Impact of Network Sharing in Multi-core Architectures®

G. Narayanaswamy P. Balaji W. Feng
Dept. of Computer Science Mathematics and Computer Science Dept. of Computer Science
Virginia Tech Argonne National Laboratory Virginia Tech
cnganesh@cs.vt.edu balaji@mcs.anl.gov feng@cs.vt.edu
Abstract

As commodity components continue to dominate the realm of
high-end computing, two hardware trends have emerged as major
contributors—high-speed networking technologies and multi-core ar-
chitectures. Communication middleware such as the Message Pass-
ing Interface (MPI) uses the network technology for communicating
between processes that reside on different physical nodes, while us-
ing shared memory for communicating between processes on differ-
ent cores within the same node. Thus, two conflicting possibilities
arise: (i) with the advent of multi-core architectures, the number of
processes that reside on the same physical node and hence share the
same physical network can potentially increase significantly, resulting
in increased network usage, and (ii) given the increase in intra-node
shared-memory communication for processes residing on the same
node, the network usage can potentially decrease significantly.

In this paper, we address these two conflicting possibilities and study
the behavior of network usage in multi-core environments with sam-
ple scientific applications. Specifically, we analyze trends that result
in increase or decrease of network usage, and we derive insights into
application performance based on these. We also study the sharing of
different resources in the system in multi-core environments and iden-
tify the contribution of the network in this mix. In addition, we study
different process allocation strategies and analyze their impact on such
network sharing.

1 Introduction

High-end computing (HEC) systems are increasingly being
characterized by nodes built out of commodity components.
Two of the significant trends in the HEC domain have been
the dramatic improvements in networking technology (using
high-speed network accelerators) and in processor technology
(with the advent of multi-core architectures). With respect to
the networks, several technologies are available in the market,
including 10-Gigabit Ethernet [5-7], Myrinet [10], and Infini-
Band (IB) [8]. With respect to multi-core processors, quad-core
processors from Intel and AMD are considered commodity to-
day. Processors with higher number of cores (e.g., Intel Xscale)
and multithreading within each core (e.g., SUN Niagara) are
also becoming available. As these two trends emerge, it is be-
coming increasingly important to analyze their interaction.

Scientists typically use standard parallel programming models
to develop their applications over HEC systems in a portable
manner. The Message Passing Interface (MPI) is the de facto
standard in such programming models and is used by a vast ma-
jority of scientific applications. With the growing importance of

*This work was supported in part by the National Science Foundation Grant
#0702182, the Mathematical, Information, and Computational Sciences Divi-
sion subprogram of the Office of Advanced Scientific Computing Research, Of-
fice of Science, U.S. Department of Energy, under Contract and the Department
of Computer Science at Virginia Tech.

multi-core environments, most implementations of MPI are op-
timized on such environments by using the network technology
for communicating between processes that reside on different
physical nodes, while using shared memory for communicat-
ing between processes on different cores within the same node.
Using shared memory within the node typically reduces the net-
work overhead, resulting in higher performance. Based on such
a design for MPI implementations, two conflicting possibili-
ties arise: (i) with the advent of multi-core architectures, the
number of processes that reside on the same physical node and
hence share the same physical network can potentially increase
significantly resulting in increased network usage and (ii) given
the increase in intra-node shared-memory communication for
processes residing on the same node, network usage can poten-
tially decrease significantly.

Based on these two conflicting possibilities, it is not clear
whether modern multi-core architectures add extra require-
ments on networks, thus requiring future HEC systems to scale
up network capacity further, or whether the increase in intra-
node shared memory communication compensates for the in-
crease in network sharing, thus not requiring any changes.
Thus, depending on the application communication pattern
and the layout of processes across nodes, interesting questions
about network sharing and scalability need to be studied.

In this paper, we address these two conflicting possibilities and
study the behavior of network usage in multi-core environ-
ments with sample scientific applications within the NAS paral-
lel benchmark suite. Specifically, we analyze trends that result
in increase or decrease of network usage and derive insights into
application performance based on these. We also study the shar-
ing of different resources in the system in multi-core environ-
ments and identify the contribution of the network in this mix.
Further, we study different process allocation strategies and an-
alyze their impact on such network sharing. Our experimental
results demonstrate that for some applications multi-core archi-
tectures can significantly hamper performance because of the
increased network sharing, while for others the performance
can stay constant or even improve because of the better intra-
node communication.

The rest of the paper is organized as follows. Section 2 presents
some background on multi-core architectures and Myrinet.
Section 3 explains some of the networking issues in multi-core
architectures that are of interest to us. Our experimental evalu-
ation is presented in section 4. In Section 5 we briefly discuss
related work and conclude in section 6.

2 Background

In this section, we present an overview of multi-core architec-
tures and the Myri-10G Myrinet network.

2.1 Overview of Multi-core Architectures

For many years, hardware manufacturers have been replicating
components on processors to create multiple pathways allowing
more than one instruction to run concurrently with others. Du-
plicate arithmetic and floating-point units, coprocessing units,
and multiple thread contexts on the same processing die are
examples of such replication. Multi-core processors are con-
sidered to be the next step in such hardware replication, where
two or more (mostly) independent execution units are combined
onto the same integrated circuit.

Multi-core architectures are at a high level similar to multi-
processor architectures. The operating system deals with mul-
tiple cores in the same way as multiple processors, by allocat-
ing one process to each core at a time. Arbitration of shared
resources between the cores happens completely in hardware,
with no intervention from the OS. However, multi-core pro-
cessors also differ significantly from multi-processor systems.
For example, in multi-core processors, both computation units
are integrated on the same die. Thus, communication between
these computation units does not have to go outside the die and
hence is independent of the die pin overhead. Further, architec-
tures such as the current Intel multi-cores, as shown in Figure 1,
provide a shared cache between the different cores on the same
die. This makes communication even simpler by eliminating
the need for complicated cache-coherency protocols.

Processor 0 Processor 1

Balan

[L1 Cache][L1 Cache] [L1 Cache][L1 Cache]

{ L2 Cache] [L2 Cache]

T System Bus T

l

Main memory

Figure 1: Intel dual-core dual-processor system

However, multi-core processors also have the disadvantage of
more shared resources as compared to multi-processor systems.
That is, multi-core processors might require different cores on
a processor die to block waiting for local shared resources to
get freed when it is being used by a different core. Such con-
tention is even higher when the ratio of the number of cores on
the system increases as compared to the other resources (e.g.,
multi-core systems with multiple thread contexts). Further, for
architectures such as AMD NUMA, each processor in a multi-
processor system has access to its own memory, and hence over-
all memory bandwidth essentially doubles with the number of
processors. For multi-core systems however, the overall mem-
ory bandwidth does not change.

2.2 Overview of Myrinet Network

Myri-10G [10], the latest generation Myrinet developed by
Myricom, is a low-latency wormhole routing based high-speed
interconnect and supporting data transfers at the rate of 10

Gbps. The Myrinet network interface card (NIC) has a user-
programmable processor and DMA engines that eases the de-
sign and customization of software communication stacks. MX
(Myrinet Express) is a high-performance, low-level, message-
passing software interface tailored for Myrinet. The Myri-10G
NICs, switches, and associated software support both Ether-
net (MXoE) and Myrinet (MXoM) protocols at the link level.
The basic MX-10G communication primitives are non-blocking
send and receive operations. Our network consists of the Myri-
10G NICs connected by a 24-port Myrinet switch. The NICs
are connected to the host via a 133 MHz/64 bit PCI-X bus.
They have a programmable LANai processor running at 300
MHz with 2 MB on-board SRAM memory.

3 Networking Issues in Multi-cores

In this section, we cover some of the challenges faced in multi-
core environments with respect to networking.

3.1 Sharing of Network Resources

One of the important questions when designing high-end sys-
tems based on commodity components is network scalability,
specifically, whether the network can cope up with the CPU in
terms of the network data being sent. An important advantage
of multi-core architectures is the ability to multiplex network
data streams over a single network hardware medium, which
potentially helps in better use of network resources. Also, la-
tency between application processes can decrease as more and
more traffic goes over intra-node communication media instead
of over the network. This is good for commodity applications
but may affect performance of scientific applications because
of sharing of network resources. Similarly, sharing of proces-
sor resources can be both beneficial and harmful. For example,
shared caches in multi-core architectures can reduce latencies
between processes to the scale of nanoseconds, but at the same
time introduce contention for those resources.

3.2 Process Allocation Schemes

In a multi-core cluster, the processes can be arranged among the
nodes in several ways. Applications typically have fixed com-
munication patterns, and allocation schemes provide us the flex-
ibility of modifying which processes get colocated on the same
node. Thus, depending on the allocation scheme, the amount
of network sharing might increase or decrease. We look at two
common allocation schemes in this paper: cyclic and blocked
allocation.

Cyclic allocation allocates each subsequent process cyclically
to the next node in the ring of nodes. For example, with a total
of 16 processes and 8 nodes, process ranks 0 and 8 will get as-
signed to node 0, ranks 1 and 9 to node 1, and so on. This alloca-
tion ensures good load balance among all nodes. In blocked al-
location, blocks of processes are assigned to each node in turn.
For example, with 16 processes, 8 nodes and a block size of 2,
process ranks 0 and 1 get assigned to node 0, ranks 2 and 3 to
node 1, and so on.

The process allocation scheme can play an important role in the
kind of communication performed by a process. For example,
for an application that does mostly neighbor communication in
a 1-D chain of processes, blocked allocation will probably turn

m 16X1 m 8X2 Co-processor

0.8 -

0.6 -

04 -

Relative performance

0.2 +

BT CG FT IS LU MG SP

8X2 virtual processor W 4X4

1.2

06

04 +—

Relative performance

BT CG FT IS LU MG SP

Figure 2: Evaluation of network sharing: (a) 16X1 vs 8X2 co-processor and (b) 8X2 virtual processor vs 4X4

out to be better. The reason is that the neighbor processes that
a process communicates with are more likely to be on the same
node. The result can be significant reduction in network com-
munication, thereby potentially improving performance. With
more cores on a node, the situation doesn’t improve further,
however, since there are only a constant number of neighbors.

In a 2-D grid of N x N processes performing neighbor com-
munication with M cores in a node, again blocked allocation
works better than cyclic allocation in localizing more neighbors
when N > M. When M and N are equal, the same number of
neighbors coexist with both cyclic and blocked allocation. The
same holds true for a 3-D grid of processes as well. Thus, for
neighbor communication, there are higher chances that more
neighbors will co-exist with blocked allocation.

As another example, for an application which performs tree-like
regular long distance communication, a cyclic allocation strat-
egy might be a better choice, as it might localize many of the
communicating processes within a node. For applications run-
ning on large clusters with hierarchical layers of switches, allo-
cation schemes that localize branches of trees within the lowest
hierarchy might be more beneficial.

4 Performance Evaluation

In this section, we present our performance evaluation results
of the NAS Parallel benchmark suite. We follow two different
evaluation methodologies. In Section 4.3, we analyze the im-
pact of network and processor sharing in the performance of
applications. In Section 4.4, we show results with different pro-
cess allocation schemes. We show results with class B of the
NAS benchmarks, but we note that we got similar results for
classes A and C.

4.1 Experimental Setup

Each node in our 16-node cluster setup is a custom-built, dual-
processor, dual-core AMD Opteron 2.55 GHz system having 4
GB of DDR2 667 MHz SDRAM. The four cores in each system
are organized as cores 0 and 1 on processor 0 and cores 2 and 3
on processor 1. Each core has a separate 1 MB L2 cache. All
machines run Ubuntu Fiesty with kernel version 2.6.19 and are
equipped with Myri-10G network interface cards connected to a
Myrinet switch. The MPI library used is MPICH2-MX v1.0.6.
All experiments were run at least three times with the processor
affinity of each process set to a fixed core to remove the impact
of operating system scheduling anomalies.

4.2 Configurations used in experiments

This section describes the configurations on which we ran our
experiments. We use 16 processes for all the NPB benchmarks
because this covers the maximum number of benchmarks and
configurations for our setup. We note that 16 processes can
be run on different configurations on a multi-core architecture
with four cores. Picking only those with constant number of
processes on a node, we end up with three configurations:

e 16X1 — 16 nodes, one process on one of the four cores
e 8X2 — 8 nodes, 2 processes, on two of the four cores
e 4X4 — 4 nodes, 4 processes, one on each core

We start by observing that between each of the three configura-
tions there are increased levels of network sharing. With 16X1,
there is no network sharing since each node runs only one appli-
cation process. With 8X2, however, two processes in each node
use the same network interface card. Hence there is two times
more network sharing than with the 16X1 case. With 4X4, four
processes use the same NIC, thus making the network sharing
four times greater than with the 16X1 case. In our experiments,
we ran the 4X4 configuration with cyclic allocation of processes
between nodes.

To consider the effects of processor sharing, we split the 8X2
into two cases again. Our setup consists of a dual-core dual-
processor system and hence the two processes can be run in
two different modes:

e 8X2 co-processor mode: two processes, each running on a
different processor

e 8X2 Virtual processor mode: two processes, both run on
the same processor

In the virtual processor mode, there is increased sharing of pro-
cessor resources because both processes are run on the same
processor.

4.3 Impact of Network Sharing

We start by evaluating the impact of network sharing by running
the various NPB benchmarks over each of the three configu-
rations described above. Figure 2 shows the impact network
resource sharing can have on the performance. As shown in
Figure 2(a), as we move from 16X1 to 8X2 co-processor mode,
the performance of all the benchmarks drops (as much as 27%
for IS). The reason is the increased network sharing in the 8X2
configuration, where two processes have to share the same net-
work device. Since only one process has been added to every

m 16X1 W 8X2 Co-processor

~

=
o

=
o

=
IS

I
N}

-

o
®

me (seconds)

ti

0.6

0.4

Normalized network communication

0.2

BT CcG FT IS LU MG SP

8X2 Virtual processor H4X4

25

15

0.5

Normalized network communication
time (seconds)

BT CcG FT IS LU MG N

Figure 3: Network communication time: (a) 16X1 vs 8X2 co-processor and (b) 8X2 virtual processor vs 4X4

node, the chances that a process will communicate predomi-
nantly with the process colocated in its node are slim.

In Figure 2(b) on the other hand, the performance drop is seen
mainly for CG, FT, and IS, while the other benchmarks perform
similarly or show improved performance (in the case of MG)
between the two configurations. Here we see mixed benefit in
moving to 4X4 because more number of processes are collo-
cated in the same node. Thus, potentially, more shared memory
communication can happen reducing the possibility of network
sharing.

To analyze the level of network sharing in the above results, we
profile the network communication time in each of these con-
figurations. Since we are using Myrinet’s MX protocol, we pro-
file the time spent in the mx_isend () and mx_test () calls.
This time represents the time spent by the network in sending
the data out and thus is an indicator of the overhead of net-
work sharing. Figure 3 shows the normalized total time spent
inmx_isend () and mx_test () calls for the various config-
urations. As seen in Figure 3(a), there is an increase in the
network communication time for all the benchmarks between
16X1 and 8X2 co-processor mode. In other words, moving to
the 8X2 co-processor mode results in more time being spent
for network communication because the network resources are
being shared. Also, the amount of intra-node communication
remains comparatively low, so it is difficult to observe any sig-
nificant benefit from the reduced latency. Of 15 other possible
processes with which a process can communicate, only one re-
sults in intra-node communication. Thus, there is a 93% chance
that a process will communicate over the network with another
process. These results mimic the performance results where all
benchmarks observe a decrease in performance when moving
to 8X2 co-processor mode.

In Figure 3(b), however, the network communication increases
only for the CG, FT, and IS benchmarks, while for all others
it drops. This again clearly mimics the performance results as
seen in Figure 2(b). In this case, moving from the 8X2 vir-
tual processor mode to 4X4 mode results in two processes get-
ting added to the same node. Thus there is increased capabil-
ity to perform intra-node communication. Compared to a 93%
chance of network communication with the 8X2 case, there is
only 80% chance with the 4X4 case that a process will com-
municate over the network with another process. We analyze
our results further by profiling the amount of data sent over the
network as compared to intra-node communication for all the

benchmarks. The data-size analysis shows a similar trend as
the network communication time and corroborates the perfor-
mance results we get. For dearth of space, we present those
results in [11].

To make our analysis of network sharing more comprehensive,
we also need to analyze the effect of processor sharing. To do
this, we compare the performances of 8X2 co-processor and
8X2 virtual processor modes. For the co-processor mode, we
run the processes in cores 0 and 2, while for the virtual proces-
sor mode we run the processes on cores 2 and 3.

Figure 4(a) shows the performance of co-processor and virtual
processor modes in the 8X2 configuration for all the bench-
marks. We observe a substantial performance difference be-
tween the two modes for all the benchmarks (up to 53% as in
the case of SP). This shows that sharing of processor resources
can be very detrimental for the application.

We verify our results with processor sharing by using PAPI to
count various hardware performance counters. We first measure
the number of L2 cache misses. As shown in Figure 4(b), the
virtual processor mode sees increased L2 cache misses ranging
from 27% more misses in the case of FT up to 48% more in the
case of MG.

We profile the benchmarks for two types of CPU stall cycles
as well: those stalling for any resource and those stalling for
memory accesses. Here we show results only for the CG and
SP benchmarks; the results for the other benchmarks are simi-
lar. Figure 5 shows the normalized number of CPU stall cycles
waiting for resource and memory for CG and SP benchmarks.
From the graphs, we can see that the virtual processor mode
has more resource stalls than does the co-processor mode. SP
observes up to 73% more resource stalls cycles and 66% more
memory stalls, whereas in the case of CG, it is 14% and 17%,
respectively.

4.4 Analysis of Allocation Schemes

In this section, we take a different approach for investigating
network sharing impacts, by performing a comparative study
of using the cyclic and blocked allocation schemes with the
NPB benchmarks. We run the experiments on 64 processes,
with four processes on each of the 16 nodes. Figure 6(a) shows
the performance of various NPB benchmarks with cyclic and
blocked allocation on class B data sizes. The results show that
the CG benchmark sees an improvement in performance (17%)

W 8X2 Co-processor 8X2 Virtual processor

1.2

54
o

Relative performance
o o
S o

o
o

BT CcG FT IS LU

W 8X2 Co-processor 8X2 Virtual processor

30000000

25000000

0000000

w
a
a
i
€
1

5000000 -

10000000 -

Normalized number of L2 cache

5000000 |

o -

Figure 4: Analysis of processor sharing: (a) performance and (b) L2 cache misses

W 8X2 Co-processor 8X2 Virtual processor

1.6E+11

1.4E+11

1.2E+11

1E+11

8E+10

6E+10

4E+10

Normalized number of stalls

2E+10

0

CG (resource) CG (memory) SP (resource) SP (memory)

Figure 5: CPU stall cycles

while for the other benchmarks, performance remains the same
or drops.

To further understand the reasons behind the trends observed,
we profile the network communication time of the benchmarks
similar to the profiling done in section 4.3. Figure 6(b) shows
the normalized total communication time for each of the bench-
marks for cyclic and blocked cases. From the graph, we observe
that CG observes a substantial reduction in communication time
when running in blocked allocation mode. For all other bench-
marks, there is an increase in network communication time. We
note here that MG observes more than a six fold increase in
communication time, which explains why the performance of
MG drops heavily when using blocked allocation. The data size
analysis shows that the amount of data communicated over the
network for CG halves when moving from cyclic to blocked al-
location, while MG sees a slight increase. This also verifies the
performance results that we observe. Refer to [11] for the data
size analysis results.

4.5 Application Processing Pattern Analysis

The previous sections evaluated application performance from
the viewpoint of system and network characteristics. In this
section, we tie in the analysis developed in previous sections to
the application communication patterns.

The CG benchmark performs communication within groups of
four processes with certain boundary nodes communicating be-
tween the groups. As an example, Figure 7 shows the commu-
nication pattern of CG with 16 processes. This pattern clearly

shows that any allocation scheme that localizes the groups of
four processes within a node will have good performance im-
provement. For example, if each of the group of four processes
are localized within a node, the only network communication is
between the boundary nodes. Thus any allocation scheme that
optimizes this strategy will get better performance. We see this
result with blocked allocation in the 16X4 case, which performs
better than the cyclic allocation (see Figure 6).

The FT benchmark performs an all-to-all exchange within sub-
communicators along the row and column in a processor grid.
Thus, having more cores in a node allows some processes in
either the row or the column subcommunicators to be local to
a node. But the communication as part of the other subcom-
municator still has to go through the network. Although some
amount of network communication is saved, there is still suf-
ficient sharing of network resources. Similarly, choosing an
appropriate allocation scheme might help in localizing all the
nodes of a sub-communicator, but still there is enough network
traffic between the other subcommunicator to nullify this ad-
vantage. In our results, we see a similar behavior, where the
performance drops for FT when moving from 16X1 to 4X4 be-
cause of the increased sharing of the network but remains the
same for the cyclic and blocked allocation strategies. The IS
benchmark has a similar analysis as FT as it also does predom-
inantly all-to-all exchanges. This analysis for FT and IS ties in
well with the network data size analysis results shown in [11].
Designing efficient network topologies for FT and IS can be a
challenging task given the all-to-all pattern.

MG has an interesting pattern wherein there is some clustered
communication in groups of 4, but these clusters themselves
are grouped in clusters of 16. Each process communicates with
another process which is at increasing distances of increasing
powers of two from it. Thus, any process allocation strategy
that puts processes at distances of powers of two on the same
node will be beneficial for the application. For example, when
the number of nodes is a power of two, cyclic allocation will
put such processes on the same node. This situation explains
why MG performs better with cyclic allocation than blocked
allocation with 64 processes and also why the 4X4 cyclic con-
figuration performs better than the 8X2 configuration.

BT, LU, and SP follow complex communication patterns that
make analysis from the processing pattern difficult. Changes
in configurations or allocation schemes may not significantly

M 16X4 Cyclic 16X4 Blocked

g
b

-
N

[

Relative performance
1N o o
B o <)

o
N

o

BT CG FT IS LU MG SP

M 16X4 cyclic M 16X4 blocked

3.5

Normalized network communication
time (seconds)

BT CG FT IS LU MG SP

Figure 6: Cyclic vs blocked: (a) performance and (b) network communication time

affect the amount of network sharing. For example, our results
in previous sections don’t seem to follow any major trends.

In summary, we saw in Sec-

tion 4.3 that network sharing L 2 4 2
does affect the performance of
applications, although the re- s ; . .

sults might pale in compari-
son with the effects of pro-
cessor sharing. Nevertheless, 8 9 12 13
network sharing is an impor-
tant concern that has to be ad-
dressed. We also saw that us-
ing a different process alloca-
tion strategy has the potential
to reduce the effects of network sharing. Furthermore, knowl-
edge of the application pattern can give better ideas for design-
ing better run-time configurations for applications.

5 Related Work

A lot of work has been proposed on optimizing application per-
formance on multi-core architectures. In [3], Curtis-Maury et
al. look at OpenMP communication on multi-core processors.
Chai et al., in [2], look at the performance of applications based
on the amount of intra-CMP, inter-CMP and inter-node com-
munication performed. We investigate the problem with a dif-
ferent approach by looking at the amount of sharing of network
resources. In [1], Alam et al. perform extensive characteri-
zation of various scientific workloads on the AMD multi-core
processor. But their work looks only at a single multi-core node,
whereas we look at a cluster of nodes and at the impact of the
network as well.

10 11) 14 15

Figure 7: CG pattern

Similarly, many articles and papers have investigated the com-
munication patterns of various applications and benchmarks [4,
9,12, 13]. But none of these papers focus on multi-core archi-
tectures in their evaluation, which we address here.

6 Conclusions

With the advent of multi-core architectures, designers of high-
end systems are faced with the challenge of ensuring that the in-
terconnection network scales well with more processing cores.
We analyze this problem by studying the impact of network
sharing on multi-core architectures. Our results indicate that
network sharing can have a significant impact on performance,

although sharing of processor resources has a much bigger im-
pact. With a good understanding of the application commu-
nication pattern, a different process allocation strategy could
potentially reduce the effects of network sharing. For future
work, the network sharing analysis studied in this paper can
be incorporated into MPI process managers (such as mpd,
lamboot etc) which can lay out processes more intelligently
across nodes.

References

[1] S.R. Alam, R. F. Barrett, J. A. Kuehn, P. C. Roth, and J. S. Vetter. Charac-
terization of scientific workloads on systems with multi-core processors.
In IISWC, pages 225-236, 2006.

[2] L. Chai, Q. Gao, and D. K. Panda. Understanding the impact of multi-core
architecture in cluster computing: A case study with intel dual-core sys-
tem. In Cluster Computing and the Grid, 2007. CCGRID 2007. Seventh
IEEE International Symposium on, pages 471-478, 2007.

[3] M. Curtis-Maury, X. Ding, C. D. Antonopoulos, and D. S. Nikolopou-
los. An evaluation of openmp on current and emerging multi-
threaded/multicore processors. In First International Workshop on
OpenMP, Eugene, Oregon, June 2005.

[4] R. Cypher, A. Ho, S. Konstantinidou, and P. Messina. Architectural re-
quirements of parallel scientific applications with explicit communica-
tion. In 20th Annual International Symposium on Computer Architecture,
pages 2—13, May 1993.

[5] D. Dalessandro, P. Wyckoff, and G. Montry. Initial performance evalua-
tion of the neteffect 10 gigabit iwarp adapter. In RAIT 06, 2006.

[6] W.Feng, P. Balaji, C. Baron, L. N. Bhuyan, and D. K. Panda. Performance
characterization of a 10-gigabit ethernet toe. In IEEE Hotl, Palo Alto, CA,
2005.

[71 W.Feng, J. Hurwitz, H. Newman, S. Ravot, L. Cottrell, O. Martin, F. Coc-
cetti, C. Jin, D. Wei, and S. Low. Optimizing 10-gigabit ethernet for net-
works of workstations, clusters and grids: A case study. In SC ’03, 2003.

[8] InfiniBand Trade Association. http://www.infinibandta.org/.

[9] J. Kim and D. J. Lilja. Characterization of communication patterns in
message-passing parallel scientific application programs. In CANPC ’98:
Proceedings of the Second International Workshop on Network-Based
Parallel Computing, pages 202-216, London, UK, 1998. Springer-Verlag.

[10] Myricom. Myrinet home page. http://www.myri.com/.

[11] G.Narayanaswamy, P. Balaji, and W. Feng. Impact of network sharing in
multicore architectures. Technical report, Computer Science department,
Virginia Tech, March 2008.

[12] R. Riesen. Communication patterns. In Workshop on Communication
Architecture for Clusters (CSC 2006), Rhode Island, Greece, April 2006.

[13] J.S. Vetter and F. Mueller. Communication characteristics of large-scale
scientific applications for contemporary cluster architectures. J. Parallel
Distrib. Comput., 63(9):853-865, 2003.

