
An Analysis of 10-Gigabit Ethernet Protocol Stacks in
Multicore Environments∗ †

G. Narayanaswamy
Dept. of Computer Science

Virginia Tech
cnganesh@cs.vt.edu

P. Balaji‡
Math. and Computer Science
Argonne National Laboratory

balaji@mcs.anl.gov

W. Feng§

Dept. of Computer Science
Virginia Tech

feng@cs.vt.edu

Abstract
This paper analyzes the interactions between the protocol stack
(TCP/IP or iWARP over 10-Gigabit Ethernet) and its multicore en-
vironment. Specifically, for host-based protocols such as TCP/IP, we
notice that a significant amount of processing is statically assigned to
a single core, resulting in an imbalance of load on the different cores
of the system and adversely impacting the performance of many ap-
plications. For host-offloaded protocols such as iWARP, on the other
hand, the portions of the communication stack that are performed
on the host, such as buffering of messages and memory copies, are
closely tied with the associated process, and hence do not create such
load imbalances. Thus, in this paper, we demonstrate that by intelli-
gently mapping different processes of an application to specific cores,
the imbalance created by the TCP/IP protocol stack can be largely
countered and application performance significantly improved. At
the same time, since the load is better balanced in host-offloaded pro-
tocols such as iWARP, such mapping does not adversely affect their
performance, thus keeping the mapping generic enough to be used
with multiple protocol stacks.

1 Introduction
Multicore architectures have recently established themselves
as a major step forward for high-end computing (HEC) sys-
tems [10, 18]. Their increasing popularity is of particular im-
portance given the growing scales and capabilities of modern
HEC. The commodity market already has quad-core architec-
tures from Intel [5] and AMD [1]. Processors with larger core
counts, such as the IBM Cell [2], SUN Niagara [13] and Intel
Terascale [6] are also gaining in popularity.
On the other hand, high-performance networks such as 10-
Gigabit Ethernet (10GE) [17, 16, 15], Myrinet [19], and In-
finiBand (IB) [4] are increasingly becoming an integral part
of large-scale systems with respect to scalability and perfor-
mance. While all these networks aim at achieving the best
communication performance, each network splits its protocol
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stack differently with respect to the amount of processing that
is done on the host and the amount that is done on the network
interface card (NIC). For example, IB performs almost all of its
processing on the NIC. Myrinet (specifically, Myri-10G) per-
forms almost all of its processing on the host. The 10GE fam-
ily has NICs with different offload capabilities (e.g., regular
10GE, TCP-offloaded 10GE, iWARP-offloaded 10GE). Thus,
depending on the amount of processing on the host, it is criti-
cal that we understand its interaction with applications running
in multicore environments.
In this paper, we study such interaction using two high-
performance communication stacks: (i) 10GE with host-based
TCP/IP and (ii) 10GE offloaded with iWARP. In the first part
of the paper, we provide detailed analysis of these stacks on
multicore systems. We notice that, for host-based TCP/IP, a
significant amount of processing is statically fixed to a single
core in the system resulting in processing imbalance and con-
sequently adverse effects on applications in two primary as-
pects. First, the effective capability that the overloaded core
can provide to the application is reduced. Second, the data that
is processed by the protocol stack is now localized to this core
rather than to the process to which it belongs, thus resulting
in cache misses for the process. For iWARP, however, most
of the protocol processing is done by the NIC. The portions of
the communication stack that are performed by the host, such
as data buffering and memory copies, are done by the appli-
cation process and its associated libraries, thus localizing it to
the process itself and resulting in reduced cache misses.
This leads us to believe that for host-based TCP/IP, based on
which process is mapped to which core, application perfor-
mance can vastly vary. On the other hand, for host-offloaded
protocol stacks, such mapping would show no difference in
performance. Thus, in the second part of the paper, we utilize
this analysis to intelligently map processes-to-core for various
applications. Our experiments reveal significant improvement
in performance for some applications based on such mapping
when using TCP/IP, while showing minimal performance dif-
ference when using iWARP. Hence, we conclude that an intel-
ligent mapping of processes-to-cores can significantly improve
application performance for TCP/IP while retaining the gen-
erality of the application by not affecting its performance for
other host-offloaded protocol stacks.

2 Background
In this section, we present an overview of multicore architec-
tures and the NetEffect 10GE iWARP network adapters.
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2.1 Overview of Multicore Architectures
On-chip hardware replication has been around for many years,
providing the CPU with parallelization capabilities for various
code segments. Multicore architectures extend these by repli-
cating the microprocessing unit itself (referred to as cores), to-
gether with additional portions of the on-chip hardware. While
these architectures are similar to multiprocessor systems, they
differ in two primary aspects. First, not all of the CPU hard-
ware is replicated. For example, in the Intel architecture, mul-
tiple cores on the same die share the same L2 cache, issue
queues, and other functional units. Thus, if a core is already us-
ing one of these shared hardware resources, another core which
needs this resource has to stall. Second, core-to-core data shar-
ing is much faster than the processor-to-processor case since
the cores reside on the same die, making cache coherency sim-
pler and faster, and avoiding the die pin when communicating
between cores.

2.2 Overview of NetEffect 10GE iWARP
Figure 1 shows the architecture of the NetEffect NE010 10GE
iWARP NIC. The NE010 offloads the entire iWARP and
TCP/IP stacks to the NIC. So, in theory, these adapters can
support all versions of the 10GE network family, i.e., regular
10GE, TCP, and iWARP offload engines. However, the of-
floaded TCP/IP stack is not directly exposed to applications,
and hence these adapters only allow applications to use them
as either regular 10GE or iWARP offload engines.
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Figure 1: NetEffect iWARP NIC Architecture

The NE010 consists of a protocol engine integrating iWARP,
TOE, and regular Ethernet logic in hardware using a structured
ASIC. It also consists of a RAM-based transaction switch,
which operates on in-flight data, and a local memory controller
to access NIC memory (256MB DDR2) for buffering non-
iWARP connections. These adapters support a number of pro-
gramming interfaces including a hardware-specific verbs and
the OpenFabrics verbs interfaces. These adapters also support
a Message Passing Interface (MPI) [7] implementation which
is a derivative of MPICH2.

3 TCP/IP and iWARP Processing
In this section, we describe the protocol processing done by
TCP/IP and iWARP.

3.1 TCP/IP Protocol Processing
TCP/IP performs many aspects of communication including
data buffering, message segmentation, routing, ensuring data
integrity (using checksum) and communication reliability. The
processing of host-based TCP/IP can broadly be broken down
into two components, viz., the synchronous and asynchronous
components. The synchronous component refers to the por-
tions of the stack that are either performed in the context of the
application process or in the context of the kernel thread cor-
responding to the application process (e.g., checksum on the
sender side, data copies). The asynchronous component, on
the other hand, refers to the portions of the stack that are per-
formed in the context of a completely different kernel thread
or kernel tasklet (e.g., reliability, data reception, and in some
cases, the actual data transmission).
Let us consider the following example to better understand
TCP/IP processing. Suppose the sender wants to send a 64KB
message. On a send() call, this data is copied into the
sender socket buffer, segmented into MTU-sized chunks and
the checksum for each chunk calculated. Now suppose the
TCP window permits the sender to transmit 32KB of data. The
first 32KB of the buffered data is handed over to the NIC after
which the send() returns. The processing so far is done dur-
ing the send(), and thus is a part of the synchronous compo-
nent. After the send() returns, the application can go ahead
with its other computation. At this time, suppose the receiver
sends an acknowledgment of its data receipt. The sender NIC
raises a hardware interrupt to awaken a kernel thread to han-
dle it. The kernel thread sees this acknowledgment and initi-
ates the transfer for the remaining data. Since this part of the
processing is done independently from the application, it is re-
ferred to as the asynchronous component. On the receiver, the
synchronous and asynchronous components are similar.
The important aspect is that the asynchronous component is
independent of the application processes. The processing of a
asynchronous kernel thread is common for the entire system.
Further, in the x86 architecture, hardware interrupts are stat-
ically mapped to a single core in the system. Therefore, the
kernel process that handles this interrupt also gets mapped to
a single core. That is, irrespective of how many processes in
the system are performing communication, the asynchronous
component of these communications is statically handled by a
single core in the system.

3.2 iWARP Processing
iWARP is a relatively new initiative by the Internet Engineer-
ing Task Force (IETF) [3] and the RDMA Consortium (RD-
MAC) [12]. It implements most of the protocol processing
relevant to transmission and reception of data on the network
hardware. However, aspects such as data buffering and mem-
ory copies of the data to final application buffers are not han-
dled by it – upper layers residing on top of iWARP are ex-
pected to handle them. For example, in the case of MPI, the
incoming data is received in a zero-copy manner into interme-
diate temporary buffers and later copied into the final buffers
by MPI.
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Figure 2: MPI Bandwidth (Setup A): (a) TCP/IP and (b) iWARP
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Figure 3: MPI Bandwidth (Setup B): (a) TCP/IP and (b) iWARP

The overall communication stack can be broken down into two
portions. The actual transmission and reception of data, that
is performed by iWARP, is completely implemented on hard-
ware and is not associated with any specific processing core in
the system. The remaining communication aspects (message
buffering and data copies) are synchronously handled by com-
munication libraries such as MPI when the application makes a
send or receive call. Thus, there is no application independent
component in the communication processing of host-offloaded
protocol stacks such as iWARP and consequently no reason to
statically allocate any processing to a fixed core in the system.

4 Experimental Testbed
We used two cluster setups in this paper.
Setup A: Two Dell Poweredge 2950 servers, each equipped
with two dual-core Intel Xeon 2.66GHz processors. Each
server has 4GB of 667MHz DDR2 SDRAM. The four cores
in each system are organized as cores 0 and 2 on processor 0,
and cores 1 and 3 on processor 1. Each processor has a 4MB
shared L2 cache. The operating system used is Fedora Core 6
with kernel version 2.6.18.
Setup B: Two custom-built, dual-processor, dual-core AMD
Opteron 2.55GHz systems. Each system has 4GB of DDR2
667MHz SDRAM. The four cores in each system are orga-
nized as cores 0 and 1 on processor 0, and cores 2 and 3 on
processor 1. Each core has a separate 1MB L2 cache. Both
machines run SuSE 10 with kernel version 2.6.13.

Network and Software: Both setups used the NetEffect
10GE iWARP adapters installed on a x8 PCI-Express slot
and connected back-to-back. For TCP/IP evaluation, we used
the MPICH2 (version 1.0.5p4) implementation of MPI. For
iWARP, we used a derivative of MPICH2 by NetEffect (based
on MPICH2 version 1.0.3), that was built using the NetEffect
verbs interface.

5 Microbenchmark-Based Analysis
In this section, we analyze the interactions of the TCP/IP and
iWARP stacks over 10GE in multicore systems. Specifically,
we analyze different microbenchmarks to understand how they
are affected in a multicore environment. We present analy-
sis of MPI bandwidth in Section 5.1 and MPI latency in Sec-
tion 5.2. Both these benchmarks are taken from the OSU MPI
microbenchmark suite. Each benchmark was measured at least
five times and the average of all runs is reported.

5.1 Analysis of MPI Bandwidth
Figures 2(a) and 2(b) show the MPI bandwidth achieved by
TCP/IP and iWARP on setup A, when scheduled on each of
the four cores in the system. Both the sender and the receiver
process are scheduled on the same core number, but on dif-
ferent servers. In this experiment, the sender sends a single
message of size S to the receiver many times. On receiving all
the messages, the receiver sends back one small message to the
sender informing that it has received the messages. The sender
measures the total time and calculates the amount of data it had
transmitted per unit time.
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Figure 4: Analysis of MPI Bandwidth: (a) Interrupts and (b) Cache Misses
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Figure 5: MPI Latencies with TCP/IP: (a) Small Messages and (b) Large Messages

Figure 2(a) shows several trends for TCP/IP. First, when the
communication process is scheduled on core 0, bandwidth
performance barely reaches 2Gbps. Second, the benchmark
performs slightly better when the communication process is
scheduled on either core 1 or core 3, i.e., cores on the sec-
ond CPU. In this case, the benchmark achieves about 2.2Gbps.
Third, the benchmark achieves the best performance when the
communication process is scheduled on core 2, i.e., the sec-
ond core of the first CPU. In this case, the benchmark achieves
about 3Gbps bandwidth, i.e., about 50% better than the case
where the processes are scheduled on core 0. On the other
hand, Figure 2(b) shows that, for iWARP, there is no impact
on the performance irrespective of which core the communi-
cation process is scheduled on.
Figures 3(a) and 3(b) show the MPI bandwidth results on setup
B for TCP/IP and iWARP. The trends observed in these fig-
ures are very similar to those observed in setup A. That is, for
TCP/IP, the interrupt processing core on the first CPU (core 1
in this case) achieves low performance, the cores on the sec-
ond CPU (cores 2 and 3) achieve moderate performance, and
the second core of the first CPU (core 0) achieves the best per-
formance. For iWARP, all core mappings achieve the same
performance.
These results indicate that the interaction of the TCP/IP pro-
tocol stack with the multicore architecture can have signifi-
cant impact on performance. To further understand these re-
sults, we analyze the interrupt processing and L2 cache misses
of the system while running this benchmark in sections 5.1.1
and 5.1.2, respectively. Since both setups A and B show sim-

ilar performance behavior, we only look at results on setup A
in the rest of the paper.

5.1.1 Interrupt Analysis
In order to measure the interrupts generated by TCP/IP dur-
ing the execution of the MPI bandwidth benchmark, we
utilized the Performance Application Programming Interface
(PAPI) [11] library (version 3.5.0). Figure 4 (a) illustrates the
number of interrupts per message observed during the execu-
tion of the MPI bandwidth benchmark, which was scheduled
on the different cores. As shown in the figure, core 0 gets
more than 99% of all the interrupts. This observation is in
accordance with the description of the asynchronous compo-
nent in Section 3. That is, the hardware interrupt and the asyn-
chronous component of the TCP/IP stack are statically mapped
to a single core in the system.
Based on the large number of interrupts, coupled with the pro-
cessing of the asynchronous component of the TCP/IP stack
by core 0, its capability to perform application processing is
drastically reduced. This results in reduced performance of
the MPI bandwidth benchmark when the application process
is scheduled on this core.

5.1.2 Cache Analysis
As described in Section 2.1, multicore architectures pro-
vide opportunities for core-to-core data sharing either through
shared caches (e.g., Intel architecture) or separate on-chip
caches with fast connectivity (e.g., AMD architecture). In the
case of TCP/IP (as described in Section 3.1), when interrupt
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processing is performed by a particular core, the data is fetched
to its cache to allow for data-touching tasks such as checksum
verification. Thus, if the application process performing the
communication is scheduled on the same CPU but a differ-
ent core, it can take advantage of the fast core-to-core on-die
communication. In the Intel architecture, since the L2 cache is
shared, we expect this to be reflected as substantially fewer L2
cache misses.
We verify our hypothesis by using PAPI to measure L2 cache
misses. Figure 4 (b) shows the percentage difference of num-
ber L2 cache misses observed on each core compared to that
on core 0. We observe that cores 0 and 2 (processor 0) have
significantly lower L2 cache misses than cores 1 and 3 (pro-
cessor 1)1. These cache misses demonstrate the reason for the
lower performance of the MPI bandwidth benchmark when the
process is scheduled on either core 1 or core 3, as compared to
when it is scheduled on core 2.

5.2 MPI Latency Evaluation
Figure 5 illustrates the MPI latency achieved when scheduled
on each of the four cores in the system for TCP/IP. Again, both
the sender and receiver processes are scheduled on the same
core number but of different servers. In this experiment, the
sender transmits a message of size S to the receiver, which in
turn sends back another message of the same size. This is re-
peated several times and the total time averaged over the num-
ber of iterations – this gives the average round-trip time. The
ping-pong latency reported here is one half of the round-trip
time. To better illustrate the results, we have separated them
into two groups. Figures 5(a) and 5(b) show the measurements
for small and large messages, respectively.
Figure 5(a) shows that the best performance is achieved when
the communication process is on core 2. This is similar to the
bandwidth test and is attributed to the better cache locality for
the process (section 5.1.2). However, when the communication
process is scheduled on core 0, there is only a slight drop in
performance which is unlike the MPI bandwidth results. When
the communication process is scheduled on cores 1 or 3, we see
that the performance achieved is the worst.
The difference in the performance of core 0 for the latency test
compared to the bandwidth test is attributed to the synchronous
nature of the benchmark. That is, for small messages, data is
sent out as soon as send() is called. By the time the sender
receives the pong message, the TCP/IP stack is idle (no out-
standing data) and ready to transfer the next message. On the
receive side, when the interrupt occurs, the application process
is usually waiting for the data. Thus, the interrupt does not
interfere with other computation and hurt performance. Also,
core 0 has the data in cache after the protocol processing and
thus if the application is scheduled on the same core, it can uti-
lize this cached data resulting in higher performance for core
0 as compared to cores 1 and 3. For large messages, however,
the benchmark is no longer synchronous. That is, as the data is

1The percentage difference in cache misses drops with larger message sizes
because the absolute number of cache misses on the cores increases with mes-
sage size as they cannot fit in the cache.

being copied into the sockets buffer, the TCP/IP stack contin-
ues to transmit it. Thus, both the asynchronous kernel thread
(which is always statically scheduled on core 0) and the appli-
cation thread might be active at the same time, resulting in loss
of performance. This is demonstrated in Figure 5(b).
Figures 6(a) and 6(b) show the MPI latencies for small and
large messages respectively with iWARP. Similar to the MPI
bandwidth benchmark, it can be observed that performance is
not affected by the core on which the communicating process
is scheduled.

6 Mapping Processes to Specific Cores
In this section, we utilize the analysis provided in section 5
to identify the characteristics of the different processes of real
applications and appropriately map them to the best core. We
perform such analysis on two applications, GROMACS and
LAMMPS, which are described in Sections 6.1 and 6.2.

6.1 GROMACS Application
Overview: GROMACS [14], developed at Groningen Univer-
sity, is primarily designed to simulate the molecular dynamics
for millions of biochemical particles. A topology file consist-
ing of the molecular structure is distributed across all active
nodes. The simulation time is broken into many steps, and
performance is reported as the number of nanoseconds per day
of simulation time. For our measurements, we use the GRO-
MACS LZM application.

Machine 1 Machine 2
process ranks process ranks

Core Core Core Core Core Core Core Core
Mapping 0 1 2 3 0 1 2 3

A 0 4 2 6 7 3 5 1
A’ 6 4 2 0 7 3 5 1
B 0 2 4 6 5 1 3 7
B’ 2 0 4 6 5 1 3 7

Table 1: Process-Core Mappings Used in GROMACS LZM

Analysis & Evaluation: There are several different combina-
tions of process-to-core mappings that are possible. Some of
these combinations perform worse as compared to the others.
To understand the reasoning behind this, we analyze two such
combinations (combinations A and B in Table 1). We profile
the GROMACS LZM application using mpiP [9] and MPE [8]
to get statistical analysis of the time spent in different MPI
routines. Figure 7(a) shows the application time break down
when running GROMACS with combination A. To simplify
our analysis, we show the main components of computation
and MPI Wait, while clubbing the other MPI calls into a single
component. We observe several trends from the graph. First,
process 0 (running on core 0) spends a substantial amount of
time in computation (more than 60%) while spending minimal
amount of time in MPI Wait. At the same time, processes 6
and 7 spend a large amount of time (more than 40%) waiting.
That is, a load imbalance occurs in the application.
To rectify this load imbalance, we swap the core mappings for
processes 0 and 6 to form combination A’ (Table 1). In this

5
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Figure 6: MPI Latencies with iWARP: (a) Small Messages and (b) Large Messages
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Figure 7: GROMACS application time split up with TCP/IP (a) Combination A (b) Combination A’

new combination, since process 6 is idle for a long time (in
MPI Wait), we expect the additional interrupts and protocol
processing on the core to not affect this process too much. For
process 7, however, we notice that it has a large idle time in-
spite of being scheduled on core 0 of the second machine. We
attribute this to the inherent load imbalance in the application.
Figure 7(b) shows the application time break up with combi-
nation A’. We notice that the load imbalance is lesser in this
new combination. Figure 8 shows the overall performance of
GROMACS with the above process-core mappings. We ob-
serve that the performance of the intelligently scheduled com-
bination (A’) is nearly 11% better as compared to combination
A. The trend is similar for combination B as well.
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Figure 8: GROMACS LZM Protein System Application

We also notice that, with iWARP, the performance on all core
mappings is similar. The maximum standard deviation of the

performances with iWARP is only 1.9%. This demonstrates
that with an intelligent mapping of processes-to-cores, we can
significantly improve the performance of the application when
executing on TCP/IP, while not adversely affecting its perfor-
mance on host-offloaded protocols such as iWARP, thus main-
taining generality.

6.2 LAMMPS Application
Overviews: LAMMPS [20] is a molecular dynamics simulator
developed at Sandia National Lab. It uses spatial decomposi-
tion techniques to partition the simulation domain into small
3D sub-domains, one of which is assigned to each processor.
This allows it to run large problems in a scalable way wherein
both memory and execution speed linearly scale with the num-
ber of atoms being simulated. We use the Lennard-Jones liquid
simulation with LAMMPS scaled up 64 times for our evalua-
tion.

Machine 1 Machine 2
process ranks process ranks

Core Core Core Core Core Core Core Core
Mapping 0 1 2 3 0 1 2 3

A 2 0 4 6 1 3 5 7
A’ 0 2 4 6 1 3 5 7
B 0 4 2 6 7 3 5 1
B’ 6 4 2 0 7 3 5 1

Table 2: Process-Core Mappings Used in LAMMPS Application

Analysis & Evaluation: Figure 11(a) illustrates the split up
in the communication time spent by LAMMPS while running
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on processes-to-cores combination A (Table 2). As shown
in the figure, processes 1 and 2 (which run on core 0) spend
about 70% of the communication time in MPI Wait while the
other processes spend about 80% of the communication time in
MPI Send. This is completely counterintuitive as compared to
GROMACS, because we expect the processes not running on
core 0 to spend a long time waiting, while processes running
on core 0 to perform a lot of computation.

� � � �

���� 	
�

�  � �

���� 	
�

Figure 9: LAMMPS Communi-
cation Pattern (8 processes)

To understand this be-
havior, we further profile
the communication code.
We observe that all pro-
cesses regularly exchange
data with only three other
processes (Figure 9), and
the sizes of the messages
exchanged are quite large
(around 256KB). Figure 10
illustrates the communica-
tion timeline for LAMMPS. As shown in the figure, process
X is running on the slower core (which receives most of the
interrupts), while process Y is running on a different core. We
describe the communication time-line in different steps (bro-
ken up in the figure using dotted horizontal lines).
Step 1: Initially, both processes post receive buffers using
MPI Irecv() and send data to each other using MPI Send(). On
MPI Send(), data is copied into a temporary MPI send buffer.
As the data is being copied, if there is space in the TCP/IP
socket buffer, this data is also handed over to TCP/IP. If not,
the data is buffered in the MPI temporary send buffer till more
space is created.
Step 2: After returning from MPI Send(), all processes call
MPI Wait() to wait till all the data from their peer process has
been received. While waiting for data to be received, if any
data is buffered in the MPI temporary send buffer and has not
been sent out yet, MPI attempts to send that out as well. Now,
if the receiver is able to read the data fast enough, the TCP/IP
socket buffer is emptied quickly and the sender can hand over
all the data to be sent to TCP/IP. On the other hand, if the
receiver is not able to read the data fast enough, the TCP/IP
socket buffer fills up and all the data to be transmitted cannot
be handed over to TCP/IP before returning from MPI Wait().
In our example, since process X is slower, it does not read the
incoming data fast enough, thus causing process Y to return
from MPI Wait() without handing over all the data to be sent
to TCP/IP.
Step 3: Once out of MPI Wait(), process Y goes ahead with
its computation. However, since it did not hand over all the
data that needs to be transmitted to TCP/IP, some of the data
is left untransmitted. Thus, process X cannot return from its
MPI Wait() and has to wait for process Y to flush the data out.
Step 4: After completing the computation, when process Y
tries to send the next chunk of data, the previous data is flushed
out. Process X receives this flushed out data, returns from
MPI Wait() and goes ahead with its computation. Now, since
process X is not actively receiving data (since it is performing

computation), the TCP/IP socket buffer, and eventually pro-
cess Y’s MPI temporary send buffer, gets filled up. At this
stage, since process Y does not have enough buffer space to
copy the application data, it has to wait before returning from
MPI Send().
Step 5: After process X returns from its computation, when it
calls MPI Wait(), it starts receiving data allowing process Y to
complete its MPI Send().
From the above description, we can see that the processes X
and Y are running out of phase. That is, when process Y per-
forms computation, X waits in MPI Wait and when X performs
computation, process Y waits in MPI Send. This out of phase
behavior causes unnecessary waits resulting in loss of applica-
tion communication performance. We note that this behavior
happens because the effective capability of the cores on which
run processes X and Y execute, do not match. To rectify this
situation, we only need ensure that the cores which execute
processes X and Y match in capability.
In table 2, for combination A, we see that swapping processes
0 and 2 gives us the desired effect (note that each process
communicates with only one process outside its node). Fig-
ure 11(b) demonstrates that this new intelligent combination
can dramatically reduce the imbalance.
Figure 12 shows the communication performance of
LAMMPS with the above core mappings. We observe
about 50% performance difference between combinations
A and A’ as well as combinations B and B’. Similar to
GROMACS, there is no performance difference while running
LAMMPS with iWARP.

7 Conclusions and Future Work
Multicore architectures have been growing in popularity as a
significant driving force for high-end computing (HEC). At
the same time, high-performance networks such as 10-Gigabit
Ethernet (10GE) have become an integral part of large-scale
HEC systems. While both of these architectural components
have been vastly studied independently, there has been no work
which focuses on the interaction between these components.
In this paper, we studied such interaction using two protocol
stacks of 10GE, namely TCP/IP and iWARP. We first utilized
microbenchmarks to understand these interactions. Next, we
leveraged the lessons learned from this analysis to demon-
strate that intelligently mapping processes-to-cores based on
simple rules can achieve significant improvements in perfor-
mance. Our experimental results demonstrated more to than a
two-fold improvement for the LAMMPS application. For fu-
ture work, we plan to provide a system daemon which would
dynamically pick appropriate process-to-core mappings based
on the behavior of the processes.
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