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ABSTRACT 
Virtual supercomputing, (i.e., high-performance grid com-
puting), is poised to revolutionize the way we think about 
and use computing. However, the security of the links in-
terconnecting the nodes within such an environment will be 
its Achilles heel, particularly when secure communication 
is required to tunnel through heterogeneous domains. In 
this paper we examine existing security mechanisms, show 
their inadequacy, and design a comprehensive cyber-
security infrastructure that meets the security requirements 
of virtual supercomputing.  

Keywords 
Security, virtual supercomputing, grid computing, high-
performance computing, GSS-API, SSL, IPsec, component-
based software, dynamic reconfiguration. 

1. Introduction 
The rapid growth in high-speed networks and the ubiquity 
of computers have converged to enhance global intercon-
nectivity and provide the foundation for a new kind of com-
puting infrastructure – computational grids [9]. These grids 
consist of computational nodes that are distributed 
throughout geographically dispersed areas and intercon-
nected through a reliable internetwork; they harvest signifi-
cant processing power, memory, and resources by utilizing 
the capabilities offered at the end nodes.  

When several high-performance computing nodes (e.g., 
Cray SV2 and SGI Origin 3000) or very large numbers of 
“ordinary”  computing nodes (e.g., all the PCs at Intel [11]) 
are aggregated together in a grid, the grid is oftentimes re-
ferred to as a virtual supercomputer which can rival or out-
perform conventional supercomputers. Hence, virtual su-

percomputing is poised to revolutionize the way we think 
about and use computing.  

However, the security of the links interconnecting the 
supercomputing nodes will be the system’s Achilles heel.  
To fully reap the benefits offered by such a system, we need 
a cyber-security infrastructure that can provide highly cus-
tomizable and dynamically reconfigurable services to se-
cure communications between the nodes of a virtual super-
computer. Because widespread deployment of virtual su-
percomputers involves using the Internet as the communica-
tion backbone, the cyber-security infrastructure must seam-
lessly deal with the heterogeneous nature of the Internet.  

To design such a cyber-security infrastructure, we must 
understand the obstacles presented by the Internet. The 
Internet is divided into different areas each having diverse 
properties and characteristics, such as different link-layer 
technologies, media types, security requirements, band-
width capacities and so on. Areas with similar network 
characteristics, e.g., a campus network, are referred to as 
realms [8]. To handle this diversity, special devices are 
introduced at the realm boundaries. These devices transpar-
ently fix packet flows between endpoints, handle data tran-
sition between realms, and provide important additional 
functionality. The added functionality includes (but is not 
limited to) mobility support, address translation, packet 
filtering, data confidentiality and authentication, data com-
pression, and special processing to improve performance 
over particular realms. These special devices are referred to 
as middleboxes. Examples of middleboxes include fire-
walls, proxies, network address translators, active wardens, 
and wireless gateways. However, these middleboxes are 
harmful as they often violate the end-to-end nature of con-
ventional Internet applications and hinder the operation of 
existing and new end-to-end protocols [8]. One common 



 

example is the Network Address 
Translation protocol (NAT) [6] [22]. 
NAT allows a private network of de-
vices with non-global IP addresses to 
connect to the Internet by sharing a 
limited number of global IP addresses. 
The NAT gateways translate between 
internal IP addresses and correspond-
ing global addresses. This simple ad-
dress translation breaks many upper-
layer protocols. For example, the con-
trol connection for ftp transmits the 
IP address and TCP port to use for the 
data connection which is made in the 
opposite direction [20]; therefore, for 
ftp to work, the NAT gateway has to intercept the IP ad-
dress and TCP port values and modify them. Additionally, 
since NAT requires modifications to the packet headers, 
security mechanisms like IPsec’s Authenticated Headers 
(AH) [15] cannot be used in conjunction with NAT.  

Hence, we advocate a cyber-security infrastructure that 
not only supports advance negotiation and establishment of 
a secure session between the endpoints; but also enables the 
discovery of middleboxes and allows the endpoint to nego-
tiate security requirements and request specific functionality 
from these middleboxes.  Further, it features support for 
negotiating and establishing end-to-end and/or hop-to-hop 
security associations. Such a cyber-security infrastructure 
has applicability to general Internet environments, but our 
focus in this paper is on virtual supercomputing. 

Moreover, the concept of a virtual supercomputer pro-
vides support for multiple access points.  This allows ubiq-
uitous access to virtual supercomputing services, providing 
users with services anytime and anywhere using low-end 
machines or even mobile devices, like handheld computers 
and mobile phones.  This puts an additional burden on the 
cyber-security infrastructure, requiring it to be able to adapt 
to environments with scarce resources and evolve once 
more resources become available.  Additionally, the infra-
structure should not be inherently dependent on IP as there 
exist many other environments that do not necessarily use 
IP for communication, e.g., wireless telephony and distrib-
uted sensor networking [7].  

The remainder of this paper is divided as follows. Sec-
tion 2 provides some background information on existing 
security solutions. In Section 3 we mention the limitations 
of existing security mechanisms. In Section 4 we discuss 
the requirements for a cyber-security infrastructure for vir-
tual supercomputing. Next, we discuss our system’s archi-
tecture in Section 5, followed by a brief description of our 
prototype implementation in Section 6 and conclusions in 
Section 7. 

2. Background 
Several security mechanisms have been devised mainly to 
retrofit security into the Internet and existing distributed 
systems.  A security mechanism defines and implements a 
set of protocols for preventing or detecting security threats. 
Kerberos [19] is a security mechanism developed at MIT 
during the mid-1980’s to provide users with a single sign-
on to the network and protect authentication information 
from masquerading. Kerberos, however, only supports 
symmetric cryptography; hence, it does not scale well to 
large distributed environments. As a result, a number of 
Kerberos extensions have surfaced. SESAME (Secure 
European System for Applications in a Multi-vendor Envi-
ronment) [13] is an extension to Kerberos that provides 
additional services, such as the use of digital signatures for 
login and the handling of access control privileges.  

While Kerberos and similar technologies provide com-
prehensive security services at the application layer, there 
are other security technologies that concentrate on particu-
lar components of the network. SSL (Secure Socket Layer) 
or TLS (Transport Layer Security) [5] implements security 
just above TCP. SSL makes use of TCP to provide a reli-
able end-to-end secure service. IP security or IPsec [15] 
provides improved security to the Internet Protocol. This 
includes authenticating IP packets and providing data con-
fidentiality and authentication to the IP packet’s payload. 
Figure 1 illustrates the relative location of the above secu-
rity mechanisms in the protocol stack.  Note that the shaded 
boxes in Figure 1 represent the security mechanisms. 

GSI (Grid Security Infrastructure) [10] is a security ar-
chitecture for grids that can support several underlying se-
curity mechanisms.  

3. L imitations of Existing Systems 
Many of the security approaches mentioned in the previous 
section offer security as an all-or-nothing option.  In some 
cases, “exportable”  security provides a lower level of secu-
rity for use over international boundaries.  
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Figure 1: Relative Location of Secur ity M echanisms  

in the Protocol Stack 



 

Another common problem, particularly in the use of 
SSL and IPsec tunneling over different realms, is the intro-
duction of security gaps as described by Ashley et al. [1]. 
Ashley et al. note that security gaps appear when a secure 
session is terminated prematurely. A common example of 
that is found in the Wireless Application Protocol (WAP) 
[23], which is a standard for delivering information and 
services to wireless devices such as mobile phones and 
handheld devices. WAP-enabled devices can access Inter-
net services through a WAP gateway. For secure connec-
tions, a secure session is established between the wireless 
device and the WAP gateway (Figure 2). An SSL session is 
then established between the WAP gateway and the 
application server providing the requested service. Due to 
the termination and reestablishment of the secure sessions, 
data resides in an insecure state on the WAP gateway.  

We argue that security gaps are introduced in any se-
cure path going through one or more middleboxes that need 
to perform some processing on passing data packets. For 
example, when IPsec tunneling is employed to secure com-
munications between two networks or gateways (rather than 
end-to-end) as illustrated in Figure 3, at lease two security 
gaps are introduced. There are several reasons for doing 
this. First, it reduces the administrative overhead that results 
from configuring IPsec on individual machines. Second, it 
allows the middleboxes that often exist at the boundaries of 
local networks to function as expected. These include NAT 
gateways, packet or content filters, proxy firewalls, and 
WAP gateways.  

While this type of IPsec deployment protects 
data transmission over the Internet, it provides no 
protection against malicious insiders. Malicious 
insiders can exploit information destined to inside 
users and leak it outside the local network. In a 
survey of 1,225 information security managers, the 
greatest threat to their networks was virus infec-
tions followed by abuse of access privileges by 
employees [3]. 

It is also worth noting that IPsec only provides 
mandatory security. That is, the security policies 
and attributes are defined by the organization’s 
security officer or system administrator. End appli-
cations and users cannot customize the security 

policies and attributes to meet their particular needs.  

While GSI [10] provides secure authentication and 
communication for grids, it does not attempt to discover 
middleboxes and negotiate security with them. As a result, 
security gaps could surface, particularly in cases where 
some grid resources and nodes exist in a local network be-
hind a firewall.  Further, the adaptability of GSI is limited 
making it hard to port it to lightweight devices with limited 
capabilities.  

4. Requirements  
We advocate a cyber-security infrastructure that incorpo-
rates greater flexibility, adaptability, and customizability. 
When it comes to security, one size does not fit all. Hence, 
the security architecture deployed must be able to adapt to 
environments with extreme conditions and scarce resources, 
as well as evolve and provide additional functionality when 
more resources become available.   

Further, with many different security technologies sur-
facing and being deployed, the assumption that a particular 
security mechanism will eventually prevail is flawed. For 
that reason, it is necessary to support multiple security 
mechanisms and negotiate security requirements. We also 
aim to reduce or eliminate the security gaps mentioned in 
the previous section.  

While it is necessary to have some security policies 
mandated by the organization to meet its goals and provide 
a uniform level of information assurance, end applications 
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Figure 3: Secur ity Gaps in Current IPsec Implementations 



 

or users should be able to specify discretionary security and 
define their own security policies depending on the sensitiv-
ity of the information they wish to transmit. Additionally, 
discretionary security provides an additional line of defense 
in case the mandatory security is subverted due to an error 
on behalf of the system administrator, for example. 

5. System Architecture 
In addition to meeting the requirements mentioned in Sec-
tion 4, we aim to base the security services in our system on 
available and proven technologies, thereby granting us 
flexibility and secure interoperability with existing systems. 
We, however, plan to enhance these technologies with a 
component-based design of a cyber-security infrastructure 
that includes the discovery of middleboxes and the negotia-
tion of security requirements. Figure 4 illustrates the sys-
tem’s architecture, which we describe in this section. 

5.1 The L ightweight Core  
The system exports three sets of APIs that are available for 
applications’  use. These APIs are GSS-API (Generic Secu-
rity Services API [17][18]), CM-API (Component Man-
agement API) and SI-API (Session Initiation API).  These 
three components together make up the lightweight “core”  
of the system. This lightweight core would be pre-loaded in 
all devices. Additional functionality and capabilities could 
then be loaded on demand into this core, allowing it to ex-
pand and evolve. 

5.2 GSS-API  
The GSS-API exports a uniform, generic interface for pro-
viding security services from an underlying security mecha-
nism. The GSS-API functions at a level independent from 
both the underlying security mechanism and programming 
environment. This abstraction enables security mechanisms 
to be removed, added, and updated without affecting the 
applications. Moreover, unlike SSL and IPsec, GSS-API 
security services are independent from the communication 
protocol suite being used. GSS-API has already been used 
with many security mechanisms including Kerberos, 
SESAME, SPKM, DCE and others [2]. The independence 
of GSS-API from underlying mechanisms permits extend-
ing the GSS-API to support an arbitrary list of underlying 
mechanisms. Further, this can be done dynamically such 
that the necessary security mechanisms or cryptographic 
functions are loaded on demand. Hence, only the function-
ality needed at a certain time is loaded. Additionally, this 
facilitates the incorporation of new security technologies 
and bug fixes as they become available.  

To support several security mechanisms at once and to 
be able to dynamically query available mechanisms and 
load/unload them as necessary, we follow the guidance of 
[21] in which the GSS implementation consists of two 
parts: (1) the GSS-API shim layer, providing no security 
itself, but exports the standardized interface, and (2) under-
lying security mechanisms and supporting cryptographic 
profiles are added to implement the actual security services. 

Applications / MiddlewareApplications / Middleware

CM-APICM-API

GSS-API (shim layer)GSS-API (shim layer) SI-APISI-API

D
C

E
D

C
E

S
K

M
P

S
K

M
P

Le
ga

cy
Le

ga
cy

Users

D
E

S
D

E
S

D A
E

S
A

E
S

R
S

A
R

S
A

E
C

C
E

C
C

Discovery*

Component
Repository

Component
Repository

Negotiation* Session*
Crypto SPI

Mechanism
SPI

Plain SocketsPlain Sockets

Legacy (not IP-based)Legacy (not IP-based)

SSL/TLSSSL/TLS

Discretionary
Security Policies

Mandatory
Security Policies

Security
Officer

K
er

be
ro

s
K

er
be

ro
s

S
E

S
A

M
E

S
E

S
A

M
E

 
Figure 4: System Design 



 

In between these two layers, there exists SPIs (Service Pro-
vider Interfaces) that allow the GSS to locate and query the 
different security mechanisms and cryptographic functions.  

5.3 Loadable Components and the Compo-
nent Repository  
Security mechanisms and cryptographic functions are im-
plemented as add-on components. These components are 
not part of the pre-loaded lightweight core.  Rather, they are 
loaded whenever their functionality is needed. Alterna-
tively, a machine with sufficient resources that is expected 
to request many security services and establish several se-
curity associations with other devices, a firewall for in-
stance, may choose to preload the necessary functionality as 
soon as it is bootstrapped. The component-based architec-
ture accommodates both cases and boosts the adaptability 
of the system, allowing it to unload unnecessary functional-
ity to compensate for shortages in resources and to reload 
that functionality once resources become more available. 

The components that implement additional functional-
ity are stored in a component repository. This repository is 
certified by a trusted certificate authority to prevent the 
loading of malicious components. A trusted repository 
should digitally sign its components to prove their authen-
ticity and protect them against tampering. Component re-
positories can be stored locally or remotely.  

5.4 CM-API  
Since the various functionalities (including the security 
mechanisms and cryptographic libraries) are represented as 
components, a Component Management API is provided to 
facilitate the management, loading, unloading and recon-
figuration of components as well as the validation of com-
ponent repositories.  The CM-API exposes an interface for 
the security-aware applications to manipulate and manage 
available components. The CM-API is also utilized by the 
GSS-API to load and unload needed functionality on de-
mand. 

5.5 SI -API  
Session Initiation API (SI-API) provides a session-layer 
library for applications. It can be used for the discovery of 
middleboxes and for negotiating security requirements be-
tween these middleboxes. Section 5.7 describes the discov-
ery process. This API can be used to establish a communi-
cation session. This communication session can be based on 
plain sockets (in conjunction with GSS-API services to se-
cure transmitted data) or it can use SSL for interoperability 
with existing systems. 

The SI-API exports a simple session library for appli-
cations’  use, as the following pseudocode illustrates: 

  / / sampl e appl i cat i on 

… 
s  = sessi on_new( ) ;  

  / /  cal l back f unct i on t o handl e 
  / /  aut hent i cat i on,  et c.  

sessi on_r egi st er _ui _cal l back( s,   
               &my_user _pr ompt ) ;  

sessi on_connect ( s,  ur i ,  pol i cy,  RELI ABLE |  
               CONGESTI ON |  HOP_ENCRYPTI ON) ;  

sock = sessi on_f i l eno( s) ;  

  / / i f  we need t o send an addr ess t o t he 
  / / ot her  end 

t  = sessi on_get _my_opaque_addr _t oken( s) ;  

wr i t e( sock,  t ) ;  

wr i t e( sock,  …) ;  

… 

In the pseudocode above, sessi on_connect ( )  trig-
gers the necessary discovery and negotiation and calls the 
UI callback as needed, for authentication and other pur-
poses. 

5.6 Secur ity Policies 
Implementing state-of-the-art security mechanisms and 
technologies is not enough to construct a truly secure com-
puting environment.  Due to the complexities found in both 
the physical and virtual worlds, cyber-security infrastruc-
tures should take into considerations the various principals 
that populate a particular domain and the complex relation-
ships among these principals.  These principals may include 
files, objects, resources, machines, and people with differ-
ent ranks, security attributes and roles.  A truly secure envi-
ronment must define well-structured rules and practices for 
regulating and managing principals and the complex rela-
tionships between them. 

In our system, we support two types of policies: man-
datory and discretionary. Mandatory policies, which are set 
forth by the administrative domain’s security officer, reflect 
the organization’s security goals.  These policies generally 
dictate what the minimum levels of security are for the ad-
ministrative domain, which mechanisms are allowed to be 
used by which users, which component repositories are al-
lowed and which are forbidden, etc. It is possible to assign 
users different roles and security attributes and lay down 
different policies based on these attributes. 

While it is essential to lay down a system-wide manda-
tory policy, a discretionary policy allows users and end ap-
plications to define additional security requirements. Sup-
porting discretionary policies is important because, in many 
cases, only users can assess the real value of data being 
received or transmitted; and therefore, the users are in the 
best position to determine the necessary level of security 
beyond mandatory security. Further, it is counterintuitive to 
apply the same security services on all types of transmitted 
data. If conflicts between the mandatory and discretionary 
policies arise, then the more restrictive policy takes prece-
dence. 



 

Users or applications can have policies that specify 
which loadable components are preferred and which are 
prohibited, as well as associating particular policies with 
certain protocols.  

5.7 Discovery of Middleboxes 
The discovery of middleboxes can be achieved by employ-
ing a session signaling protocol as suggested in [8]. Re-
quirements for the discovery of middleboxes are addressed 
in [16]. We give an overview of how such a protocol works 
in our infrastructure.   

If two endpoints (A and B) decide to communicate se-
curely, the sender A initiates the session-layer signaling 
protocol by sending a special “discover”  request along the 
path to the end destination (see Figure 5). In this scenario, 
we assume that endpoint A supports security mechanism X. 
Middleboxes along the path reply to the “discover”  request 
to indicate their presence and their security requirements, if 
any.  In the example depicted in Figure 5, the first middle-
box along the path is a firewall. If this is the firewall at the 

boundary of endpoint A’s realm it will probably have par-
ticular security requirements for outbound traffic. In the 
example shown, the firewall supports mechanisms Y and Z 
and requires all outbound traffic to use one of these mecha-
nisms. The Firewall responds to the “discover”  request an-
nouncing its existence and the supported security mecha-
nisms (Y and Z in this case). Since there are no common 
mechanisms between endpoint A and the firewall, only par-
tial negotiations take place at this time. Proceeding with the 
discovery process, eventually endpoint B will respond and 
communicate its presence and supported mechanisms (X 
and Y). Now, endpoint A can negotiate the establishment of 
two layers of security: an end-to-end security session estab-
lished at endpoint A, using mechanism X, with the intention 
to terminate only at endpoint B. The other layer is another 
secure session that is established at midpoint 1 (the fire-
wall) until endpoint B, using mechanism Y, to meet the ad-
ditional security requirements imposed by the firewall on 
outbound traffic. Note that no security gaps are introduced 
in this scenario.  

Similarly, some networks may be protected by firewalls 
or proxies that require certain forms of authentication be-
fore network traffic can pass through them. The discovery 
protocol can locate such firewalls and negotiate a sufficient 
GSS-API based authentication mechanism.  

Figure 5 also depicts a scenario in which a NAT gate-
way exists somewhere along the path.  Likewise, the NAT 
announces its presence, and negotiations kick-in during 
which the destination IP address and port are communi-
cated, allowing the NAT gateway to deliver the data to the 
original destination without introducing security gaps 
(through tunneling, for example). Alternatively, RSIP 
(Realm Specific IP) [4] and similar protocols can be em-
ployed in place of NAT. RSIP is a proposed standard that 
allows a system to allocate a global address from a local 
gateway. The system then uses that global IP for outside 
communications but tunnels the traffic to the local gateway. 
In the reverse direction, the gateway maintains a table of 
allocated addresses and tunnels incoming traffic to the ap-
propriate local system. 

6. System Implementation 
We have implemented a prototype of the described cyber-
security infrastructure. We refer to the prototype implemen-
tation as IRIS (Inter-Realm Infrastructure for Security). Our 
implementation is in Java. We have used Java for its cross-
platform compatibility, which allows IRIS to be ported eas-
ily to the heterogeneous nodes that constitute a virtual su-
percomputer. Additionally, Java is gaining grounds in the 
mobile world allowing IRIS to be ported to mobiles, hand-
held computers and embedded devices.  

In our current prototype, the component repository is 
implemented as a standalone server on the network. Com-
ponents can be queried and downloaded remotely. Since 

� � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � �
Discover

Midpoint

firewall {sec_reqs}

Partial security

negotiations

Discover

Midpoint

NAT gateway
Midpoint

NAT Gateway

ACK

        negotiations     {IP, port}

          ACK

Discover

end point

end-to-end secure session (using X)

additional midpoint
security (using Y)

Endpoint A
(Mechs: X)

Endpoint B
(Mechs: X,Y)

Firewall
(Mechs: Y,Z)

NAT Gateway

security

negotiations

ACK

        negotiations
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component repositories can be distributed on a global scale, 
we employ Jini technology [14], which provides an infra-
structure for discovering and delivering services in distrib-
uted computing environments.  The Jini-based repository in 
IRIS allows service providers to write security mechanisms 
and cryptographic functionality as certified components that 
can be loaded remotely by applications. 

Our implementation of the GSS-API is based on the 
RFC that defines the Java binding for the standardized 
GSS-API [12], whereas the SPI is based on [21].  We have 
defined our own proprietary interfaces for the CM-API and 
SI-API. 

7. Conclusion 
The full potential of virtual supercomputing can only be 
realized once an adequate, inter-realm, cyber-security infra-
structure is devised and deployed. We discussed the re-
quirements of such an infrastructure and designed an 
architecture that provides comprehensive security services 
in a component-based fashion, providing greater 
adaptability, customizability and backward-compatibility. 
We briefly described our prototype implementation of the 
system. Finally, we note that although this infrastructure 
was described in the context of virtual supercomputing, the 
infrastructure can be employed to secure other networked 
environments.  
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