Our prediction model uses the Artificial Bee Colony

(ABC) [10] optimization in concert with linear regression.80

In turn, the runtime of the workload can then be predicted without any

additional information about the applications. Furthermore, once our runtime-

prediction models are constructed, they are reusable. Thus, the runtimes of the

applications in the EPN cluster can be estimated immediately and automati-

cally. In addition, the estimation models can be re-calibrated as additional data85

sets become available.

The rest of the paper is organized as follows. In Section 2, we present related

work. Section 3 describes our proposed runtime estimation framework. In Sec-

tion 4, we present our experiments and experimental results. Section 5 discusses

some limitations of our runtime prediction framework. Section 6 concludes the90

paper.

2. Related Work

The runtime of an application is an important attribute in many scheduling

schemes, e.g., backfilling [11]. Backfilling requires an application’s runtime to

insert short jobs in the available slots without delaying higher-priority jobs.95

Consequently, the accuracy of runtimes in backfilling is critical in realizing an

efficient scheduled system. Oftentimes, the runtimes of applications in a system

are provided by users. However, the user typically overestimates the runtimes.

[6] has shown that approximately 50% of 275,000 jobs in the system used only

half of the user-estimated runtime to finish their jobs. This results in degrading100

the overall efficiency of the system [5]. Therefore, a large body of work addresses

the user runtime overestimation problem [12, 13, 14, 6].

For user characteristic based approaches [12, 13, 14, 6], Tsafrir et al. [12]

improved a scheduler’s performance by using the user’s estimated runtime as an

upper bound and predicting a runtime by averaging the runtimes of the last two105

5

jobs of the same user. Minh and Wolters [13] estimated a runtime of a job based

on K-nearest neighbors by aiming to reduce a number of jobs that were under-

estimated while maintaining a good runtime prediction accuracy. Gaussier et

al. [14] replaced a user runtime prediction of the EASY backfilling scheduler with

the l2 -regularized polynomial model and gained 28% performance improvement.110

Another user-dependent runtime prediction method was proposed by Tang et

al. [6]. The authors proposed a methodology to adjust the user-provided run-

time in order to improve the performance of a supercomputer system. Their

adjustment scheme searched for a similar application based on keys (i.e., a user

name of the user who submitted the job and the project name) from the his-115

torical data and calculated an adjustment factor (R) by averaging the R-values

of similar applications. This approach is still based on the assumption that

the same user will submit the same project with the same input and with the

same level of over-estimation. However, this assumption would not be practical

in some cases. Instead, the runtime of an application should depend on the120

characteristics of the applications rather than the users.

For application characteristic based approaches, a large number of estima-

tors exploit historical data to infer runtimes [15, 16, 17, 18]. Krishnaswamy et

al. [15] estimated the computation times for data-intensive applications by using

the mean runtimes of similar applications. The similarity between applications125

could then be determined by rough sets theory, which uses the historical data

to find the subset of attributes that strongly relate to the runtimes. The output

of rough sets is a similarity template. Smith et al. [16] also implemented their

runtime prediction framework based on similarity templates, which could be

determined by greedy and genetic algorithms. The runtime of the application130

could be derived in two ways: (1) using the mean of the runtimes or (2) using

the linear equation to calculate the runtime. However, the similarity template

could only work well in the scenarios in which similar applications are repeatedly

executed in the system.

Xia et al. [17] predicted the runtime from the historical information stored135

in the form of cases. The cases were defined by using the TA3 algorithm, a

6

case-based reasoning approach, which determines the runtime using the average

value of the runtimes. The drawback, however, is that the number of cases is

not predefined and can grow without bound, which in turn, could significantly

negatively effect the performance of the system. Thus, the policy to control the140

number of cases must be well defined for this approach to be effective. Zhang et

al. [18] proposed a resource-oriented approach that predicts the runtime of the

workloads in a grid environment by extracting information about the resources

from the Grid Information System (GIS), namely CPU load. The CPU load is

then fed into a time-series model to predict the estimated runtime. However,145

this method requires an accurate value for the CPU load for the application.

The approaches in [15, 16, 17, 18] require some historical computational data

or attributes of the applications for similarity identification. However, certain

sets of attributes used in workload classification or clustering are not explicitly

defined. Consequently, common attribute sets need to be defined to improve150

the performance of workload similarity identification.

Since the relationship between application characteristics and runtime is

not explicit, machine learning techniques have been widely used in performance

and runtime prediction frameworks [19, 20, 21, 22, 23, 24, 25]. Kadirvel and

Fortes [19] proposed a grey-box machine learning based approach to estimate155

performance of Map-Reduce platforms. This work explored multiple machine

learning techniques, for example, Gaussian Process Regression and Multilayer

Perceptron, and showed that they outperformed typical regression approaches,

such as simple linear regression, in an aspect of accuracy. Kousiouris et al. [20]

predicted non-deterministic black-box user behaviors using the neural network160

in the Software-Platform-Infrastructure (SPI) cloud to efficiently provision low-

level resources to guarantee the quality of service (QoS). Prodan and Nae [21]

predicted load of Massively Multiplayer Online Games based on historical data

series. The neural network with a sliding window method (where the training

input was the set of data points within the window) was presented to predict the165

sudden surge of resource usages in the cloud computing platforms to proactively

provision resources to prevent a severe delay in response time [22]. Li et al. [23]

7

proposed a function-specific runtime prediction model using the artificial neural

network. Although the approach could provide a promising accuracy, it was not

practical for programs with a large number functions to have one model for one170

function since the training time could be enormous as well as the prediction time.

In [24] and [25], the Predicting Query Runtime Regression (PQR2) method,

which is a binary tree-based approach, was used to generate a runtime estimation

model. One of the drawbacks of the model is that it is application-specific.

Based on the control factors for generating the prediction models, we can di-175

vided the previous works into three main groups which are Cluster specific, Ma-

chine type specific, and Application specific. For the Cluster specific group [6,

12, 13, 14, 15, 16, 17, 26], the prediction models were generated by using in-

formation gathered from a specific cluster which could be either homogeneous

or heterogeneous. Therefore, the cluster environment must be controlled. The180

predication models assumed that jobs from the same users are similar. However,

the actual runtimes depend on both the application characteristics and machine

specifications. Consequently, the mean absolute error percentages (MEAP) of

Cluster specific group ranged from 15% to 45%. To improve the accuracy of

runtime prediction, the prediction models using machine learning techniques185

for specific machines (called Machine type specific group) were proposed in

[19, 20, 25]. Since the machine specification was controlled and machine learning

techniques could adaptively learn and detect the patterns of jobs and machine

behaviors, the MEAP of Machine type specific could be improved to the range

between 10% and 20%. Finally, [21, 22, 23, 24] proposed the runtime prediction190

models specifically to applications, called Application specific group. Although

these approaches utilized particular application characteristic data to predict

runtimes, there were no significant improvement of the MEAP (range between

5% and 30%). Moreover, runtime prediction models in this group were too lim-

ited. The specific predication models must be constructed for each application.195

In practice, there is a broad range of applications executed in a machine. The

approaches in this group would therefore not be suited for such the systems.

Since the ALICE system consists of various types of physics applications

8

to run on specific types of machines, we focus on a generic runtime estimation

model that can predict a runtime for any types of applications that have simi-200

lar characteristics on a specific machine. Although machine learning techniques

in [19, 20, 21, 22, 23, 24, 25] can provide a promising accuracy in runtime estima-

tion, these techniques are not suitable for a dynamic environment. If the char-

acteristics of applications are constantly changing so the learning models must

be retrained and the prediction models must be regenerated. Consequently,205

we propose a meta-heuristic optimization algorithm together with classifica-

tion and regression technique to estimate runtime accurately and robustly in

dynamic environments.

Unlike other work, we use Aritificial Bee Colony (ABC) [10], a meta-heuristic

artificial intelligence approach, collaborating with the linear regression tech-210

nique to construct a runtime estimation model based on an informative set of

attributes. The ABC algorithm has been chosen because, based on several re-

search papers [27, 28, 29], it can produce a better optimal solution than other

approches such as Particle Swarm Optimization (PSO), Evolutionary Algorithm

(EA), and Genetic Algorithm (GA). For the informative set of attributes, we215

obtain them from MICA (Microarchitecture-Independent Characterization of

Applications) [7], an analysis tool for capturing the profile of workloads on

computer systems, and perf [8] from the Linux kernel. These attributes can

capture the execution behavior of the applications. Consequently, our proposed

framework can adaptively estimate the runtime in dynamic environments. With220

the attributes from MICA and perf, we classify workloads based on the taxon-

omy of the Berkeley Dwarfs. Relative to the Berkeley Dwarfs, the similarity in

computation behavior and data flow can be used to define membership in the

class [30]. Currently, there are 13 dwarfs [31]. Of the 13 dwarfs, we realized

only seven classes of the dwarfs and eliminated the remaining classes as they225

would produce redundant characteristics. These seven (7) dwarfs are able to

represent classes of most applications in the ALICE system.

9

3. Runtime Estimation Framework

We propose an efficient runtime estimation framework for offline jobs, es-

pecially in the EPN cluster of the ALICE system. Our proposed framework230

contains three main steps as illustrated in Figure 2. In Step 1 Profile Sampling,

a “black-box” application from the ALICE experiment is submitted to our sys-

tem and runs for a small period of time. MICA and pert tools are deployed to

create a sample profile of the application. To elaborate, application behavior is

profiled based on a set of parameters, such as percentage of multiply instruc-235

tions, branch predictability, and probability of a local and global load and store

(The full list of parameters is shown in Table 1). These parameters’ values are

captured for each application during runtime using MICA and perf tools. In

Step 2 Workload Classification, the captured data is fed into a decision tree

in order to classify the application into one of the Berkeley Dwarf classes with240

the most similar runtime behavior. Note that using only seven out of thirteen

Dwarf classes is sufficient to represent applications in the ALICE system. Ta-

ble 1 shows the abbreviated notation for the seven classes used in this paper.

In Step 3 Runtime Estimation, the application runtime is predicted using the

regression model of the dwarf class that the application belong to. The run-245

time models are described in a set of mathematical equations. The following

subsections provide detailed descriptions of our methodology and validation.

Estimated

Runtime

Runtime

Estimation

Workload

Classification

Profile
Sampling

Black-box

Workload

Figure 2: The overall methodology of the runtime estimation framework

3.1. Profile Sampling

The “Black Box” workload is profiled using twelve parameters as listed in

Table 2. The top eight parameters are microarchitecture-independent metrics250

collected using MICA, while the bottom four are system parameters collected

using perf. These 12 quantitative metrics truly represents runtime characteris-

tics of applications. Moreover, our profile sampling method only relies on the

10

Table 1: Dwarf list

Dwarf Name Notation

Dense linear algebra dense

Sparse linear algebra sparse

Spectral methods spectral

N-body methods nbody

Structured grids sgrid

MapReduce mapred

Graph traversal grapht

parameter values of the current run. No assumption is made on users’ previous

runs. Thus, no background knowledge on usage pattern is needed.255

Algorithm 1: Profile Sampling

1 run application under MICA environment while application is running

do do

2 for every 1 million instruction do

3 MICA collects architecture-independent parameter values

4 end

5 for every 2 second do

6 run perf to collect architecture-dependent parameter values

7 end

8 end

The profile sampling step has to be performed separately for the Training

and Testing phases in the proposed runtime estimation framework.

• In the training phase, we collect the profile sample of 20 benchmarks

offline. The benchmarks come from three standard suites, which are Ro-

dinia [32], NPB [33], and TORCH [34]. These benchmarks are good rep-260

resentations of most scientific applications. Algorithm 1 shows the steps

11

Table 2: List of metrics

Tool Metric Notation

MICA 1. Probability of a register dependence distance ≤

16

PRegDist≤16

2. Branch predictability of per-address, global

history table (PAg) prediction- by-partial-matching

(PPM) predictor

Bpredict

3. Percentage of multiply instructions Pctmult

4. Data stream working-set size at 32-byte block

level

WSS

5. Probability of a local load stride = 0 PLRStride=0

6. Probability of a global load stride ≤ 8 PGRStride≤8

7. Probability of a local store stride ≤ 8 PLWStride≤8

8. Probability of a local store stride ≤ 4,096 PLWStride≤4096

Perf 9. CPU clock CLKCPU

10. Task clock CLKTask

11. Page faults PF

12. Context switches CS

12

of profile sampling. Each benchmark is executed multiple times until

completion with various settings of input parameters, input sizes, and

runtime. During each execution, the top eight parameters (architecture-

independent) from Table 2 are collected every 1 million instructions via265

MICA. The bottom four parameters (architecture-dependent) are col-

lected every 2 seconds using perf. These values are the profile of the

benchmarks, which will be used to construct the classification model in

the next step.

• In the testing phase, the profiles of the workloads from the ALICE system270

are created in real time using a method presented in Algorithm 1. The

test applications only run for a small window of time. The profile is fed

to the next step for classification.

3.2. Workload Classification Model

In this step, the pre-constructed classification model is used to categorize an275

unknown-profile workload from the previous step into one of the dwarf classes

listed in Table 1. The classification result is further utilized in the runtime

prediction step. Section 3.2.1 and 3.2.2 explain the details of this step for the

Training (model construction) and the Testing (model testing)) phases in our

proposed framework respectively.280

3.2.1. Construction of the Workload Classification Model

In order to construct a classification model, we prepared a set of feature

vectors to be used as a training data set. We used the 255 different workload

profiles collected in the previous step and label them into Dwarf classes using

information provided in the related works [32, 34, 35]. Twenty applications from285

three benchmark suites were mapped into Berkeley Dwarf classes as shown in

Table 3. Note that only the architecture-independent (AI) metrics were used in

the feature vectors because the characteristics of the algorithm do not depend

on the system architecture. Thus, each feature vector consists of 8 floating point

numbers (0-1), representing AI metrics, and a class label.290

13

Table 3: Mapping between benchmarks and dwarfs

Dwarf Kernel/Application

Rodinia NPB TORCH

dense kmeans lu(A,B,C,S) dense

lud

nn

sparse - cg(A,B,C,S) sparse

hline spectral - - spectral

nbody - - nbody2d

sgrid heartwall sp(A,B,C,S) -

hotspot

lavaMD

leukocyte

particle

mapred - ep(A,B,C,S) monteCarlo

grapht - - integerSort

quickSort

radixSort

14

We have selected the C4.5 decision tree algorithm as our model construction

method. C4.5 has a low overhead, is easy to interpret, and is widely used in

real applications [36, 37]. To construct a decision tree, the Weka data mining

analysis tool is used. During this training phase, 255 feature vectors were fed

as inputs into C4.5. The tree was formed and self-adjusted until the training295

phase was finished. The output of the C4.5 algorithm is a decision tree that

can be linearized into a set of decision rules. These sets of rules can be used

to classify applications into Dwarf classes. There are 7 rules generated for 7

Dwarfs. Each rule is a Boolean expression of MICA’s metrics. The application

belongs to a Dwarf class if a set of conditions on MICA metric values fit the300

rule of that class.

To measure the accuracy of the decision tree, we apply a stratified 10-fold

cross-validation to the model. The stratified cross-validation ensures that the

testing data in each fold is sampled from all classes. Our decision tree yields

a high accuracy of 96.89%. Experiments on the classification model itself are305

presented in Section 4.

3.2.2. Workload Classification

The profiles of the workloads from the ALICE system collected in the previ-

ous step can be fed into a decision tree in real time. During classification, eight

architecture-independent values in the workload profile is validated against each310

rule. The rules are obtained from linearizing the C4.5 algorithm decision tree

during classification. If the condition is met for one of the seven rules, the Dwarf

class is declared for that workload. The classification method can be illustrated

in Algorithm 2.

3.3. Runtime Estimation Model315

To estimate the runtime, we need to consider the machine architecture on

which the workloads are run. Because our work seeks to predict the runtime of

the workloads in the ALICE system that require high-performance computing

(HPC), we focus on three (3) instance types that are chosen for HPC purposes

15

Algorithm 2: Workload Classification

Data: MICA metrics collected in the previous step

1 for rule 1 to rule 7 do

2 if data condition is met then

3 declare a Dwarf class

4 break

5 end

6 end

in Amazon EC2 [38], being general-purpose, compute-optimized, and memory-320

optimized instances. Consequently, we provide three (3) runtime prediction

models for each dwarf (i.e., 21 runtime prediction models in total).

The runtime prediction model describes the relationship between the metrics,

input size, and runtime. Both the metrics and runtimes can be obtained from

MICA and perf. The input size can be obtained by normalization methods, as325

shown in Table 4.

Section 3.3.1 and 3.3.2 explain the details of this step for the Training and

the Testing phases in our proposed framework, respectively.

3.3.1. Construction of the Runtime Estimation Model

To construct the runtime estimation model, we need to determine the rela-330

tionship among the 12 metrics from MICA and perf, input size, and runtime of

the workloads and then construct a set of equations that represent the relation-

ships. We have limited the number of equation terms to not exceed 11 in order

to control the number of possible equations. Each term can take the form of

logarithmic, natural logarithmic, power, square root, or linear functions. Oper-335

ation in an equation can either be ‘+’ and ‘-’. Thus, the possible combination

of equation terms can be as high as 1311×511×210 (13 possible parameters (12

metrics + input size); 5 possible functions for each term; 2 possible operations

for each pair of terms). In order to select the equation that can best represent

the relation of runtimes and its parameters, a Heuristic method is then required.340

16

Table 4: Normalization of Input Size

Dwarf Class Input Size Remarks

dense n × m n is the number of rows of a

matrix/vector

m is the number of columns of a

matrix/vector

sparse nnz nnz is the number of non-zero

elements

spectral n n is the number of data to be

transformed

nbody n × (time steps) n is the number of particles/bodies

time steps is the number of time steps

to be simulated

sgrid n × m × (time steps) n is the number of rows

m is the number of columns

time steps is the number of time steps

to be computed

mapred n n is the number of data items

grapht n n is the number of nodes in a graph

17

Based on previous literature, the Artificial Bee Colony algorithm, also known

as ABC, is our Heuristic method of choice.

ABC is an optimization algorithm that mimics the foraging behavior of bees.

A set of feasible solutions to a problem is represented by the food sources. There

are three types of bees in the hive: employed bees, onlooker bees, and scout345

bees. These bees iteratively perform different tasks for identifying food sources.

The employed bees initially search for good food sources in the neighborhood.

Once found, they will present qualities of their discovered food sources. The

onlooker bees will forage in the vicinity of existing food sources presented by

the employed bees. The best food sources have more possibility to be visited.350

This is the exploitation process, where the best among the neighbors is selected.

On the other hand the food sources that are arid will be dropped and replaced

by the new sources that are searched for by the scout bees. This process is the

exploration process in the algorithm. The best food source will be kept in each

iteration until the stopping criterion is met.355

In our context, runtime estimation equations are the solutions and are rep-

resented as food sources. There are 3 types of bees iteratively perform different

tasks for identifying the best estimation equation. According to Figure 3, the

employed bees are responsible for the following tasks:

1. Randomly generating equation structures. For example, runtime = β1x1+360

β2x2 + ...+β0, where βi and xi are coefficients and independent variables,

respectively.

2. Using the linear regression method to compute coefficients. The coeffi-

cients of the newly generated equation are unknown initially. Once proved

that our collected data is normally distributed, linear regression was used365

to find the coefficients.

3. Computing R-squared [39] values of an equation. We compute R-squared

in order to evaluate the accuracy, the prediction power for each randomly

generated equation. The closer the R-squared value is to 1 (100%), the

higher the accuracy of the prediction model.370

18

Solution adjustment phase

A set of metrics,
input size and

runtime

Find the structure

of an equation

Compute

coefficients

Compute

R-squared

Runtime
prediction

model

Figure 3: Steps for the Artificial Bee Colony (ABC)

All the discovered equations from different employed bees are then sorted

and given a probability based on the R-squared values. After that, each onlooker

bee selects one of the structures based on the probability value and attempts

to improve the structure. The structures that have no R-squared improvement

for a certain period will be replaced by new structures that are generated by375

the scout bees. At the end of each iteration, the best equation structure and

its coefficients are stored. The bees repeatedly improve the structures until the

termination criteria is satisfied (the number of iterations reaches 10,000). In

summary, the goal of ABC is to find the mathematical equation that can best

describe the relationship among 12 metrics from MICA and perf, input size, and380

runtime.

For ABC, the solution is encoded in three main arrays: Term, Function,

and Operation, as shown in Figure 4. As mentioned earlier, the search space

for finding the equations can be as high as 1311 × 511 × 210. Due to this large

search space, we adopt parallel computing [40] in order to improve the runtime385

performance of ABC. The algorithm ran on 12-core computers with 32 GB of

memory. The number of bees (compute agents) used in our run was 3,600

in total (1,200 bees for each type of bee), and the algorithm ran until 10,000

iterations were completed.

Because ABC applies a heuristic method to search for a “good enough”390

solution in a limited amount of time, the best solutions from ABC may not be

the same every time, even for the same training data. Consequently, we ran

19

ABC five times on each data set and selected the runtime equations with the

highest R-squared value. Figure 5 shows the R-squared values of the runtime

estimation equations obtained from our ABC. The R-squared values of nearly395

all the equations are higher than 90% for all of the dwarfs. This implies that

ABC can efficiently find the model that can describe the relationship between

the inputs and the runtime of a workload.

Note that our work focuses on applications where their behaviors fit in the

context of a single dwarf. Applications whose behaviors span multiple dwarfs400

are out of the scope of this paper. To address this problem, however, we can

add dwarf classes with mixed behaviors. For instance, workload classes would

include the classes that represent the combinations of existing dwarf classes

(e.g., dense & sparse class and dense & grapht class).

... Term (T)

Function (F)

Operation (O)

Figure 4: Structure of an ABC Solution

9
9
.6

9
9
.8

9
5
.9

9
6
.6

9
7
.8

9
9
.7

9
2
.4

9
9
.4

9
9
.8

9
6
.6

9
4
.3

9
9
.1

9
9
.1

9
1
.6

9
9
.4

9
9
.8

8
5
.4

8
2
.6

 9
7
.6

9
9
.8

9
4
.8

0.

25.

50.

75.

100.

125.

dense sparse spectral nbody sgrid mapred grapht

R
-s

q
u

a
r
e
d

(%
)

General

Compute

Memory

Figure 5: Percentage of R-squared values of Dwarfs on Virtual Machines

3.3.2. Runtime Estimation405

To estimate the runtime of the workloads from the ALICE system, the pre-

diction equation was selected from the 21 pre-generated equations based on the

20

Dwarf class (7 classes) that the workload belongs to and the HPC computing

platforms (3 types of platforms) that the workload is executed on. The col-

lected profile from the first step is then substituted in the equation terms and410

the runtime is computed.

3.4. Validation of Framework

This section seeks to validate the performance of each component in our

proposed framework. Section 3.4.1 validates our proposed profile sampling.

The correctness of our proposed workload classification is then validated in415

Section 3.4.2. Finally, Section 3.4.3 evaluates the performance of our proposed

runtime estimation.

3.4.1. Validation of Profile Sampling

In our work, profiles of the test applications are created from a small window

of execution time. This section presents results, which validate the fact that420

sample profiles can represent full run profiles relatively well and can thus be

used to predict the runtime. We compared a sample profile against a full run

profile for each benchmark by using the Z-score as a validation metric.

To reduce the computation time for the runtime estimation, we proposed

collecting the profile of an application in the profile-sampling phase by using425

a sample datum, also called a “sample profile” (i.e., the applications sampling

their profiles for a short period), instead of using the full-run data, also called

the “full-run profile” (i.e., the profile collected from the beginning until the end

of execution). This section seeks to verify that the sample data can be used

instead of the full-run data for profile sampling. At the beginning, the profile430

of a benchmark was sampled by running it on the master computer for a short

period (i.e., one minute since it was the lowest runtime in the training data).

In the experiment, we select two types of benchmarks, type I and type

II, from each dwarf. The two benchmarks are the same application but with

different input sizes. Type I and type II represent a small input size and a435

large input size, respectively. Table 5 shows the actual runtimes of the selected

21

benchmarks. In the subsequent discussion, we compare the actual runtimes with

the predicted runtimes.

Table 5: Actual Runtimes of Trained Benchmarks

Dwarf:Benchmark Type Actual Runtime (seconds)

General Pur-

pose

Compute

Optimized

Memory Op-

timized

dense:nn I 3081 2492 1822

II 15841 7572 5822

sparse:cg I 233 159 140

II 694 438 388

spectral:spectral I 111 74 73

II 286 186 177

nbody:nbody2d I 894 785 592

II 11291 9348 7020

sgrid:particle I 2168 580 883

II 96305 14174 26326

mapred:monteCarlo I 3067 2022 1193

II 12133 12457 2292

grapht:quickSort I 370 245 219

II 708 507 432

Before using the sample profiles to predict the runtime of the benchmarks,

we plotted the Kiviat diagrams to determine the similarity between the sample440

data and the full-run data. The values plotted in the graphs are normalized as

Z-scores.

For each diagram in Figure 6, the dashed line, which represents the sample

data, nearly conceals the border of the grey area, which represents the full-run

data. Thus, the sample data and the full-run data are approximately the same.445

Therefore, the sample data can be used to represent the full-run data and further

be used in the model construction phase. However, the sample data should be

22

a) nn A

b) nn B c) cg A

d) cg B

e) spectral A f) spectral B

g) nbody2d A h) nbody2d B

i) particle A

j) particle B

k) monteCarlo A

l) monteCarlo B

m) quickSort A n) quickSort B

A: cpu_clock

B: task_clock

C: page_fault

D: context_switch

!"# $%&'()*+'!

,"#-./)0&12%34!

5"# %3/)$/3)*+')67!

8"# 4$'$)1'%3$0!

9"#030)%3$4):;*$:)1'%&43)<!

="#030)%3$4)/:;>$:)1'%&43)<!

?"#030)@%&'3):;*$:)1'%&43)<!

A"#030)@%&'3):;*$:)1'%&43)BCD7!

M: input_size

"#

"$

%

$

#
&

'

(

)

*

+

,-

.

/

0

1

2

"#

"$

%

$

#
&

'

(

)

*

+

,-

.

/

0

1

2

"#

"$

%

$

#
&

'

(

)

*

+

,-

.

/

0

1

2

"#

"$

%

$

#
&

'

(

)

*

+

,-

.

/

0

1

2

"#

"$

%

$

#
&

'

(

)

*

+

,-

.

/

0

1

2

"#

"$

%

$

#
&

'

(

)

*

+

,-

.

/

0

1

2

"#

"$

%

$

#
&

'

(

)

*

+

,-

.

/

0

1

2

"#

"$

%

$

#
&

'

(

)

*

+

,-

.

/

0

1

2

"#

"$

%

$

#
&

'

(

)

*

+

,-

.

/

0

1

2

"#

"$

%

$

#
&

'

(

)

*

+

,-

.

/

0

1

2

"#

"$

%

$

#
&

'

(

)

*

+

,-

.

/

0

1

2

"#

"$

%

$

#
&

'

(

)

*

+

,-

.

/

0

1

2

"#

"$

%

$

#
&

'

(

)

*

+

,-

.

/

0

1

2

"#

"$

%

$

#
&

'

(

)

*

+

,-

.

/

0

1

2

Figure 6: Kiviat Diagrams of Sample and Full-Run Data

23

used in the case that the training applications have long execution times, so it

can substantially reduce the time required to train the models.

3.4.2. Validation of Workload Classification450

This section validates that the C4.5 decision tree produces sufficiently good

results for work-load classification. A set of labeled benchmarks are used to test

the decision tree and the classification accuracy is measured.

To validate the classification correctness of our workload classification model,

we use the model to predict classes of the trained benchmarks by using the455

sample data. The results show that all the benchmarks are correctly classified

into their appropriate classes with the exception of cg A. The cg A benchmark

actually belongs to sparse, but it is categorized as sgrid. (However, in the next

step, we use both the sparse and sgrid runtime prediction models for cg A.)

3.4.3. Validation of Runtime Estimation460

This section presents evaluation results of our runtime estimation. Three

metrics are used: the prediction error percentage (EP), the mean absolute error

percentage (MAEP), and the weighted absolute error percentage (WAEP). The

runtime estimation model quality is evaluated, where the lower error percentages

mean the better model quality.465

Based on the results of the aforementioned workload classification, we select

the appropriate model and use the aforementioned sample data for runtime

prediction. The exception is the cg A application, where we leverage two models:

sparse and sgrid. In order to evaluate the accuracy of the runtime prediction, we

calculate a prediction error percentage (EP) of each data point using Equation 1.

EP =
|A− P |
A

× 100 (1)

We also calculate the mean absolute error (MAEP) [13] to evaluate the

overall prediction error across all the benchmarks.

MAEP =

∑N
i=1 |Ai − Pi|

N ×
∑N

i=1Ai

× 100 (2)

24

With the same percentage of prediction error, the impact of the longer run-

time jobs to the overall system is higher than the shorter ones. Thus, we cal-

culate the weighted absolute error (WAEP) [41] in order to emphasize more on

the impact of the errors of the long runtime jobs and less on the effect of the

errors of the short jobs.

WAEP =

∑N
i=1 (|Ai − Pi| ×Ai)

(
∑N

i=1Ai)2
× 100 (3)

Note that A is an actual runtime, P is a predicted runtime, N is the number

of benchmarks that we want to take into account in MAEP or WAEP.

Table 6 presents the actual and predicted results as well as the prediction er-

ror percentages (EPs). Except for the cg A outlier, the maximum and minimum

errors for the runtime predictions are 0.36% and 35.51%, respectively, which is470

better than what can currently be achieved via qualitative metrics such as the

user name and project name in previous studies. Moreover, the mean absolute

error percentage (MAEP) for each machine type, which is between 1.4% and

5%, suggests that the overall prediction result for all benchmarks is promising.

The same applies to the weighted absolute error percentage (WAEP). However,475

WAEPs for the General Purpose and the Memory Optimized machines show

that the major contribution of the errors comes from long runtime jobs because

WAEPs are higher than MAEPs.

The three benchmarks that delivered runtime-prediction errors higher than

30% — spectral A, nbody2d A, and quickSort A — have short runtimes, i.e. less480

than 900 seconds in the training step. Because our framework is intended for

HPC applications, which have significantly longer execution times, we expect

that our models are more appropriate for predicting the runtime of such HPC

applications.

For the cg A outlier, the framework mispredicted the runtime. The root485

cause for this misprediction still remains unknown, but as part of our future

work, we seek to improve the robustness of classification and runtime prediction

models and to use additional (and likely more diverse) data in the training step.

25

Table 6: Runtime Prediction Results for Trained Benchmarks

General Purpose Compute Optimized Memory Optimized

B
en

ch
m

ar
k

A
ct

u
al

(s
)

P
re

d
ic

te
d

(s
)

E
P

A
ct

u
a
l

(s
)

P
re

d
ic

te
d

(s
)

E
P

A
ct

u
a
l

(s
)

P
re

d
ic

te
d

(s
)

E
P

nn A 3081 3501 13.67 2492 3168 27.17 1822 2131 17

nn B 15841 15559 1.76 7572 7068 6.66 5822 5801 0.36

cg A on

sparse model

233 253 8.71 159 208 31 140 145 3.73

cg A on

sgrid model

694 5270 >100 438 27971 >100 388 5317 >100

cg B 694 758 9.4 438 495 13.17 388 384 0.77

spectral A 111 101 8.29 74 98 33.67 73 85 16.69

spectral B 286 278 2.54 186 196 5.84 177 203 15.06

nbody2d A 894 1062 18.83 785 839 6.91 592 800 35.17

nbody2d B 11291 12557 11.22 9348 9528 1.92 7020 8293 18.14

particle A 2168 2477 14.26 580 701 20.87 883 801 9.20

particle B 96305 76925 20.12 14174 16133 13.82 26326 18765 28.72

monteCarlo

A

3067 3333 8.69 2022 2517 24.51 1193 1173 1.67

monteCarlo

B

12133 9420 22.35 12457 8729 29.92 2292 2210 3.56

quickSort A 370 444 20.24 245 296 20.85 219 296 35.51

quickSort B 708 500 29.32 507 349 31.12 432 366 15.19

MAEP 1.34 4.61 2.05

WAEP 8.80 3.57 9.25

26

4. Runtime Estimation in the ALICE System

This section presents the performance of our framework in predicting the490

runtime of ALICE’s applications. We focus on the scheduler for the offline

applications run on the EPN cluster, where scientists from the ALICE collab-

oration often create and run new applications to analyze the collision data. In

our experiments, the reference machine contained an 8-core Intel Core i7-2600

CPU, 8 GB of memory, and 470 GB of storage and ran the Scientific Linux495

CERN 6 (SLC 6) operating system.

To train the models, as outlined earlier in this paper, we collect the profiles of

the benchmarks, shown in Table 3, by using MICA and perf tools on a reference

machine. Because the execution times of ALICE’s applications are relatively

short, the time needed to construct the models using the full-run profiles is not500

measurably different from that of the sample profiles. Consequently, we used

the full-run profiles to construct the models for runtime estimation. For each

class of dwarf, we collected 15 profiles, where each profile contained 12 metrics

— eight (8) from MICA and four (4) from perf. We then obtained 105 profiles

of benchmarks to train the models.505

For the workload classification model, we applied C4.5 to the training data

in order to build a decision tree. The input attributes for the algorithm were

only the eight (8) MICA metrics. Seven rules derived from the decision tree

were used to determine the classes of applications. With stratified 10-fold cross-

validation, our model can achieve 81.14% accuracy. The rules derived from the510

decision tree were used to categorize applications into a specific class.

In this test, we used four ALICE applications that run frequently in the

EPN cluster to evaluate the performance of our framework. First, TPC-CE

calibrates the central electrode of the Time-Projection Chamber (TPC) detector

by analyzing ionization tracks left by a laser in the chamber. Second, PHS-515

GAIN measures the gain of the input channels of the PHoton Spectrometer

(PHS) detector. This allows to adjust the bias of each APD (Avalanche Photo

Diode) to have an equal gain. Third, SSD-PED measures the pedestal values

27

Table 7: Classification Results for ALICE’s Applications

Application Name Dwarf Class MAEP WAEP

TPC-CE dense 1.02 1.24

PHS-GAIN sparse 0.22 0.28

SSD-PED mapred 0.28 0.26

MCH-PED spectral 0.61 1

of the Silicon Strip Detector (SSD) detector channels, i.e. the value when no

input signal is expected (empty event). This value can then be eliminated at520

runtime to reduce the data size by removing the constant and useless signal.

Fourth, MCH-PED performs the same operation as SSD-PED but on the data

of the Muon Chambers (MCH) detector, which has a different data format. We

note that the execution patterns differ when running the same operations on the

data from different detectors. Each of these applications creates statistics on a525

few hundred collision events, e.g., calculating an average value of a measured

parameter.

To build a runtime prediction equation, we collected the full-run profiles of

each application with various input sizes and used them to train the model.

We constructed only models for the classes that the applications belonged to.530

From the classification rules, we could classify the applications into classes as

shown in Table 7. Therefore, only dense, sparse, mapred, and spectral runtime

prediction equations would be constructed.

We applied the Artifical Bee Colony (ABC) algorithm and linear regression

on the collected data and derived the runtime equations, which each could yield535

at least 95% R-squared. The runtime equations for dense, sparse, mapred, and

28

spectral are shown in Equations (4) through (7).

Runtimedense = 14 + 0.254
√
SizeInput + 5075PRegDist≤16 + 60311PLRStride=0

+ 0.0441PF − 79824PLWStride≤8 − 13.7
√
CLKCPU + 153log(PLWStride≤8)

− 11.1
√
PF − 7104

√
PLRStride=0 − 1949Pct2mult − 146ln(WSS)

(4)

Runtimesparse = −538.10 + 0.0175WSS + 943.1P 2
LWStride≤4096 + 7.944ln(CLKCPU)

− 1.3634
√
WSS − 8.815(SizeInput) + 0.507(CS) + 65.514ln(Bpredict)

+ 0.00012PF + 5.62ln(PLWStride≤8)− 0.0256
√
PF

(5)

Runtimemapred = −4261 + 3.256
√
SizeInput + 246log(WSS)− 2.063ln(PGRStride≤8)

− 216.87ln(SizeInput) + 31.05ln(PF) + 0.1004SizeInput + 208.72ln(CS)

− 0.00557WSS − 17.851
√
PF + 478.5ln(CLKTask) + 1684

√
PGRStride≤8

(6)

Runtimespectral = 56124 + 0.011
√
SizeInput − 38.69ln(SizeInput) + 12.08ln(PF)

+ 17.05ln(WSS) + 145613PLWStride≤4096 − 0.0114CLKCPU

+ 3.395ln(PLWStride≤8)− 30875P 2
LWStride≤4096 + 12844Bpredict

− 0.545
√
CS − 170519

√
PLWStride≤4096

(7)

We then predicted runtimes for the ALICE applications with different input

sizes. We calculated the error percentages (EPs) in the same fashion as for the

previous experiment (see Equation 1). The runtime prediction results of TPC-540

CE, PHS-GAIN, SSD-PED, and MCH-PED are presented in Figure 7, Figure 8,

Figure 9, and Figure 10, respectively. Please note that the labels on the graphs

show the EPs.

29

1
9
.8

2
%

2
2
.4

3
%

9
.5

6
%

0
.7

6
%

2
6
.1

4
%

2
2
.7

8
%

1
.6

9
%

6
.4

3
%

2
7
.6

4
%

1
7
.1

4
%

2
.6

5
%

 9
.4

1
%

0

100

200

300

400

500

600

700

800

977 1500 1954 2000 2500 3000 3500 3909 4000 5000 7819 8796

R
u

n
ti

m
e

(s

)

Input Size (GB)

Actual

Predicted

Average Error is 13.87%

Figure 7: Runtime prediction results for TPC-CE (dense)

3
4
.5

1
%

4
.9

6
%

0
.7

8
%

1
.2

2
%

3
.2

6
%

2
.7

9
%

1
.5

8
%

6
.9

5
%

2
.4

7
%

0
.3

1
%

2
.3

2
%

2
.6

3
%

 3
.2

2
%

 5
.2

7
%

2
.1

%

0

20

40

60

80

100

120

140

160

180

200

R
u

n
ti

m
e

(s

)

Input Size (GB)

Actual

Predicted

Average Error is 4.96%

Figure 8: Runtime prediction results for PHS-GAIN (sparse)

30

2
0
.1

9
%

1
.4

8
%

2
0
.7

6
%

2
4
.8

6
%

1
.2

3
%

3
.5

2
%

9
.8

6
%

7
.4

9
%

0
.5

3
%

2
.3

5
%

2
.7

3
%

3
.2

%

0
.4

4
%

 4
.2

%

0
.3

1
%

0

200

400

600

800

1000

1200

1400

1600

1800
R

u
n

ti
m

e

(s

)

Input Size (GB)

Actual

Predicted

Average Error is 6.88%

Figure 9: Runtime prediction results for SSD-PED (mapred)

7
.5

7
%

2
3
.4

8
%

1
.9

1
%

2
3
.0

9
%

1
3
.8

6
%

1
.4

1
%

4
.7

8
%

0

50

100

150

200

250

300

350

400

450

4.49 8.97 17.94 35.89 71.78 284.08 287.13

R
u

n
ti

m
e

(s

)

Input Size (GB)

Actual

Predicted

Average Error is 10.87%

Figure 10: Runtime prediction results for MCH-PED (spectral)

31

Table 8: A Prediction Accuracy Comparison with Other Machine Specific Prediction Models

Technique(s) Used MAEP

Various machine learning approaches & Regression [19] ≤ 12%

Neural Network & Regression [20] ≤ 10%

PQR2 [25] ≤ 20%

Our Work: Decision Tree C4.5 & Regression ≤ 5%

The runtime prediction result for each application was fairly accurate. The

EPs are between 1% and 35%. Moreover, according to Table 7, the mean545

absolute error percentages (MAEP) and weighted absolute error percentages

(WAEP) are below 2%.

To compare our runtime prediction performance with the previous works, we

adopt the MAEP metric as it has been used across various previous works [13,

15, 16, 17, 19, 20, 22, 24, 25]. However, the data set in the experiments of550

previous works and our work differed. The comparison is drawn based on the

assumptions that previous works have empirically selected the best experimental

factors for their experiments. The goal of the comparison is to address that our

proposed model has a comparable accuracy to the state of the art works. Since

our proposed work is a Machine type specific prediction model, we compare the555

prediction performance with other Machine type specific approaches as shown in

Table 8. We can see that our proposed work can provide a comparative MAEP

to the previous works with ≤ 5%.

5. Discussion

In this section, we discuss some limitations of our framework and propose560

approaches to overcome such limitations in the future.

There are several factors causing the variation between predicted and ac-

tual runtime (e.g., network bandwidth, size of data, algorithms, and file depen-

dency). Comparison between actual/predicted values should be controlled [42].

The practical physics applications used at CERNs ALICE are scheduled to be565

32

executed mostly on one machine. Therefore, in order to imitate real environ-

ment, we utilized a single ALICEs server in our experiment. Network band-

width should not affect the runtime prediction. We have carefully controlled

the machine specification for each prediction model. Consequently, the large

discrepancy between our predicted runtimes and actual runtimes mainly results570

from the sizes of data and algorithms as follows:

1. When parameters (MICA/perf metrics and data size) and a runtime of an

algorithm are not linearly correlated.

2. When a class of an algorithm is inconclusive (i.e. an algorithm is a com-

bination of 2 classes or more).575

All cases, when occur, can worsen the prediction accuracy. One way to

improve the discrepancy is to generate hybrid-dwarfs and added them to the 7

dwarfs used in our work. The hybrid-dwarfs will cover more characteristics of

applications. This is left for our future work.

Moreover, the accuracy could also be improved if a “white-box” approach580

was used. The “white-box” method can build a runtime estimation equation

by using complexity analysis and the linear regression method where source

codes of the applications must be given [43]. Although this method can provide

higher accuracy, source codes of some applications cannot be provided. Also,

this method requires a significant amount of manual processing. On the other585

hand, our proposed framework can be applied to applications, both without

source codes (“black-box”) and with source codes (“white-box”), to generate

the runtime estimation equations with the same accuracy.

In fact, scientists at CERN create and run many testing applications in the

EPN system on a regular basis in addition to the applications already in use.590

Consequently, the “white-box” approach would not be practical to manually

create a runtime estimation model for every single application. For this reason,

our runtime prediction mechanism for “black-box” applications is more practical

for the EPN’s scheduler.

33

6. Conclusion595

Since the ALICE detector will be upgraded in 2018 to acquire more colli-

sion data, the scheduler for supporting the ALICE system has to be fast and

highly efficient. One of the most important issues for the scheduler is how to

accurately estimate the runtimes of the applications in the system because run-

time is required by most scheduling algorithms. The main contribution of our600

work is a mechanism to estimate the runtimes of the applications with unknown

profiles on the ALICE system. Our mechanism can support the workload sched-

uler that is practical and effective for particle physic studies in the near future.

Similar to other runtime estimation approaches, our framework consists of two

phases: workload classification and runtime prediction. However, the key at-605

tributes used in our framework are more informative than those of similar other

works. We utilized 12 performance metrics, measured by the MICA and perf

tools, rather than using the qualitative measures of a user name and a project

name.

For workload classification, we realized a decision tree with the input of eight610

(8) MICA metrics. The output of the classification is one of seven (7) Berkeley

Dwarfs classes. Each class has its own runtime estimation equation, where the

model of the equation consists of the relationships among 12 performance met-

rics of MICA and perf, input size, and runtime of the workload. The Artificial

Bee Colony (ABC) algorithm is then used to construct the runtime estimation615

model. However, the runtime equation is specific to the type of machine used.

We evaluated our framework by predicting the runtime of some of the ALICE

applications. From the experimental results, the average runtime prediction

accuracy for the ALICE system was approximately 90.85%. Therefore, our

approach can efficiently estimate the runtime of the offline applications in the620

ALICE system and be further used to improve the scheduler performance in the

EPN cluster of the ALICE system. In the future, we can extend our framework

to provide APIs and runtime estimation service to typical schedulers used in

HPC systems. In the framework extension, disaster recovery [44] and security

34

of the scheduling node should also be considered for the ALICE system625

Acknowledgements

The authors would like to thank the HRH Princess Sirindthorn Scholarship

program, National E-Science Consortium, and CERNs ALICE O2 project for

an opportunity in research collaboration and the internship at CERN Geneva.

References630

[1] K. Aamodt, A. A. Quintana, R. Achenbach, S. Acounis, D. Adamová,

C. Adler, M. Aggarwal, F. Agnese, G. A. Rinella, Z. Ahammed, et al., The

alice experiment at the cern lhc, Journal of Instrumentation 3 (08) (2008)

S08002.

[2] B. Abelev, A. collaboration, et al., Upgrade of the alice experiment: letter635

of intent, Journal of Physics G: Nuclear and Particle Physics 41 (8) (2014)

087001.

[3] A. A. D. P. Suaide, C. A. G. Prado, T. Alt, L. Aphecetche, N. Agrawal,

A. Avasthi, M. Bach, R. Bala, G. Barnafoldi, A. Bhasin, et al., O2: A novel

combined online and offline computing system for the alice experiment after640

2018, Journal of Physics: Conference Series 513 (1) (2014) 012037.

[4] J. Shiers, The worldwide lhc computing grid (worldwide lcg), Computer

physics communications 177 (1) (2007) 219–223.

[5] S. Srinivasan, R. Kettimuthu, V. Subramani, P. Sadayappan, Characteri-

zation of backfilling strategies for parallel job scheduling, in: Parallel Pro-645

cessing Workshops, 2002. Proceedings. International Conference on, IEEE,

2002, pp. 514–519.

[6] W. Tang, N. Desai, D. Buettner, Z. Lan, Job scheduling with adjusted

runtime estimates on production supercomputers, Journal of Parallel and

Distributed Computing 73 (7) (2013) 926–938.650

35

[7] K. Hoste, L. Eeckhout, Microarchitecture-independent workload character-

ization, IEEE Micro 27 (3) (2007) 63–72.

[8] perf manual, http://man7.org/linux/man-pages/man1/perf.1.html,

accessed: 2016-11-27.

[9] K. Asanovic, R. Bodik, B. C. Catanzaro, J. J. Gebis, P. Husbands,655

K. Keutzer, D. A. Patterson, W. L. Plishker, J. Shalf, S. W. Williams,

et al., The landscape of parallel computing research: A view from berke-

ley, Tech. rep., Technical Report UCB/EECS-2006-183, EECS Department,

University of California, Berkeley (2006).

[10] K. Vivekanandan, D. Ramyachitra, B. Anbu, Artificial bee colony algo-660

rithm for grid scheduling, J Converg Inf Technol 6 (7) (2011) 328–339.

[11] R. Baraglia, G. Capannini, M. Pasquali, D. Puppin, L. Ricci, A. D. Te-

chiouba, Backfilling strategies for scheduling streams of jobs on computa-

tional farms, in: Making Grids Work, Springer, 2008, pp. 103–115.

[12] D. Tsafrir, Y. Etsion, D. G. Feitelson, Backfilling using system-generated665

predictions rather than user runtime estimates, IEEE Transactions on Par-

allel and Distributed Systems 18 (6) (2007) 789–803.

[13] T. N. Minh, L. Wolters, Using historical data to predict application run-

times on backfilling parallel systems, in: 2010 18th Euromicro Conference

on Parallel, Distributed and Network-based Processing, IEEE, 2010, pp.670

246–252.

[14] E. Gaussier, D. Glesser, V. Reis, D. Trystram, Improving backfilling by

using machine learning to predict running times, in: Proceedings of the

International Conference for High Performance Computing, Networking,

Storage and Analysis, ACM, 2015, p. 64.675

[15] S. Krishnaswamy, S. W. Loke, A. Zaslavsky, Estimating computation times

of data-intensive applications, IEEE Distributed Systems Online 5 (4)

(2004) 127–136.

36

 http://man7.org/linux/man-pages/man1/perf.1.html

[16] W. Smith, I. Foster, V. Taylor, Predicting application run times with his-

torical information, Journal of Parallel and Distributed Computing 64 (9)680

(2004) 1007–1016.

[17] E. Xia, I. Jurisica, J. Waterhouse, V. Sloan, Runtime estimation using

the case-based reasoning approach for scheduling in a grid environment,

in: International Conference on Case-Based Reasoning, Springer, 2010, pp.

525–539.685

[18] Y. Zhang, W. Sun, Y. Inoguchi, Predict task running time in grid environ-

ments based on cpu load predictions, Future Generation Computer Systems

24 (6) (2008) 489–497.

[19] S. Kadirvel, J. A. Fortes, Grey-box approach for performance prediction

in map-reduce based platforms, in: 2012 21st International Conference on690

Computer Communications and Networks (ICCCN), IEEE, 2012, pp. 1–9.

[20] G. Kousiouris, A. Menychtas, D. Kyriazis, S. Gogouvitis, T. Varvarigou,

Dynamic, behavioral-based estimation of resource provisioning based on

high-level application terms in cloud platforms, Future Generation Com-

puter Systems 32 (2014) 27–40.695

[21] R. Prodan, V. Nae, Prediction-based real-time resource provisioning for

massively multiplayer online games, Future Generation Computer Systems

25 (7) (2009) 785–793.

[22] S. Islam, J. Keung, K. Lee, A. Liu, Empirical prediction models for adaptive

resource provisioning in the cloud, Future Generation Computer Systems700

28 (1) (2012) 155–162.

[23] J. Li, X. Ma, K. Singh, M. Schulz, B. R. de Supinski, S. A. McKee, Machine

learning based online performance prediction for runtime parallelization

and task scheduling, in: Performance Analysis of Systems and Software,

2009. ISPASS 2009. IEEE International Symposium on, IEEE, 2009, pp.705

89–100.

37

[24] A. Matsunaga, J. A. Fortes, On the use of machine learning to predict the

time and resources consumed by applications, in: Proceedings of the 2010

10th IEEE/ACM International Conference on Cluster, Cloud and Grid

Computing, IEEE Computer Society, 2010, pp. 495–504.710

[25] D. Tetzlaff, S. Glesner, Intelligent prediction of execution times, in: Infor-

matics and Applications (ICIA), 2013 Second International Conference on,

IEEE, 2013, pp. 234–239.

[26] Y. Zhang, W. Sun, Y. Inoguchi, Predict task running time in grid environ-

ments based on cpu load predictions, Future Generation Computer Systems715

24 (6) (2008) 489–497.

[27] A. Banharnsakun, T. Achalakul, B. Sirinaovakul, The best-so-far selection

in artificial bee colony algorithm, Applied Soft Computing 11 (2) (2011)

2888–2901.

[28] D. Karaboga, B. Basturk, On the performance of artificial bee colony (abc)720

algorithm, Applied soft computing 8 (1) (2008) 687–697.

[29] D. Karaboga, B. Gorkemli, C. Ozturk, N. Karaboga, A comprehensive

survey: artificial bee colony (abc) algorithm and applications, Artificial

Intelligence Review 42 (1) (2014) 21–57.

[30] L. F. Manfroi, M. Ferro, A. M. Yokoyama, A. R. Mury, B. Schulze, A725

walking dwarf on the clouds, in: Proceedings of the 2013 IEEE/ACM 6th

International Conference on Utility and Cloud Computing, IEEE Computer

Society, 2013, pp. 399–404.

[31] W.-c. Feng, H. Lin, T. Scogland, J. Zhang, Opencl and the 13 dwarfs: a

work in progress, in: Proceedings of the 3rd ACM/SPEC International730

Conference on Performance Engineering, ACM, 2012, pp. 291–294.

[32] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S.-H. Lee,

K. Skadron, Rodinia: A benchmark suite for heterogeneous computing, in:

38

Workload Characterization, 2009. IISWC 2009. IEEE International Sym-

posium on, IEEE, 2009, pp. 44–54.735

[33] D. H. Bailey, E. Barszcz, J. T. Barton, D. S. Browning, R. L. Carter,

L. Dagum, R. A. Fatoohi, P. O. Frederickson, T. A. Lasinski, R. S.

Schreiber, et al., The nas parallel benchmarkssummary and preliminary

results, in: Proceedings of the 1991 ACM/IEEE conference on Supercom-

puting, ACM, 1991, pp. 158–165.740

[34] A. Kaiser, Torch computational reference kernels-a testbed for computer

science research, 2011.

[35] K. Manakul, P. Siripongwutikorn, S. See, T. Achalakul, Modeling dwarfs

for workload characterization, in: Parallel and Distributed Systems (IC-

PADS), 2012 IEEE 18th International Conference on, IEEE, 2012, pp.745

776–781.

[36] U. Taetragool, T. Achalakul, Method for failure pattern analysis in disk

drive manufacturing, International Journal of Computer Integrated Manu-

facturing 24 (9) (2011) 834–846.

[37] K.-Y. Chou, C.-C. Shih, H.-C. Keh, P.-Y. Yu, Y.-C. Cheng, N.-C. Huang,750

Using decision tree to analyze patient of aortic aneurysm with chronic dis-

eases in clinical application, in: 2013 16th International Conference on

Network-Based Information Systems, IEEE, 2013, pp. 405–409.

[38] A. E. C. Cloud, User guide, api version jun. 15, 2014.

[39] D. C. Montgomery, Design and analysis of experiments, John Wiley & Sons,755

2008.

[40] W. Gropp, E. Lusk, N. Doss, A. Skjellum, A high-performance, portable

implementation of the mpi message passing interface standard, Parallel

computing 22 (6) (1996) 789–828.

39

[41] S. Vasupongayya, S.-H. Chiang, Performance problems of using system-760

predicted runtimes for parallel job scheduling, in: Proceedings of the 19th

IASTED International Conference on Parallel and Distributed Computing

and Systems, ACTA Press, 2007, pp. 369–374.

[42] V. Chang, G. Wills, A model to compare cloud and non-cloud storage of

big data, Future Generation Computer Systems 57 (2016) 56–76.765

[43] S. Pumma, T. Achalakul, L. Xiaorong, Automatic vm allocation for sci-

entific application, in: Parallel and Distributed Systems (ICPADS), 2012

IEEE 18th International Conference on, IEEE, 2012, pp. 828–833.

[44] P. Mej́ıa-Alvarez, D. Mossé, A responsiveness approach for scheduling fault

recovery in real-time systems, in: Real-Time Technology and Applications770

Symposium, 1999. Proceedings of the Fifth IEEE, IEEE, 1999, pp. 4–13.

40

	Introduction
	Related Work
	Runtime Estimation Framework
	Profile Sampling
	Workload Classification Model
	Construction of the Workload Classification Model
	Workload Classification

	Runtime Estimation Model
	Construction of the Runtime Estimation Model
	Runtime Estimation

	Validation of Framework
	Validation of Profile Sampling
	Validation of Workload Classification
	Validation of Runtime Estimation

	Runtime Estimation in the ALICE System
	Discussion
	Conclusion

