
An Analysisof 10-GigabitEthernetProtocolStacksin
MulticoreEnvironments� y

G. Narayanaswamy
Dept.of ComputerScience

VirginiaTech
cnganesh@cs.vt.edu

P. Balajiz

Math. andComputerScience
ArgonneNationalLaboratory

balaji@mcs.anl.gov

W. Fengx

Dept.of ComputerScience
VirginiaTech

feng@cs.vt.edu

Abstract
This paper analyzesthe interactionsbetweenthe protocol stack
(TCP/IPor iWARP over 10-GigabitEthernet)and its multicoreen-
vironment.Speci�cally, for host-basedprotocolssuchasTCP/IP, we
noticethata signi�cant amountof processingis staticallyassignedto
a singlecore,resultingin animbalanceof loadon thedifferentcores
of thesystemandadverselyimpactingtheperformanceof many ap-
plications.For host-of�oaded protocolssuchasiWARP, on theother
hand, the portionsof the communicationstack that are performed
on the host,suchasbuffering of messagesandmemorycopies,are
closelytiedwith theassociatedprocess,andhencedonotcreatesuch
load imbalances.Thus,in this paper, we demonstratethatby intelli-
gentlymappingdifferentprocessesof anapplicationto speci�c cores,
the imbalancecreatedby the TCP/IP protocol stackcan be largely
counteredand applicationperformancesigni�cantly improved. At
thesametime,sincetheloadis betterbalancedin host-of�oaded pro-
tocolssuchasiWARP, suchmappingdoesnot adverselyaffect their
performance,thus keepingthe mappinggenericenoughto be used
with multipleprotocolstacks.

1 Intr oduction
Multicore architectureshave recentlyestablishedthemselves
asa major stepforward for high-endcomputing(HEC) sys-
tems[10, 18]. Their increasingpopularityis of particularim-
portancegiventhegrowing scalesandcapabilitiesof modern
HEC.Thecommoditymarket alreadyhasquad-corearchitec-
turesfrom Intel [5] andAMD [1]. Processorswith largercore
counts,suchastheIBM Cell [2], SUN Niagara[13] andIntel
Terascale[6] arealsogainingin popularity.

On the other hand,high-performancenetworks suchas 10-
Gigabit Ethernet(10GE) [17, 16, 15], Myrinet [19], and In-
�niBand (IB) [4] are increasinglybecomingan integral part
of large-scalesystemswith respectto scalabilityandperfor-
mance. While all thesenetworks aim at achieving the best
communicationperformance,eachnetwork splits its protocol

� Wewould like to thankNetEffect Inc.,particularlyAllan TorresandGary
Montry, for providing uswith equipmentandtechnicalsupportfor this work.

y Thispaperis publishedin theproceedingsof theIEEEInternationalSym-
posiumonHigh PerformanceInterconnects(HotI), Palo Alto, California,Au-
gust2007.

z Thisauthor'swork is supportedby theNationalScienceFoundationGrant
#0702182and the Mathematical,Information, and ComputationalSciences
Division subprogramof the Of�ce of AdvancedScienti�c ComputingRe-
search,Of�ce of Science,U.S. Departmentof Energy, underContractDE-
AC02-06CH11357.

x This author's work is supportedby theDepartmentof ComputerScience
at VirginiaTech.

stackdifferentlywith respectto theamountof processingthat
is doneon thehostandtheamountthatis doneon thenetwork
interfacecard(NIC). Forexample,IB performsalmostall of its
processingon theNIC. Myrinet (speci�cally, Myri-10G) per-
formsalmostall of its processingon thehost.The10GEfam-
ily hasNICs with differentof�oad capabilities(e.g., regular
10GE,TCP-of�oaded 10GE,iWARP-of�oaded 10GE).Thus,
dependingon theamountof processingon thehost,it is criti-
calthatweunderstandits interactionwith applicationsrunning
in multicoreenvironments.

In this paper, we study such interaction using two high-
performancecommunicationstacks:(i) 10GEwith host-based
TCP/IPand(ii) 10GEof�oaded with iWARP. In the �rst part
of the paper, we provide detailedanalysisof thesestackson
multicoresystems.We notice that, for host-basedTCP/IP, a
signi�cant amountof processingis statically�x ed to a single
corein thesystemresultingin processingimbalanceandcon-
sequentlyadverseeffectson applicationsin two primary as-
pects. First, the effectivecapability that the overloadedcore
canprovideto theapplicationis reduced.Second,thedatathat
is processedby theprotocolstackis now localizedto thiscore
ratherthan to the processto which it belongs,thusresulting
in cachemissesfor the process.For iWARP, however, most
of theprotocolprocessingis doneby theNIC. Theportionsof
thecommunicationstackthatareperformedby thehost,such
asdatabuffering andmemorycopies,aredoneby the appli-
cationprocessandits associatedlibraries,thuslocalizingit to
theprocessitself andresultingin reducedcachemisses.

This leadsus to believe that for host-basedTCP/IP, basedon
which processis mappedto which core, applicationperfor-
mancecanvastlyvary. On theotherhand,for host-of�oaded
protocol stacks,suchmappingwould show no differencein
performance.Thus,in thesecondpartof thepaper, we utilize
this analysisto intelligently mapprocesses-to-corefor various
applications.Our experimentsrevealsigni�cant improvement
in performancefor someapplicationsbasedon suchmapping
whenusingTCP/IP, while showing minimal performancedif-
ferencewhenusingiWARP. Hence,weconcludethatanintel-
ligentmappingof processes-to-corescansigni�cantly improve
applicationperformancefor TCP/IPwhile retainingthe gen-
erality of theapplicationby not affecting its performancefor
otherhost-of�oaded protocolstacks.

2 Background
In this section,we presentanoverview of multicorearchitec-
turesandtheNetEffect10GEiWARP network adapters.

1

2.1 Overview of Multicor e Ar chitectures
On-chiphardwarereplicationhasbeenaroundfor many years,
providing theCPUwith parallelizationcapabilitiesfor various
codesegments.Multicore architecturesextendtheseby repli-
catingthemicroprocessingunit itself (referredto ascores),to-
getherwith additionalportionsof theon-chiphardware.While
thesearchitecturesaresimilar to multiprocessorsystems,they
differ in two primary aspects.First, not all of the CPU hard-
wareis replicated.For example,in theIntel architecture,mul-
tiple coreson the samedie sharethe sameL2 cache,issue
queues,andotherfunctionalunits.Thus,if acoreisalreadyus-
ingoneof thesesharedhardwareresources,anothercorewhich
needsthisresourcehasto stall. Second,core-to-coredatashar-
ing is muchfasterthanthe processor-to-processorcasesince
thecoresresideonthesamedie,makingcachecoherency sim-
pler andfaster, andavoiding thedie pin whencommunicating
betweencores.

2.2 Overview of NetEffect 10GE iWARP
Figure1 showsthearchitectureof theNetEffectNE01010GE
iWARP NIC. The NE010 of�oads the entire iWARP and
TCP/IP stacksto the NIC. So, in theory, theseadapterscan
supportall versionsof the 10GEnetwork family, i.e., regular
10GE,TCP, and iWARP of�oad engines. However, the of-
�oaded TCP/IPstackis not directly exposedto applications,
andhencetheseadaptersonly allow applicationsto usethem
aseitherregular10GEor iWARPof�oad engines.

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

Figure1: NetEffect iWARP NIC Architecture

The NE010consistsof a protocolengineintegratingiWARP,
TOE,andregularEthernetlogic in hardwareusingastructured
ASIC. It also consistsof a RAM-basedtransactionswitch,
whichoperatesonin-�ight data,andalocalmemorycontroller
to accessNIC memory (256MB DDR2) for buffering non-
iWARP connections.Theseadapterssupportanumberof pro-
gramminginterfacesincluding a hardware-speci�cverbsand
theOpenFabricsverbsinterfaces.Theseadaptersalsosupport
a MessagePassingInterface(MPI) [7] implementationwhich
is a derivativeof MPICH2.

3 TCP/IP and iWARP Processing
In this section,we describethe protocolprocessingdoneby
TCP/IPandiWARP.

3.1 TCP/IP ProtocolProcessing
TCP/IP performsmany aspectsof communicationincluding
databuffering, messagesegmentation,routing, ensuringdata
integrity (usingchecksum)andcommunicationreliability. The
processingof host-basedTCP/IPcanbroadlybebrokendown
into two components,viz., thesynchronousandasynchronous
components.The synchronouscomponentrefersto the por-
tionsof thestackthatareeitherperformedin thecontext of the
applicationprocessor in thecontext of thekernelthreadcor-
respondingto the applicationprocess(e.g.,checksumon the
senderside,datacopies). The asynchronouscomponent,on
theotherhand,refersto theportionsof thestackthatareper-
formedin the context of a completelydifferentkernel thread
or kerneltasklet(e.g.,reliability, datareception,andin some
cases,theactualdatatransmission).

Let us considerthe following example to betterunderstand
TCP/IPprocessing.Supposethesenderwantsto senda 64KB
message. On a send() call, this data is copied into the
sendersocket buffer, segmentedinto MTU-sizedchunksand
the checksumfor eachchunk calculated. Now supposethe
TCPwindow permitsthesenderto transmit32KB of data.The
�rst 32KB of thebuffereddatais handedover to theNIC after
which thesend() returns.Theprocessingsofar is donedur-
ing thesend() , andthusis apartof thesynchronouscompo-
nent.After thesend() returns,theapplicationcango ahead
with its othercomputation.At this time, supposethereceiver
sendsanacknowledgmentof its datareceipt.ThesenderNIC
raisesa hardwareinterruptto awaken a kernelthreadto han-
dle it. The kernelthreadseesthis acknowledgmentandiniti-
atesthe transferfor the remainingdata.Sincethis partof the
processingis doneindependentlyfrom theapplication,it is re-
ferredto astheasynchronouscomponent.On thereceiver, the
synchronousandasynchronouscomponentsaresimilar.

The importantaspectis that the asynchronouscomponentis
independentof theapplicationprocesses.Theprocessingof a
asynchronouskernelthreadis commonfor theentiresystem.
Further, in the x86 architecture,hardwareinterruptsarestat-
ically mappedto a singlecore in the system. Therefore,the
kernelprocessthathandlesthis interruptalsogetsmappedto
a singlecore. That is, irrespective of how many processesin
the systemareperformingcommunication,the asynchronous
componentof thesecommunicationsis staticallyhandledby a
singlecorein thesystem.

3.2 iWARP Processing
iWARP is a relatively new initiative by theInternetEngineer-
ing TaskForce(IETF) [3] andthe RDMA Consortium(RD-
MAC) [12]. It implementsmost of the protocol processing
relevant to transmissionandreceptionof dataon thenetwork
hardware. However, aspectssuchasdatabuffering andmem-
ory copiesof thedatato �nal applicationbuffersarenot han-
dled by it – upperlayersresidingon top of iWARP are ex-
pectedto handlethem. For example,in the caseof MPI, the
incomingdatais receivedin azero-copy mannerinto interme-
diatetemporarybuffersandlater copiedinto the �nal buffers
by MPI.

2

� � � �

� � � �

� � � �

� � � �

� � � �

��
��

�
��

��
	
�

�

��

� � � 	
�
� � � � 	
�

� � � 	
� � � � 	
�

�
�
 � 	 � � � � � � � � � 	 � � �
 �
� � � 	

�

� � �

� � � �

� � � �

� �

��
��

�
��

��
	
�

�

��

� � � � � � � 	� �� � 	
� � � � � �

� � � �

� � � �

� � � �

� � � �

� � � �

��
��

�
��

��
	
�

�

��

� � 	
 �� � � 	
 ��

� � 	
 �
 � � 	
 ��

�

� � � �

 � � �

� � � �

� � � � � �
 � � � � � � � � � � � �
 � � � � � � �

��
��

�
��

��
	
�

�

��

� � � � � � � 	� �� � 	
� � � � � �

Figure2: MPI Bandwidth (Setup A): (a) TCP/IP and (b) iWARP

� � � �

� � � �

� � � �

� � � �

��
��

�
��

��
	
�

�

��

� � � 	
� � � � 	
�
�

� � � 	
� � � � 	
�

�
�
 � 	 � � � � � � � � � 	 � � �
 �
� � � 	

�

� � �

� � � �

� �

��
��

�
��

��
	
�

�

��

� � � � � � � 	� �� � 	
� � � � � �

� � � �

� � � �

� � � �

� � � �

� � � �

� � � �

��
��

�
��

��
	
�

�

��

� 	
 � �� � 	
 � �

� 	
 � �� � 	
 � ��

�

 � � �

� � � �

� � � �

 �
 � � � � � �
 � � �
 � � � � � � � � �
 � � �

��
��

�
��

��
	
�

�

��

� � � � � � � 	� �� � 	
� � � � � �

Figure3: MPI Bandwidth (Setup B): (a) TCP/IP and (b) iWARP

Theoverallcommunicationstackcanbebrokendown into two
portions. The actualtransmissionandreceptionof data,that
is performedby iWARP, is completelyimplementedon hard-
wareandis notassociatedwith any speci�c processingcorein
the system.The remainingcommunicationaspects(message
bufferinganddatacopies)aresynchronouslyhandledby com-
municationlibrariessuchasMPI whentheapplicationmakesa
sendor receivecall. Thus,thereis noapplicationindependent
componentin thecommunicationprocessingof host-of�oaded
protocolstackssuchasiWARP andconsequentlyno reasonto
staticallyallocateany processingto a �x edcorein thesystem.

4 Experimental Testbed
We usedtwo clustersetupsin this paper.

Setup A: Two Dell Poweredge2950servers,eachequipped
with two dual-coreIntel Xeon 2.66GHz processors. Each
server has4GB of 667MHz DDR2 SDRAM. The four cores
in eachsystemareorganizedascores0 and2 on processor0,
andcores1 and3 on processor1. Eachprocessorhasa 4MB
sharedL2 cache.Theoperatingsystemusedis FedoraCore6
with kernelversion2.6.18.

Setup B: Two custom-built, dual-processor, dual-coreAMD
Opteron2.55GHzsystems.Eachsystemhas4GB of DDR2
667MHz SDRAM. The four coresin eachsystemare orga-
nizedascores0 and1 on processor0, andcores2 and3 on
processor1. Eachcorehasa separate1MB L2 cache. Both
machinesrun SuSE10with kernelversion2.6.13.

Network and Software: Both setupsused the NetEffect
10GE iWARP adaptersinstalled on a x8 PCI-Expressslot
andconnectedback-to-back.For TCP/IPevaluation,we used
the MPICH2 (version1.0.5p4)implementationof MPI. For
iWARP, we useda derivativeof MPICH2 by NetEffect (based
on MPICH2 version1.0.3),thatwasbuilt usingtheNetEffect
verbsinterface.

5 Micr obenchmark-BasedAnalysis
In this section,we analyzethe interactionsof theTCP/IPand
iWARP stacksover 10GEin multicoresystems.Speci�cally,
weanalyzedifferentmicrobenchmarksto understandhow they
are affectedin a multicore environment. We presentanaly-
sisof MPI bandwidthin Section5.1 andMPI latency in Sec-
tion 5.2. Both thesebenchmarksaretakenfrom theOSUMPI
microbenchmarksuite.Eachbenchmarkwasmeasuredat least
� ve timesandtheaverageof all runsis reported.

5.1 Analysisof MPI Bandwidth
Figures2(a) and2(b) show the MPI bandwidthachieved by
TCP/IPandiWARP on setupA, whenscheduledon eachof
thefour coresin thesystem.Both thesenderandthereceiver
processare scheduledon the samecorenumber, but on dif-
ferent servers. In this experiment,the sendersendsa single
messageof sizeSto thereceivermany times.On receiving all
themessages,thereceiversendsbackonesmallmessageto the
senderinformingthatit hasreceivedthemessages.Thesender
measuresthetotal timeandcalculatestheamountof datait had
transmittedperunit time.

3

� �

� � �

� � � �

� � � � �

� � � � � �

��
��

��
��

��
	

�
��

��

�

	��
�

	�
��

��
� � � � � �� � � � � ��

� � � � �� � � � � �	

�
� �

�
�

�

� �

� � � � � � �
 � � � � � � � � � � � � � �
 � � � � � �

��
��

��
��

��
	

�
��

��

�

	��
�

	�
��

��
�

� � � � �
 � 	� �� � 	�� � � � � �

� � �

� � �

� � �

� � �

��
��

��
��

��
	

���
��

��
��

� � � � 	� � � � � 	�

� � � � 	� � � � � 	

�� �

�

� �

� � �

 � � �
 � � � � � � �
 �
 � � � �
 � � � � �

��
��

��
��

��
	

���
��

��
��

 � � � � � � 	� �� � 	�� � � � � �

Figure4: Analysis of MPI Bandwidth: (a) Interrupts and (b) Cache Misses

� �

� �

� �

� �

��
��

��
��

	

��

��

� � � � 	� 	
 � � � � 	�

� � � � 	� � � � � 	�

 	
� � � � � � � � � � � � � � � �� � 	� � � �

� �

� �

� �

� �

��
��

��
��

	

��

��

 � � � � � � �� �� � �	� � � � � �

� � � �

� � � � �

� � � � �

� � � � �

��
��

��
��

	

��

��

� � � 	
�
� � � � 	
�

� � � 	
� � � � 	
�

�

� � 	 � � � � � � � � � 	 � � �� �
� � � 	

�

� � � �

� � � �

� � � � � � � � � � � � � � � � � �

��
��

��
��

	

��

��

 � � � � � � �� �� � �	� � � � � �

Figure5: MPI Latencies with TCP/IP: (a) Small Messages and (b) Large Messages

Figure2(a) shows several trendsfor TCP/IP. First, whenthe
communicationprocessis scheduledon core 0, bandwidth
performancebarely reaches2Gbps. Second,the benchmark
performsslightly betterwhen the communicationprocessis
scheduledon either core 1 or core 3, i.e., coreson the sec-
ondCPU.In thiscase,thebenchmarkachievesabout2.2Gbps.
Third, thebenchmarkachievesthebestperformancewhenthe
communicationprocessis scheduledon core2, i.e., the sec-
ondcoreof the�rst CPU.In thiscase,thebenchmarkachieves
about3Gbpsbandwidth,i.e., about50% betterthanthe case
wherethe processesare scheduledon core 0. On the other
hand,Figure2(b) shows that, for iWARP, thereis no impact
on the performanceirrespective of which corethe communi-
cationprocessis scheduledon.

Figures3(a)and3(b)show theMPI bandwidthresultsonsetup
B for TCP/IPand iWARP. The trendsobserved in these�g-
uresareverysimilar to thoseobservedin setupA. Thatis, for
TCP/IP, theinterruptprocessingcoreon the�rst CPU(core1
in this case)achieveslow performance,the coreson the sec-
ondCPU (cores2 and3) achieve moderateperformance,and
thesecondcoreof the�rst CPU(core0) achievesthebestper-
formance. For iWARP, all core mappingsachieve the same
performance.

Theseresultsindicatethat the interactionof the TCP/IPpro-
tocol stackwith the multicore architecturecan have signi�-
cant impacton performance.To further understandthesere-
sults,weanalyzetheinterruptprocessingandL2 cachemisses
of thesystemwhile runningthis benchmarkin sections5.1.1
and5.1.2,respectively. SincebothsetupsA andB show sim-

ilar performancebehavior, we only look at resultson setupA
in therestof thepaper.

5.1.1 Interrupt Analysis
In order to measurethe interruptsgeneratedby TCP/IPdur-
ing the execution of the MPI bandwidth benchmark,we
utilized the PerformanceApplication ProgrammingInterface
(PAPI) [11] library (version3.5.0).Figure4 (a) illustratesthe
numberof interruptspermessageobservedduring theexecu-
tion of the MPI bandwidthbenchmark,which wasscheduled
on the different cores. As shown in the �gure, core 0 gets
more than 99% of all the interrupts. This observation is in
accordancewith the descriptionof the asynchronouscompo-
nentin Section3. Thatis, thehardwareinterruptandtheasyn-
chronouscomponentof theTCP/IPstackarestaticallymapped
to a singlecorein thesystem.

Basedon thelargenumberof interrupts,coupledwith thepro-
cessingof the asynchronouscomponentof the TCP/IPstack
by core0, its capability to performapplicationprocessingis
drasticallyreduced. This resultsin reducedperformanceof
the MPI bandwidthbenchmarkwhenthe applicationprocess
is scheduledon thiscore.

5.1.2 CacheAnalysis
As describedin Section 2.1, multicore architecturespro-
videopportunitiesfor core-to-coredatasharingeitherthrough
sharedcaches(e.g., Intel architecture)or separateon-chip
cacheswith fastconnectivity (e.g.,AMD architecture).In the
caseof TCP/IP(asdescribedin Section3.1), wheninterrupt

4

processingis performedby aparticularcore,thedatais fetched
to its cacheto allow for data-touchingtaskssuchaschecksum
veri�cation. Thus, if the applicationprocessperformingthe
communicationis scheduledon the sameCPU but a differ-
ent core,it cantake advantageof the fastcore-to-coreon-die
communication.In theIntel architecture,sincetheL2 cacheis
shared,weexpectthis to bere�ectedassubstantiallyfewerL2
cachemisses.

We verify our hypothesisby usingPAPI to measureL2 cache
misses.Figure4 (b) shows thepercentagedifferenceof num-
ber L2 cachemissesobservedon eachcorecomparedto that
on core0. We observe that cores0 and2 (processor0) have
signi�cantly lower L2 cachemissesthancores1 and3 (pro-
cessor1)1. Thesecachemissesdemonstratethereasonfor the
lowerperformanceof theMPI bandwidthbenchmarkwhenthe
processis scheduledoneithercore1 or core3, ascomparedto
whenit is scheduledoncore2.

5.2 MPI Latency Evaluation
Figure5 illustratestheMPI latency achievedwhenscheduled
oneachof thefour coresin thesystemfor TCP/IP. Again,both
the senderandreceiver processesarescheduledon the same
corenumberbut of differentservers. In this experiment,the
sendertransmitsa messageof sizeSto thereceiver, which in
turn sendsbackanothermessageof thesamesize. This is re-
peatedseveraltimesandthetotal timeaveragedover thenum-
berof iterations– this givestheaverageround-triptime. The
ping-ponglatency reportedhereis onehalf of the round-trip
time. To betterillustratethe results,we have separatedthem
into two groups.Figures5(a)and5(b)show themeasurements
for smallandlargemessages,respectively.

Figure5(a)shows thatthebestperformanceis achievedwhen
thecommunicationprocessis on core2. This is similar to the
bandwidthtestandis attributedto thebettercachelocality for
theprocess(section5.1.2).However, whenthecommunication
processis scheduledon core0, thereis only a slight drop in
performancewhichis unliketheMPI bandwidthresults.When
thecommunicationprocessisscheduledoncores1or3,wesee
thattheperformanceachievedis theworst.

Thedifferencein theperformanceof core0 for thelatency test
comparedto thebandwidthtestis attributedto thesynchronous
natureof thebenchmark.That is, for smallmessages,datais
sentout assoonassend() is called. By thetime thesender
receivesthe pongmessage,the TCP/IPstackis idle (no out-
standingdata)andreadyto transferthenext message.On the
receiveside,whentheinterruptoccurs,theapplicationprocess
is usuallywaiting for the data. Thus, the interruptdoesnot
interferewith othercomputationandhurt performance.Also,
core0 hasthedatain cacheafter theprotocolprocessingand
thusif theapplicationis scheduledonthesamecore,it canuti-
lize this cacheddataresultingin higherperformancefor core
0 ascomparedto cores1 and3. For largemessages,however,
thebenchmarkis no longersynchronous.Thatis, asthedatais

1Thepercentagedifferencein cachemissesdropswith largermessagesizes
becausetheabsolutenumberof cachemissesonthecoresincreaseswith mes-
sagesizeasthey cannot�t in thecache.

beingcopiedinto thesocketsbuffer, theTCP/IPstackcontin-
uesto transmitit. Thus,both theasynchronouskernelthread
(which is alwaysstaticallyscheduledoncore0) andtheappli-
cationthreadmightbeactiveat thesametime,resultingin loss
of performance.This is demonstratedin Figure5(b).

Figures6(a) and 6(b) show the MPI latenciesfor small and
large messagesrespectively with iWARP. Similar to the MPI
bandwidthbenchmark,it canbeobservedthatperformanceis
not affectedby thecoreon which thecommunicatingprocess
is scheduled.

6 Mapping Processesto Speci�c Cores
In this section,we utilize the analysisprovided in section5
to identify thecharacteristicsof thedifferentprocessesof real
applicationsandappropriatelymapthemto thebestcore.We
perform suchanalysison two applications,GROMACS and
LAMMPS, whicharedescribedin Sections6.1and6.2.

6.1 GROMACSApplication
Overview: GROMACS[14], developedatGroningenUniver-
sity, is primarily designedto simulatethemoleculardynamics
for millions of biochemicalparticles.A topology�le consist-
ing of the molecularstructureis distributedacrossall active
nodes. The simulationtime is broken into many steps,and
performanceis reportedasthenumberof nanosecondsperday
of simulationtime. For our measurements,we usetheGRO-
MACSLZM application.

Machine1 Machine2
processranks processranks

Core Core Core Core Core Core Core Core
Mapping 0 1 2 3 0 1 2 3

A 0 4 2 6 7 3 5 1
A' 6 4 2 0 7 3 5 1
B 0 2 4 6 5 1 3 7
B' 2 0 4 6 5 1 3 7

Table1: Process-Core Mappings Used in GROMACS LZM

Analysis & Evaluation: Thereareseveraldifferentcombina-
tionsof process-to-coremappingsthatarepossible.Someof
thesecombinationsperformworseascomparedto theothers.
To understandthereasoningbehindthis,we analyzetwo such
combinations(combinationsA andB in Table1). We pro�le
theGROMACSLZM applicationusingmpiP[9] andMPE[8]
to get statisticalanalysisof the time spentin different MPI
routines. Figure7(a) shows the applicationtime breakdown
when running GROMACS with combinationA. To simplify
our analysis,we show the main componentsof computation
andMPI Wait, while clubbingtheotherMPI callsinto asingle
component.We observe several trendsfrom thegraph. First,
process0 (runningon core0) spendsa substantialamountof
time in computation(morethan60%)while spendingminimal
amountof time in MPI Wait. At the sametime, processes6
and7 spenda largeamountof time (morethan40%)waiting.
Thatis, a loadimbalanceoccursin theapplication.

To rectify this loadimbalance,we swapthecoremappingsfor
processes0 and6 to form combinationA' (Table1). In this

5

� �

� �

� �

� �

��
��

��
��

	

��

��

� � � � 	� � � � � 	�

� � � � 	� � � � � 	

�

�

� �

� � � � � �

 �
 � � � � � �
 � � � � � � � � �

��
��

��
��

	

��

��

 � � � � � � �� �� � �	� � � � � �

� � � �

� � � �

� � � �

� � � �

��
��

��
��

	

��

��

� � � 	
� � � � 	
�

� � � 	
� � � � 	
�

�

� � � �

� � � �

� �
 � � � � � � � � � � � � � � �

��
��

��
��

	

��

��

 � � � � � � �� �� � �	� � � � � �

Figure6: MPI Latencies with iWARP: (a) Small Messages and (b) Large Messages

� � �

� � �

� � �

� � �

� � �

� � � �
	
 � �
 �� � �
 � � � �� � � �� � � � � � �� � ��� � ���

� �

� � �

� � �

 � �

! � �

� � � ! � � �
� � � � � � � �� � 	
 �

� � �

� � �

� � �

� � �

� � �

� � � �
	
 � �
 �� � �
 � � � �� � � �� � � � � � �� � ��� � ���

� �

� � �

� � �

 � �

! � �

� � � ! � � �
� � � � � � � �� � 	
 �

Figure7: GROMACS application time split up with TCP/IP (a) Combination A (b) Combination A'

new combination,sinceprocess6 is idle for a long time (in
MPI Wait), we expect the additionalinterruptsand protocol
processingon thecoreto notaffect thisprocesstoomuch.For
process7, however, we noticethat it hasa large idle time in-
spiteof beingscheduledon core0 of thesecondmachine.We
attributethis to theinherentloadimbalancein theapplication.
Figure7(b) shows the applicationtime breakup with combi-
nationA'. We noticethat the load imbalanceis lesserin this
new combination.Figure8 shows theoverall performanceof
GROMACS with the above process-coremappings. We ob-
serve thattheperformanceof theintelligentlyscheduledcom-
bination(A') is nearly11%betterascomparedto combination
A. Thetrendis similar for combinationB aswell.

� �

� �

� �

� �

� �

��
��

��

� � 	
 ��
 � �� � ��
� � 	
 ��
 � �� � �� �
� � 	
 ��
 � �� � ��
� � 	
 ��
 � �� � �� �

� �

� �

� �

� �

� � � � � � � �� � � �

��
��

��

Figure8: GROMACS LZM Protein System Application

We alsonoticethat,with iWARP, theperformanceon all core
mappingsis similar. Themaximumstandarddeviation of the

performanceswith iWARP is only 1.9%. This demonstrates
thatwith anintelligentmappingof processes-to-cores,we can
signi�cantly improvetheperformanceof theapplicationwhen
executingon TCP/IP, while not adverselyaffecting its perfor-
manceonhost-of�oadedprotocolssuchasiWARP, thusmain-
taininggenerality.

6.2 LAMMPS Application
Overviews: LAMMPS [20] isamoleculardynamicssimulator
developedat SandiaNationalLab. It usesspatialdecomposi-
tion techniquesto partition the simulationdomaininto small
3D sub-domains,oneof which is assignedto eachprocessor.
This allows it to run largeproblemsin a scalableway wherein
bothmemoryandexecutionspeedlinearlyscalewith thenum-
berof atomsbeingsimulated.WeusetheLennard-Jonesliquid
simulationwith LAMMPS scaledup 64 timesfor our evalua-
tion.

Machine1 Machine2
processranks processranks

Core Core Core Core Core Core Core Core
Mapping 0 1 2 3 0 1 2 3

A 2 0 4 6 1 3 5 7
A' 0 2 4 6 1 3 5 7
B 0 4 2 6 7 3 5 1
B' 6 4 2 0 7 3 5 1

Table2: Process-Core Mappings Used in LAMMPS Application

Analysis & Evaluation: Figure11(a) illustratesthe split up
in thecommunicationtime spentby LAMMPS while running

6

on processes-to-corescombinationA (Table 2). As shown
in the �gure, processes1 and2 (which run on core0) spend
about70%of thecommunicationtime in MPI Wait while the
otherprocessesspendabout80%of thecommunicationtimein
MPI Send.This is completelycounterintuitiveascomparedto
GROMACS,becausewe expecttheprocessesnot runningon
core0 to spenda long time waiting, while processesrunning
oncore0 to performa lot of computation.

� � � �

� � � � 	
 �

�
 � �

� � � � 	
 �

Figure9: LAMMPS Communi-
cation Pattern (8 processes)

To understand this be-
havior, we further pro�le
the communicationcode.
We observe that all pro-
cessesregularly exchange
datawith only threeother
processes(Figure 9), and
the sizesof the messages
exchangedare quite large
(around256KB).Figure10
illustratesthe communica-
tion timeline for LAMMPS. As shown in the �gure, process
X is runningon the slower core(which receivesmostof the
interrupts),while processY is runningona differentcore.We
describethe communicationtime-line in differentsteps(bro-
kenup in the�gure usingdottedhorizontallines).

Step 1: Initially, both processespost receive buffers using
MPI Irecv()andsenddatato eachotherusingMPI Send().On
MPI Send(),datais copiedinto a temporaryMPI sendbuffer.
As the datais being copied, if thereis spacein the TCP/IP
socket buffer, this datais alsohandedover to TCP/IP. If not,
thedatais bufferedin theMPI temporarysendbuffer till more
spaceis created.

Step 2: After returningfrom MPI Send(),all processescall
MPI Wait() to wait till all thedatafrom their peerprocesshas
beenreceived. While waiting for datato be received, if any
datais bufferedin theMPI temporarysendbuffer andhasnot
beensentout yet,MPI attemptsto sendthatoutaswell. Now,
if thereceiver is ableto readthedatafastenough,theTCP/IP
socket buffer is emptiedquickly andthesendercanhandover
all the data to be sent to TCP/IP. On the other hand, if the
receiver is not able to readthe datafastenough,the TCP/IP
socket buffer �lls up andall thedatato be transmittedcannot
behandedover to TCP/IPbeforereturningfrom MPI Wait().
In our example,sinceprocessX is slower, it doesnot readthe
incomingdatafastenough,thuscausingprocessY to return
from MPI Wait() without handingover all thedatato besent
to TCP/IP.

Step 3: Onceout of MPI Wait(), processY goesaheadwith
its computation.However, sinceit did not handover all the
datathat needsto be transmittedto TCP/IP, someof the data
is left untransmitted.Thus,processX cannotreturnfrom its
MPI Wait() andhasto wait for processY to �ush thedataout.

Step 4: After completingthe computation,whenprocessY
triesto sendthenext chunkof data,thepreviousdatais �ushed
out. ProcessX receives this �ushed out data, returnsfrom
MPI Wait() andgoesaheadwith its computation.Now, since
processX is not actively receiving data(sinceit is performing

computation),the TCP/IP socket buffer, and eventually pro-
cessY' s MPI temporarysendbuffer, gets�lled up. At this
stage,sinceprocessY doesnot have enoughbuffer spaceto
copy theapplicationdata,it hasto wait beforereturningfrom
MPI Send().

Step5: After processX returnsfrom its computation,whenit
callsMPI Wait(), it startsreceiving dataallowing processY to
completeits MPI Send().

From the above description,we canseethat the processesX
andY arerunningout of phase. That is, whenprocessY per-
formscomputation,X waitsin MPI Wait andwhenX performs
computation,processY waitsin MPI Send.This out of phase
behavior causesunnecessarywaitsresultingin lossof applica-
tion communicationperformance.We notethat this behavior
happensbecausetheeffectivecapabilityof thecoresonwhich
run processesX andY execute,do not match. To rectify this
situation,we only needensurethat the coreswhich execute
processesX andY matchin capability.

In table2, for combinationA, we seethatswappingprocesses
0 and 2 gives us the desiredeffect (note that eachprocess
communicateswith only oneprocessoutsideits node). Fig-
ure 11(b) demonstratesthat this new intelligent combination
candramaticallyreducetheimbalance.

Figure 12 shows the communication performance of
LAMMPS with the above core mappings. We observe
about 50% performancedifference between combinations
A and A' as well as combinationsB and B'. Similar to
GROMACS,thereis noperformancedifferencewhile running
LAMMPS with iWARP.

7 Conclusionsand Futur eWork
Multicore architectureshave beengrowing in popularityasa
signi�cant driving force for high-endcomputing(HEC). At
thesametime,high-performancenetworkssuchas10-Gigabit
Ethernet(10GE)have becomean integral part of large-scale
HEC systems.While both of thesearchitecturalcomponents
havebeenvastlystudiedindependently, therehasbeennowork
which focuseson the interactionbetweenthesecomponents.
In this paper, we studiedsuchinteractionusingtwo protocol
stacksof 10GE,namelyTCP/IPandiWARP. We �rst utilized
microbenchmarksto understandtheseinteractions.Next, we
leveragedthe lessonslearnedfrom this analysisto demon-
stratethat intelligently mappingprocesses-to-coresbasedon
simple rulescanachieve signi�cant improvementsin perfor-
mance.Our experimentalresultsdemonstratedmoreto thana
two-fold improvementfor theLAMMPS application.For fu-
turework, we plan to provide a systemdaemonwhich would
dynamicallypick appropriateprocess-to-coremappingsbased
on thebehavior of theprocesses.

References
[1] AMD Quad-coreOpteron processor. http://multicore.amd.com/us-

en/quadcore/.

[2] IBM Cell processor.http://www.research.ibm.com/cell/.

[3] IETF. http://www.ietf.org.

7

� � �� � � � � � � � �� � � � � �

� � �� � �

� � �

� � �� � �

� � � � � �� � �

� � �

� � �� � �

� � �� � � � � 	 �
 � 	 � �
�� �
 �
� �
 �� ���� � � � �
 � �� � �
 �� �
 �
�� 	 � � � � � �� �� � � � �
 �	 � � � �

�� �
 �� � � � � � �

� � �� � � � � � � � � ��
 � � ��
� � � � �
 �	 � � � � � ��� 	 ��� ���

� ! � �
 �� � �
 �� �
 �
� " �� 	 � � � � � ��

#� � � $� $� � �� � � � �
 � �
� �
 �� � �
 �� �
$��� � %
 �

� � ��� � ��

&� %
�� � �� � � � �

� 	 � � � � � ��
�	 � � � $� � �� � �� �� ' � 	 �� � 	 � �

� � �� � � � �� � �� � � � �

&�
 ' � 	 �

� � ��
(� ��� 	

� � � � �
 �
� � � � �

� � ��� 	

) � � �$� �
$� � �(� ��� 	

� � � � �
 �	 � � � � � ��� 	

� � �� * � $

�' � $
$� � ��� 	 �	 � � � $� $� � �

� �
 � �
+� � � �
 � �� � � � �

� 	 � � � � � ��

� � ��
(� ��� 	

� � � � �
 �
� � � � �

� � ��� 	

� � � � �
 �	 � � � � � ��� 	

) � � �$� �
$� � �(� ��� 	

� � �

� � � � � � � � � � � �� � �

� � �� � � � � �

� � � � � �

� � �� � �

&� %
�� � �� � � � �

) � � �$� �
$� � �� � ��� 	 ��
� �
 ��	 � � �� � �� � � � �
 �

� � ��� 	 � �� 	 � ��� ��

� � �� � �

� � �� * � $
 	 � � � $� � � �
� �
 �

) � � �$� �
$� � �� � ��� 	 �
��� � � � � �� � � �

� � �� � � � � 	 �
 � 	 � � �

+� � � �
 � �� � � � �
� � �� � � � � ' � $
 �

�� � � �$� �
$� � �� � ��� 	 �
$� �� �
 �" �
 ��	 � � �

Figure10: LAMMPS Timeline

� � �

� � �

� � �

� � �

� � �

� � � �
	
 ��
 � �� 	
 �� � � � � � � � � � �	
 ��� � ���

� �

� � �

� � �

� � �

� � �

� � � � � � � �
� � � � � � � �� � 	
 �

� � �

� � �

� � �

� � �

� � �

� � � �
	
 ��
 � �� 	
 �� � � � � � � � � � �	
 ��� � ���

� �

� � �

� � �

� � �

� � �

� � � � � � � �
� � � � � � � �� � 	
 �

Figure11: LAMMPS Communication Time Split Up with TCP/IP: (a) Combination A (b) Combination B

�

�

� �

� �

��
�

�
��

��
�	

��
�

��
�

�

�

��
��

��
� � � � 	
� �

� � ��

� � � 	
� �

� � �� �
� � � 	
� �

� � ��
� � � 	
� �

� � �� �

�

�

�

� � � � �
 �
� � � �

��
�

�
��

��
�	

��
�

��
�

�

�

��
��

��
�

Figure12: LAMMPS Performance

[4] In�niband TradeAssociation.http://www.in�nibandta.org/.

[5] Intel Core 2 Extreme quad-core processor.
http://www.intel.com/products/processor/core2XE/qc prod brief.pdf.

[6] Intel TerascaleResearch. http://www.intel.com/research/platform/
terascale/tera�ops.htm.

[7] MessagePassingInterfaceForum. http://www.mpi-forum.org.

[8] MPE : MPI Parallel Environment. http://www-
unix.mcs.anl.gov/perfvis/download/index.htm.

[9] mpiP. http://mpip.sourceforge.net.

[10] Multicore Technology. http://www.dell.com/downloads/global/power/
ps2q05-20050103-Fruehe.pdf.

[11] PAPI. http://icl.cs.utk.edu/papi/.

[12] RDMA Consortium.http://www.rdmaconsortium.org.

[13] SunNiagara.http://www.sun.com/processors/UltraSPARC-T1/.

[14] H. J. C. Berendsen,D. van der Spoel,andR. van Drunen. Gromacs:
A message-passingparallelmoleculardynamicsimplementation.Com-
puterPhysicsCommunications, 91(1-3):43–56,September1995.

[15] D. Dalessandro,P. Wyckoff, andG. Montry. Initial PerformanceEvalu-
ationof theNetEffect 10GigabitiWARP Adapter.In RAIT'06.

[16] W. Feng,P. Balaji, C. Baron,L. N. Bhuyan,andD. K. Panda. Perfor-
manceCharacterizationof a 10-GigabitEthernetTOE. In IEEE HotI,
Palo Alto, CA, Aug 17-192005.

[17] W. Feng, J. Hurwitz, H. Newman, S. Ravot, L. Cottrell, O. Martin,
F. Coccetti,C. Jin, D. Wei, andS. Low. Optimizing 10-GigabitEth-
ernetfor Networksof Workstations,ClustersandGrids: A CaseStudy.
In SC'03.

[18] P. Gepnerand M. F. Kowalik. Multi-core processors:New way to
achieve high systemperformance.In PARELEC, pages9–13,2006.

[19] Myricom. Myrinet homepage.http://www.myri.com/.

[20] S. Plimpton. FastParallel Algorithms for Short-RangeMolecularDy-
namics.J. Comput.Phys., 117(1):1–19,1995.

8

