
Scalable Deep Learning via I/O Analysis and Optimization

SARUNYA PUMMA, Department of Computer Science, Virginia Tech, USA
MIN SI,Mathematics and Computer Science Division, Argonne National Laboratory, USA
WU-CHUN FENG, Department of Computer Science, Virginia Tech, USA
PAVAN BALAJI,Mathematics and Computer Science Division, Argonne National Laboratory, USA

Scalable deep neural network training has been gaining prominence because of the increasing importance of
deep learning in a multitude of scientific and commercial domains. Consequently, a number of researchers have
investigated techniques to optimize deep learning systems. Much of the prior work has focused on runtime
and algorithmic enhancements to optimize the computation and communication. Despite these enhancements,
however, deep learning systems still suffer from scalability limitations, particularly with respect to data I/O.
This situation is especially true for training models where the computation can be effectively parallelized,
leaving I/O as the major bottleneck. In fact, our analysis shows that I/O can take up to 90% of the total
training time. Thus, in this paper, we first analyze LMDB, the most widely used I/O subsystem of deep learning
frameworks, in order to understand the causes of this I/O inefficiency. Based on our analysis, we propose
LMDBIO—an optimized I/O plugin for scalable deep learning. LMDBIO includes six novel optimizations that
together address the various shortcomings in existing I/O for deep learning. Our experimental results show
that LMDBIO significantly outperforms LMDB in all cases and improves overall application performance by
up to 65-fold on a 9,216-core system.

CCS Concepts: • Information systems → Parallel and distributed DBMSs; B-trees; Distributed stor-
age; Distributed retrieval; • Theory of computation → Distributed computing models; • Computing
methodologies→ Batch learning; Parallel computing methodologies; Distributed computing methodologies;

Additional Key Words and Phrases: Scalable deep learning, parallel I/O, Caffe, LMDB, LMDBIO, I/O in deep
learning, I/O bottleneck

ACM Reference Format:
Sarunya Pumma, Min Si, Wu-chun Feng, and Pavan Balaji. 2019. Scalable Deep Learning via I/O Analysis
and Optimization. ACM Trans. Parallel Comput. 6, 2 (August 2019), 34 pages. https://doi.org/10.1145/nnnnnnn.
nnnnnnn

1 INTRODUCTION
Deep learning is an emerging technology that is gaining prominence in a multitude of domains
because of its ability to process unstructured input and to predict trends. Training of deep neural
networks (DNNs), a process where large volumes of input data are mined to find patterns and trends,
usually involves high computational and memory complexity. To meet these complex resource
demands, we note three broad trends in the community. First, researchers have targeted scalable
high-performance computing as a mechanism to process data in parallel across multiple processors.

Authors’ addresses: Sarunya Pumma, Department of Computer Science, Virginia Tech, USA, sarunya@vt.edu; Min Si,
Mathematics and Computer Science Division, Argonne National Laboratory, USA, msi@anl.gov; Wu-chun Feng, Department
of Computer Science, Virginia Tech, USA, wfeng@vt.edu; Pavan Balaji, Mathematics and Computer Science Division,
Argonne National Laboratory, USA, balaji@anl.gov.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the
full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
1539-9087/2019/8-ART $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

ACM Trans. Parallel Comput., Vol. 6, No. 2, Article . Publication date: August 2019.

ACM Trans. Parallel Comput. Issue date: August, 2019.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

:2 Sarunya Pumma, Min Si, Wu-chun Feng, and Pavan Balaji

Second, there has been a large influx of commercial hardware that is either tuned for or dedicated
to deep learning systems. This hardware includes processors (e.g., NVIDIA GPUs [18, 36], Intel
Xeon Phi [12], Google TPUs [14]), high-speed networks (e.g., Mellanox InfiniBand [11, 35], Intel
OmniPath [57]), and memory technologies [5, 21]. Third, researchers have developed numerous
algorithms to make deep learning more computationally efficient by allowing them to realize
more algorithmic parallelism without losing convergence accuracy. For instance, You et al. [59, 60]
demonstrated parallelism across 32K data samples within each iteration with negligible loss in
convergence accuracy. Moreover, many parallel deep learning frameworks have been proposed
in the past decade that incorporate the cited trends in usable software instantiations, including
Caffe [2, 4, 22, 29], TensorFlow [3, 55], Theano [31, 53], Caffe2 [47], PyTorch [38], Microsoft
Cognitive Toolkit [43], Apache MXNet [7], and Chainer [54].
Nevertheless, scalable deep learning remains a difficult problem to solve. For training models

that focus on a single pass of the data (e.g., ones that need to process a very large amount of input
data) and for training models where the computation can be easily and efficiently parallelized or
offloaded to hardware computational units, moving the data becomes a bigger problem than the
computation itself. In particular, moving data from a global filesystem for such processing can be a
major bottleneck in the overall computation. Our study shows that even with a small amount of
parallelism in such deep learning systems, I/O accounts for a majority of the training time, thus
degrading the overall system scalability. For instance, with our experimental datasets [10, 26], we
observe that as much as 90% of the execution time may be devoted to data I/O.

In this paper, we first analyze the Lightning Memory-Mapped Database (LMDB), the most widely
used I/O subsystem in deep learning frameworks. The intent of this analysis is to establish a
clear understanding of the I/O problems in deep learning. Based on our analysis, we present a
number of shortcomings in LMDB that are caused mainly by its usage of implicit I/O through
mmap, its reliance on a B+-tree database structure for storing data, and its inefficiency in I/O
management in the context of parallel computing. Our analysis shows that LMDB achieves less
than 10% of the achievable performance of the I/O subsystem because of these shortcomings. Next,
we propose “LMDBIO,” an optimized I/O subsystem for scalable deep learning. LMDBIO includes
six sophisticated optimizations to address the shortcomings identified in our analysis.

We note that two of the optimizations, LMDBIO-LMM and LMDBIO-LMM-DM, have been pre-
viously published in [40] and [39], respectively. For completeness, we briefly discuss their designs,
and we include additional new results and analysis on a larger supercomputing system. The
remaining four optimizations—LMDBIO-LMM-DIO, LMDBIO-LMM-DIO-PROV, LMDBIO-
LMM-DIO-PROV-COAL and LMDBIO-LMM-DIO-PROV-COAL-STAG—are new and previ-
ously unpublished.
We present the detailed design of these optimizations and demonstrate that together they

can significantly improve the performance of parallel data reading. In fact, on our system, these
optimizations can saturate the system’s available I/O bandwidth in deep learning frameworks. We
also present and analyze experimental results to showcase improvements of LMDBIO compared
with LMDB using different networks and datasets. Our experimental results show that LMDBIO
can improve the overall training time of Caffe by up to 65-fold on a 9,216-core system.

We note here that the central focus of this study is on scaling deep learning on large supercom-
puting systems rather than on commodity clusters or cloud platforms. Most large supercomputers
do not have a local disk on each node; thus, I/O typically is performed over the shared filesystem.
In some cases, on-node storage might be present in the form of nonvolatile storage. Such storage is
not persistent across the lifetime of the machine, however, and typically is wiped clean when a new
job is assigned to a node. Thus, data I/O still has to be performed from the global filesystem. Even
on systems that utilize on-node storage technologies in the form of burst buffers, staging data on

ACM Trans. Parallel Comput., Vol. 6, No. 2, Article . Publication date: August 2019.

ACM Trans. Parallel Comput. Issue date: August, 2019.

Scalable Deep Learning via I/O Analysis and Optimization :3

to these burst buffers requires prior knowledge as to which node would need what segment of the
data. Such information is, unfortunately, not readily available in modern deep learning systems.
The rest of the paper is organized as follows. Section 2 presents an overview of the Caffe DNN

training framework and the LMDB I/O subsystem. Section 3 presents a detailed analysis of LMDB
and identifies various shortcomings that need to be addressed. Section 4 elaborates on the design and
implementation of our proposed I/O subsystem, LMDBIO, which includes six novel optimizations
to address the problems identified in our analysis. Other literature related to this paper is presented
in Section 6. Section 7 presents a few ideas about a new filesystem for deep learning workloads,
and Section 8 briefly summarizes our conclusions.

2 BACKGROUND
In this section, we present a brief overview of the Caffe deep learning framework and the LMDB
I/O subsystem.

2.1 Overview of Caffe and Batch Training
Caffe is a well-known deep learning framework developed by the Berkeley Vision and Learning
Center. Caffe is written in C++ with CUDA support. The original goal of Caffe was to provide an
efficient GPU-based framework for convolutional neural network training, but it has since been
extensively modified by several researchers to support generic CPU architectures as well.
Caffe follows the stochastic gradient descent approach to train DNNs. The goal of the training

is to obtain a set of parameters for the DNN that most accurately represent a given dataset. The
training starts by initializing the parameters of the DNN. Most training frameworks typically
initialize the parameters to random values, although a growing number of researchers use better
initial approximations of the parameters based on known properties of the input data. Training is
an iterative process that continues until the parameter set converges to the desired accuracy. In
each training iteration, a subset of data samples, called a batch, in the database is drawn and used
to train the network. Caffe then measures the deviation error between the predicted value from
the current DNN parameters and the actual value from the dataset. This error is then utilized to
improve the DNN parameters for the next training iteration. Once the training converges, the final
set of DNN parameters is used to generate a mathematical equation that can be utilized for highly
accurate classification of new data samples.
The key to generating a highly accurate and general inference model is the use of a very large

set of (high-quality) training data samples. Large organizations usually train DNNs with hundreds
of terabytes or even petabytes of data. Therefore, in order to allow DNN training to be practical,
data access and processing must be fast.
Sequentially processing each data sample in the training dataset is a valid, but conservative,

approach that is generally not useful in practice. Most modern deep learning frameworks allow
for what is called batch training. This allows for some parallelism in the DNN training either by
partitioning each batch of data samples across processes/threads (e.g., Caffe) or by partitioning
the neural network across processes/threads (e.g., TensorFlow, Theano, Caffe2, PyTorch, Microsoft
Cognitive Toolkit, Apache MXNet, and Chainer). Consequently, multiple data samples can be
processed before updating the DNN parameters. Processing one batch of data samples is referred
to as one training iteration. A typical training comprises a very large number of iterations, making
the training process mainly bulk synchronous. Parallelism is utilized within each iteration, but all
processes need to synchronize at the end of each iteration in order to update their DNN parameters.

The most widely used communication library in the deep learning community is MPI [34, 47, 48],
which has been integrated in several frameworks, including Caffe. Other communication libraries
also exist, such as TensorFlow’s gRPC (default in TensorFlow) and Facebook’s Gloo [11] (default

ACM Trans. Parallel Comput., Vol. 6, No. 2, Article . Publication date: August 2019.

ACM Trans. Parallel Comput. Issue date: August, 2019.

:4 Sarunya Pumma, Min Si, Wu-chun Feng, and Pavan Balaji

Process	0 Other	Process

Load	batch Load	batch

Do	forward

Update parameter

Initialize	networks Initialize	networks

Start Start

Parallel	Read

Update	parameter

Allreduce
gradient

Bcast
random	seedInitialize	parameter	 Initialize	parameter	

Terminate?

End

No

Yes

Do	forward Do	forward

Compute	accuracy Compute	accuracyAllreduce
accuracy

Load	batch Load	batch
Parallel	Read

Terminate?

End

No

Yes

Training	iteration	
done	?

YesYes No No

Training

Testing

Training	iteration	
done	?

Do	backward

Do	forward

Do	backward

Fig. 1. Caffe’s data-parallel workflow

in Caffe2), as well as some high-level communication libraries, such as Baidu’s Allreduce [13, 42]
(collective operation implementation based on MPI point-to-point operations), Uber’s Horovod [46]
(collective operation implementation based on MPI collective operations, NVIDIA’s NCCL [1], and
IBM’s PowerAI DDL [6]). We note that most modern deep learning frameworks can dispatch threads
or even whole CPUs (in cases where the system is equipped with accelerators) for communication
and I/O prefetching and preprocessing. Such prefetching techniques, however, can hide some of
the I/O cost when the cost is smaller than that of computation, but they cannot fully avoid it.
The data-parallel model in Caffe is shown in Figure 1. The overall flow of the training is the

same as that of sequential processing except that the data batch loading, the forward pass, and the
backward pass are parallelized on multiple processes/threads. Parallel network training, however,
comes with an additional communication cost where network parameters must be synchronized
across processes/threads.
For storing and retrieving data samples, a number of database options are available in the

community for deep learning systems. The most widely used database option is LMDB, which is
the default database format used by Caffe.

2.2 Overview of LMDB
LMDB involves two concepts. First, it refers to a database format that arranges its content based on
a B+ tree and allows efficient simultaneous read and write access to the database. Second, LMDB
refers to a library that provides the API to access and manipulate the LMDB database. This library
makes use of the operating system (OS) memory-mapping mechanism, mmap, to enable in-memory
database access. We note that LMDB is not specific to deep learning. It is a well-known database
that is used in multiple domains with different usage models. In this section, we discuss background
information related to LMDB in two ways: (1) mmap and its dynamic data-reading mechanism
(Section 2.2.1) and (2) the LMDB database format and its data access model (Section 2.2.2).

2.2.1 Dynamic Data Loading via mmap. LMDB relies on mmap to perform in-memory data access.
Mmap is a generic Unix system call that maps the layout of a file on the filesystem to the virtual
address space of a process, thus giving an illusion to the process that the entire file is in memory.
Data access is tracked by the OS at a page-level granularity, and data is dynamically fetched from
the filesystem to memory when the application accesses it. This model is convenient for accessing
files with complex structures, such as B+-tree databases, since the application process does not
have to be concerned about which exact bytes need to be fetched to memory. It can pretend that
the entire file is already in memory.

ACM Trans. Parallel Comput., Vol. 6, No. 2, Article . Publication date: August 2019.

ACM Trans. Parallel Comput. Issue date: August, 2019.

Scalable Deep Learning via I/O Analysis and Optimization :5

Shared	filesystem
(shared	between	nodes)

Page	cache

Virtual	memory: Process	0

Node1

Virtual	memory:	Process	1		

Node2

Page	cache

ReadRead

Map Map

Fig. 2. Workflow of mmap

Mmap dynamically reads pages from the filesystem to memory on demand. In other words, the
data is not read until it is required. The workflow used by mmap is illustrated in Figure 2. Three
components are involved in data reading: the filesystem (which can be local or shared across
machines), a page cache (which is shared across processes on the node), and a virtual address space
(which is private to each process). When mmap is called, each process allocates a virtual address
space for the database, but it does not fetch any data into this space. Instead, the mmap call protects
the allocated virtual address space to raise a page fault if the process tries to read from or write to
this virtual address space. When the process accesses the first page, which is not present in memory,
the page-fault handler is triggered. The page-fault handler first reads data from the filesystem to
the page cache and then maps the corresponding page from the page cache to the appropriate
virtual address region that the user is trying to access. The pages in the page cache can be mapped
to the virtual address spaces of multiple processes on the same node. Another benefit of using mmap
is that the OS automatically frees pages when physical memory is almost full. Thus, the user does
not have to worry about out-of-memory problems.
Aside from these advantages, mmap also has several shortcomings, which stem primarily from

the fact that it offloads all the I/O handling responsibilities to the OS. Thus, application processes
do not have any control over the actual I/O. For example, mmap does not allow users to provide
detailed information about their access pattern. While users can provide some simple hints using
madvise and fadvise, these hints are primarily for simple manipulation of access patterns. For
example, they allow users to distinguish between sequential and random access of data. But they
are not suitable to more complex access patterns, such as strided access of batches of data. This
abstraction of I/O from the applications that mmap provides sometimes results in tremendous loss
in I/O performance, as we discuss in Section 3.3.1.

2.2.2 LMDB Database Format. LMDB adopts a flattened B+-tree data structure as its database
layout. It uses pages to represent nodes (i.e., branch and leaf nodes) in the B+ tree, where each node
is stored on the filesystem in a block-aware manner.

The LMDB database consists of four types of pages: metadata pages, branch pages, leaf pages, and
overflow pages. The first two pages of the database file are metadata pages that store information
specific to the overall database (e.g., version of the database, size of the database). The branch
and leaf pages represent the internal branch and leaf nodes in the B+-tree structure. Each of the
branch and leaf pages contains a page header that has information associated with that page (e.g.,
type of page, amount of free space in the page, offsets to neighboring pages) and some actual data
key-value records. Since the size of each page is typically limited to 4 KB (the OS page size), a
leaf node cannot accommodate data records that are larger than 4 KB.1 In such cases, LMDB uses
overflow pages to store data records that cannot fit within one page. Thus, each leaf page can

1Even though most systems today support large 2 MB pages and huge 1 GB pages, file-backed mmap still typically uses 4 KB
pages, even on modern systems.

ACM Trans. Parallel Comput., Vol. 6, No. 2, Article . Publication date: August 2019.

ACM Trans. Parallel Comput. Issue date: August, 2019.

:6 Sarunya Pumma, Min Si, Wu-chun Feng, and Pavan Balaji

have zero or more overflow pages associated with it. We note that only the first overflow page
corresponding to a given leaf page has a header.
Since LMDB’s data format is a complex tree structure, correctly identifying a record requires a

complete collection of pointers to all the branch pages in the path to the target data record. LMDB
stores this information in a convenient data structure that it refers to as the “cursor,” which can be
thought of as the identity of a data record in the LMDB database. When the database is opened,
LMDB initializes this cursor to point to the root of the database. LMDB also provides API functions
to move the cursor forward or backward, thus allowing access to the remaining records in the
database.

LMDB’s database format is designed to allow for efficient sequential data access: each leaf node
has a link that connects it to the adjacent leaf node. The layout of the LMDB database file depends
not only on the database’s contents but also on the order in which the data records were inserted
into the database and how frequently the commit operations are issued. Thus, we cannot determine
the exact layout of the database unless we also have information on how the database was created.
This information is not stored in the native LMDB database format.

In order to access an arbitrary data record in the database, LMDB needs to navigate from the
root of the B+ tree and through all the corresponding branch and leaf nodes. Such tree parsing,
which we refer to as “sequential seek,” requires data to be read from the filesystem to memory
because the pointer information is stored in the page headers. Although only the header portion of
the page is needed for parsing the tree, the entire page is read to memory since mmap loads data at
a page-level granularity. The worst-case scenario is when every data record fits in the leaf page
(i.e., no overflow pages). In this case, every page along the way to the target leaf page will need to
be read while parsing the tree.
In fact, none of the existing LMDB operations allow for random access within the database

without requiring additional information. Unfortunately, the data access pattern of parallel deep
learning is semirandom—in other words, each process would need to skip the records that are being
processed by the other processes—thus making data I/O hard to optimize in such frameworks.

3 ANALYSIS OF I/O IN DEEP LEARNING
In this section, we present a detailed analysis of LMDB and its shortcomings for scalable deep
learning. Our analysis uses the Caffe framework with LMDB as the I/O subsystem, although
the analysis is applicable to other frameworks using LMDB as well, including Caffe2, PyTorch,
TensorFlow, and Keras-TensorFlow [17]. We also use other small I/O benchmarks to provide a more
complete picture of the analysis.

3.1 Experimental Setup
In this section, we describe the software and hardware environment that we used for our experi-
ments.

Datasets: We use three datasets for our experiments. The first is the CIFAR10-Large dataset,
which consists of 50 million sample images, each approximately 3 KB. The total dataset size,
including raw images and metadata corresponding to the images, is approximately 190 GB. CIFAR10-
Large is an extended version of CIFAR10 [26] that we generated for our experiments. Although we
adopted simple replication techniques to augment our dataset, other data augmentation approaches
(such as Gaussian noise [41]) can be used to replicate our results as well because the size and
the layout of the dataset would be identical irrespective of which technique is used. The second
dataset we used is the ImageNet [45] dataset, which consists of 1.2 million sample images, each
approximately 192 KB (total dataset is 240 GB). The third is the ImageNet-Large dataset, which is
an extended version of ImageNet that replicates some images from ImageNet for a total of 6 million

ACM Trans. Parallel Comput., Vol. 6, No. 2, Article . Publication date: August 2019.

ACM Trans. Parallel Comput. Issue date: August, 2019.

Scalable Deep Learning via I/O Analysis and Optimization :7

images (total dataset is 1.1 TB). Although all datasets can be I/O intensive, the ImageNet datasets
are particularly so, given the size of the images that need to be processed.

DNNs: We use three DNNs for our experiments. AlexNet2 is used to train the CIFAR10-Large
dataset. AlexNet is a small network with 13 layers and 89K parameters. CaffeNet3 is used to
train the ImageNet and the ImageNet-Large datasets. It is a large network with 22 layers and 60M
parameters. ResNet504 [19] is used to train ImageNet-Large. It is a large network with 228 layers
and 25.6M parameters [61]. We note that the number of layers in each DNN is based on the DNN
definition in Caffe.

Platforms: The experimental evaluation for this paper was performed on two clusters operated
by the Laboratory Computing Resource Center at Argonne: Blues5 and Bebop.6 Blues consists of
310 computing nodes connected via InfiniBand Qlogic QDR. Each node has 64 GB of memory, two
Sandy Bridge 2.6 GHz Pentium Xeon processors (16 cores, hyperthreading disabled), and a 15 GB
ramdisk. Bebop consists of 672 Intel Broadwell nodes. Each node consists of 36 cores, 128 GB of
memory, and a 15 GB ramdisk. The interconnect is Intel OmniPath.

Data storage: The datasets are stored on IBM General Parallel File System (GPFS). Blues and
Bebop share the same GPFS installation. The storage is 110 TB of clusterwide space. The system has
10 Network Shared Disk servers with no replication. To ensure that data is read from the filesystem
rather than from memory (i.e., no caching), we clear the operating system’s page cache and GPFS’s
file cache prior to performing each experiment.

Software stack: We used Caffe version 1.0.0-rc3 together with single-threaded Intel MKL, unless
specified otherwise. Caffe was built by using the Intel ICC compiler (version 17.0.4). On Blues, we
used MVAPICH-2.2 over PSM (Performance Scaled Messaging) [52] for all experiments. On Bebop,
we used Intel MPI version 2017 for all experiments. All experiments were run three times, and the
average performance is shown.

Data access pattern: Caffe supports a data access pattern that is commonly known as data
sharding, strided data reading, or distributed data reading. All processes together access contiguous
blocks of data in each iteration, while each individual process has a strided access pattern for
data access across iterations. Thus, each process accesses a disjoint set of data samples in each
training iteration. This data access pattern is a part of the Caffe workflow and is the same across all
experiments. Data reading and parsing are performed in parallel by multiple processes. We note
that Caffe does not perform data shuffling.

3.2 Caffe/LMDB Scalability Analysis
In our analysis, we evaluated the strong-scaling scalability of Caffe/LMDB by training it using the
CIFAR10-Large dataset on AlexNet. We used a batch size of 18,432 for 512 iterations (approximately
9 million total data samples) on Bebop. The training was scaled from 1 process to 9,216 processes
(i.e., 256 nodes with 36 cores on each node). Figure 3(a) shows the overall training time of Caffe
compared with ideal strong scaling. The figure shows that Caffe/LMDB scales poorly even with a
small number of processes and is nearly 660-fold worse than ideal strong scaling on 9,216 processes.
We next performed a breakdown of the execution time, shown in Figure 3(b), to understand

which components of Caffe/LMDB take the most time. We notice two important trends in the figure.
First, the data I/O time (denoted “Read time”) increases with the number of processes. This increase
is because the computation time (i.e., total forward time, total backward time, parameter calculation
2https://github.com/BVLC/caffe/blob/master/examples/cifar10/cifar10_full.prototxt
3https://github.com/BVLC/caffe/blob/master/models/bvlc_reference_caffenet/train_val.prototxt
4https://github.com/KaimingHe/deep-residual-networks/blob/master/prototxt/ResNet-50-deploy.prototxt
5http://www.lcrc.anl.gov/systems/resources/blues
6http://www.lcrc.anl.gov/systems/resources/bebop

ACM Trans. Parallel Comput., Vol. 6, No. 2, Article . Publication date: August 2019.

ACM Trans. Parallel Comput. Issue date: August, 2019.

https://github.com/BVLC/caffe/blob/master/examples/ cifar10/cifar10_full.prototxt
https://github.com/BVLC/caffe/blob/master/models/bvlc_reference_caffenet/train_val.prototxt
https://github.com/KaimingHe/deep-residual-networks/blob/master/prototxt/ResNet-50-deploy.prototxt
http://www.lcrc.anl.gov/systems/resources/blues
http://www.lcrc.anl.gov/systems/resources/bebop

:8 Sarunya Pumma, Min Si, Wu-chun Feng, and Pavan Balaji

1

10

100

1000

10000

100000

Ti
m
e	
(s
)

Number	of	Processes

Caffe/LMDB Ideal

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

Ex
ec
ut
io
n	
Ti
m
e	B

re
ak
do

w
n

Number	of	Processes
Read	time Transform	time Total	forward	time
Total	backward	time I/O	skew	time Param	sync	time
Param	calculation	time Param	update	time

Fig. 3. Caffe/LMDB’s strong scaling using CIFAR10-Large on Bebop: (a) total execution time; (b) execution
time breakdown

time, and parameter update time) tends to scale well with the number of processes, leaving I/O as
the bottleneck. In fact, as we scale the problem to 9,216 processes, I/O takes approximately 90% of
the total time. Second, the “I/O skew time” grows with the number of processes, raising concerns
of load imbalance occurring between the processes as we scale to a large number of processes.

10

100

1000

10000

576 1152 2304 4608 9216

Ti
m
e	
(s
)

Number	of	Processes

Caffe/LMDB Ideal

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

576 1152 2304 4608 9216

Ex
ec
ut
io
n	
Ti
m
e	
Br
ea
kd
ow

n

Number	of	Processes
Read	time Transform	time Total	forward	time
Total	backward	time I/O	skew	time Param	sync	time
Param	calculation	time Param	update	time

Fig. 4. Caffe/LMDB’s strong scaling using ImageNet-Large with CaffeNet on Bebop: (a) total execution time;
(b) execution time breakdown

100

1000

10000

4608 9216

Ti
m
e	
(s
)

Number	of	Processes

Caffe/LMDB Ideal

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

4608 9216

Ex
ec
ut
io
n	
Ti
m
e	
Br
ea
kd
ow

n

Number	of	Processes
Read	time Transform	time Total	forward	time
Total	backward	time I/O	skew	time Param	sync	time
Param	calculation	time Param	update	time

Fig. 5. Caffe/LMDB’s strong scaling using ImageNet-Large with ResNet50 on Bebop: (a) total execution time;
(b) execution time breakdown

ACM Trans. Parallel Comput., Vol. 6, No. 2, Article . Publication date: August 2019.

ACM Trans. Parallel Comput. Issue date: August, 2019.

Scalable Deep Learning via I/O Analysis and Optimization :9

We have also performed a similar analysis with ImageNet-Large using the CaffeNet and ResNet50
network models by using a batch size of 18,432 for 128 iterations, as illustrated in Figures 4 and 5.
From our experiments, we observe that the actual read time (denoted “Read time”) and the I/O
imbalance time (denoted “I/O skew time”) take up to 66% of the time with CaffeNet and 75% of the
time with ResNet50 on 9,216 processes, thus dominating the overall training time. We note that
we could not run experiments with ResNet50 on less than 4,608 processes on Bebop because of
insufficient memory on each node. For this reason, we use the CaffeNet neural network for all of
the remaining experiments with the ImageNet-Large dataset in this paper.
A broader issue that one needs to be aware of is that hardware technology trends point to the

fact that I/O is already a bottleneck and its performance relative to that of computation is only
getting worse with time [44]. The specific ratios between the computation cost (in the model that
we chose) and the I/O cost (in the filesystem that we chose) are simply representative examples of
a more general problem.

As a final step, we wanted to understand the peak performance that our filesystem can achieve, in
order to help us distinguish between using a slow filesystem vs. LMDB itself being inefficient. To do
so, we used the IOR benchmark7 to measure the performance of POSIX I/O on Bebop and compared
that with the data I/O performance achieved by Caffe/LMDB. IOR performance is often considered
to be the best case for I/O performance that a given platform can achieve. Our comparison showed
that the I/O performance achieved by Caffe/LMDB was much worse than that reported by IOR. In
fact, the data I/O bandwidth achieved by Caffe/LMDB was less than 10% of that demonstrated by
IOR. This result suggests that the performance loss is caused mainly by inefficiencies in Caffe/LMDB
rather than by limitations in the filesystem (or the I/O hardware) itself.

3.3 LMDB Inefficiencies
In this section, we discuss various inefficiencies in LMDB that need to be addressed.

3.3.1 Mmap’s Interprocess Contention. As noted in Section 2.2, LMDB relies on mmap to perform
in-memory data access where all I/O operations are offloaded to the OS. The OS, however, has
no knowledge that the application is a parallel application, and hence it must consider the mmap
done by each process to be independent (except for sharing the page cache when possible). This
behavior, however, causes an unfortunate interaction with the Linux process scheduler.
Since kernel version 2.6, Linux has used the Completely Fair Scheduler (CFS) as the default

process scheduler. CFS’s scheduling policy is based simply on the amount of CPU time taken by
each process. It arranges all runnable processes in an internal red-black tree that is ordered based
on the CPU-time usage of each process, where the process that has the least-used CPU time will be
scheduled first. Consider the case where several processes in the system issue I/O requests. In this
case, all these processes will sleep while waiting for the I/O requests to complete. When an I/O
request completes, an interrupt is raised and the I/O interrupt handler invoked. Since the interrupt
handler is a bottom-half handler in Linux (meaning that it has no context of the process that owns
the completed request), it will mark all the sleeping processes that requested I/O as runnable. Then,
the CFS scheduler will schedule each of the runnable I/O processes in CPU-time order with no
regard for the order in which they issued the I/O operations. If the request that just completed does
not belong to this process, it will go back to sleep without making more progress on its work.
This lack of coordination between the order in which the I/O operations are issued and the

order in which the processes are woken up causes several unnecessary “context switches” to occur
without performing any useful work. Aside from the dramatic increase in context switches, the
amount of “sleep time” of each process surges as well. We quantitatively measured the number of
7https://github.com/LLNL/ior

ACM Trans. Parallel Comput., Vol. 6, No. 2, Article . Publication date: August 2019.

ACM Trans. Parallel Comput. Issue date: August, 2019.

https://github.com/LLNL/ior

:10 Sarunya Pumma, Min Si, Wu-chun Feng, and Pavan Balaji

context switches and sleep time during data I/O in Caffe/LMDB and plotted the results in Figures 6(a)
and (b), respectively. The number of context switches increases by approximately 48 times from one
process to two processes and by approximately 2,546 times from one process to 36 processes. When
using multiple processes to read the data, the ratio of the sleep time to the read time increases to
93% on 36 processes.

0.
2 9.
8

50
.7

10
3.
9

20
6.
1

50
9.
3

0

100

200

300

400

500

600

1 2 4 8 16 36

N
um

be
r	o

f	C
on

te
xt
	Sw

itc
he

s M
ill
io
ns

Number	of	Processes

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

1 2 4 8 16 36

Re
ad

	T
im

e	
Br
ea
kd
ow

n
Number	of	Processes

User	time Kernel	time Sleep	time

Fig. 6. Caffe/LMDB’s mmap analysis (CIFAR10-Large dataset on Bebop): (a) context switches; (b) sleep time

3.3.2 Sequential Data Access Restriction. As mentioned in Section 2.2.2, LMDB does not support
random database accesses without additional information; that is, the LMDB database can be
accessed only sequentially. This is a significant issue for parallel deep learning because each process
needs to read and process a different subset of data (typically interleaved with the data required by
other processes). Thus, each process needs to start from the root of the database and parse through
(and skip) all the intermediate records until it reaches the desired record that it wants to process.

The data access pattern when using LMDB in parallel is demonstrated in Figure 7. As shown
in the figure, every process except for P0 starts reading the data from a non-zero offset of the
file. Therefore, these processes would need to perform a sequential seek in order to reach their
corresponding starting locations. For instance, P1 would read some of the same data as P0 (i.e., D0),
which it would later discard once it reached the beginning of D1. P3 reads the most amount of
extra data. This data access model can cause each process to read a total of R × B bytes, where R is
the total number of readers and B is the size of the data portion of each process.

D0 D1 D2 D3Database

P0	reads

Concurrent P1	seeks P1	reads
P2	reads

P3	reads

P2	seeks

P3	seeks

Fig. 7. LMDB redundant data movement

Apart from the large amount of redundant data I/O, this data access also causes large imbalance
and skew in data reading because each process reads a different number of bytes.

3.3.3 Mmap Workflow Overheads. Since mmap performs implicit I/O, the user has no control over
when an I/O operation is issued. Mmap needs to keep track of what data the user is trying to access.
Only when the user tries to touch a piece of data can mmap deduce that that data segment is needed.
The typical workflow used by mmap is as follows. When the user tries to access data that is not
already available, a page fault signal is generated, which internally invokes an I/O operation. When
the I/O operation completes, an interrupt is generated that marks the corresponding operation as

ACM Trans. Parallel Comput., Vol. 6, No. 2, Article . Publication date: August 2019.

ACM Trans. Parallel Comput. Issue date: August, 2019.

Scalable Deep Learning via I/O Analysis and Optimization :11

complete. Thus, the workflow used by mmap is necessarily reactive based on the user data access
pattern and leads to inefficiencies in the I/O path.
To showcase this inefficiency in mmap, we performed an experiment to compare the I/O read

bandwidth achieved by mmap with the bandwidth achieved by using explicit I/O (based on POSIX
I/O). We developed a microbenchmark to read a 256 GB file using a single reader on a single
machine. To read the file, we used memcpy and pread with the mmap and POSIX I/O benchmarks,
respectively. In this benchmark, we kept the read chunk size used by POSIX I/O to be 4 KB, namely,
the OS page size, similar to what is used by mmap. In this way, the benchmark does not mix effects
from the read block size with that of the mmap workflow. Effects of the read block size are studied
separately in Section 3.3.4. The results from our experiment show that mmap’s read bandwidth is
approximately 2.5 times lower than the read bandwidth achieved by POSIX I/O. This observation
showcases the inefficiencies in mmap’s workflow.

3.3.4 I/O Block Size Management. As discussed earlier, most deep learning frameworks are
iterative. In each iteration, they read one batch of data samples and process them before moving
on to the next iteration. With parallel deep learning, this batch of data samples is further split
into multiple subbatches, where each process reads a subbatch and processes it. As the number
of processes increases, however, the batch of data samples is split among more processes, so each
subbatch is smaller. In the extreme case, where the number of processes participating in parallel
deep learning is equal to the number of data samples in the batch, each subbatch would contain just
a single data sample. This would dramatically reduce the size of the I/O performed by each process
within an iteration. For instance, with the CIFAR10-Large dataset, each data sample is just 3 KB,
causing the I/O operations to be done in small-page-size granularity, thus leading to significant
inefficiencies.

0

500

1000

1500

2000

2500

3000

4	
K

8	
K

16
	K

32
	K

64
	K

12
8	
K

25
6	
K

51
2	
K

1	
M

2	
M

4	
M

8	
M

16
	M

32
	M

64
	M

12
8	
M

25
6	
M

51
2	
M

10
24
	M

Re
ad

	B
an

dw
id
th
	(M

B/
s)

I/O	Request	Size	(bytes)

mmap POSIX	I/O

Fig. 8. I/O block size

To demonstrate the effect of I/O block size on read performance, we used the same microbench-
mark discussed in Section 3.3.3, but this time we varied the read block size from 4 KB to 1 GB.
Figure 8 shows the read I/O bandwidth of mmap and POSIX I/O with different I/O block sizes. Two
trends are noteworthy. First, the I/O read bandwidth of POSIX I/O increases with the block size.
This increase is expected and has also been demonstrated by other researchers in the past. Second,
the block size has no impact on the I/O performance achieved by mmap. The reason is that mmap
does not have information about the overall access pattern used by the application and needs to
wait for the application to access data before fetching it. Even when the application uses a larger
block size for performing the memcpy in the benchmark, this information is not passed to mmap.
Thus, the I/O blocks used by it are inherently small. The take-away of this analysis is that although
the current I/O methodology used by LMDB cannot benefit from larger I/O blocks, if one were to
migrate LMDB to using explicit I/O, larger I/O blocks could give a significant performance boost.

ACM Trans. Parallel Comput., Vol. 6, No. 2, Article . Publication date: August 2019.

ACM Trans. Parallel Comput. Issue date: August, 2019.

:12 Sarunya Pumma, Min Si, Wu-chun Feng, and Pavan Balaji

3.3.5 I/O Randomization. One aspect to consider while performing parallel I/O is the data access
order that the various I/O requests create. For example, consider a scenario where a large number
of processes need to divide a large file into smaller pieces and each process needs to access a part
of it. In this example, each process issues an I/O request for its piece of the data that it needs to
fetch. Since each process is independent, however, these I/O requests do not arrive at the I/O server
processes in any specific order, causing the server processes to access the file in a nondeterministic
fashion. We refer to this problem as I/O randomization and illustrate it in Figure 9.

Server	1

1 3 5 7

Request	queue

Client	8

All	requests	are	issued	at	the	same	time

File

5

3

7

1

Server	2

2 4 6 8

Request	queue

File

2

6

8

4

Client	7Client	6Client	5Client	4Client	3Client	2Client	1

Fig. 9. I/O randomization

I/O randomization hurts performance because, unlike sequential I/O, it cannot benefit from most
I/O optimizations including data prefetching and caching, thus becoming limited by disk seek
overheads. Another unfortunate aspect of I/O randomization is that as the number of processes
performing parallel I/O increases, the randomization of I/O requests increases as well. Furthermore,
as the read block size associated with each I/O operation increases, the impact of the additional disk
seeks and the lack of benefits from data prefetching and caching also increase. Thus, to maximize
the overall performance, we need to carefully balance the various metrics of the amount of I/O
parallelism, read block size, and I/O randomization.

4 DESIGN AND IMPLEMENTATION OF LMDBIO
In this section, we present the design and implementation of LMDBIO, an optimized I/O subsystem
for scalable deep learning. At a high level, LMDBIO loses some of the generality of LMDB by
assuming certain characteristics of deep learning frameworks. But by doing so it addresses the
various shortcomings of LMDB that we presented in Section 3. LMDBIO encompasses six differ-
ent optimizations to address these shortcomings: LMDBIO-LMM, LMDBIO-LMM-DIO, LMDBIO-
LMM-DM, LMDBIO-LMM-DIO-PROV, LMDBIO-LMM-DIO-PROV-COAL,and LMDBIO-LMM-DIO-
PROV-COAL-STAG. An overview of these six optimizations and the problems addressed by each
optimization is shown in Table 1.

We have separated the different optimizations in order to better understand the impact of each op-
timization individually. The details of each optimization are elaborated in the following subsections.
As mentioned earlier, LMDBIO-LMM and LMDBIO-LMM-DM were previously published in [40]
and [39], respectively. For completeness, we briefly discuss their designs and present additional
new results and analysis for these two optimizations. The remaining four optimizations are totally
new.

4.1 LMDBIO-LMM
As discussed in Section 3.3.1, mmap has an unfortunate interference with the Linux CFS process
scheduler causing I/O contention between the different processes on the node. In order to minimize

ACM Trans. Parallel Comput., Vol. 6, No. 2, Article . Publication date: August 2019.

ACM Trans. Parallel Comput. Issue date: August, 2019.

Scalable Deep Learning via I/O Analysis and Optimization :13

Table 1. Optimization overview

Library Optimization
Reducing

Interprocess
Contention

Using
Explicit I/O

Eliminating
Sequential

Seek

Managing
I/O Size

Reducing I/O
Randomiza-

tion
LMDB -

LMDBIO

LMM ✓
LMM-DM ✓ (partial)
LMM-DIO ✓ ✓
LMM-DIO-PROV ✓ ✓ ✓
LMM-DIO-PROV-
COAL

✓ ✓ ✓ ✓

LMM-DIO-PROV-
COAL-STAG

✓ ✓ ✓ ✓ ✓

interprocess contention, LMDBIO-LMM seeks to limit the number of parallel processes execut-
ing mmap simultaneously within the same node. That is, LMDBIO-LMM attempts to balance I/O
parallelism with interprocess contention.
LMDBIO-LMM involves two phases: an initialization phase and a data-reading phase. In the

initialization phase, LMDBIO-LMM selects a subset of processes on each node as “root” processes.
These root processes perform the actual data I/O reads on behalf of all processes on the node using
mmap. To do so, LMDBIO-LMM uses MPI-3 to create a shared-memory buffer for processes on the
same node. Once the buffer is set up, the root processes can open the LMDB database using mmap.
In the data-reading phase (illustrated in Figure 10), the root processes read data from the shared
filesystem and copy it into the preallocated shared-memory buffer. Once the data is available in the
shared-memory buffer, all processes can directly access the buffer.

This optimization can significantly reduce interprocess contention, and consequently the number
of context switches, since the number of processes that the I/O handler has to manage is small. We
note, however, that this approach also reduces I/O parallelism and thus can cause some degradation
in performance. Based on our experiments with up to 36 cores on the node, using just one root
process was sufficient up to 16 cores, and using two root processes was sufficient up to the maximum
number of cores on the node, in order to achieve the best performance.

Shared	filesystem
(shared	between	nodes)

Page	cache

Read

Map
Shared	memory

mmap buffer
(Process	0)	

Copy

Process	0 Process	1 Process	2

Access Access Access

Fig. 10. LMDBIO-LMM design

We note that several other approaches exist to implement shared memory between processes,
for example, using /dev/shm or using mmap. These methods are portable on POSIX-based systems.
However, we have chosen MPI-3’s shared-memory implementation for two reasons: (1) the MPI im-
plementation can choose the most suitable shared-memory model for a particular system including
non-POSIX models such as XPMEM [56] and PiP [20], providing a minor performance advantage

ACM Trans. Parallel Comput., Vol. 6, No. 2, Article . Publication date: August 2019.

ACM Trans. Parallel Comput. Issue date: August, 2019.

:14 Sarunya Pumma, Min Si, Wu-chun Feng, and Pavan Balaji

in some cases, and (2) we already use MPI for other communication in our framework, thus making
MPI-3 shared memory a more natural model to be used in our framework.

4.2 LMDBIO-LMM-DM
As discussed in Section 3.3.2, because of its data layout, LMDB cannot access a given data record
without parsing through all of the tree’s branch and leaf nodes in the path to the record. This process
results in a significant amount of redundant data I/O among the different root processes. Although
we cannot completely eliminate this redundant I/O without more information than what LMDB
currently provides, LMDBIO-LMM-DM aims to improve this situation by coordinating between
the root processes and speculatively performing parallel I/O to improve the read performance.
Loosely speaking, with LMDBIO-LMM-DM, each root process tries to “guess” the location of the
data records that it needs and speculatively prefetches the corresponding data into memory. Once
the seek operation (which is still sequential) is carried out, if the initial guess of the data location
was correct, the required data will already be in memory. If the guess was incorrect, the correct
data will need to be read from the filesystem at that point; but we can use the newly acquired
record location information to improve our guess for the next iteration.

4.2.1 Portable Cursor Representation. As explained in Section 2.2.2, the data record position
indicator in LMDB is referred to as the “cursor.” A cursor is not a trivial file offset but is instead a
set of pointers to different pages in the database. In general, because pointers to a virtual address
space are private to each process, the cursor is not always portable across processes. In practice,
however, the mmap space is a contiguous virtual address space, and the pointers in a cursor point
only to locations within the B+ tree. Thus, if we could align the B+ tree used on all the processes to
start at exactly the same virtual address (i.e., use a symmetric address space for the database mmap
on all processes), the cursors would automatically become portable across the different processes.

Based on this observation, we designed a simple symmetric memory allocator using the following
algorithm. The first root process picks a random virtual address location in its 64-bit address space
and tries to mmap the database to this location. If the mmap is successful, it means that the virtual
address location was unused so far. It then broadcasts this address to the remaining root processes,
which try to mmap the database file at the exact same virtual address location. If that virtual address
location was previously unused on all of the root processes, they will all succeed in this operation.
If any one of them failed, it will indicate so in an MPI Allreduce operation. All the root processes
will then discard that virtual address location and repeat the process. If after a few iterations no
common virtual address location can be found, this optimization is abandoned. In practice, however,
we can find a symmetrical address space in just 1–2 iterations.

An alternative approach to achieve the same outcome would be to modify the LMDB imple-
mentation such that the user could pass in a pointer offset that would be used for the database
parsing. Such an approach would be equally effective, although we feel that the symmetric memory
allocation technique that we use in this paper is a less intrusive (to the LMDB implementation) and
generally more elegant solution to the problem.

Once the database is mapped to a symmetrical address space, the cursor is immediately portable.
To send the cursor from one process to another, we simply serialize the internal content of the
cursor data structure to a memory buffer and send it to the other processes by using MPI_Send
and MPI_Recv, as shown in Figure 11. Each root process can then exploit the information given
by other root processes to seek to their respective starting records without having to parse the
database file again.

4.2.2 Speculative Parallel I/O. To enable parallelism in I/O, in LMDBIO-LMM-DM (Figure 12) the
root processes attempt to estimate the location of the data records that they need and speculatively

ACM Trans. Parallel Comput., Vol. 6, No. 2, Article . Publication date: August 2019.

ACM Trans. Parallel Comput. Issue date: August, 2019.

Scalable Deep Learning via I/O Analysis and Optimization :15

D0 D1 D2 D3Database

P0	reads

Sequential

P0	sends	cursor	to	P1	
P1	sends	cursor	to	P2	

P2	sends	cursor	to	P3	
P3	sends	cursor	to	P0
(for	the	next	batch)

P1	reads
P2	reads

P3	reads

Ti
m
el
in
e

Fig. 11. LMDBIO-LMM-DM design: sequential I/O and cursor handoff

read this data in parallel. Because of the complex structure of the LMDB database, accurately
estimating the location of the data records is a complex task. In LMDBIO-LMM-DM, we use a
history-based evolving estimation. Specifically, the first root process parses the structure of the
initial part of the database. All root processes then use this partial information to extrapolate the
structure of the rest of the database and estimate the locations of the data records that they need.
When the sequential seek completes, each root process knows whether its estimate was correct. If
the estimate was incorrect, the root process will use the additional information on the structure
of the database that it gathered in this iteration, to improve its estimate for the next iteration.
With this approach, our estimation accuracy, in terms of missing required data pages, converges
quickly—within the first few iterations. However, LMDBIO-LMM-DM tends to overestimate the
data that is needed and usually prefetches more data than it actually needs.

D0 D1 D2 D3Database

P0	seeks

Sequential
(in-memory)

P0	sends	cursor	to	P1	
P1	sends	cursor	to	P2	

P2	sends	cursor	to	P3	

P3	sends	cursor	to	P0
(for	the	next	batch)

P0	reads

P0	accesses P1	seeks

P1	accesses P2	seeks

P2	accesses P3	seeks

P3	accesses

P1	reads
P2	reads

P3	reads
Concurrent

Ti
m
el
in
e

Fig. 12. LMDBIO-LMM-DM design: parallel I/O and in-memory sequential seek

In LMDBIO-LMM-DM, speculative I/O is done concurrently. Once that is done, each root process
seeks for its data records and hands off the final cursor position to the next root process when it
is done. The final cursor position of a root process is the starting cursor position of the next root
processes, thus avoiding any redundant I/O in the seek process. If the speculative I/O estimation
was accurate, even though the seek is still sequential, it will be done entirely in memory. On the
other hand, if the estimation was not accurate, the seek will still perform the data I/O read that it
was originally performing, but we would have unnecessarily fetched additional data that we do not
need. In fact, in the worst case, we could end up reading twice as much data as needed.
We note that the proposed history-based speculative I/O technique can be used in conjunction

with other in-memory data shuffling approaches, where shuffling is done after the I/O has completed.
In other words, as long as data I/O is structured and iterative (which is true for most deep learning
frameworks), one can take advantage of the proposed history-based speculative I/O technique.

4.3 LMDBIO-LMM-DIO
As shown in Section 3.3.3, the implicit I/O model used by LMDB (through mmap) can have a
significant performance impact on data I/O read. In this section, we present LMDBIO-LMM-DIO,
an approach to extend LMDBIO-LMM to use direct I/O (through POSIX I/O).
The basic working model of LMDBIO-LMM-DIO is similar to that of LMDBIO-LMM. That is,

LMDBIO-LMM-DIO still has a small subset of the processes designated as root processes on each
node that, in turn, mmap the LMDB database into their respective address spaces. And, like LMDBIO-
LMM, LMDBIO-LMM-DIO also creates a shared-memory buffer between all processes on the node
to share the data that the root processes read from the database. The primary difference between
LMDBIO-LMM and LMDBIO-LMM-DIO is that the latter uses direct POSIX I/O for performing

ACM Trans. Parallel Comput., Vol. 6, No. 2, Article . Publication date: August 2019.

ACM Trans. Parallel Comput. Issue date: August, 2019.

:16 Sarunya Pumma, Min Si, Wu-chun Feng, and Pavan Balaji

the actual read of the data. That is, once the location of the data record in the database has been
identified, LMDBIO-LMM-DIO does not use mmap to copy the data into the shared buffer. Instead, it
computes the virtual address offset of the data record address compared with the virtual address of
the start of the database and uses that offset to directly read the data using the POSIX I/O pread
function.

We note, however, that LMDBIO-LMM-DIO does little to improve the sequential seek for locating
the database records and continues to use mmap, just like LMDB and LMDBIO-LMM. Thus, in
LMDBIO-LMM-DIO, the seek path and the actual data read path are disjoint: the seek goes through
mmap, whereas the actual data read goes through POSIX I/O. Because of this separation of paths,
performing the seek on the same process as the one that does the actual data read is not too
beneficial for LMDBIO-LMM-DIO. Therefore, we use a single process to seek through the entire
database and obtain offsets and sizes for all the data records that will be used in the following
training iterations. Performing the seek on a single process has the advantage of avoiding the
redundant data I/O among the various root processes, although it does not help with the sequential
nature of the seek. Once the seek is complete, the offsets and sizes are distributed to the other root
processes, as illustrated in Figure 13.

read	data	to	shared	buffer

read	data	to	shared	buffer

read	data	to	shared	buffer

seek

scatter
offsets

Timeline

P0
P1
P2

wait	
wait

…
…
…

Fig. 13. LMDBIO-LMM-DIO design: sequential seek

4.4 LMDBIO-LMM-DIO-PROV
LMDBIO-LMM-DM attempts to address the serialization in data I/O by performing speculative
parallel reads. While that approach can be effective in reducing the redundant data accesses in
some cases, it is still an approximation technique and can cause a significant increase in the data
I/O if the approximation is incorrect. Unfortunately, no way exists to precisely estimate the location
of the data records without the sequential seek. The reason is that the layout of the LMDB database
depends not only on the content of the database but also on the way the database was created. This
information is not natively stored in the LMDB database file.

In this section, we propose LMDBIO-LMM-DIO-PROV, a technique that provides a more elegant
alternative to address the serialization in data I/O, comparedwith LMDBIO-LMM-DM, by completely
and deterministically eliminating the sequential seek restriction of LMDB. The catch, however, is
that LMDBIO-LMM-DIO-PROV requires the user to provide more information than what the LMDB
database natively provides. We refer to this information as the “database provenance information.”

4.4.1 LMDB Database Creation. Before explaining the provenance information that we require
for LMDBIO-LMM-DIO-PROV, we briefly summarize how the LMDB database creation process
works. LMDB employs a multiversion concurrency control policy to guarantee data integrity and
reliability in the multiple-readers, single-writer model. This model allows a reader to read a valid
snapshot of the database without acquiring a lock. Locking is required only when writing to the
database. To provide concurrency, LMDB adopts a “copy-on-write” policy on the database file
where new data is written to the file without overwriting or relocating old data. Any change to
existing data in the database file, however, will be applied to a copy of that data. In other words,

ACM Trans. Parallel Comput., Vol. 6, No. 2, Article . Publication date: August 2019.

ACM Trans. Parallel Comput. Issue date: August, 2019.

Scalable Deep Learning via I/O Analysis and Optimization :17

LMDB will copy existing data to a new location and apply changes to the new resource when a
write occurs. This policy ensures that data in the file is always in a valid state.

Since LMDB is a transactional database, it operates at the granularity of transactions. When new
data is added to the database, it will be written to permanent storage only when that transaction is
committed. During the commit, the layout of the database file is modified. Resources that have been
modified will be duplicated. For LMDB, these modifiable resources are the branch pages and leaf
pages. When the tree structure changes, some of the existing branch and leaf pages are modified to
update their connectivity to other pages (i.e., neighboring and children pages). With LMDB, the
tree grows in a bottom-up manner where pages that contain data (i.e., key-value pairs) are added
first. Each leaf/branch page has a limit on the number of children that it can have. New pages are
added to the tree when the number of children in that page has reached that limit.

L1

O2 O3O1
L1 O1 O2 O3Memory	1A

Disk L1 O1 O2 O3

State	1: Initial	state	of	the	database	

State	2: Growing	 the	tree	after	commit

L1

O2 O3O1

L1 O1 O2 O3 L1

O4

Copy

F O1 O2 O3 L1

O4 O1 O2 O3 L1

State	3:	Growing	 the	tree	when	number	 of	children	exceeds	threshold	

L1

O2 O3O1

O4 O1 O2 O3 L1 O5 L2 B1

O4 O5

L2

B1

Memory	2A

Memory	2B

Memory	2C

Memory	3A

Fig. 14. LMDB database creation example

An example of LMDB database creation is demonstrated in Figure 14. State1 shows an example
initial state of the database where all prior transactions have been successfully committed (i.e., the
previous data is in disk and is identical to the content in memory 1A). In State2, data page O4 is
appended to the tree, causing the leaf page L1 to be modified. In this case, LMDB copies L1 to a
new location before modifying it (memory 2A). Then, the old memory location of L1 is marked as
free (memory 2B). After that,O4 will be added to the database file. In this example, we assume that
O4 can fit in the free memory region (memory 2C). Otherwise, it will be appended to the end of the
memory area. Suppose that the transaction has not yet been committed. State3 shows how the tree
grows in the case that the number of children of L1 exceeds its limit (i.e., 4 children). In that case, a
new leaf page (L2) and a new branch page (B1) are added to the tree.

4.4.2 LMDB Provenance Information. As explained earlier, the location of data records in the
LMDB database cannot be determined by using only the natively available information in the
database metadata. Fortunately, LMDB uses a deterministic algorithm to create the B+ tree database.
Thus, with additional information about the database creation (i.e., the database provenance
information), we can dynamically compute the database layout. This computation allows us to
precisely deduce the accurate location of each database record, completely eliminating the seek.

In LMDBIO-LMM-DIO-PROV, we propose maintaining a separate auxiliary file for each LMDB
database file that contains the following provenance information: (1) frequency that the transactions
are committed in, (2) maximum number of records that a leaf node can contain, (3) maximum
number of children that a branch node can have, (4) size of each data record, (5) order in which the
data records are added, and (6) number of LMDB metadata pages. This provenance information can
be collected either when the database is being generated or later as a one-time postprocessing of
the database. We note that the proposed provenance information is typically small compared with
the database itself (i.e., a few hundred bytes).

ACM Trans. Parallel Comput., Vol. 6, No. 2, Article . Publication date: August 2019.

ACM Trans. Parallel Comput. Issue date: August, 2019.

:18 Sarunya Pumma, Min Si, Wu-chun Feng, and Pavan Balaji

Once such provenance information is available, its usage in LMDBIO-LMM-DIO-PROV is straight-
forward. Each root process computes the offsets of all the data records that it needs by following
the algorithm that is adopted by LMDB for creating the database. This computation adds negligible
cost compared with the cost of the I/O itself. Once the offsets are calculated, the actual data I/O
is done through POSIX I/O, similar to LMDBIO-LMM-DIO. We note that without the additional
provenance information LMDBIO-LMM-DIO-PROV cannot be used and we would need to fall back
to LMDBIO-LMM-DM for improving the sequential seek.
An important aspect to note here is that any improvement to the seek time needs to be taken

with a grain of salt. For example, in cases where the application iterates over the data for a very
large number of epochs, one might be able to simply store the database offsets in memory to be
used in later epochs. However, such an approach raises a few concerns that must be kept in mind.

(1) It is practical only if the number of data samples is an exact multiple of the number of
processes. Any offset in this would mean that the data samples computed by a given process
would not be exactly the same in every epoch. In cases where the number of data samples is
not an exact multiple of the number of processes, one can divide the data samples as evenly
as possible across the different processes and then treat the remainder separately. While this
might seem like an enticing possibility, however, we note that it would change the semantics
of the LMDB model. With its current semantics, the database is treated as a circular collection
of records, so one would return to the first record after the last record has been read. This
allows applications using LMDB to be guaranteed that the read of a block of records always
returns the full block of records and never a partial block. If we treat the remainder separately,
those semantics would no longer be true. As a consequence, such a change in the semantics
would, in turn, require intrusive modification to the entire LMDB ecosystem.

(2) The efficiency of this approach depends on how many epochs of training are used. For cases
where the database is extremely large, some algorithms tend to rely on a single-pass analysis
(i.e., the database is read only once) or on analyzing the data using just a few epochs. In such
cases, the seek overhead can still be significant, and the provenance information that we
proposed in this section can help.

(3) While data could theoretically be streamed from an online source, such a model is not as
common today. Training datasets are typically stored in persistent files and used for training
with multiple models or multiple parameter settings.

(4) Similarly, while splitting the dataset into a large number of files is possible (e.g., one file
per process), so as to completely avoid seeking, such practice is strongly discouraged on
most large supercomputing systems. The reason is that reading from a large number of files
can easily overwhelm the metadata server, causing the filesystem to suffer from significant
performance loss or even crash [33].

4.5 LMDBIO-LMM-DIO-PROV-COAL
As mentioned in Section 3.3.4, as the parallelism used by the deep learning algorithm increases, the
size of the subbatch used by each process decreases. In the extreme case, when the parallelism used
for the deep learning training is as large as the number of available data samples in each batch,
each process would need a single data sample in each iteration. Thus, each root process would end
up reading smaller blocks of data. As an example, if we consider the CIFAR10-Large database, when
using 9,216 processes with a batch size of 18,432, each process would need just two data samples in
every iteration, where each data sample would be 4 KB (3 KB actual data). Even if we use a single
root process on each node, the root process would perform an I/O of 288 KB in every iteration.

ACM Trans. Parallel Comput., Vol. 6, No. 2, Article . Publication date: August 2019.

ACM Trans. Parallel Comput. Issue date: August, 2019.

Scalable Deep Learning via I/O Analysis and Optimization :19

Most filesystems, however, require much larger block sizes (typically in multiple megabytes) for
optimal I/O performance.

We tackle this issue in LMDBIO-LMM-DIO-PROV-COAL by allowing it to assume the iterative
nature of deep learning applications. That is, even though a single iteration does not require too
much data, if we can coalesce the data required in multiple iterations, we can increase the block
size used in each I/O operation. With LMDBIO-LMM-DIO-PROV-COAL, each root process reads a
contiguous chunk of data that is large enough to saturate the I/O performance of the filesystem.
LMDBIO-LMM-DIO-PROV-COAL tunes the I/O block size that it uses so as to limit the amount of
memory that it consumes for I/O (kept at 2.5 GB in our experiments). Thus, as the parallelism in
the deep learning training increases, it fetches data required for more iterations within a single I/O
operation.

4.6 LMDBIO-LMM-DIO-PROV-COAL-STAG
Our sixth optimization technique, LMDBIO-LMM-DIO-PROV-COAL-STAG, addresses the I/O
randomization problem presented in Section 3.3.5. The general idea used by LMDBIO-LMM-DIO-
PROV-COAL-STAG is to limit the number of I/O operations that are issued simultaneously so as to
minimize such randomization while maintaining sufficient parallelism to maximize I/O performance.
To achieve this goal, we use a technique called I/O staggering.

In this technique, the root processes are divided into multiple groups of the same size. Root
processes that access segments of the file that are close to each other are grouped together. Once
the grouping is done, we allow one group of root processes (referred to as a staggering group) to
access the file concurrently while the remaining groups wait for the previous groups to complete
their I/O. We use a token-passing approach: a process can perform I/O only when it has a token.
Suppose the staggering group size is n. Then there are n tokens, with the root processes in each
group labeled from 0 to n − 1. When a root process is done with its I/O, it passes on its token to the
root process in the next group with the same label as itself. We simply use MPI_Send and MPI_Recv
to pass tokens between processes.
We note that the staggering size needs to be carefully selected. A very large staggering size

would lead to increased randomization, while a very small staggering size would lead to reduced
parallelism in I/O. We empirically evaluated the best staggering sizes for different number of
processes and used them for our experiments.
We also note that more elegant approaches for managing I/O staggering exist than those we

propose in this paper. One example would be to use the POSIX file-locking mechanism. That
is, each group would attempt to lock the database file; and once it acquired the lock, it would
perform the actual I/O. This approach would achieve the same outcome as our token-passing
approach and would further remove the unnecessary and artificial ordering restriction that the
proposed token-passing approach forces. Unfortunately, most distributed filesystems (e.g., NFS)
do not provide strict POSIX semantics, including fcntl() and file locking [51], thus making its
portability questionable. Therefore, we used the proposed token-passing approach as a workaround
to this particular shortcoming of some filesystems.

5 EXPERIMENTS AND RESULTS
In this section, we compare the performance of LMDBIO with that of LMDB. In Section 5.1 we
evaluate the performance of each of the proposed optimizations using simple microbenchmarks.
The purpose of this evaluation is to understand the benefits and shortcomings of each optimization
without diluting the results with other computation that would happen in a typical deep learning
application. In Sections 5.2 and 5.3 we use strong- and weak-scaling experiments to compare the
performance of Caffe/LMDBIO with that of the original Caffe/LMDB. The purpose of this evaluation

ACM Trans. Parallel Comput., Vol. 6, No. 2, Article . Publication date: August 2019.

ACM Trans. Parallel Comput. Issue date: August, 2019.

:20 Sarunya Pumma, Min Si, Wu-chun Feng, and Pavan Balaji

is to understand the impact of LMDBIO on the overall performance of the Caffe deep learning
framework on real datasets. Our experiments use the datasets, networks, and supercomputer
systems described in Section 3.1.

5.1 Microbenchmark Evaluation and Analysis
To compare the performance of LMDBIO with that of LMDB, we used a simple microbenchmark
that emulates the I/O behavior of Caffe. Our microbenchmark is designed to use LMDB or LMDBIO
to perform data I/O. It performs iterative data I/O, similar to what Caffe would, but it does not
perform any of the computation associated with DNN training. The experiments in this section
were performed on Bebop, with 9.4 million images of the CIFAR10-Large database; the batch size
was set to 18,432 images.

10

100

1000

10000

1 2 4 8 16 36 72 14
4

28
8

57
6

11
52

23
04

46
08

Ti
m
e	
(s
)

Number	of	Processes

LMDB LMDBIO-LMM

0.
2

9.
8 50
.7

10
3.
9

20
6.
1 50
9.
3

55
0.
2

57
6.
7

60
7.
3

69
9.
2

87
5.
6 12
44
.9

20
56
.2

37
69
.1

0.
2

0.
4

0.
8

1.
6

3.
2

6.
1

12
.1

18
.8

29
.5

50
.2

95
.4

19
1.
2

38
0.
9 74
9.
8

0
500
1000
1500
2000
2500
3000
3500
4000
4500

N
um

be
r	o

f	C
on

te
xt
	Sw

itc
he

s

M
ill
io
ns

Number	of	Processes

Caffe/LMDB Caffe/LMDBIO-LMM

0
100
200
300
400
500
600
700
800

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

1 2 4 8 16 36 72 14
4

28
8

57
6

11
52

23
04

46
08

Ti
m
e	
(s
)

Ti
m
e	
Br
ea
kd
ow

n

Number	of	Processes

Seek	time I/O	time I/O	skew	time

Seek	time I/O	time I/O	skew	time

Fig. 15. LMDBIO-LMM performance analysis: (a) read performance compared with LMDB; (b) context
switches compared with LMDB; (c) total read time breakdown

1 7 13 19 25 31 37 43 49 55 61 67 73 79 85 91 97 10
3

10
9

11
5

12
1

12
7

Ti
m
e

Rank	No.

seek

seek	2	batches

seek	1	batch

prefetchprefetch

prefetch

Global	barrier

Timeline

P0

P1

P2
prefetch

seek

seek

…

…

…
prefetch

prefetch

seek prefetch

Global	barrier

seek

seek

prefetch

prefetch

Global	barrier

Fig. 16. LMDBIO-LMM: (a) seek time vs. reader’s rank number, and (b) Mmap’s data prefetching and data
seeking

5.1.1 LMDBIO-LMM Performance Analysis. Figure 15(a) shows a comparison of the read per-
formance of LMDB and LMDBIO-LMM. We see that LMDBIO-LMM outperforms LMDB by up to
43.77-fold when the number of processes is smaller than or equal to 1,152. This improvement in
performance is attributed to reduced interprocess contention. For very large numbers of processes,
LMDBIO-LMM performs slightly worse than LMDB because we used a single root process on
each node in all our experiments for consistency. Increasing to two root processes per node, when
running on a large number of processes, improves the LMDBIO-LMM performance enough to
address this degradation, although those numbers are not shown in this graph.
To further analyze the reduced contention, we show in Figure 15(b) the number of context

switches that occur with LMDBIO-LMM compared with LMDB. We can see that in some cases
LMDBIO-LMMachievesmore than an 83-fold reduction in the number of context switches compared

ACM Trans. Parallel Comput., Vol. 6, No. 2, Article . Publication date: August 2019.

ACM Trans. Parallel Comput. Issue date: August, 2019.

Scalable Deep Learning via I/O Analysis and Optimization :21

with LMDB, thus demonstrating that our technique to localize mmap can significantly reduce
interprocess contention.
Figure 15(c) shows the breakdown of the total read time, divided into the seek time (which is

still sequential), the I/O time, and the I/O skew time. From the graph, we observe that although the
I/O time itself is fairly small, a significant amount of time is spent in the sequential seek and in the
skew among processes where some processes are waiting for other processes to catch up. These
two are related. The skew is caused by the data-seeking process in LMDBIO-LMM.
To further understand this, we performed an additional analysis using a small benchmark

that contains only the seek part and plotted it against the root process’s MPI rank, as shown in
Figure 16(a). We observe that the seek time increases with the process rank. This phenomenon
is a subtle outcome of the data prefetching that is performed within mmap, as demonstrated in
Figure 16(b). Specifically, after opening a database, each reader process will initialize the cursor by
seeking to its corresponding starting location in the database. The amount of seek that is performed
by each reader is rank × B (rank denotes the reader process’s rank, and B denotes the batch size),
which is not uniform among the different processes. Because of the bulk synchronous nature of the
computation, however, some processes end up waiting in the synchronization longer than others.
The processes that wait in the synchronization longer thus have a better opportunity to prefetch
data that they would need in the next iteration. For instance, P0 spends a large part of its time
prefetching data for the next iteration, while P2 gets very little time to prefetch. This prefetching,
in turn, helps P0 with its seek in the next iteration, thus causing it to complete faster than the other
processes in that iteration as well, so the cycle continues and results in large skew.

10

100

1000

10000

1 2 4 8 16 36 72 14
4

28
8

57
6

11
52

23
04

46
08

Ti
m
e	
(s
)

Number	of	Processes

LMDB LMDBIO-LMM LMDBIO-LMM-DM

0

20

40

60

80

100

120

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

1 2 4 8 16 36 72 14
4

28
8

57
6

11
52

23
04

46
08

Ti
m
e	
(s
)

Ti
m
e	
Br
ea
kd
ow

n

Number	of	Processes

Seek	time I/O	time I/O	skew	time

Seek	time I/O	time I/O	skew	time

Fig. 17. LMDBIO-LMM-DM performance analysis: (a) read performance compared with LMDB and LMDBIO-
LMM; (b) read time breakdown

5.1.2 LMDBIO-LMM-DM Performance Analysis. Figure 17(a) compares the performance of
LMDBIO-LMM-DM with that of LMDB and LMDBIO-LMM. On a single node, LMDBIO-LMM-DM
does not achieve any performance improvement compared with LMDBIO-LMM because it utilizes
the same general principle as LMDBIO-LMM to avoid interprocess contention. In fact, the additional
data I/O performed by LMDBIO-LMM-DM hurts performance somewhat, causing it to achieve
slightly worse performance compared with LMDBIO-LMM. When using multiple nodes, however,
LMDBIO-LMM-DM performs better than both LMDB and LMDBIO-LMM, outperforming LMDB by
6.7-fold on 4,608 processes. This improvement is attributed primarily to the reduction in redundant
data read during the seek and to the speculative parallel I/O.

Figure 17(b) shows the breakdown of the LMDBIO-LMM-DM read time. The data seek in LMDBIO-
LMM-DM is highly efficient compared with that of LMDB and LMDBIO-LMM. The seek in LMDBIO-
LMM-DM takes less than 1% of the read time, compared with LMDBIO-LMM, which spends nearly
60% of the read time in seek. The better performance with LMDBIO-LMM-DM is mainly because

ACM Trans. Parallel Comput., Vol. 6, No. 2, Article . Publication date: August 2019.

ACM Trans. Parallel Comput. Issue date: August, 2019.

:22 Sarunya Pumma, Min Si, Wu-chun Feng, and Pavan Balaji

10

100

1000

10000
1 2 4 8 16 36 72 14
4

28
8

57
6

11
52

23
04

46
08

Ti
m
e	
(s
)

Number	of	Processes

LMDB LMDBIO-LMM LMDBIO-LMM-DM LMDBIO-LMM-DIO

0

5

10

15

20

25

30

35

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

Ti
m
e	
(s
)

Ti
m
e	
Br
ea
kd
ow

n

Number	of	Processes

Seek	time I/O	time I/O	skew	time

Seek	time I/O	time I/O	skew	time

Fig. 18. LMDBIO-LMM-DIO performance analysis: (a) read performance compared with LMDB, LMDBIO-
LMM, and LMDBIO-LMM-DM; (b) read time breakdown

1 12 23 34 45 56 67 78 89 10
0

11
1

12
2

13
3

14
4

15
5

16
6

17
7

18
8

19
9

21
0

22
1

23
2

24
3

25
4

Ti
m
e

Rank	No.

Fig. 19. LMDBIO-LMM-DIO: I/O skew analysis

the seek is performed in memory. In fact, in some cases LMDBIO-LMM-DM improves the seek time
by nearly 1,741-fold compared with LMDBIO-LMM.

5.1.3 LMDBIO-LMM-DIO Performance Analysis. In this subsection, we compare the read per-
formance of LMDBIO-LMM-DIO with that of LMDB, LMDBIO-LMM, and LMDBIO-LMM-DM, as
shown in Figure 18(a). LMDBIO-LMM-DIO achieves better performance than the other approaches
in almost all cases primarily because of its usage of POSIX I/O for data reading in place of mmap. In
some cases, however, LMDBIO-LMM-DM slightly outperforms LMDBIO-LMM-DIO. The reason is
that LMDBIO-LMM-DIO does nothing to optimize the seek, a process that can take a significant
amount of time. In fact, as shown in our read time breakdown in Figure 18(b), the seek in LMDBIO-
LMM-DIO takes up nearly 20% of the read time. Nevertheless, LMDBIO-LMM-DIO outperforms
LMDB by 17.18-fold on 4,608 processes.
We note that LMDBIO-LMM-DIO still suffers from data skew, similar to LMDBIO-LMM and

LMDBIO-LMM-DM. Unlike LMDBIO-LMM, however, this skew is not because of data prefetching,
which we verified by measuring the I/O time on each reader rank as shown in Figure 19. Instead,
the skew is due to other serialization in the data I/O such as that related to I/O randomization.

5.1.4 LMDBIO-LMM-DIO-PROV Performance Analysis. Figure 20(a) compares the performance
of LMDBIO-LMM-DIO-PROVwith that of LMDB, LMDBIO-LMM, LMDBIO-LMM-DM, and LMDBIO-
LMM-DIO. LMDBIO-LMM-DIO-PROV consistently outperforms all these approaches, achieving
19.44-fold improvement in performance on 4,608 processes compared with LMDB. The performance
improvement in LMDBIO-LMM-DIO-PROV is attributed to its elimination of the sequential seek to
access the database records. This improvement in performance highlights the importance of the
database provenance information in scalable deep learning.

ACM Trans. Parallel Comput., Vol. 6, No. 2, Article . Publication date: August 2019.

ACM Trans. Parallel Comput. Issue date: August, 2019.

Scalable Deep Learning via I/O Analysis and Optimization :23

10

100

1000

10000
1 2 4 8 16 36 72 14
4

28
8

57
6

11
52

23
04

46
08

Ti
m
e	
(s
)

Number	of	Processes
LMDB LMDBIO-LMM
LMDBIO-LMM-DIO LMDBIO-LMM-DM
LMDBIO-LMM-DIO-PROV

0

5

10

15

20

25

30

35

40

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

Ti
m
e	
(s
)

Ti
m
e	
Br
ea
kd
ow

n

Number	of	Processes

I/O	time I/O	skew	time I/O	time I/O	skew	time

Fig. 20. LMDBIO-LMM-DIO-PROV performance analysis: (a) read performance compared with LMDB,
LMDBIO-LMM, LMDBIO-LMM-DIO, and LMDBIO-LMM-DM; (b) read time breakdown

10

100

1000

10000

1 2 4 8 16 36 72 14
4

28
8

57
6

11
52

23
04

46
08

Ti
m
e	
(s
)

Number	of	Processes
LMDB LMDBIO-LMM
LMDBIO-LMM-DIO LMDBIO-LMM-DM
LMDBIO-LMM-DIO-PROV LMDBIO-LMM-DIO-PROV-COAL

0

5

10

15

20

25

30

35

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

Ti
m
e	
(s
)

Ti
m
e	
Br
ea
kd
ow

n

Number	of	Processes

I/O	time I/O	skew	time I/O	time I/O	skew	time

Fig. 21. LMDBIO-LMM-DIO-PROV-COAL performance analysis: (a) read performance compared with LMDB,
LMDBIO-LMM, LMDBIO-LMM-DIO, LMDBIO-LMM-DM, and LMDBIO-LMM-DIO-PROV; (b) read time
breakdown

Despite the impressive gains in performance, however, LMDBIO-LMM-DIO-PROV still suffers
from some shortcomings that cause its I/O time to increase as the number of processes increases.
We plotted this behavior in Figure 20(b). This figure shows that a significant portion of the I/O time
is taken by the skew between the different processes, which is an artifact of the I/O randomization
described in Section 3.3.5.

5.1.5 LMDBIO-LMM-DIO-PROV-COAL Performance Analysis. Figure 21(a) compares the perfor-
mance of LMDBIO-LMM-DIO-PROV-COAL with that of LMDB, LMDBIO-LMM, LMDBIO-LMM-
DIO, and LMDBIO-LMM-DIO-PROV and demonstrates that LMDBIO-LMM-DIO-PROV-COAL
consistently achieves the best performance among all these approaches. In fact, LMDBIO-LMM-
DIO-PROV-COAL outperforms LMDB by 21.86-fold on 4,608 processes. The primary performance
gain in LMDBIO-LMM-DIO-PROV-COAL comes from the fact that it optimizes the I/O block size
by coalescing data required in multiple iterations into fewer I/O operations. This approach better
utilizes the I/O subsystem, resulting in improved performance.
A breakdown of the read time in Figure 21(b) shows that LMDBIO-LMM-DIO-PROV-COAL

reduces the skew time to around 25% of the total I/O time. While most of the time is now taken by
the actual read operation, room for improvement still remains.

5.1.6 LMDBIO-LMM-DIO-PROV-COAL-STAG Performance Analysis. Figure 22(a) compares the
performance of LMDBIO-LMM-DIO-PROV-COAL-STAG with that of LMDB, LMDBIO-LMM,
LMDBIO-LMM-DIO, LMDBIO-LMM-DIO-PROV, and LMDBIO-LMM-DIO-PROV-COAL. The figure
shows that LMDBIO-LMM-DIO-PROV-COAL-STAG performs the same as or better than all the

ACM Trans. Parallel Comput., Vol. 6, No. 2, Article . Publication date: August 2019.

ACM Trans. Parallel Comput. Issue date: August, 2019.

:24 Sarunya Pumma, Min Si, Wu-chun Feng, and Pavan Balaji

10

100

1000

10000
1 2 4 8 16 36 72 14
4

28
8

57
6

11
52

23
04

46
08

Ti
m
e	
(s
)

Number	of	Processes
LMDB LMDBIO-LMM
LMDBIO-LMM-DIO LMDBIO-LMM-DM
LMDBIO-LMM-DIO-PROV LMDBIO-LMM-DIO-PROV-COAL
LMDBIO-LMM-DIO-PROV-COAL-STAG

0

5

10

15

20

25

30

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

Ti
m
e	
(s
)

Ti
m
e	
Br
ea
kd
ow

n

Number	of	Processes

I/O	time I/O	skew	time I/O	time I/O	skew	time

Fig. 22. LMDBIO-LMM-DIO-PROV-COAL-STAG performance analysis: (a) read performance compared
with LMDB, LMDBIO-LMM, LMDBIO-LMM-DIO, LMDBIO-LMM-DM, LMDBIO-LMM-DIO-PROV, and
LMDBIO-LMM-DIO-PROV-COAL; (b) read time breakdown

other techniques, outperforming LMDB by 81.05-fold on 4,608 processes. This improvement in
performance is attributed to the reduced I/O randomization in LMDBIO-LMM-DIO-PROV-COAL-
STAG.

Our analysis of the I/O time breakdown is shown in Figure 22(b). This figure, however, can be a bit
misleading. While it shows a significant increase in I/O skew compared with LMDBIO-LMM-DIO-
PROV-COAL, this skew is intentional. That is, because LMDBIO-LMM-DIO-PROV-COAL-STAG
groups the root processes and forces only one group to be actively performing I/O at a given point
in time, it artificially appears that there is high I/O skew time. Nevertheless, LMDBIO-LMM-DIO-
PROV-COAL-STAG comprehensively outperforms all the other presented techniques.

5.2 Strong-Scaling Performance Evaluation of Caffe Deep Learning Training
In this section, we evaluate the performance of complete deep learning training executions using
Caffe/LMDB and Caffe/LMDBIO. We performed our experiments on two platforms (i.e., Blues and
Bebop), using three different datasets (i.e., CIFAR10-Large and ImageNet on Blues, and CIFAR10-
Large and ImageNet-Large on Bebop). On Blues, we compared Caffe/LMDB with two of the
proposed optimization techniques: Caffe/LMDBIO-LMM and Caffe/LMDBIO-LMM-DM. On Bebop,
we compared Caffe/LMDBwith all the proposed optimization techniques. As described in Section 3.1,
all of our experiments so far used single-threaded MKL while achieving parallelism on the node
using multiple processes. An alternate approach that one might consider is to use a single process
on each node but to take advantage of intranode parallelism through the multithreaded Intel MKL
library, so as to utilize the cores better. While at first blush that seems promising, such an approach
would, by definition, only utilize the cores on the node during MKL operations, while the rest
of the computational workflow would remain sequential, thus wasting cores. We have included
the multithreaded MKL version (denoted LMDB-MT-MKL) in the experiments in this section for
completeness, despite its known inefficiency especially when the number of cores is large. We note
that this experiment was conducted only on Bebop.

Figure 23(a) shows the strong-scaling results for training Caffe with the CIFAR10-Large dataset
on Blues using a batch size of 4,096 for 1,024 iterations. Caffe/LMDBIO-LMM and Caffe/LMDBIO-
LMM-DM outperform Caffe/LMDB in all cases, achieving 1.21-fold and 1.41-fold improvements on
512 processes, respectively. For ImageNet, we also used the same batch size as CIFAR10-Large and
performed a total of 32 training iterations. Figure 23(b) shows 7-fold and 8.3-fold improvements
for ImageNet with Caffe/LMDBIO-LMM and Caffe/LMDBIO-LMM-DM, respectively. The improve-
ments are attributed to the reduced interprocess contention in both approaches and the improved
seek time mitigation in Caffe/LMDBIO-LMM-DM.

ACM Trans. Parallel Comput., Vol. 6, No. 2, Article . Publication date: August 2019.

ACM Trans. Parallel Comput. Issue date: August, 2019.

Scalable Deep Learning via I/O Analysis and Optimization :25

0

0.5

1

1.5

2

2.5

3

100

1000

10000

100000

1 2 4 8 16 32 64 128 256 512

Fa
ct
or
	o
f	I
m
pr
ov
	o
ve
r	L
M
DB

Ti
m
e	
(s
)

Number	of	Processes
Improv	of	LMDBIO-LMM Improv	of	LMDBIO-LMM-DM
Caffe/LMDB Caffe/LMDBIO-LMM
Caffe/LMDBIO-LMM-DM

0

5

10

15

20

25

30

35

100

1000

10000

100000

32 64 128 256 512

Fa
ct
or
	o
f	I
m
pr
ov
	o
ve
r	L
M
DB

Ti
m
e	
(s
)

Number	of	Processes
Improv	of	LMDBIO-LMM Improv	of	LMDBIO-LMM-DM
Caffe/LMDB Caffe/LMDBIO-LMM
Caffe/LMDBIO-LMM-DM

Fig. 23. Strong scaling on the Argonne computing cluster Blues using (a) CIFAR10-Large and (b) ImageNet

10

100

1000

10000

100000

Ti
m
e	
(s
)

Number	of	Cores

LMDB

LMDB-MT-MKL

LMDBIO-LMM

LMDBIO-LMM-DIO

LMDBIO-LMM-DM

LMDBIO-LMM-DIO-PROV

LMDBIO-LMM-DIO-PROV-COAL

LMDBIO-LMM-DIO-PROV-COAL-STAG
0

10

20

30

40

50

60

70

Fa
ct
or
	o
f	I
m
pr
ov
m
en

t	o
ve
r	L
M
DB

Number	of	Processes

LMDB-MT-MKL
LMDBIO-LMM
LMDBIO-LMM-DIO
LMDBIO-LMM-DM
LMDBIO-LMM-DIO-PROV
LMDBIO-LMM-DIO-PROV-COAL
LMDBIO-LMM-DIO-PROV-COAL-STAG

Fig. 24. Strong scaling using CIFAR10-Large on Bebop: (a) total execution time; (b) factor of improvement
over Caffe/LMDB

100

1000

10000

576 1152 2304 4608 9216

Ti
m
e	
(s
)

Number	of	Processes

LMDB
LMDB-MT-MKL
LMDBIO-LMM
LMDBIO-LMM-DIO
LMDBIO-LMM-DM
LMDBIO-LMM-DIO-PROV
LMDBIO-LMM-DIO-PROV-COAL
LMDBIO-LMM-DIO-PROV-COAL-STAG 0

0.5

1

1.5

2

2.5

3

3.5

4

576 1152 2304 4608 9216

Fa
ct
or
	o
f	I
m
pr
ov
em

en
t	o

ve
r	L
M
DB

Number	of	Processes

LMDB-MT-MKL
LMDBIO-LMM
LMDBIO-LMM-DIO
LMDBIO-LMM-DM
LMDBIO-LMM-DIO-PROV
LMDBIO-LMM-DIO-PROV-COAL
LMDBIO-LMM-DIO-PROV-COAL-STAG

Fig. 25. Strong scaling using ImageNet-Large on Bebop (a) total execution time; (b) factor of improvement
over Caffe/LMDB

Figure 24 shows strong-scaling results for CIFAR10-Large on Bebop. We used a batch size of
18,432 and performed 512 training iterations. Figure 24(a) shows the execution time of Caffe with
the different frameworks, and Figure 24(b) shows the factor of improvements compared with
Caffe/LMDB. The general performance trend observed in the figures is similar to that on Blues, with
Caffe/LMDBIO-LMM-DIO-PROV-COAL-STAG achieving nearly 65-fold performance improvement
over Caffe/LMDB on 9,216 processes.
Figure 25 shows strong-scaling results for ImageNet-Large on Bebop. We used a batch size

of 18,432 and performed 128 training iterations. Figure 25(a) shows the execution time of Caffe
with the different frameworks, and Figure 25(b) shows the factor of improvements compared with

ACM Trans. Parallel Comput., Vol. 6, No. 2, Article . Publication date: August 2019.

ACM Trans. Parallel Comput. Issue date: August, 2019.

:26 Sarunya Pumma, Min Si, Wu-chun Feng, and Pavan Balaji

Caffe/LMDB. The general performance trend observed in the figures is similar to that with CIFAR10-
Large, although the performance improvements are smaller. The reason is that the structures of the
two datasets are different. Specifically, ImageNet-Large contains larger data sample sizes (192 KB
for ImageNet-Large compared with 3 KB for CIFAR10-Large), resulting in significantly different I/O
characteristics. For example, header access is a small fraction of I/O for ImageNet-Large, whereas
it is a significant portion of I/O for CIFAR10-Large; in other words, the header and the data are
on the same physical page in memory for CIFAR10-Large, so accessing one without the other is
difficult. Another example is that of I/O randomization, which has a significantly higher impact
on ImageNet-Large than it does on CIFAR10-Large because of the larger sizes of the data samples,
making each batch of samples typically larger than the I/O request size of the filesystem.

An interesting trend that we observe is that for the ImageNet-Large dataset, Caffe/LMDBIO-LMM-
DIO-PROV-COAL performsworse than other techniques, particularly when the number of processes
is large. The reason is that although all techniques other than Caffe/LMDBIO-LMM-DIO-PROV-
COAL-STAG suffer from I/O randomization, Caffe/LMDBIO-LMM-DIO-PROV-COAL is particularly
susceptible because this technique actively increases the amount of data that each process reads
through coalescing. Thus, in Caffe/LMDBIO-LMM-DIO-PROV-COAL, if I/O requests arrive out
of order at the I/O server, the data segments accessed by these requests are especially far away
for ImageNet-Large because of the large size of its data samples, thus causing further degradation
in performance. As expected, once I/O staggering is applied in Caffe/LMDBIO-LMM-DIO-PROV-
COAL-STAG, this performance degradation goes away. In fact, Caffe/LMDBIO-LMM-DIO-PROV-
COAL-STAG outperforms all other approaches, gaining approximately 1.6-fold performance over
Caffe/LMDB on 9,216 processes.

5.3 Weak-Scaling Performance Evaluation of Caffe Deep Learning Training

10

100

1000

10000

100000

Ti
m
e	
(s
)

Number	of	Processes

LMDB
LMDBIO-LMM
LMDBIO-LMM-DM
LMDBIO-LMM-DIO
LMDBIO-LMM-DIO-PROV
LMDBIO-LMM-DIO-PROV-COAL
LMDBIO-LMM-DIO-PROV-COAL-STAG

0
5
10
15
20
25
30
35
40
45
50

Fa
ct
or
	o
f	I
m
pr
ov
em

en
t	o

ve
r	L

M
DB

Number	of	Processes

LMDBIO-LMM
LMDBIO-LMM-DM
LMDBIO-LMM-DIO
LMDBIO-LMM-DIO-PROV
LMDBIO-LMM-DIO-PROV-COAL
LMDBIO-LMM-DIO-PROV-COAL-STAG

Fig. 26. Weak scaling using CIFAR10-Large on Bebop: (a) total execution time; (b) factor of improvement over
Caffe/LMDB.

Apart from the strong-scaling experiments shown so far, we also conducted a weak-scaling
evaluation of LMDBIO on Bebop. Here, we increase the total batch size (i.e., the total number
of images processed by all processes together in each iteration) by k times when the process
count is increased by k times. The subbatch size (i.e., the number of samples that a single process
computes in each iteration) is set to two. We chose to keep the total number of processed data
samples constant throughout the weak-scaling experiments to 9,437,184 and 2,359,296 samples for
CIFAR10-Large and ImageNet-Large, respectively. Thus, when the number of processes doubles, the
total batch size doubles, and the number of iterations halves. We note that because each iteration is
bulk synchronous, increasing the number of iterations would not change the performance trend

ACM Trans. Parallel Comput., Vol. 6, No. 2, Article . Publication date: August 2019.

ACM Trans. Parallel Comput. Issue date: August, 2019.

Scalable Deep Learning via I/O Analysis and Optimization :27

100

1000

10000

576 1152 2304 4608 9216

Ti
m
e	
(s
)

Number	of	Processes

LMDB
LMDBIO-LMM
LMDBIO-LMM-DM
LMDBIO-LMM-DIO
LMDBIO-LMM-DIO-PROV
LMDBIO-LMM-DIO-PROV-COAL
LMDBIO-LMM-DIO-PROV-COAL-STAG

0

0.5

1

1.5

2

2.5

3

576 1152 2304 4608 9216

Fa
ct
or
	o
f	I
m
pr
ov
em

en
t	o

ve
r	L

M
DB

Number	of	Processes

LMDBIO-LMM
LMDBIO-LMM-DM
LMDBIO-LMM-DIO
LMDBIO-LMM-DIO-PROV
LMDBIO-LMM-DIO-PROV-COAL
LMDBIO-LMM-DIO-PROV-COAL-STAG

Fig. 27. Weak scaling using ImageNet-Large on Bebop: (a) total execution time; (b) factor of improvement
over Caffe/LMDB.

showcased in the graphs—all the performance numbers for a given number of processes would
simply be multiplied by a constant factor.

The weak-scaling results for CIFAR10-Large are illustrated in Figure 26 and those of ImageNet-
Large are illustrated in Figure 27. We observe trends for our weak-scaling experiments similar to
those for the strong-scaling experiments. For weak scaling, Caffe/LMDBIO outperforms Caffe/LMDB
by up to 43 times for CIFAR10-Large and by up to 1.9 times for ImageNet-Large. In the case
of ImageNet-Large, LMDBIO-LMM-DIO-PROV-COAL-STAG achieves the same performance as
LMDBIO-LMM-DM. This is expected. LMDBIO-LMM-DM is an effective approach in improving
performance—the drawback of LMDBIO-LMM-DM is not that it cannot improve performance but
that the approach itself is speculative. That is, in some cases, the speculation might work well
while in other cases the speculation might result in additional I/O causing some performance
loss. The direct I/O methods (all optimizations with the LMDBIO-LMM-DIO prefix), on the other
hand, deterministically improve performance without using such speculation. Thus, they are better
approaches in the general case.

6 RELATEDWORK
This section discusses work related to our own research, including deep learning frameworks, I/O
frameworks, other storage architectures, input pipeline optimizations, and algorithmic improve-
ments to deep learning.

Deep Learning Frameworks. Caffe is a well-known deep learning framework for which a number
of parallel derivatives have been proposed. Most of these derivatives, including MPI-Caffe [29] and
Caffe-MPI [2], focus on parallel efficiency improvements of the training, but only in the computation
and communication aspects. In these frameworks, I/O is left untouched. S-Caffe [4], another parallel
derivative of Caffe, proposes a workaround to overcome the inefficiencies of LMDB, but it does
not really analyze the fundamental issues associated with LMDB. Our work identifies the core
problems of LMDB and attempts to fix them outright. Thus our approach is directly applicable to
all parallel derivatives of Caffe.

Apart from Caffe, other open-source deep learning frameworks have been developed, including
Google’s TensorFlow [3, 55], Theano [31, 53], Caffe2 [47], PyTorch [38], Microsoft Cognitive
Toolkit [43], Apache MXNet [7], and Chainer [54]. These frameworks provide different competitive
advantages in terms of training features and platform compatibility, but they adopt a core I/O
infrastructure similar to that of Caffe in order to perform parallel data I/O.

For instance, Caffe2 inherits the I/O subsystems from Caffe. Thus, its distributed I/O subsystems
are highly similar to the parallel extensions of the Caffe framework that we used in this paper.

ACM Trans. Parallel Comput., Vol. 6, No. 2, Article . Publication date: August 2019.

ACM Trans. Parallel Comput. Issue date: August, 2019.

:28 Sarunya Pumma, Min Si, Wu-chun Feng, and Pavan Balaji

PyTorch supports a broad range of data formats, the most popular of which is NumPy [37]. Both
the memory and file layouts of NumPy can be irregular. For example, bytes of a single array can be
laid out into noncontiguous chunks of a file or memory. Since the file structure is not deterministic,
NumPy supports partial database access via mmap, the same as LMDB, in order to avoid reading
the entire file to memory. To the best of our knowledge, there is no other way to partially load
NumPy data from a file without using mmap, thus making it susceptible to the same shortcomings
as LMDB. TensorFlow’s I/O subsystem, by default, performs replicated data reads across different
processes, but such a model can hurt the accuracy of the training because of reduced diversity of
the sample data across different processes. Data sharding, which would make its data processing
equivalent to that of Caffe, can be enabled through its high-level API to filter out unwanted data.
While data sharding improves TensorFlow’s accuracy, however, it also causes extra and redundant
data access between processes similarly to what LMDB suffers from. In summary, while our work
uses Caffe for the experiments, we believe that the lessons learned are generally applicable to
other frameworks, too. In fact, a common practice in the community is to store datasets in LMDB
format as it is natively supported by various other well-known deep learning frameworks such as
TensorFlow, Caffe2, PyTorch, and Keras-TensorFlow. While other database formats certainly exist,
the portability of LMDB across different frameworks has made it a go-to format, particularly for
industries that use multiple frameworks for their AI and deep learning efforts.

I/O Frameworks.Various high-efficiency I/O frameworks have been developed for high-performance
computing. MPI-IO [49, 50] is a low-level parallel I/O library that provides generic unstructured
data I/O support. HDF58 and NetCDF [9], on the other hand, provide high-level I/O libraries for
structured scientific application data via feature-rich programming interfaces. The parallel variants
of these libraries [16, 30] leverage MPI-IO to enable parallel access and storage for files. These
technologies are complementary to our work. While we used POSIX I/O in this paper, our approach
is not limited to it and can easily adopt any of the mentioned parallel I/O models instead.

We note, however, that although in theory MPI collective I/O is supposed to internally perform
optimizations that limit I/O randomization, this is not always true in practice. In most MPI-IO
implementations today, collective I/O significantly lags in performance compared with POSIX I/O.
In fact, in our experiments, the performance of MPI collective I/O was much worse than that of
POSIX I/O. The performance of MPI independent-I/O was comparable to, but not as good as, POSIX
I/O. As MPI-IO developers ourselves, we are aware of these shortcomings. We will improve MPI
collective I/O to incorporate similar techniques in the future, at which point LMDBIO can move
from POSIX I/O to MPI collective I/O.

We point out that other frameworks, such as RocksDB9 and HDF5, also use tree-based structures
and allow for highly efficient sequential access to the database. Although random database access is
possible, it is not as efficient as sequential access because the database layout is not deterministic—
the layout cannot be computed unless all data records are already laid out in the database (essentially
the same problem as LMDB). Similarly, TFRecord (TensorFlow’s native database format) allows
only for sequential database access. The central issue here is that the data samples are not indexed
in a way that are suitable for parallel I/O (i.e., indexing is based on keys, rather than a numerical
ordering). Thus, the lessons learned in this paper are applicable to the above mentioned other
frameworks, too.

Other Storage Architectures. Some researchers have worked around the issue of I/O in deep
learning by using cluster systems where each node has its own permanent storage [24, 62]. Thus,

8https://support.hdfgroup.org/HDF5
9https://rocksdb.org

ACM Trans. Parallel Comput., Vol. 6, No. 2, Article . Publication date: August 2019.

ACM Trans. Parallel Comput. Issue date: August, 2019.

https://support.hdfgroup.org/HDF5
https://rocksdb.org

Scalable Deep Learning via I/O Analysis and Optimization :29

the input data can be fragmented and the corresponding fragment placed locally on each node,
instead of on the global filesystem. While such workarounds are possible, they are not practical
in several scenarios, such as those that require deep learning algorithms to be executed on large
supercomputing systems. Most supercomputer systems tend to host their data on a shared global
filesystem and do not equip each node with its own permanent storage. In fact, for such shared global
filesystems, reading from a large number of smaller files has been shown to be significantly worse
than reading from a single large file because of the additional metadata traffic that it generates [33].

Having said that, on-node storage (e.g., nonvolatile memory express [28] and solid-state drives [23,
32]) are becoming common in large supercomputing systems. Some new-generation supercomput-
ers, for example, Summit10 at Oak Ridge National Laboratory and Cori11 at the National Energy
Research Scientific Computing Center, are equipped with on-node permanent storage using these
technologies. Such on-node storage, however, is accessible only when the job is allocated to a
particular node and is wiped clean when the job terminates or when a new job is allocated. Thus,
any data that needs to be persistently stored across jobs must be fetched from the global filesystem.
Some systems utilize on-node storage technologies in the form of burst buffers, where data staging
can be performed prior to the job start. However, we remind the readers of this paper that datasets
used for training are often very large and cannot be simply replicated on the on-node storage of
each node. Thus, using burst buffers would mean that the training dataset needs to be segmented
across the burst buffers available on each node. As discussed in the paper, this is not an easy task
and would require the application to have prior knowledge as to what parts of the file would be
accessed by each node. Unfortunately, traditional I/O systems used in deep learning do not have
this knowledge, at least not without some of the improvements proposed in this paper such as the
data provenance information. Having said that, one could imagine combining the proposed data
provenance technique with burst buffer technology to predict what data goes on which node and
perform the necessary I/O before the job starts, that is, while the job is waiting in the queue. This
is a viable technique that we have not explored in this paper.

Input Pipeline Optimizations. Recently, researchers have realized the importance of I/O in deep
learning. Consequently, a number of input pipeline optimization techniques have been proposed [8,
27, 28, 58, 63], for example, data caching, computation and I/O overlapping (pipelining/prefetching),
parallel data parsing, and in-memory data shuffling. While these approaches are certainly useful,
we believe that they are orthogonal improvements. For example, techniques such as data caching
assume that all the data can fit in the system’s memory for multiple epochs. This approach is useful
for small datasets but is obviously not a feasible optimization for larger datasets. Techniques such
as prefetching can hide the I/O cost behind that of the computation, but they benefit only those
cases where the computation is more expensive than the I/O itself. For single-pass algorithms
(approaches that compute on the data only once), I/O is often more expensive than the computation.
In contrast, our work solves the root causes of various I/O problems. In any case, these other
input pipeline optimizations can be applied in conjunction with our proposed approach to further
improve performance.

Algorithmic Improvements to Deep Learning. Another important deep learning research area
involves high-accuracy large-batch training. Using large batches of data samples to train DNNs
on large-scale supercomputers is a common practice for achieving high parallelism. In doing so,
however, the accuracy of training can degrade significantly since the DNN parameters are updated
less frequently with gradients that contain more information. Consequently, several active studies

10https://www.olcf.ornl.gov/summit/
11http://www.nersc.gov/users/computational-systems/cori/

ACM Trans. Parallel Comput., Vol. 6, No. 2, Article . Publication date: August 2019.

ACM Trans. Parallel Comput. Issue date: August, 2019.

https://www.olcf.ornl.gov/summit/
http://www.nersc.gov/users/computational-systems/cori/

:30 Sarunya Pumma, Min Si, Wu-chun Feng, and Pavan Balaji

have been trying to improve the accuracy of large-batch training. The common key idea of these
techniques is to adjust the “learning rate.” One of the earliest approaches in this direction involves
adjusting the global learning rate linearly [25] based on the size of the batch. For instance, if the
batch size is scaled by k times, the learning rate is also scaled by k . This approach is risky, however,
and can cause the training to diverge during the initial phase. To address this issue, a warm-up
scheme was introduced in [15] to prevent such divergence by starting with a small learning rate
and increasing it later during the training. To enable a larger batch training without accuracy loss,
You et al. [59, 60] proposed layerwise adaptive rate scaling (LARS). LARS uses a different learning
rate for different layers in the DNN, where the learning rate of a layer is the ratio between the
norm of the layer weights and the norm of the gradients. With these optimizations, LARS enables
parallel training using batch sizes up to 32K with negligible loss in training accuracy. These studies
demonstrate that training with large batch sizes is practical and needs to be optimized, a subject
that is the target for this paper.

7 LESSONS LEARNED
While the study performed in this paper provides an empirical evaluation of some of the I/O
problems in large-scale deep learning and some solutions to these problems, we would like to take
a moment to discuss the broader lessons that we learned from this study. One important takeaway
is that several of the solutions proposed in the paper are effectively workarounds for problems in
the filesystem. A more comprehensive and elegant solution instead would be to improve or develop
a new filesystem that is more targeted to deep learning workloads. What would such a filesystem
look like? We have some thoughts.
(1) Deep learning workloads are read-heavy and rarely ever do writes. In fact, most deep learning

frameworks perform writes only for checkpointing purposes, and these writes happen to
files that are disjoint from the database file. In other words, the database files are “read only”
for the lifetime of the application, and the checkpoint files are “write only” for the lifetime
of the application (they would be read if the application needed to restart). If these files are
separated onto two different filesystems, each filesystem can be modified to support much
more restrictive semantics. For example, the read-only filesystem can perform aggressive
caching of global data on local nodes and avoid any locking and state management overheads
needed for such data consistency. Similarly, the write-only filesystem does not have to worry
about data consistency (the writes are nonoverlapping) and need not perform any caching at
all.

(2) The ideal filesystem for deep learning would be one that supports fast random access similar
to main memory. Thus the random data batch composition requirement of the training
algorithms, namely, stochastic gradient descent, can be satisfied through data reading, and
the additional in-memory data shuffling can be completely avoided. Technologies such as
on-node NVRAM and consortia such as Gen-Z12 are already working in this direction, so
such an approach might not be completely off the table. We note, however, that practically
using such technologies is still some time away at the time of writing this paper and avoiding
random access is perhaps still the best strategy for now.

(3) If random access is impractical for filesystems, the next best option would be strided access.
Strided accesses are, unfortunately, not well supported by filesystems. I/O access in deep
learning is very structured and is regularly strided. Moreover, there are no “holes” in the data
access. All bytes are accessed by one process or another. Filesystems typically do not provide
native APIs for such access, thus resulting in unnecessary prefetching and cache flushing.

12https://en.wikipedia.org/wiki/Gen-Z

ACM Trans. Parallel Comput., Vol. 6, No. 2, Article . Publication date: August 2019.

ACM Trans. Parallel Comput. Issue date: August, 2019.

https://en.wikipedia.org/wiki/Gen-Z

Scalable Deep Learning via I/O Analysis and Optimization :31

We worked around this problem with our staggered I/O model, but that model serializes
I/O, which could have been entirely avoided if the filesystem had provided better strided I/O
access.

8 CONCLUDING REMARKS
Despite significant advances in scalable deep learning, existing frameworks still suffer from a
number of scalability limitations, particularly in aspects related to data I/O. In some cases, in fact,
our analysis shows that I/O can take up to 90% of the total training time. In this paper, we started
with a thorough analysis of the I/O problems in the most widely used I/O subsystem in deep learning
frameworks, called LMDB. Then, based on our analysis, we proposed LMDBIO—an optimized I/O
plugin for scalable deep learning that incorporates six novel optimizations. We evaluated LMDBIO
on up to 9,216 processes and demonstrated that it outperforms LMDB in all cases and improves
overall application performance by up to 65-fold in some cases.

ACKNOWLEDGMENTS
We acknowledge the contributions made by Yanfei Guo, Robert Latham, and Robert Ross from
Argonne National Laboratory through discussions on the I/O analysis of LMDB. The material
presented in this paper was based upon work supported in part by the U.S. Department of Energy,
Office of Science, Advanced Scientific Computing Research (SC-21), under contract DE-AC02-
06CH11357, and in part by the NSF XPS program via CCF-1337131. We gratefully acknowledge
the computing resources provided on Blues and Bebop, two high-performance computing clusters
operated by the Laboratory Computing Resource Center at Argonne National Laboratory.

REFERENCES
[1] [n. d.]. NVIDIA Collective Communications Library (NCCL): Multi-GPU and Multi-Node Collective Communication

Primitives. https://developer.nvidia.com/nccl.
[2] 2015. Caffe-MPI for Deep Learning. https://github.com/Caffe-MPI/Caffe-MPI.github.io.
[3] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro, Greg S. Corrado, Andy

Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael
Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg, Dan Mané, Rajat Monga,
Sherry Moore, Derek Murray, Chris Olah, Mike Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar,
Paul Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals, Pete Warden, Martin Wattenberg,
Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. 2015. TensorFlow: Large-Scale Machine Learning on Heterogeneous
Systems. http://tensorflow.org/ Software available from tensorflow.org.

[4] Ammar Ahmad Awan, Khaled Hamidouche, Jahanzeb Maqbool Hashmi, and Dhabaleswar K Panda. 2017. S-Caffe:
Co-designing MPI Runtimes and Caffe for Scalable Deep Learning on Modern GPU Clusters. In Proceedings of the 22nd
ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming. ACM, 193–205.

[5] Erfan Azarkhish, Davide Rossi, Igor Loi, and Luca Benini. 2017. Neurostream: Scalable and Energy Efficient Deep
Learning with Smart Memory Cubes. IEEE Transactions on Parallel and Distributed Systems 29, 2 (2017), 420–434.

[6] Nicolas Castet. 2018. Distributed deep learning with Horovod and PowerAI DDL. https://developer.ibm.com/
linuxonpower/2018/08/24/distributed-deep-learning-horovod-powerai-ddl/.

[7] Tianqi Chen, Mu Li, Yutian Li, Min Lin, NaiyanWang, Minjie Wang, Tianjun Xiao, Bing Xu, Chiyuan Zhang, and Zheng
Zhang. 2015. MXNET: A Flexible and Efficient Machine Learning Library for Heterogeneous Distributed Systems.
arXiv preprint arXiv:1512.01274 (2015).

[8] Steven WD Chien, Stefano Markidis, Chaitanya Prasad Sishtla, Luis Santos, Pawel Herman, Sai Narasimhamurthy,
and Erwin Laure. 2018. Characterizing Deep-Learning I/O Workloads in TensorFlow. arXiv preprint arXiv:1810.03035
(2018).

[9] Glenn Davis and Russ Rew. 1990. Data Management: NetCDF: An Interface for Scientific Data Access. IEEE Computer
Graphics and Applications 10 (1990), 76–82. https://doi.org/doi.ieeecomputersociety.org/10.1109/38.56302

[10] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. 2009. Imagenet: A Large-Scale Hierarchical Image
Database. In Computer Vision and Pattern Recognition, 2009. CVPR 2009. IEEE Conference on. IEEE, 248–255.

[11] Facebook. 2017. Gloo. https://github.com/facebookincubator/gloo/blob/master/docs/readme.md.

ACM Trans. Parallel Comput., Vol. 6, No. 2, Article . Publication date: August 2019.

ACM Trans. Parallel Comput. Issue date: August, 2019.

https://developer.nvidia.com/nccl
https://github.com/Caffe-MPI/Caffe-MPI.github.io
http://tensorflow.org/
https://developer.ibm.com/linuxonpower/2018/08/24/distributed-deep-learning-horovod-powerai-ddl/
https://developer.ibm.com/linuxonpower/2018/08/24/distributed-deep-learning-horovod-powerai-ddl/
https://doi.org/doi.ieeecomputersociety.org/10.1109/38.56302
https://github.com/facebookincubator/gloo/blob/master/docs/readme.md

:32 Sarunya Pumma, Min Si, Wu-chun Feng, and Pavan Balaji

[12] Michael Feldman. 2017. Intel Spills Details on Knights Mill Processor. https://www.top500.org/news/
intel-spills-details-on-knights-mill-processor/.

[13] Andrew Gibiansky. [n. d.]. Bringing HPC Techniques to Deep Learning. http://andrew.gibiansky.com.
[14] Google. 2018. Cloud Tensor Processing Units (TPUs). https://cloud.google.com/tpu/docs/tpus.
[15] Priya Goyal, Piotr Dollár, Ross Girshick, Pieter Noordhuis, LukaszWesolowski, Aapo Kyrola, Andrew Tulloch, Yangqing

Jia, and KaimingHe. 2017. Accurate, LargeMinibatch SGD: Training ImageNet in 1 Hour. arXiv preprint arXiv:1706.02677
(2017).

[16] The HDF Group. 2012. Enabling a Strict Consistency Semantics Model in Parallel HDF5. https://support.hdfgroup.org/
HDF5/doc/Advanced/PHDF5FileConsistencySemantics/PHDF5FileConsistencySemantics.pdf.

[17] Antonio Gulli and Sujit Pal. 2017. Deep Learning with Keras. Packt Publishing Ltd.
[18] Mark Harris. 2017. NVIDIA DGX-1: The Fastest Deep Learning System. https://devblogs.nvidia.com/

dgx-1-fastest-deep-learning-system/.
[19] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep Residual Learning for Image Recognition. In

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 770–778.
[20] Atsushi Hori, Min Si, Balazs Gerofi, Masamichi Takagi, Jai Dayal, Pavan Balaji, and Yutaka Ishikawa. 2018. Process-

in-Process: Techniques for Practical Address-Space Sharing. In Proceedings of the 27th International Symposium on
High-Performance Parallel and Distributed Computing. ACM, 131–143.

[21] Jeremy Hsu. 2016. Fujitsu Memory Tech Speeds Up Deep-Learning AI. https://spectrum.ieee.org/tech-talk/computing/
software/fujitsu-memory-tech-speeds-up-deep-learning-ai.

[22] Forrest N Iandola, Matthew W Moskewicz, Khalid Ashraf, and Kurt Keutzer. 2016. FireCaffe: Near-Linear Acceleration
of Deep Neural Network Training on Compute Clusters. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition. 2592–2600.

[23] Zhi-Lin Ke, Hsiang-Yun Cheng, and Chia-Lin Yang. 2018. LIRS: Enabling Efficient Machine Learning on NVM-Based
Storage via a Lightweight Implementation of Random Shuffling. arXiv preprint arXiv:1810.04509 (2018).

[24] Akhmedov Khumoyun, Yun Cui, and Lee Hanku. 2016. Spark Based Distributed Deep Learning Framework for Big
Data Applications. In International Conference on Information Science and Communications Technologies (ICISCT). IEEE,
1–5.

[25] Alex Krizhevsky. 2014. OneWeird Trick for Parallelizing Convolutional Neural Networks. arXiv preprint arXiv:1404.5997
(2014).

[26] Alex Krizhevsky and Geoffrey Hinton. 2009. Learning Multiple Layers of Features from Tiny Images. Technical Report.
University of Toronto.

[27] Sameer Kumar, Dheeraj Sreedhar, Vaibhav Saxena, Yogish Sabharwal, and Ashish Verma. 2017. Efficient Training of
Convolutional Neural Nets on Large Distributed Systems. arXiv preprint arXiv:1711.00705 (2017).

[28] Thorsten Kurth, Sean Treichler, Joshua Romero, Mayur Mudigonda, Nathan Luehr, Everett Phillips, Ankur Mahesh,
Michael Matheson, Jack Deslippe, Massimiliano Fatica, et al. 2018. Exascale deep learning for climate analytics. In
Proceedings of the International Conference for High Performance Computing, Networking, Storage, and Analysis. IEEE
Press, 51.

[29] Stefan Lee, Senthil Purushwalkam, Michael Cogswell, David J. Crandall, and Dhruv Batra. 2015. Why M Heads Are
Better than One: Training a Diverse Ensemble of Deep Networks. arXiv (2015). http://arxiv.org/abs/1511.06314

[30] Jianwei Li, Wei keng Liao, Alok Choudhary, Robert Ross, Rajeev Thakur, William Gropp, Rob Latham, Andrew Siegel,
Brad Gallagher, and Michael Zingale. 2003. Parallel netCDF: A High-Performance Scientific I/O Interface. In Proceedings
of the 2003 ACM/IEEE Conference on Supercomputing (SC ’03). ACM, New York, NY, USA, 39–.

[31] He Ma, Fei Mao, and Graham W. Taylor. 2016. Theano-MPI: A Theano-Based Distributed Training Framework. CoRR
abs/1605.08325 (2016). http://arxiv.org/abs/1605.08325

[32] Amrita Mathuriya, Deborah Bard, Peter Mendygral, Lawrence Meadows, James Arnemann, Lei Shao, Siyu He, Tuomas
Kärnä, Diana Moise, Simon J Pennycook, et al. 2018. CosmoFlow: Using Deep Learning to Learn the Universe at Scale.
In Proceedings of the International Conference for High Performance Computing, Networking, Storage, and Analysis. IEEE
Press, 65.

[33] Pierre Matri, María S Pérez, Alexandru Costan, and Gabriel Antoniu. 2018. TỳrFS: Increasing Small Files Access
Performance with Dynamic Metadata Replication. In 2018 18th IEEE/ACM International Symposium on Cluster, Cloud
and Grid Computing (CCGRID). IEEE.

[34] Microsoft. [n. d.]. Cognitive Toolkit: Multiple GPUs and Machines. https://docs.microsoft.com/en-us/cognitive-toolkit/
multiple-gpus-and-machines.

[35] Timothy Prickett Morgan. 2017. Machine Learning Gets an InfiniBand Boost with Caffe2. https://www.nextplatform.
com/2017/04/19/machine-learning-gets-infiniband-boost-caffe2/.

[36] NVIDIA. 2018. NVIDIA Deep Learning Platform: Giant Leaps in Performance and Efficiency for AI Services, From the
Data Center to the Network’s Edge. https://images.nvidia.com/content/pdf/inference-technical-overview.pdf.

ACM Trans. Parallel Comput., Vol. 6, No. 2, Article . Publication date: August 2019.

ACM Trans. Parallel Comput. Issue date: August, 2019.

https://www.top500.org/news/intel-spills-details-on-knights-mill-processor/
https://www.top500.org/news/intel-spills-details-on-knights-mill-processor/
http://andrew.gibiansky.com
https://cloud.google.com/tpu/docs/tpus
https://support.hdfgroup.org/HDF5/doc/Advanced/PHDF5FileConsistencySemantics/PHDF5FileConsistencySemantics.pdf
https://support.hdfgroup.org/HDF5/doc/Advanced/PHDF5FileConsistencySemantics/PHDF5FileConsistencySemantics.pdf
https://devblogs.nvidia.com/dgx-1-fastest-deep-learning-system/
https://devblogs.nvidia.com/dgx-1-fastest-deep-learning-system/
https://spectrum.ieee.org/tech-talk/computing/software/fujitsu-memory-tech-speeds-up-deep-learning-ai
https://spectrum.ieee.org/tech-talk/computing/software/fujitsu-memory-tech-speeds-up-deep-learning-ai
http://arxiv.org/abs/1511.06314
http://arxiv.org/abs/1605.08325
https://docs.microsoft.com/en-us/cognitive-toolkit/multiple-gpus-and-machines
https://docs.microsoft.com/en-us/cognitive-toolkit/multiple-gpus-and-machines
https://www.nextplatform.com/2017/04/19/machine-learning-gets-infiniband-boost-caffe2/
https://www.nextplatform.com/2017/04/19/machine-learning-gets-infiniband-boost-caffe2/
https://images.nvidia.com/content/pdf/inference-technical-overview.pdf

Scalable Deep Learning via I/O Analysis and Optimization :33

[37] Travis E Oliphant. 2006. A guide to NumPy. Vol. 1. Trelgol Publishing USA.
[38] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito, Zeming Lin, Alban

Desmaison, Luca Antiga, and Adam Lerer. 2017. Automatic differentiation in PyTorch. In NIPS-W.
[39] Sarunya Pumma, Min Si, Wu chun Feng, and Pavan Balaji. 2017. Parallel I/O Optimizations for Scalable Deep Learning.

In Proceedings of the IEEE International Conference on Parallel and Distributed Systems (ICPADS).
[40] Sarunya Pumma, Min Si, Wu chun Feng, and Pavan Balaji. 2017. Towards Scalable Deep Learning via I/O Analysis and

Optimization. In Proceedings of the 19th International Conference on High Performance Computing and Communications
(HPCC).

[41] Carl Edward Rasmussen. 2003. Gaussian Processes in Machine Learning. In Summer School on Machine Learning.
Springer, 63–71.

[42] Baidu Research. [n. d.]. baidu-allreduce. https://github.com/baidu-research/baidu-allreduce.
[43] Microsoft Research. 2017. The Microsoft Cognitive Toolkit. https://docs.microsoft.com/en-us/cognitive-toolkit/.
[44] Karl Rupp. 2018. Microprocessor Trend Data. https://github.com/karlrupp/microprocessor-trend-data.
[45] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy,

Aditya Khosla, Michael Bernstein, Alexander C. Berg, and Li Fei-Fei. 2015. ImageNet Large Scale Visual Recogni-
tion Challenge. International Journal of Computer Vision (IJCV) 115, 3 (2015), 211–252. https://doi.org/10.1007/
s11263-015-0816-y

[46] Alexander Sergeev and Mike Del Balso. 2018. Horovod: Fast and Easy Distributed Deep Learning in TensorFlow. arXiv
preprint arXiv:1802.05799 (2018).

[47] Facebook Open Source. [n. d.]. Caffe2 A New Lightweight, Modular, and Scalable Deep Learning Framework. https:
//caffe2.ai.

[48] TensorFlow. [n. d.]. How To Compile and Use MPI-Enabled TensorFlow. https://github.com/tensorflow/tensorflow/
tree/master/tensorflow/contrib/mpi.

[49] R. Thakur, W. Gropp, and E. Lusk. 1998. A Case for Using MPI’s Derived Datatypes to Improve I/O Performance. In
IEEE/ACM Conference on Supercomputing (SC).

[50] R. Thakur, W. Gropp, and E. Lusk. 1999. Data Sieving and Collective I/O in ROMIO. In Proceedings of the 7th Symposium
on the Frontiers of Massively Parallel Computation. Washington, DC, USA, 182–189.

[51] Rajeev Thakur, Ewing Lusk, and William Gropp. 1997. Users Guide for ROMIO: A High-Performance, Portable MPI-IO
Implementation. Technical Report. Technical Report ANL/MCS-TM-234, Mathematics and Computer Science Division,
Argonne National Laboratory.

[52] The Ohio State University. 2014. MVAPICH: MPI over InfiniBand, 10GigE/iWARP and RoCE. http://mvapich.cse.
ohio-state.edu.

[53] Theano Development Team. 2016. Theano: A Python Framework for Fast Computation of Mathematical Expressions.
arXiv e-prints abs/1605.02688 (May 2016). http://arxiv.org/abs/1605.02688

[54] Seiya Tokui, Kenta Oono, Shohei Hido, and Justin Clayton. 2015. Chainer: A Next-Generation Open Source Framework
for Deep Learning. In Proceedings of workshop on machine learning systems (LearningSys) in the twenty-ninth annual
conference on neural information processing systems (NIPS), Vol. 5. 1–6.

[55] Abhinav Vishnu, Charles Siegel, and Jeffrey Daily. 2016. Distributed TensorFlow with MPI. CoRR abs/1603.02339
(2016). http://arxiv.org/abs/1603.02339

[56] Michael Woodacre, Derek Robb, Dean Roe, and Karl Feind. 2005. The SGI® AltixTM 3000 global shared-memory
architecture. Silicon Graphics, Inc (2005).

[57] Joe Yaworski. 2017. Intel Omni-Path Architecture Enables Deep Learning Training on HPC. https://itpeernetwork.
intel.com/intel-omni-path-deep-learning-training/.

[58] Chris Ying, Sameer Kumar, Dehao Chen, Tao Wang, and Youlong Cheng. 2018. Image Classification at Supercomputer
Scale. arXiv preprint arXiv:1811.06992 (2018).

[59] Yang You, Igor Gitman, and Boris Ginsburg. 2017. Scaling SGD Batch Size to 32k for ImageNet Training. arXiv preprint
arXiv:1708.03888 (2017).

[60] Yang You, Zhao Zhang, Cho-Jui Hsieh, James Demmel, and Kurt Keutzer. 2018. ImageNet Training in Minutes. In
Proceedings of the 47th International Conference on Parallel Processing (ICPP).

[61] Sergey Zagoruyko and Nikos Komodakis. 2016. Wide residual Networks. arXiv preprint arXiv:1605.07146 (2016).
[62] Kunlei Zhang and Xue-Wen Chen. 2014. Large-Scale Deep Belief Nets with MapReduce. IEEE Access 2 (2014), 395–403.
[63] Yue Zhu, Fahim Chowdhury, Huansong Fu, Adam Moody, Kathryn Mohror, Kento Sato, and Weikuan Yu. 2018.

Entropy-Aware I/O Pipelining for Large-Scale Deep Learning on HPC Systems. In IEEE International Symposium on the
Modeling, Analysis, and Simulation of Computer and Telecommunication Systems (MASCOTS 2018).

ACM Trans. Parallel Comput., Vol. 6, No. 2, Article . Publication date: August 2019.

ACM Trans. Parallel Comput. Issue date: August, 2019.

https://github.com/baidu-research/baidu-allreduce
https://docs.microsoft.com/en-us/cognitive-toolkit/
https://github.com/karlrupp/microprocessor-trend-data
https://doi.org/10.1007/s11263-015-0816-y
https://doi.org/10.1007/s11263-015-0816-y
https://caffe2.ai
https://caffe2.ai
https://github.com/tensorflow/tensorflow/tree/master/tensorflow/contrib/mpi
https://github.com/tensorflow/tensorflow/tree/master/tensorflow/contrib/mpi
http://mvapich.cse.ohio-state.edu
http://mvapich.cse.ohio-state.edu
http://arxiv.org/abs/1605.02688
http://arxiv.org/abs/1603.02339
https://itpeernetwork.intel.com/intel-omni-path-deep-learning-training/
https://itpeernetwork.intel.com/intel-omni-path-deep-learning-training/

:34 Sarunya Pumma, Min Si, Wu-chun Feng, and Pavan Balaji

Sarunya Pumma received her B.Eng. and M.Eng. degrees in computer en-
gineering from King Mongkut’s University of Technology Thonburi, Thai-
land, in 2011 and 2013, respectively. She is currently a Ph.D. student at
the Department of Computer Science at Virginia Tech under the super-
vision of Prof. Wu-chun Feng. Her research interests include cloud com-
puting, big data analytics for scientific computing, and machine learn-
ing.

Min Si is an assistant computer scientist in the Mathematics and Com-
puter Science Division at Argonne National Laboratory. She was previ-
ously an Enrico Fermi postdoctoral scholar at Argonne. She received her
Ph.D. and M.S. in computer science from the University of Tokyo in
2016 and 2012, respectively. Her research interests include communication
runtime in high-performance computing and parallel programming mod-
els.

Wu-chun Feng is a professor and Elizabeth & James E. Turner Fellow in the
Department of Computer Science, Department of Electrical and Computer
Engineering, Health Sciences, and Virginia Bioinformatics Institute at Virginia
Tech.

Pavan Balaji is a computer scientist at Argonne National Laboratory, where
he leads the Programming Models and Runtime Systems group in the Mathe-
matics and Computer Science Division. His research interests include par-
allel programming models and runtime systems for communication and
I/O on extreme-scale supercomputing systems, modern system architec-
ture, cloud computing systems, data-intensive computing, and big data sci-
ences.

ACM Trans. Parallel Comput., Vol. 6, No. 2, Article . Publication date: August 2019.

ACM Trans. Parallel Comput. Issue date: August, 2019.

	Abstract
	1 Introduction
	2 Background
	2.1 Overview of Caffe and Batch Training
	2.2 Overview of LMDB

	3 Analysis of I/O in Deep Learning
	3.1 Experimental Setup
	3.2 Caffe/LMDB Scalability Analysis
	3.3 LMDB Inefficiencies

	4 Design and Implementation of LMDBIO
	4.1 LMDBIO-LMM
	4.2 LMDBIO-LMM-DM
	4.3 LMDBIO-LMM-DIO
	4.4 LMDBIO-LMM-DIO-PROV
	4.5 LMDBIO-LMM-DIO-PROV-COAL
	4.6 LMDBIO-LMM-DIO-PROV-COAL-STAG

	5 Experiments and Results
	5.1 Microbenchmark Evaluation and Analysis
	5.2 Strong-Scaling Performance Evaluation of Caffe Deep Learning Training
	5.3 Weak-Scaling Performance Evaluation of Caffe Deep Learning Training

	6 Related Work
	7 Lessons Learned
	8 Concluding Remarks
	Acknowledgments
	References

