
An Inter -Realm, Cyber-Secur ity Infrastructure
for Vir tual Supercomputing

Jalal Al-Muhtadi*∇ Wu-chun Feng∇ Mike Fisk∇

* Department of Computer Science,

University of Illinois at Urbana-Champaign
Urbana, IL 61801

al muht ad@ui uc. edu

∇ Research & Development In Advanced Network Technologies (RADIANT)

Computer and Computational Sciences Division
Los Alamos National Laboratory

Los Alamos, NM 87545
{ f eng, mf i sk} @l anl . gov

ABSTRACT
Virtual supercomputing, (i.e., high-performance grid com-
puting), is poised to revolutionize the way we think about
and use computing. However, the security of the links in-
terconnecting the nodes within such an environment will be
its Achilles heel, particularly when secure communication
is required to tunnel through heterogeneous domains. In
this paper we examine existing security mechanisms, show
their inadequacy, and design a comprehensive cyber-
security infrastructure that meets the security requirements
of virtual supercomputing.

Keywords
Security, virtual supercomputing, grid computing, high-
performance computing, GSS-API, SSL, IPsec, component-
based software, dynamic reconfiguration.

1. Introduction
The rapid growth in high-speed networks and the ubiquity
of computers have converged to enhance global intercon-
nectivity and provide the foundation for a new kind of com-
puting infrastructure – computational grids [9]. These grids
consist of computational nodes that are distributed
throughout geographically dispersed areas and intercon-
nected through a reliable internetwork; they harvest signifi-
cant processing power, memory, and resources by utilizing
the capabilities offered at the end nodes.

When several high-performance computing nodes (e.g.,
Cray SV2 and SGI Origin 3000) or very large numbers of
“ordinary” computing nodes (e.g., all the PCs at Intel [11])
are aggregated together in a grid, the grid is oftentimes re-
ferred to as a virtual supercomputer which can rival or out-
perform conventional supercomputers. Hence, virtual su-

percomputing is poised to revolutionize the way we think
about and use computing.

However, the security of the links interconnecting the
supercomputing nodes will be the system’s Achilles heel.
To fully reap the benefits offered by such a system, we need
a cyber-security infrastructure that can provide highly cus-
tomizable and dynamically reconfigurable services to se-
cure communications between the nodes of a virtual super-
computer. Because widespread deployment of virtual su-
percomputers involves using the Internet as the communica-
tion backbone, the cyber-security infrastructure must seam-
lessly deal with the heterogeneous nature of the Internet.

To design such a cyber-security infrastructure, we must
understand the obstacles presented by the Internet. The
Internet is divided into different areas each having diverse
properties and characteristics, such as different link-layer
technologies, media types, security requirements, band-
width capacities and so on. Areas with similar network
characteristics, e.g., a campus network, are referred to as
realms [8]. To handle this diversity, special devices are
introduced at the realm boundaries. These devices transpar-
ently fix packet flows between endpoints, handle data tran-
sition between realms, and provide important additional
functionality. The added functionality includes (but is not
limited to) mobility support, address translation, packet
filtering, data confidentiality and authentication, data com-
pression, and special processing to improve performance
over particular realms. These special devices are referred to
as middleboxes. Examples of middleboxes include fire-
walls, proxies, network address translators, active wardens,
and wireless gateways. However, these middleboxes are
harmful as they often violate the end-to-end nature of con-
ventional Internet applications and hinder the operation of
existing and new end-to-end protocols [8]. One common

example is the Network Address
Translation protocol (NAT) [6] [22].
NAT allows a private network of de-
vices with non-global IP addresses to
connect to the Internet by sharing a
limited number of global IP addresses.
The NAT gateways translate between
internal IP addresses and correspond-
ing global addresses. This simple ad-
dress translation breaks many upper-
layer protocols. For example, the con-
trol connection for ftp transmits the
IP address and TCP port to use for the
data connection which is made in the
opposite direction [20]; therefore, for
ftp to work, the NAT gateway has to intercept the IP ad-
dress and TCP port values and modify them. Additionally,
since NAT requires modifications to the packet headers,
security mechanisms like IPsec’s Authenticated Headers
(AH) [15] cannot be used in conjunction with NAT.

Hence, we advocate a cyber-security infrastructure that
not only supports advance negotiation and establishment of
a secure session between the endpoints; but also enables the
discovery of middleboxes and allows the endpoint to nego-
tiate security requirements and request specific functionality
from these middleboxes. Further, it features support for
negotiating and establishing end-to-end and/or hop-to-hop
security associations. Such a cyber-security infrastructure
has applicability to general Internet environments, but our
focus in this paper is on virtual supercomputing.

Moreover, the concept of a virtual supercomputer pro-
vides support for multiple access points. This allows ubiq-
uitous access to virtual supercomputing services, providing
users with services anytime and anywhere using low-end
machines or even mobile devices, like handheld computers
and mobile phones. This puts an additional burden on the
cyber-security infrastructure, requiring it to be able to adapt
to environments with scarce resources and evolve once
more resources become available. Additionally, the infra-
structure should not be inherently dependent on IP as there
exist many other environments that do not necessarily use
IP for communication, e.g., wireless telephony and distrib-
uted sensor networking [7].

The remainder of this paper is divided as follows. Sec-
tion 2 provides some background information on existing
security solutions. In Section 3 we mention the limitations
of existing security mechanisms. In Section 4 we discuss
the requirements for a cyber-security infrastructure for vir-
tual supercomputing. Next, we discuss our system’s archi-
tecture in Section 5, followed by a brief description of our
prototype implementation in Section 6 and conclusions in
Section 7.

2. Background
Several security mechanisms have been devised mainly to
retrofit security into the Internet and existing distributed
systems. A security mechanism defines and implements a
set of protocols for preventing or detecting security threats.
Kerberos [19] is a security mechanism developed at MIT
during the mid-1980’s to provide users with a single sign-
on to the network and protect authentication information
from masquerading. Kerberos, however, only supports
symmetric cryptography; hence, it does not scale well to
large distributed environments. As a result, a number of
Kerberos extensions have surfaced. SESAME (Secure
European System for Applications in a Multi-vendor Envi-
ronment) [13] is an extension to Kerberos that provides
additional services, such as the use of digital signatures for
login and the handling of access control privileges.

While Kerberos and similar technologies provide com-
prehensive security services at the application layer, there
are other security technologies that concentrate on particu-
lar components of the network. SSL (Secure Socket Layer)
or TLS (Transport Layer Security) [5] implements security
just above TCP. SSL makes use of TCP to provide a reli-
able end-to-end secure service. IP security or IPsec [15]
provides improved security to the Internet Protocol. This
includes authenticating IP packets and providing data con-
fidentiality and authentication to the IP packet’s payload.
Figure 1 illustrates the relative location of the above secu-
rity mechanisms in the protocol stack. Note that the shaded
boxes in Figure 1 represent the security mechanisms.

GSI (Grid Security Infrastructure) [10] is a security ar-
chitecture for grids that can support several underlying se-
curity mechanisms.

3. L imitations of Existing Systems
Many of the security approaches mentioned in the previous
section offer security as an all-or-nothing option. In some
cases, “exportable” security provides a lower level of secu-
rity for use over international boundaries.

Applications / MiddlewareApplications / Middleware

HTTP, FTP, SMTPHTTP, FTP, SMTP

SSL / TLSSSL / TLS

KerberosKerberos

TCPTCP UDPUDP

IP (IPsec)IP (IPsec)

IPIP

Application Layer

Transport Layer

Network Layer

Device driversDevice drivers

Figure 1: Relative Location of Secur ity M echanisms

in the Protocol Stack

Another common problem, particularly in the use of
SSL and IPsec tunneling over different realms, is the intro-
duction of security gaps as described by Ashley et al. [1].
Ashley et al. note that security gaps appear when a secure
session is terminated prematurely. A common example of
that is found in the Wireless Application Protocol (WAP)
[23], which is a standard for delivering information and
services to wireless devices such as mobile phones and
handheld devices. WAP-enabled devices can access Inter-
net services through a WAP gateway. For secure connec-
tions, a secure session is established between the wireless
device and the WAP gateway (Figure 2). An SSL session is
then established between the WAP gateway and the
application server providing the requested service. Due to
the termination and reestablishment of the secure sessions,
data resides in an insecure state on the WAP gateway.

We argue that security gaps are introduced in any se-
cure path going through one or more middleboxes that need
to perform some processing on passing data packets. For
example, when IPsec tunneling is employed to secure com-
munications between two networks or gateways (rather than
end-to-end) as illustrated in Figure 3, at lease two security
gaps are introduced. There are several reasons for doing
this. First, it reduces the administrative overhead that results
from configuring IPsec on individual machines. Second, it
allows the middleboxes that often exist at the boundaries of
local networks to function as expected. These include NAT
gateways, packet or content filters, proxy firewalls, and
WAP gateways.

While this type of IPsec deployment protects
data transmission over the Internet, it provides no
protection against malicious insiders. Malicious
insiders can exploit information destined to inside
users and leak it outside the local network. In a
survey of 1,225 information security managers, the
greatest threat to their networks was virus infec-
tions followed by abuse of access privileges by
employees [3].

It is also worth noting that IPsec only provides
mandatory security. That is, the security policies
and attributes are defined by the organization’s
security officer or system administrator. End appli-
cations and users cannot customize the security

policies and attributes to meet their particular needs.

While GSI [10] provides secure authentication and
communication for grids, it does not attempt to discover
middleboxes and negotiate security with them. As a result,
security gaps could surface, particularly in cases where
some grid resources and nodes exist in a local network be-
hind a firewall. Further, the adaptability of GSI is limited
making it hard to port it to lightweight devices with limited
capabilities.

4. Requirements
We advocate a cyber-security infrastructure that incorpo-
rates greater flexibility, adaptability, and customizability.
When it comes to security, one size does not fit all. Hence,
the security architecture deployed must be able to adapt to
environments with extreme conditions and scarce resources,
as well as evolve and provide additional functionality when
more resources become available.

Further, with many different security technologies sur-
facing and being deployed, the assumption that a particular
security mechanism will eventually prevail is flawed. For
that reason, it is necessary to support multiple security
mechanisms and negotiate security requirements. We also
aim to reduce or eliminate the security gaps mentioned in
the previous section.

While it is necessary to have some security policies
mandated by the organization to meet its goals and provide
a uniform level of information assurance, end applications

Wireless
Network

Wireless
Network

Wired
Network

Wired
Network

Default
WAP

Gateway

Secure connection Secure connection

Application
Server

Security Gap

Figure 2: The WAP Secur ity Gap

IntranetIntranet
Secure connection

(IPsec)

Firewall - A
IPsec support

IntranetIntranet

Firewall - B
IPsec support

insecure insecure

Security Gap

� � � � � � � � � � � � � � � � � � � �

Alice

Security Gap

� � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � �

Bob

Figure 3: Secur ity Gaps in Current IPsec Implementations

or users should be able to specify discretionary security and
define their own security policies depending on the sensitiv-
ity of the information they wish to transmit. Additionally,
discretionary security provides an additional line of defense
in case the mandatory security is subverted due to an error
on behalf of the system administrator, for example.

5. System Architecture
In addition to meeting the requirements mentioned in Sec-
tion 4, we aim to base the security services in our system on
available and proven technologies, thereby granting us
flexibility and secure interoperability with existing systems.
We, however, plan to enhance these technologies with a
component-based design of a cyber-security infrastructure
that includes the discovery of middleboxes and the negotia-
tion of security requirements. Figure 4 illustrates the sys-
tem’s architecture, which we describe in this section.

5.1 The L ightweight Core
The system exports three sets of APIs that are available for
applications’ use. These APIs are GSS-API (Generic Secu-
rity Services API [17][18]), CM-API (Component Man-
agement API) and SI-API (Session Initiation API). These
three components together make up the lightweight “core”
of the system. This lightweight core would be pre-loaded in
all devices. Additional functionality and capabilities could
then be loaded on demand into this core, allowing it to ex-
pand and evolve.

5.2 GSS-API
The GSS-API exports a uniform, generic interface for pro-
viding security services from an underlying security mecha-
nism. The GSS-API functions at a level independent from
both the underlying security mechanism and programming
environment. This abstraction enables security mechanisms
to be removed, added, and updated without affecting the
applications. Moreover, unlike SSL and IPsec, GSS-API
security services are independent from the communication
protocol suite being used. GSS-API has already been used
with many security mechanisms including Kerberos,
SESAME, SPKM, DCE and others [2]. The independence
of GSS-API from underlying mechanisms permits extend-
ing the GSS-API to support an arbitrary list of underlying
mechanisms. Further, this can be done dynamically such
that the necessary security mechanisms or cryptographic
functions are loaded on demand. Hence, only the function-
ality needed at a certain time is loaded. Additionally, this
facilitates the incorporation of new security technologies
and bug fixes as they become available.

To support several security mechanisms at once and to
be able to dynamically query available mechanisms and
load/unload them as necessary, we follow the guidance of
[21] in which the GSS implementation consists of two
parts: (1) the GSS-API shim layer, providing no security
itself, but exports the standardized interface, and (2) under-
lying security mechanisms and supporting cryptographic
profiles are added to implement the actual security services.

Applications / MiddlewareApplications / Middleware

CM-APICM-API

GSS-API (shim layer)GSS-API (shim layer) SI-APISI-API

D
C

E
D

C
E

S
K

M
P

S
K

M
P

Le
ga

cy
Le

ga
cy

Users

D
E

S
D

E
S

D A
E

S
A

E
S

R
S

A
R

S
A

E
C

C
E

C
C

Discovery*

Component
Repository

Component
Repository

Negotiation* Session*
Crypto SPI

Mechanism
SPI

Plain SocketsPlain Sockets

Legacy (not IP-based)Legacy (not IP-based)

SSL/TLSSSL/TLS

Discretionary
Security Policies

Mandatory
Security Policies

Security
Officer

K
er

be
ro

s
K

er
be

ro
s

S
E

S
A

M
E

S
E

S
A

M
E

Figure 4: System Design

In between these two layers, there exists SPIs (Service Pro-
vider Interfaces) that allow the GSS to locate and query the
different security mechanisms and cryptographic functions.

5.3 Loadable Components and the Compo-
nent Repository
Security mechanisms and cryptographic functions are im-
plemented as add-on components. These components are
not part of the pre-loaded lightweight core. Rather, they are
loaded whenever their functionality is needed. Alterna-
tively, a machine with sufficient resources that is expected
to request many security services and establish several se-
curity associations with other devices, a firewall for in-
stance, may choose to preload the necessary functionality as
soon as it is bootstrapped. The component-based architec-
ture accommodates both cases and boosts the adaptability
of the system, allowing it to unload unnecessary functional-
ity to compensate for shortages in resources and to reload
that functionality once resources become more available.

The components that implement additional functional-
ity are stored in a component repository. This repository is
certified by a trusted certificate authority to prevent the
loading of malicious components. A trusted repository
should digitally sign its components to prove their authen-
ticity and protect them against tampering. Component re-
positories can be stored locally or remotely.

5.4 CM-API
Since the various functionalities (including the security
mechanisms and cryptographic libraries) are represented as
components, a Component Management API is provided to
facilitate the management, loading, unloading and recon-
figuration of components as well as the validation of com-
ponent repositories. The CM-API exposes an interface for
the security-aware applications to manipulate and manage
available components. The CM-API is also utilized by the
GSS-API to load and unload needed functionality on de-
mand.

5.5 SI -API
Session Initiation API (SI-API) provides a session-layer
library for applications. It can be used for the discovery of
middleboxes and for negotiating security requirements be-
tween these middleboxes. Section 5.7 describes the discov-
ery process. This API can be used to establish a communi-
cation session. This communication session can be based on
plain sockets (in conjunction with GSS-API services to se-
cure transmitted data) or it can use SSL for interoperability
with existing systems.

The SI-API exports a simple session library for appli-
cations’ use, as the following pseudocode illustrates:

 / / sampl e appl i cat i on

…
s = sessi on_new() ;

 / / cal l back f unct i on t o handl e
 / / aut hent i cat i on, et c.

sessi on_r egi st er _ui _cal l back(s,
 &my_user _pr ompt) ;

sessi on_connect (s, ur i , pol i cy, RELI ABLE |
 CONGESTI ON | HOP_ENCRYPTI ON) ;

sock = sessi on_f i l eno(s) ;

 / / i f we need t o send an addr ess t o t he
 / / ot her end

t = sessi on_get _my_opaque_addr _t oken(s) ;

wr i t e(sock, t) ;

wr i t e(sock, …) ;

…

In the pseudocode above, sessi on_connect () trig-
gers the necessary discovery and negotiation and calls the
UI callback as needed, for authentication and other pur-
poses.

5.6 Secur ity Policies
Implementing state-of-the-art security mechanisms and
technologies is not enough to construct a truly secure com-
puting environment. Due to the complexities found in both
the physical and virtual worlds, cyber-security infrastruc-
tures should take into considerations the various principals
that populate a particular domain and the complex relation-
ships among these principals. These principals may include
files, objects, resources, machines, and people with differ-
ent ranks, security attributes and roles. A truly secure envi-
ronment must define well-structured rules and practices for
regulating and managing principals and the complex rela-
tionships between them.

In our system, we support two types of policies: man-
datory and discretionary. Mandatory policies, which are set
forth by the administrative domain’s security officer, reflect
the organization’s security goals. These policies generally
dictate what the minimum levels of security are for the ad-
ministrative domain, which mechanisms are allowed to be
used by which users, which component repositories are al-
lowed and which are forbidden, etc. It is possible to assign
users different roles and security attributes and lay down
different policies based on these attributes.

While it is essential to lay down a system-wide manda-
tory policy, a discretionary policy allows users and end ap-
plications to define additional security requirements. Sup-
porting discretionary policies is important because, in many
cases, only users can assess the real value of data being
received or transmitted; and therefore, the users are in the
best position to determine the necessary level of security
beyond mandatory security. Further, it is counterintuitive to
apply the same security services on all types of transmitted
data. If conflicts between the mandatory and discretionary
policies arise, then the more restrictive policy takes prece-
dence.

Users or applications can have policies that specify
which loadable components are preferred and which are
prohibited, as well as associating particular policies with
certain protocols.

5.7 Discovery of Middleboxes
The discovery of middleboxes can be achieved by employ-
ing a session signaling protocol as suggested in [8]. Re-
quirements for the discovery of middleboxes are addressed
in [16]. We give an overview of how such a protocol works
in our infrastructure.

If two endpoints (A and B) decide to communicate se-
curely, the sender A initiates the session-layer signaling
protocol by sending a special “discover” request along the
path to the end destination (see Figure 5). In this scenario,
we assume that endpoint A supports security mechanism X.
Middleboxes along the path reply to the “discover” request
to indicate their presence and their security requirements, if
any. In the example depicted in Figure 5, the first middle-
box along the path is a firewall. If this is the firewall at the

boundary of endpoint A’s realm it will probably have par-
ticular security requirements for outbound traffic. In the
example shown, the firewall supports mechanisms Y and Z
and requires all outbound traffic to use one of these mecha-
nisms. The Firewall responds to the “discover” request an-
nouncing its existence and the supported security mecha-
nisms (Y and Z in this case). Since there are no common
mechanisms between endpoint A and the firewall, only par-
tial negotiations take place at this time. Proceeding with the
discovery process, eventually endpoint B will respond and
communicate its presence and supported mechanisms (X
and Y). Now, endpoint A can negotiate the establishment of
two layers of security: an end-to-end security session estab-
lished at endpoint A, using mechanism X, with the intention
to terminate only at endpoint B. The other layer is another
secure session that is established at midpoint 1 (the fire-
wall) until endpoint B, using mechanism Y, to meet the ad-
ditional security requirements imposed by the firewall on
outbound traffic. Note that no security gaps are introduced
in this scenario.

Similarly, some networks may be protected by firewalls
or proxies that require certain forms of authentication be-
fore network traffic can pass through them. The discovery
protocol can locate such firewalls and negotiate a sufficient
GSS-API based authentication mechanism.

Figure 5 also depicts a scenario in which a NAT gate-
way exists somewhere along the path. Likewise, the NAT
announces its presence, and negotiations kick-in during
which the destination IP address and port are communi-
cated, allowing the NAT gateway to deliver the data to the
original destination without introducing security gaps
(through tunneling, for example). Alternatively, RSIP
(Realm Specific IP) [4] and similar protocols can be em-
ployed in place of NAT. RSIP is a proposed standard that
allows a system to allocate a global address from a local
gateway. The system then uses that global IP for outside
communications but tunnels the traffic to the local gateway.
In the reverse direction, the gateway maintains a table of
allocated addresses and tunnels incoming traffic to the ap-
propriate local system.

6. System Implementation
We have implemented a prototype of the described cyber-
security infrastructure. We refer to the prototype implemen-
tation as IRIS (Inter-Realm Infrastructure for Security). Our
implementation is in Java. We have used Java for its cross-
platform compatibility, which allows IRIS to be ported eas-
ily to the heterogeneous nodes that constitute a virtual su-
percomputer. Additionally, Java is gaining grounds in the
mobile world allowing IRIS to be ported to mobiles, hand-
held computers and embedded devices.

In our current prototype, the component repository is
implemented as a standalone server on the network. Com-
ponents can be queried and downloaded remotely. Since

� � � � � � � � � � � � � � � �� �� � � � � � � � � � � � � � � �
Discover

Midpoint

firewall {sec_reqs}

Partial security

negotiations

Discover

Midpoint

NAT gateway
Midpoint

NAT Gateway

ACK

 negotiations {IP, port}

 ACK

Discover

end point

end-to-end secure session (using X)

additional midpoint
security (using Y)

Endpoint A
(Mechs: X)

Endpoint B
(Mechs: X,Y)

Firewall
(Mechs: Y,Z)

NAT Gateway

security

negotiations

ACK

 negotiations

Figure 5: Discovery of M iddleboxes

component repositories can be distributed on a global scale,
we employ Jini technology [14], which provides an infra-
structure for discovering and delivering services in distrib-
uted computing environments. The Jini-based repository in
IRIS allows service providers to write security mechanisms
and cryptographic functionality as certified components that
can be loaded remotely by applications.

Our implementation of the GSS-API is based on the
RFC that defines the Java binding for the standardized
GSS-API [12], whereas the SPI is based on [21]. We have
defined our own proprietary interfaces for the CM-API and
SI-API.

7. Conclusion
The full potential of virtual supercomputing can only be
realized once an adequate, inter-realm, cyber-security infra-
structure is devised and deployed. We discussed the re-
quirements of such an infrastructure and designed an
architecture that provides comprehensive security services
in a component-based fashion, providing greater
adaptability, customizability and backward-compatibility.
We briefly described our prototype implementation of the
system. Finally, we note that although this infrastructure
was described in the context of virtual supercomputing, the
infrastructure can be employed to secure other networked
environments.

8. References
[1] P. Ashley et al., “Wired versus Wireless Security: The

Internet, WAP, and iMode for E-Commerce,” submit-
ted to the 17th Annual Computer Security Applications
Conference (ACSAC 2001).

[2] P. Ashley and M. Vandenwauver, “Practical Intranet
Security Overview of the State of the Art and Available
Technologies,” Kluwer Academic Publishers, 1999.

[3] D. Bernstein, “ Infosecurity News – Industry Survey,”
Infosecurity News, 8(3): 22-27, May 1997.

[4] M. Borella and J. Lo, “Realm Specific IP: Frame-
work,” Internet Draft <draft-ietf-nat-rsip-framework-
05.txt>, July 2000. Work in progress.

[5] T. Dierks and C. Allen, “The TLS Protocol,” January
1999, RFC 2246.

[6] K. Egevang and P. Francis, “The IP Network Address
Translator (NAT),” May 1994, RFC 1631.

[7] J. Elson and D. Estrin, “Random, Ephemeral Transac-
tion Identifiers in Dynamic Sensor Networks,” Pro-
ceedings of the 21st International Conference on Dis-
tributed Computing Systems (ICDCS-21), Phoenix,
Arizona, April 2001.

[8] M. Fisk and W. Feng, “ Interactions of Realm Bounda-
ries and End-to-End Network Applications,” Los Ala-
mos Unclassified Report (LAUR) 00-3631.

[9] I. Foster and C. Kesselman, “The Grid: Blueprint for a
New Computing Infrastructure,” Morgan Kaufmann
Publishers, January 1998.

[10] I. Foster, C. Kesselman, G. Tsudik, S. Tuecke, “A Se-
curity Architecture for Computational Grids,” Proceed-
ings of the 5th ACM Conference on Computer and
Communication Security, 83-92, 1998.

[11] Intel Corp., “Peer-to-Peer: Spreading the Computer
Power,” online article,
http://www.intel.com/eBusiness/products/peertopeer/ar
011102.htm

[12] J. Kabat et al., “Generic Security Service API Version
2: Java Bindings,” June 2000, RFC 2853.

[13] P. Kaijser, T. Parker, and D. Pinkas, “SESAME: The
Solution to Security for Open Distributed Systems,”
Computer Communications, 17(7): 501-518, July
1994.

[14] W. Keith Edwards, “Core JINI,” Prentice Hall PTR,
1999.

[15] S. Kent and R. Atkinson, “Security Architecture for the
Internet Protocol,” November 1998, RCF 2401.

[16] E. Lear, “Requirements for Discovering Middleboxes,”
Internet Draft <draft-lear-middlebox-discovery-
requirements-00.txt>, April 2001. Work in progress.

[17] J. Linn, “Generic Security Service Application Pro-
gram Interface,” September 1993, RFC 1508.

[18] J. Linn, “Generic Security Service Application Pro-
gram Interface Version 2,” January 1997, RFC 2078.

[19] B. Neumann and T. Ts’o, “Kerberos: An Authentica-
tion Service for Computer Networks,” IEEE Commu-
nications Magazine, 32(9): 33-38, September 1994.

[20] J. Postel and J. K. Reynolds, “File Transfer Protocol,”
October 1985, RFC 959.

[21] M. Smith, “A Service Provider API for GSS mecha-
nisms in Java,” Internet Draft <draft-ietf-cat-gssv2-
javabind-spi-02.txt>, October 1999. Work in progress.

[22] P. Srisuresh and M. Holdrege, “ IP Network Address
Translator (NAT) terminology and considerations,”
August 1999, RFC 2663.

[23] The WAP Forum, http://www.wapforum.org

