
Data-Intensive Biocomputing in the Cloud

Nabeel Meeramohideen Mohamed

Thesis submitted to the Faculty of the
Virginia Polytechnic Institute and State University

in partial fulfillment of the requirements for the degree of

Master of Science
in

Computer Science and Applications

Wu-chun Feng, Chair
Heshan Lin

Ali Raza Ashraf Butt

July 3, 2013
Blacksburg, Virginia

Keywords: Cloud Computing, Next Generation Sequencing, MapReduce, GATK, Workflow
Copyright 2013, Nabeel Meeramohideen Mohamed

Data-Intensive Biocomputing in the Cloud

Nabeel Meeramohideen Mohamed

(ABSTRACT)

Next-generation sequencing (NGS) technologies have made it possible to rapidly sequence
the human genome, heralding a new era of health-care innovations based on personalized
genetic information. However, these NGS technologies generate data at a rate that far
outstrips Moore’s Law. As a consequence, analyzing this exponentially increasing data
deluge requires enormous computational and storage resources, resources that many life
science institutions do not have access to. As such, cloud computing has emerged as an
obvious, but still nascent, solution.

This thesis intends to investigate and design an efficient framework for running and manag-
ing large-scale data-intensive scientific applications in the cloud. Based on the learning from
our parallel implementation of a genome analysis pipeline in the cloud, we aim to provide
a framework for users to run such data-intensive scientific workflows using a hybrid setup
of client and cloud resources. We first present SeqInCloud, our highly scalable parallel im-
plementation of a popular genetic variant pipeline called genome analysis toolkit (GATK),
on the Windows Azure HDInsight cloud platform. Together with a parallel implementa-
tion of GATK on Hadoop, we evaluate the potential of using cloud computing for large-scale
DNA analysis and present a detailed study on efficiently utilizing cloud resources for running
data-intensive, life-science applications. Based on our experience from running SeqInCloud
on Azure, we present CloudFlow, a feature-rich workflow manager for running MapReduce-
based bioinformatic pipelines utilizing both client and cloud resources. CloudFlow, built
on the top of an existing MapReduce-based workflow manager called Cloudgene, provides
unique features that are not offered by existing MapReduce-based workflow managers, such
as enabling simultaneous use of client and cloud resources, automatic data-dependency han-
dling between client and cloud resources, and the flexibility of implementing user-defined
plugins for data transformations. In general, we believe that our work will increase the
adoption of cloud resources for running data-intensive scientific workloads.

This work was supported in part by NSF CCF-1048253, as part of the NSF Computing in the
Cloud Program with Microsoft. Any opinions, findings, and conclusions or recommendations
expressed in this material are those of the author(s) and do not necessarily reflect the views
of NSF or Microsoft.

Dedication

To my loving brother, pattima, parents and friends

iii

Acknowledgments

I, Nabeel, would like to express my deepest gratitude towards all of these people. They were
guides to me in this path, without whom, I would have never seen this day happen.

The torchbearer, Prof. Wu-chun Feng, who guides all of us in the team, towards a successful
career path. Words fall short, when I find, to thank him in my endeavor. As my advisor,
he was patient, inspirational, and willing to guide me along the way. His capability to
nurture one’s talents and bring out their hidden potential is awesome. I have to add that
the bi-weekly meetings conducted by him gave me the nidus; ignited new thought patterns;
nourished the growth of my work and chiseled its outcome. I owe every bit of my success in
this thesis project to him.

I have to thank Dr. Heshan Lin, for his support and screening of my ideas; imparting them
with a particular sense of direction, at times of need. He was always available to me, when
I had doubts, when I was stuck, and when I had panic attacks. Thanks a lot, Dr. Heshan. I
would also like to thank you for being a committee member.

I would like to thank Prof. Ali R. Butt for his insights and comments on my thesis work, for
providing me with career guidance, and for being a part of the defense committee.

Our world brightens in the research lab with Prof. Eli Tilevich around. His sense of humor
and capability to lighten the moment was invaluable during my long hours in the lab. Thanks,
Professor.

My team members in the SyNeRGy Lab. We co-existed during the past two years with all
our ups and downs with mutual support and shoulders to lean on. With them, my hours
in lab were made more memorable. Their constructive criticism during the team meetings,
especially from Thomas Scogland, Balaji Subramaniam and Umar Kalim, added catalyst to
the fuel. I also need to thank Dr. Nataliya E. Timoshevskaya for giving wonderful suggestions,
with respect to defense presentation slides and thesis documentation.

Virginia Tech – Oh! My dream. Without you, I would be less a person when I die. I even
owe the stone in which you are made of. Such was your impact. Each of my department
faculty and staff, graduate school office bearers – you will remain etched in my life forever.
The concern all of you exhibit is simply mind-blowing.

iv

Friends in CRC – who were my buffer, at all times – Krish, Vignesh, Sriram, Lokendra and
Rajesh. Thanks for humming.

I was never born with them, they became a part of me, and I can now never dislodge them
from my heart. My roommates: Ananth, Kiran, M.A. and Subbu.

My Family, Pattima and associates - without whom, I as a person and a dream chaser, would
never have had the base to take-off. I am for you all.

Thanks again, Everyone.

v

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Related Work . 3

1.3 Contributions . 7

1.4 Document Overview . 10

2 Background 11

2.1 Cloud Service Models . 11

2.2 Microsoft Azure . 12

2.3 Apache Hadoop . 14

2.4 Genome Analysis Toolkit . 16

2.4.1 Overview of File Formats . 17

3 SeqInCloud: Sequence Analysis in the Cloud 20

3.1 Overview . 20

3.2 Design and Implementation . 21

3.2.1 SeqInCloud Workflow Stages . 21

3.3 SeqInCloud Optimizations . 24

3.3.1 Compute Optimizations . 24

3.3.2 Data Transfer Optimizations . 38

3.4 Applicability of SeqInCloud to Other Cloud Platforms 45

vi

4 CloudFlow: Distributed Workflow Manager for the Cloud 48

4.1 Cloudgene Overview . 49

4.2 Design and Implementation . 51

4.2.1 Cloudgene Architecture . 51

4.2.2 CloudFlow Architecture . 53

4.2.3 CloudFlow Features . 53

4.3 CloudFlow Optimizations . 61

4.4 Case Study . 64

4.5 Applicability of CloudFlow to Other Cloud Platforms 69

5 Conclusions and Future Work 70

5.1 Conclusions . 70

5.2 Future Work . 72

Bibliography 73

vii

List of Figures

1.1 Sequencing Progress vs Compute and Storage 2

1.2 DNA Sequencing Cost of Human-sized Genome 3

1.3 Comparison of CloudFlow with Other Solutions 5

2.1 Cloud Service Models . 12

2.2 Components of Azure Blob Service . 13

2.3 HDInsight Service Storage Architecture . 14

2.4 MapReduce Phases . 15

2.5 Variant Analysis Pipeline with GATK from Broad Institute 17

2.6 Sequence Read Formats . 18

2.7 Variant File Format . 19

3.1 SeqInCloud Workflow . 21

3.2 Input BAM Size vs Output Variant File Size 23

3.3 Contig-based Partitioning . 25

3.4 Loci-based Partitioning . 26

3.5 Loci-based Partitioning - The Problem . 26

3.6 Local Realignment - The Problem . 27

3.7 Design of IndelRealigner Stage . 28

3.8 Mix of Contig and Loci-based Approach for Local Realignment Stage (SeqIn-
Cloud 1.0 vs SeqInCloud 2.0) . 29

3.9 SeqInCloud 2.0: Optimized SeqInCloud Workflow 30

3.10 Feasible Input/Output Storage Resource for the “Mix” Mapping. 31

viii

3.11 Comparison of Baseline and SeqInCloud Execution Time of Entire Workflow
(Except Alignment Stage) for Datasets NA12878 and NA21143. 33

3.12 Execution Time of the Major Stages in SeqInCloud for the 24.3 GB NA10847
Dataset. 34

3.13 Execution Time of the Major Stages in SeqInCloud for the 11 GB NA21143
Dataset. 35

3.14 Performance Comparison of SeqInCloud 1.0 vs SeqInCloud 2.0 37

3.15 Execution Time of the Workflow and the Individual Stages for NA19066
Dataset with Increasing Number of Nodes. 38

3.16 Execution Time of “All HDFS”, “Mix” and “All Blob” Mappings. 39

3.17 Reference-based Compression . 40

3.18 Acceleration Using GPU . 42

3.19 Dataset Used for Evaluation . 42

3.20 Breakeven Point for Reference-based Compression 43

3.21 Performance Improvement and Storage Savings for NA10847, NA21143 and
NA12878 Datasets Due to Compression Using a 14-node On-premise Hadoop
Cluster. 44

3.22 Evaluation of GPU Acceleration Using CUSHAW 45

4.1 Cloudgene Modules . 50

4.2 Cloudgene Manifest File . 50

4.3 Cloudgene Job Submission Architecture . 52

4.4 CloudFlow - High Level Architecture . 54

4.5 CloudFlow User Interface . 55

4.6 CloudFlow DAG Configuration . 56

4.7 CloudFlow DAG Example Configuration . 57

4.8 CloudFlow Hybrid Cloud Support . 58

4.9 CloudFlow Data-Dependency Configuration 59

4.10 CloudFlow Data-Dependency Table . 60

4.11 CloudFlow Data-Dependency Flowchart . 65

ix

List of Tables

4.1 Data-Dependency Table – Initial Values . 68

4.2 Data-Dependency Table – After Data Transfer 68

x

Chapter 1

Introduction

1.1 Motivation

Today, next-generation sequencing (NGS) technologies generate data at a rate much faster

than that of the growth of compute and storage capacity [1, 2, 3]. The growth of compute

capacity is given by Moore’s law, which states that the number of transistors doubles every

two years. The growth of storage capacity is given by Kryder’s law, which states that the

storage capacity or the storage density doubles every thirteen months. Fig. 1.1 shows that the

rate of growth of sequence data is faster than the growth of compute and storage capacity [4].

In addition, to further support this trend, the cost of sequencing a human-sized genome

has come down rapidly from 95 million US dollars in 2001 to twenty thousand US dollars

in 2011 [5], as shown by Fig. 1.2. As a consequence, storing and analyzing genomic data

has become a fundamental “big data” challenge due to the high cost associated with own-

ing and maintaining on-premise compute resources. Cloud computing offers an attractive

model where users can access compute resources on-demand and scaled according to their

1

Nabeel M. Mohamed Chapter 1. Introduction 2

Figure 1.1: Sequencing Progress vs Compute and Storage

needs. The cloud computing model also enables the easy sharing of public dataset and helps

to facilitate large-scale collaborative research, accelerated using Azure content delivery net-

work (CDN) [6] support. As such, cloud computing has gained increasing traction in the

bioinformatics community.

In spite of the above advantages with cloud computing, its adoption is not as fast as expected.

Life scientists are reluctant to move to the cloud due to data-security concerns, data-transfer

overhead, and unavailability of an easy-to-use interface to configure cloud-enabled workflows.

Our work seeks to address these issues by studying the challenges behind running large-e,scale

data-intensive workloads in the cloud and further use this knowledge to design a feature-

rich MapReduce-based workflow manager to configure and monitor bioinformatic workflows.

Here, data-intensive workloads refer not only to the volume of data accessed from storage

or transferred via network (I/O rate), but also the processing required to convert the data

to an usable form (compute rate). So, data-intensive workloads are typically both I/O and

compute intensive.

Nabeel M. Mohamed Chapter 1. Introduction 3

Figure 1.2: DNA Sequencing Cost of Human-sized Genome

1.2 Related Work

In recent years, there has been a steep increase in the number of bioinformatic applications [7]

and workflows [8, 9, 10, 11, 12, 13, 14] that use MapReduce [15] framework, a large percentage

of which runs in the cloud [16, 17, 18, 19].

Crossbow [12] and Myrna [10] implement workflows for single-nucleotide polymorphism

(SNP) discovery and RNA-Seq differential expression analysis, respectively, in the cloud.

Crossbow uses Bowtie [20] to align reads in the map phase, sorts alignments by genomic

region, and uses SOAPsnp [21] for SNP discovery. Both use Hadoop Streaming [22] to

implement the workflow. CloudBurst [23] is a parallel read-mapping algorithm that is op-

timized using Hadoop MapReduce. The Genome Analysis ToolKit (GATK) [24, 25] is a

MapReduce-like framework, which provides various sequence analysis tools that are exten-

sively used by SeqInCloud. While GATK does not support distributed parallelism, it does

provide a command-line scripting framework, GATK-Queue [26], to implement workflows.

GATK-Queue can run jobs in batch processing systems like Oracle Grid Engine [27]. GATK-

Nabeel M. Mohamed Chapter 1. Introduction 4

Queue recommends partitioning the workflow by chromosome, but this causes an uneven

distribution of workload, resulting in stragglers adversely affecting the performance of the

workflow.

Pireddu et al. [13, 28] discuss Seal, a workflow that uses Pydoop [29] and BWA to implement

short-read mapping and duplicate removal. Seal provides its own implementation of de-

duplication and covariate table calculation using the MapReduce framework. In HugeSeq [8],

Lam et al. discuss a three-stage workflow, which uses GATK in their pipeline. HugeSeq does

not use the MapReduce framework and runs on Sun Grid Engine (SGE) clusters. HugeSeq

also partitions the dataset by chromosome, which exhibits a load imbalance problem similar

to GATK-Queue. In SIMPLEX [14], Fischer et al. discuss a cloud-enabled autonomous

exome analysis workflow, which is implemented as a web service and shipped as a cloud

image for ease of use. It uses GATK for recalibration and SNP discovery, but does not

parallelize it using the MapReduce framework.

Abhishek Roy et al. [9] discusses a deep analysis pipeline that uses association mining to

discover patterns with both statistical significance and biological meanings. The authors

specify that their pipeline considers MapReduce-style processing for implementing quality

score recalibration. Leo et al. [30] evaluated BLAST, GSEA, and GRAMMAR using the

MapReduce framework and observed that the MapReduce cluster is efficiently utilized only

for a fraction of the jobs running time and the best job execution time is achieved when

the number of map tasks is same as the total number of CPU cores in the cluster. In

CloudBLAST [31], Matsunga et al. parallelized BLAST using MapReduce framework and

observed that the virtualization overhead is minimal if the application is compute intensive

and the I/O working set fits completely in the aggregate cluster memory.

Compared to these parallel GATK studies, SeqInCloud delivers a significantly more portable

and scalable design and offers several cloud-specific optimizations that can be applied in any

Nabeel M. Mohamed Chapter 1. Introduction 5

of the above environments.

There is limited work in the area of cloud and Hadoop [32] aware workflow managers that

are used to compose and run MapReduce based pipelines. Our solution, “CloudFlow” built

on top of Cloudgene [33] seeks to fill this void. We based our solution on Cloudgene as

it is easy to configure and intuitive to use. Cloudgene is built using components that are

platform-independent like ExtJS [34], Restlet [35], and JSON [36] and offers a rich feature

set compared to the existing approaches.

Fig. 1.3 provides a comparison of CloudFlow with existing MapReduce-based workflow man-

agers.

Features CloudFlow Cloudgene Oozie
Kepler +

Hadoop

Amazon

EMR

Azure

HDInsight
CloVR Tavaxy

MapReduce support

DAG Support

Automated data
dependency

Hybrid cloud support

On demand cloud

provisioning

Plugin support

Triggers

Tools

Extensibility

Figure 1.3: Comparison of CloudFlow with Other Solutions

Oozie [37] is a workflow scheduler used to configure, run, and monitor MapReduce jobs.

The configuration of MapReduce workflows via Oozie is not very intuitive, as users have to

provide low-level configuration details like the mapper/reducer class, InputFormat, and so

on. Oozie does not implement automated data-dependency handling mechanisms between

client and cloud clusters in a hybrid environment and hence puts the burden on the user to

Nabeel M. Mohamed Chapter 1. Introduction 6

ensure that the data is ready and available.

Kepler [38] is in the early stages of integration with Hadoop and aims to provide an easy-to-

use interface to compose, execute, and monitor MapReduce applications in Kepler workflows.

Kepler also requires a low-level configuration like Oozie and is not very intuitive to use for

domain scientists. In addition, Kepler does not integrate with existing cloud providers and

hence does not have any on-demand provisioning or automated data-dependency handling

support.

Clovr [39] is implemented as a portable virtual machine (VM) image that provides several

automated pipelines. Clovr VMs can utilize either client or cloud resources, but not both

simultaneously. Clovr supports automatic provisioning of cluster resources during pipeline

execution and offers customizable VM images that can execute on multiple platforms. Clovr

is built using different components like Ergatis [40], a workflow system and Vappio [41],

which is built on top of the Amazon EC2 API [42] and is used for managing EC2 clusters.

Clovr currently runs on grid resources and is not MapReduce-enabled.

The commercial cloud providers, i.e., Amazon and Microsoft, provide their own workflow

managers, Amazon EMR [43] and Azure HDInsight with Oozie support [44], respectively.

Amazon EMR lacks most of the features. Azure HDInsight uses Oozie for MapReduce

workflows and hence has the same feature set as Oozie.

Tavaxy [45] is a workflow management system that combines Taverna [46] and Galaxy [47]

sub-workflows. Tavaxy supports simultaneous use of local infrastructure and remote re-

sources using web services and triggers. However, Tavaxy does not support MapReduce-

based workflows.

Compared to the above discussed MapReduce-based workflow systems, none of them provide

support for handling automatic data-dependency in hybrid cloud environments, where the

Nabeel M. Mohamed Chapter 1. Introduction 7

client and cloud resources can be simultaneously utilized by the workflow scheduler. In addi-

tion, CloudFlow offers an unique flexibility for the users to define data-transforming plugins,

like a plugin for compression/encryption that can be used before and after transferring data

between client and cloud clusters.

1.3 Contributions

In this work, we address the following objectives,

• Understand the challenges of running data-intensive scientific applications in the cloud,

e.g., Microsoft Azure.

• Devise a robust data management and analysis software to accelerate data-intensive

bioinformatic pipelines on Azure. Optimize the data management framework to employ

semantic-based transformations and accelerate data transfers to the cloud.

• Based on our experiences of running such data-intensive workloads, design a flexible

workflow management system to compose, run, and monitor data-intensive bioinfor-

matic pipelines using a hybrid setup of client and cloud resources.

We first focus on accelerating a widely used, genome-analysis pipeline [48] built atop Burrows-

Wheeler Aligner (BWA) [49] and the Genome Analysis Toolkit (GATK)1 framework [24, 25]

on Microsoft Azure [50], a platform-as-a-service (PaaS) cloud environment. Parallel imple-

mentations of the GATK pipeline in cluster environments have been investigated in several

previous studies [13, 8, 26]. While these implementations can be deployed on infrastructure-

as-a-service (IaaS) clouds such as Amazon EC2, they require external software packages (e.g.,

1Our current implementation of SeqInCloud uses the latest open-source version of GATK (i.e., version
1.6). We note that our design approach and optimization techniques should be applicable to subsequent
GATK versions.

Nabeel M. Mohamed Chapter 1. Introduction 8

Pydoop and Oracle Grid Engine) that are not available on PaaS clouds such as Microsoft

Azure. In addition, existing parallel GATK implementations are designed for clusters where

node failures are rare, and thus not suitable for cloud environments where node failures are

rather norm.

To address the above issues, we present SeqInCloud, short for “sequencing in the cloud”

and pronounced as “seek in cloud.” SeqInCloud seamlessly integrates all the stages in the

GATK pipeline with the Hadoop [32] framework in order to maximize portability. By doing

so, SeqInCloud can be easily deployed on PaaS and IaaS clouds as well as on on-premise

clusters. The tight integration with Hadoop also enables SeqInCloud to leverage Hadoop’s

fault-tolerant features to transparently handle node failures in cloud environments.

In addition, SeqInCloud offers a number of novel features that are critical to the cost and

performance in cloud environments:

• In existing parallel GATK implementations, parallelism is achieved by partitioning the

input data by contig2 (e.g., chromosome). Due to the limited number of contigs and

the large variation in contig sizes, such a partition-by-contig approach suffers from

limited scalability and load imbalance, resulting in wasted cloud resources. To address

this issue, SeqInCloud adopts a highly scalable design that allows data processing to

be partitioned by loci or genome location, a much finer level of parallelism.

• To optimize network costs, SeqInCloud enables application-level compression by con-

verting the Binary Alignment/Map (BAM) [51] format to a reference-based compres-

sion format like CRAM [52] before transferring data to the cloud. The compressed

CRAM file is typically 40% to 50% smaller than the original BAM file. In addition,

SeqInCloud optimizes storage costs by converting the CRAM file to a lossless BAM

2A sequence contig is a contiguous, overlapping sequence read from paired-end sequencing.

Nabeel M. Mohamed Chapter 1. Introduction 9

file for downstream analysis in the cloud.

• SeqInCloud can also use graphics processing units (GPUs) to improve workflow per-

formance by pre-processing the data using a GPU-based aligner, before transferring it

to the cloud. Overall, we observed 33% to 50% improvement in workflow performance

with the data-transfer optimizations.

• To improve I/O performance, SeqInCloud maps input and output data across the

storage hierarchy on Azure, including the local filesystem, Azure Blob [53], and Hadoop

Distributed Filesystem (HDFS), according to their I/O characteristics. Experiments

show that our storage-mapping approach can achieve a performance improvement of

20% compared to uniformly storing all data on HDFS.

Based on our experiences from running large-scale, data-intensive bioinformatic workflows

on Azure, e.g., SeqInCloud, we have designed a MapReduce-based workflow management

system that we call CloudFlow. CloudFlow allows users to easily compose flexible data-

processing pipelines on distributed cloud resources, e.g., a hybrid environment of client and

cloud resources. CloudFlow offers the following features on top of Cloudgene, which makes

it superior for the distributed execution of MapReduce pipelines, such as SeqInCloud, in a

hybrid cloud environment:

• Support for processing DAG-based3 MapReduce pipelines

• Support for on-demand provisioning of cloud resources

• Support for automated data-dependency handling (automatic data transfers) between

different workflow stages running in a hybrid environment

3DAG: directed acyclic graph

Nabeel M. Mohamed Chapter 1. Introduction 10

• User-defined plugins for byte-level or context-based data transformations before ex-

changing data between client and cloud resources

Impacts of Our Work: There are two majors impacts of our work,

• SeqInCloud accelerates a popular genetic variant discovery pipeline, thus enabling life

scientists to quickly determine the cause for diseases like cancer, for example.

• The goal of cloud-enabled software frameworks like SeqInCloud and CloudFlow is to

increase the adoption of cloud computing among domain scientists by addressing the

challenges and shortcomings of running data-intensive scientific applications in the

cloud. This enables domain scientists to focus their energy towards optimizing their

domain science rather than worrying about the computer science aspects like configu-

ration and setup, data management, and so on.

1.4 Document Overview

The rest of this thesis is organized as follows. Chapter 2 presents background information

about (i) Microsoft Azure and HDInsight service, which is the Windows implementation

of Apache MapReduce, (ii) Apache Hadoop and MapReduce, and (iii) Genome Analysis

Toolkit. In Chapter 3, we discuss the design and implementation of SeqInCloud to support

fine-grained, loci-based partitioning, the various compute- and data-transfer optimizations

to efficiently utilize the cloud resources and discuss the results. In Chapter 4, we present

the current design of Cloudgene and provide detailed information on the different features

that CloudFlow implements on top of Cloudgene. We also discuss the various data-transfer

optimizations that CloudFlow incorporates. Finally, in Chapter 5 we give a brief summary

of our tools and discuss the future work.

Chapter 2

Background

2.1 Cloud Service Models

The cloud clients provide an interface to communicate with the cloud resources. These are

usually web browsers, mobile application, or some kind of terminal emulators. Software as

a Service (SaaS) is a software delivery model where the software and its associated data are

centrally hosted on the cloud. The Platform as a Service (PaaS) model provides a computing

platform and solution stack as a service. Here the cloud users create software using the tools

or libraries provided by the cloud provider. The Infrastructure as a Service (IaaS) model

provides physical or virtual machines as a service. Here, the entire software stack from the

operating system to the application software has to be installed and managed by the cloud

users. These service models are depicted in Fig. 2.1 [54].

11

Nabeel M. Mohamed Chapter 2. Background 12

Software as a Service (SaaS)

Platform as a Service (PaaS)

Infrastructure as a Service (IaaS)

Figure 2.1: Cloud Service Models

2.2 Microsoft Azure

Windows Azure [50] is a cloud service offered by Microsoft that enables one to deploy, build,

and manage applications across Microsoft-managed data centers. Microsoft offers a wide

range of cloud-based solutions. A brief description of the relevant ones are provided below.

Our work extensively makes use of the big data and storage service.

• Infrastructure is an infrastructure-as-a-service (IaaS) offering, where the users can

spin up new Windows Server or Linux virtual machines on-demand and pay only for

their usage.

• Big Data enables users to unearth insights from big data and drive business decisions.

This is enabled with Azure HDInsight [44], which is a PaaS-based big data solution

powered by a Windows implementation of Apache Hadoop. HDInsight services for

Windows Azure makes Apache Hadoop available as a service in the cloud.

Nabeel M. Mohamed Chapter 2. Background 13

Figure 2.2: Components of Azure Blob Service

• Storage, Backup and Recovery is powered using Windows Azure storage services

that are provisioned across Microsoft’s eight region-wide data centers. Azure storage

provides scalable, secure, and highly reliable storage services like blob, tables, and

queues. Blob storage is a service for storing large amounts of unstructured data in

the cloud accessed via http[s]. The Blob service contains the components as shown in

Fig. 2.2 [55]:

Storage Account: This is the highest level of the namespace for accessing blobs. An

account can contain an unlimited number of containers limited by a total size of 100 TB.

Storage Container: A container can store an unlimited number of blobs. All blobs

must be in a container. When mapped to a typical file system hierarchy, containers

could be visualized as a directory that can hold other directories or files.

Blob: A blob [53] can be a page or block blob. A block blob can be up to 200 GB in

size and is used to represent large files. Page blobs are a collection of 512-byte pages

and are optimized for random read and write operations. The page blob can be up to

1 TB in size.

Nabeel M. Mohamed Chapter 2. Background 14

HDFS API

DFS ASV

HDFS API

DFS ASV

HDFS API

DFS ASV

Container 1 Container 2 Container n

Master Worker Node Worker Node

Figure 2.3: HDInsight Service Storage Architecture

The HDInsight service provides access to both the distributed file system that is both locally

attached to the compute nodes, accessed by HDFS URI (hdfs://) and the data stored in blob

storage containers, accessed by ASV URI (asv://).

2.3 Apache Hadoop

Hadoop is an open-source implementation of a computational paradigm named MapReduce,

derived from Google’s MapReduce [15] and Google File System (GFS) [56] papers. Hadoop

has two major subsystems: MapReduce framework and Hadoop Distributed File System

(HDFS). MapReduce, as shown in Fig. 2.4, is a functional programming framework, which is

used to process massive amounts of data in a distributed fashion on large-scale commodity

clusters. The MapReduce framework exposes two major primitives: map and reduce. The

map phase takes input key-value pairs and translates them into intermediate key-value pairs.

Nabeel M. Mohamed Chapter 2. Background 15

Split 0

Split 1

Split 2

Split 3

Split 4

Mapper

Mapper

Mapper

Reducer

Reducer HDFS

HDFS

Input File

Sort/Spill

Shuffle

Sort/Merge Output File

Figure 2.4: MapReduce Phases

The reduce phase converts the intermediate key-values into final key-value pairs and writes

the output to HDFS. The input and output data are stored in HDFS, while the intermediate

data are stored in the local file-system. In addition to defining the map and reduce functions,

the users of the framework have to define the InputFormat for the job. The InputFormat

defines how the data needs to be split for processing by multiple mappers and also defines

a RecordReader, which identifies logical record boundaries from the split and emits them

as key-value pairs to the mappers. The output from each mapper is then sorted by the

framework, where an optional combiner could be used to combine identical keys and reduce

inter-node traffic between mapper and reducer. The output keys from the mappers have to

be partitioned among multiple reducers and this is defined by a Partitioner.

HDFS consists of a master Namenode process that manages the filesystem namespace and

maintains the metadata for the entire filesystem tree. The Datanode process runs on each

cluster node and stores the file data in its local filesystem. The data in HDFS is split

into 64 MB blocks (by default) and is distributed among the cluster nodes. The Namenode

maintains the list of blocks and node mappings for each file in the filesystem. The MapReduce

Nabeel M. Mohamed Chapter 2. Background 16

framework assigns input splits to a mapper process on a best-effort basis, such that the data

can be locally accessed by the mapper without remote accesses.

2.4 Genome Analysis Toolkit

GATK is a software library, written in Java, that provides tools for analyzing next-generation

sequencing (NGS) data. GATK is organized into data traversals and data walkers. The data

traversals access the data set and provide data to the data walker, which processes the data.

The data traversal is done either on a per-read basis or on a per-genome location basis. Our

solution modifies GATK to read and write data from/to HDFS and write variants in variant

call format (VCF) to HDFS. In addition to this, a few walkers were modified to output data

directly to the reducer, rather than writing it to the local filesystem.

GATK inherently supports three kinds of parallelism: shared memory parallelism, where par-

allelism is achieved on a single node using multiple threads, scatter-gather (SG) parallelism,

where multiple GATK instances that run on the same/different node are assigned with its

own exclusive genome interval to work on, and distributed parallelism, which is a coordinated

SG parallelism where multiple GATK instances work on the same dataset and is no longer

a supported feature. The SG parallelism works well for walkers that are locus-based and

hence independent per site. Otherwise, the level of parallelism is determined by the number

of unique contigs in the data set. The SG parallelism is automated using a command-line

scripting framework called GATK-Queue. GATK-Queue is used to build genome analysis

pipelines that run on batch processing compute farms like Grid Engines.

The variant analysis pipeline recommended by MIT Broad Institute has three phases: (1)

NGS data processing, which takes raw reads as input and outputs analysis ready reads, (2)

variant discovery and genotyping, which takes analysis-ready reads as input and outputs

Nabeel M. Mohamed Chapter 2. Background 17

raw variants, and (3) integrative analysis, which takes raw variants as input and produces

analysis-ready variants. This is depicted in Fig. 2.5 [48].

C
o
n
ti
g

Lo
ci

Figure 2.5: Variant Analysis Pipeline with GATK from Broad Institute

2.4.1 Overview of File Formats

This section gives a brief overview of the different file formats used in the genome analysis

pipeline. Fig. 2.6 gives an instance for each format.

Unaligned Reads (FASTQ file). The DNA sequences or unaligned reads emitted by

sequencers are stored in the FASTQ format. The FASTQ file uses four lines per read. The

first line begins with a ’@’ character and is followed by a sequence identifier and optional

description. The second line contains the read or DNA sequence. The third line contains

the ’+’ character and the last line encodes the quality values of the read.

Nabeel M. Mohamed Chapter 2. Background 18

Aligned Reads (SAM/BAM/CRAM file). The aligned reads can be stored in a text

format called Sequence Alignment Map (SAM) [51], compressed format called Binary Align-

ment Map (BAM), or a reference-based compressed format called CRAM [52]. An aligned

read has the necessary information to determine the exact location where the read aligns to

a reference genome, with additional tags that specify the mismatches/gaps in the alignment.

A single-end aligned read is independent, whereas as paired-end aligned read is always as-

sociated with another read, termed as its mate pair. Both the reads in a mate pair stores

alignment information of the other. The maximum allowed difference between the alignment

location of the mate pairs is termed as the insert size. The CRAM format uses reference-

based compression, i.e., instead of completely storing the sequence, the difference between

the sequence and reference data is stored. This reduces the file size by 40% to 50% on aver-

age. The SAM/BAM file can be re-generated later from the CRAM file with the help of the

reference genome.

@SRR016607.1157 BI:302GJAAXX090504:8:1:10:1927 length=50
TATCCAGAGCTGTCTCCCTCTCTTTCAGTTTCAAGGCCTCGATTTCTGTC
+
IIIIIIIIIIIIIIIIIIIIIIIIIIIIGIHIIIII@BII;1I:H@HE6:I7A

.fastq file - DNA Sequence (Raw Read)

SRR016607.1157 163 chr22 16050000 15 48S31M21S = 0 0 TATCCAGAGCTGTCTCCCTCTCTT
TCAGTTTCAAGGCCTCGATTTCTGTC IIIIIIIIIIIIIIIIIIIIIIIIIIIIGIHIIIII@BII;1I:H@HE6:I7A RG:Z:foo

.sam / .bam file – Single-end Aligned Read

Figure 2.6: Sequence Read Formats

Genetic Variants (VCF file). The genetic variations between the input DNA sequence

and the reference genome is represented in a variant call format (VCF) file [57], as shown

Nabeel M. Mohamed Chapter 2. Background 19

in Fig. 2.7. VCF is a text file format that contains multiple data lines. Each line provides

variation in a single genome location (loci), if there is a difference between the input DNA

sequence and the reference at this loci. The variation could be a single nucleotide (SNP),

insertion, or a deletion.

20 61795 . G T 1437.08 . AC=1;AF=0.50;AN=2;BaseQRankSum=-3.496;DP=106;
21 Dels=0.00;FS=6.389;HRun=0;HaplotypeScore=0.5784

.vcf file – Variant file

Figure 2.7: Variant File Format

Chapter 3

SeqInCloud: Sequence Analysis in the

Cloud

3.1 Overview

Fig. 3.1 shows a SeqInCloud workflow, implemented using the Azure HDInsight cloud frame-

work. SeqInCloud [58] uses the Hadoop MapReduce framework and runs the workflow in a

distributed fashion using multiple compute nodes provisioned in the cloud. The workflow

starts with the alignment stage, which uses our own distributed implementation of BWA

and supports both single- and paired-end sequence alignment. The aligned reads are sorted,

merged, and fed into a local realignment stage, which uses the RealignerTargetCreator and

IndelRealigner walkers1 from GATK. The realigned reads are fixed for discrepancy in mate

information using Picard’s FixMateInformation, de-duplicated using Picard’s MarkDupli-

cates, and re-indexed. The quality score of the de-duplicated reads are recalibrated using

1GATK is structured into walkers and traversals. GATK walkers are analysis modules that process data
fed by the GATK traversals.

20

Nabeel M. Mohamed Chapter 3. SeqInCloud 21

CountCovariates and TableRecalibration walkers. This is followed by the identification and

filtering of structural variants (SNP and INDELS) using UnifiedGenotyper and VariantFil-

tration walkers. Finally, the variants are merged using CombineVariants walker. SeqInCloud

takes FASTQ file (couple of them for paired end alignment) as input and emits both struc-

tural variants in VCF format and analysis ready reads in BAM format. The input and

output varies if one attempts to selectively run different combination of stages, using the

command line interface.

Align (BWA) .….. Align (BWA)

Sort Sort.…..

Merge & Index

Local-

Realignment &

Sort

Local-

Realignment &

Sort
...

MarkDuplicate MarkDuplicate…

...Count

Covariate
Count

Covariate

Merge Covariates

Table

Recalibration

Table

Recalibration
...

Genotyper &

Variant Filter

Genotyper &

Variant Filter
...

Combine

Variants

Merge BAM

File

FASTQ file

VCF file BAM file

Figure 3.1: SeqInCloud Workflow

3.2 Design and Implementation

3.2.1 SeqInCloud Workflow Stages

Here we present design details on the various stages in SeqInCloud, in particular, sequence

alignment, local realignment, and base quality recalibration and variant calling.

Nabeel M. Mohamed Chapter 3. SeqInCloud 22

Sequence Alignment

SeqInCloud uses BWA [59] to run both single- and paired-end sequence alignment in the

MapReduce framework. SeqInCloud utilizes the Windows port of BWA from [60]. The input

FASTQ file(s) are split into multiple fragments by the mappers. The number of fragments

are same as the number of reduce slots in the cluster. These fragments are aligned in parallel

by the reducers. Considering the human reference genome, per compute node, BWA requires

about 3-4 GB of memory, and the Hadoop daemons require about 2 GB of memory. If the

compute nodes are medium-sized Azure virtual machine (VM) instances that have a fixed

memory limit of 3.5 GB, there would be resource constraints and running BWA under such

constraints results in “out of heap space” memory errors. To address these errors and to

provide more flexibility in VM provisioning, SeqInCloud provides the flexibility to offload

the sequence-alignment stage either completely or partially to on-premise resources. The

resulting BAM files are then transferred to the cloud using application-level compression

(e.g., conversion to CRAM), as described in Section 3.3.2.

Local Realignment

The local realignment stage consists of two steps: (1) identifying suspicious alignment in-

tervals that require realignment and (2) running the realigner. The suspicious intervals

are identified using GATK’s RealignerTargetCreator, which is a locus-based walker that is

capable of processing read sequences independently by intervals. The realignment is done

using GATK’s IndelRealigner, which is a read-based walker, that mandates a single GATK

instance to process read sequences from the same contig.

Nabeel M. Mohamed Chapter 3. SeqInCloud 23

Base Quality Recalibration & Variant Calling

The base quality recalibration consists of two steps: CountCovariate and TableRecalibration.

The CountCovariate stage determines new empirical quality score used for recalibration. This

is followed by the TableRecalibration step, which rewrites the quality score of the reads with

the empirical quality values calculated by the CountCovariate stage. The structural variants

are identified using UnifiedGenotyper, which is a locus-based GATK walker used for SNP

and indel calling. A single MapReduce job is used for both TableRecalibration and Uni-

fiedGenotyper stage to improve performance. In addition, the recalibrated BAM files from

the TableRecalibration stage are written to the local filesystem (local FS), which provides

10- to 15-fold faster write throughput than HDFS (verified using Hadoop TestDFSIO bench-

mark). The UnifiedGenotyper processes recalibrated BAM files directly from the local FS.

The recalibrated BAM files and variants (using CombineVariants walker) are finally merged.

The variants are stored in a variant call format (.vcf) file, as discussed in the section 1.4.

The variant files are very small compared to the input BAM file, and the size of the variant

file completely depends on the number of genetic variants in the input dataset (Fig. 3.2). As

a result, there cannot be a definite model to predict the size of the variants from the input

dataset size.

Input BAM size (GB) Output VCF size (MB)

6.25 179

12.5 533

25 604

50 754

Figure 3.2: Input BAM Size vs Output Variant File Size

The InputFormat and RecordReader for handling BGZF-compressed BAM files are used from

Nabeel M. Mohamed Chapter 3. SeqInCloud 24

the Hadoop BAM [61] library. The RecordReader provided by Hadoop BAM is extended

in SeqInCloud to define genomic intervals or loci for each GATK instance invoked by the

Hadoop mapper process.

3.3 SeqInCloud Optimizations

In this section, we present several techniques aimed at optimizing the execution cost of Se-

qInCloud in cloud environments. This section discusses both the compute and data transfer

optimizations implemented by SeqInCloud.

3.3.1 Compute Optimizations

Fine-Grained Partitioning

SeqInCloud partitions the dataset by loci corresponding to each MapReduce split rather

than by contig. This ensures high scalability and well-balanced work distribution among

mappers/reducers.

As shown in figure 3.3, the alignment stage is embarrassingly parallel and hence can be

partitioned based on the number of cores/nodes. However, the intermediate stages can be

partitioned only by chromosome/contig (a single GATK instance assigned to process a single

contig/chromosome) to ensure functional correctness, with the final stage (Genotyper) being

an exception. As a result, contig-based partitioning heavily relies on the distribution of reads

across contigs in the input dataset. For example, if the reads are clustered to a particular

contig, the mapper/reducer processing this contig runs for a longer duration. This creates

an imbalance in the workload distribution and skews the overall execution time, which in

turn leads to under-utilization of cluster resources. In addition, contig-based partitioning

Nabeel M. Mohamed Chapter 3. SeqInCloud 25

imposes an upper bound on scalability because it cannot scale beyond the number of unique

contigs in the input dataset, irrespective of the number of available cluster nodes.

Partition

Fastq file

fastq

fragment 1

fastq

fragment 2

fastq

fragment n

Align Align Align

chr1 chr2 chr3

N

O

D

E

2

Per Chromosome Lane

Alignment Stage

(Embarrassingly Parallel)

Intermediate stages

(bottleneck – max 3 nodes)

Loci Lane Loci Lane Loci Lane

Chr1:

51 – 100
Chr1:

1 – 50

Chr1:

101 – 150
Chr3:

51 – 100

Chr3:

1 – 50
Chr3:

101 – 150

Chr2:

51 – 100

Chr2:

1 – 50
Chr2:

101 – 150

N

O

D

E

1

N

O

D

E

3

fastq

fragment 1

fastq

fragment 1

Align Align

…… …… ……

Genotyper stage

(Embarrassingly Parallel)

……

Figure 3.3: Contig-based Partitioning

In the case of data partitioning by loci, as shown in Fig. 3.4, the input dataset can be

partitioned at a finer granularity than contig-based partitioning. This enables multiple

GATK instances or mappers to process data belonging to the same contig/chromosome,

which improves scalability of the pipeline and ensures equal distribution of work among the

mappers. In addition, each partition is processed by a mapper process and corresponds to

a MapReduce split for which the mapper has local access to. This reduces inter-node data

accesses. After partitioning the input data by loci, multiple GATK instance can process

each partition. Each instance further subdivides the genome interval corresponding to its

partition into sub-intervals and processes them. However, implementing a genome analysis

pipeline that is purely based on loci-based processing introduces performance bottlenecks to

certain stages in the pipeline, which will be discussed later.

Nabeel M. Mohamed Chapter 3. SeqInCloud 26

Figure 3.4: Loci-based Partitioning

Enabling loci-based partitioning and processing introduces functional incorrectness, as the

reads belonging to the same contig/chromosome would be processed by different processes,

as shown in Fig. 3.5.

ATGCATGCATGCATG

ATGCATGCATGCATG

ATGCATGCATGCATG

ATGCATGCATGCATG

ATGCATGCATGCATG

ATGCATGCATGCATG

Chr 1

Node 1

Chr 1

Node 1 Node 2

Chr1: X to Y Chr1: P to QChr1

Data
dependency

Figure 3.5: Loci-based Partitioning - The Problem

SeqInCloud provides the following mechanisms to enable loci-based processing for the Local

Realignment and CountCovariate stages.

Nabeel M. Mohamed Chapter 3. SeqInCloud 27

Local Realignment Stage:

Enabling loci-based partitioning for the local realignment stage results in the following prob-

lem: If a read is realigned, its new alignment location has to be updated in its mate pair

and vice versa. This is not possible if realignment for a read and its mate pair is handled by

different GATK instances, as it leads to incorrect results, shown in Fig. 3.6. In this figure,

the read processed by “GATK Instance 2” is realigned from its original location 16050000

to 16050010. This new location is not updated in its mate pair as it is processed by another

instance “GATK Instance 1”. The mate pair still points to the original location (16050000)

of its mate. Due to this restriction, the maximum parallelism that can be achieved for the

indel realignment step is equal to the number of contigs the input BAM file spans across.

So, in a sample data set, if all the reads are aligned to a single contig (e.g., chr20), the

realignment step cannot run in parallel using multiple GATK instances.

Figure 3.6: Local Realignment - The Problem

SeqInCloud introduces a novel and scalable solution that enables multiple GATK instances

Nabeel M. Mohamed Chapter 3. SeqInCloud 28

to process read sequences from the same contig. This is achieved by using information

on the maximum insert size between a read and its mate pair that GATK considers for

realignment. GATK’s IndelRealigner defines this as 3000 bases by default. Our solution, as

shown in Fig. 3.7, adjusts the genomic interval provided as an input to each GATK instance,

such that there is a window of maximum insert size base locations on either side of the

actual interval the split spans across. For example, if a split spans across an actual interval

of chr1: x-y, the adjusted interval would be chr1: (x-3000)-(y+3000), capped by the length

of the contig. Invoking each instance of IndelRealigner in this fashion includes additional

reads that provide the necessary mate information to realign reads in the actual interval.

The reads in the dummy region are realigned and emitted as part of the MapReduce split

they belong to.

ATGCATGC
ATGCATGC
ATGCATGC
ATGCATGC
ATGCATGC
ATGCATGC

ATGCATGC

ATGCATGC

ATGCATGC

ATGCATGC

ATGCATGC

M
ap

re
d

 S
p

lit

P

Q

P – Insert Size

Q + Insert Size

A
ct

u
al

 In
te

rv
al

Dummy
region

Dummy
region

Mapper 1 Mapper 2 Mapper 3 Mapper 4

Split 1 Split 2 Split 3 Split 4

ATGCATGC
ATGCATGC
ATGCATGC
ATGCATGC
ATGCATGC

ATGCATGC
ATGCATGC
ATGCATGC
ATGCATGC
ATGCATGC

ATGCATGC
ATGCATGC
ATGCATGC
ATGCATGC
ATGCATGC

Figure 3.7: Design of IndelRealigner Stage

As shown in Fig. 3.8, the current design of SeqInCloud, also referred to as SeqInCloud 1.0,

does not employ loci-based partitioning in the local realignment stage because this creates

data-dependency between adjacent partitions while processing sequences that belong to the

same contig. As a result, the sorted alignments from the previous stage are merged into a

single BAM file, indexed and then fed as input to the local realignment stage.

This imposes a performance bottleneck, since the merge and index step is carried out by

a single processing instance. The improved design, hereafter referred to as SeqInCloud 2.0,

Nabeel M. Mohamed Chapter 3. SeqInCloud 29

Local-
Realignment

Local-
Realignment

Index

Local-
Realignment

Sort

Local-
Realignment

Merge

Sort

SeqInCloud 1.0 SeqInCloud 2.0

SortSort

Index

…

…

…

…

…

Index

Align FASTQAlign FASTQ Align FASTQAlign FASTQ… …

Figure 3.8: Mix of Contig and Loci-based Approach for Local Realignment Stage (SeqIn-
Cloud 1.0 vs SeqInCloud 2.0)

addresses this bottleneck by completely eliminating the merge step in the local realignment

stage. It achieves this by using a combination of contig-based partitioning and loci-based

processing approach. The sorted BAM records are partitioned by contig, indexed in parallel

and then fed as input to the local realignment stage. The local realignment step can now

process each contig independently using loci-based approach. This eliminates the merge

step as well as utilizes multiple processing instance to index the BAM fragments in parallel

improving the performance of the pipeline. The resulting optimized workflow, SeqInCloud

2.0 is depicted in Fig. 3.9.

CountCovariate Stage:

The CountCovariates walker from GATK mandates that a single contig/chromosome should

be processed by a single GATK instance to ensure functional correctness. SeqInCloud ad-

dresses this issue by having the mapper processes partition at the loci level and communicate

the covariate values to a single reducer process. The reducer aggregates identical covariates

from all mappers and calculates a new empirical quality score using Phred scores.2 In order

2Phred is the most widely used basecalling program due to its high base calling accuracy.

Nabeel M. Mohamed Chapter 3. SeqInCloud 30

Align (BWA)
.…..

Align (BWA)

Sort Sort.…..

Local-
Realignment &

Sort

Local-
Realignment &

Sort

...

MarkDuplicate MarkDuplicate…

...Count
Covariate

Count
Covariate

Merge Covariates

Table
Recalibration

Table
Recalibration

...

Genotyper &
Variant Filter

Genotyper &
Variant Filter

...

Combine
Variants

Merge BAM
File

FASTQ file

Index Index.…..

Figure 3.9: SeqInCloud 2.0: Optimized SeqInCloud Workflow

to reduce the load on a single reducer process, each node uses a combiner to perform a re-

duction on the map output, i.e., to locally aggregate identical covariates. The final covariate

file from the reducer is used further for the recalibration of reads.

Storage Tiering

SeqInCloud uses different storage resources that are available in the HDInsight environment,

such as Azure Blob, HDFS, and local filesystem. Blob is a Windows Azure storage service

that stores unstructured data in a shared volume. Blob storage is both local- and geo-

replicated for disaster recovery. The HDInsight service supports a new scheme asv:// for

MapReduce jobs to access data directly from blobs, similar to the standard hdfs:// scheme

used for accessing HDFS files.

To measure the read and write throughput of the local FS, Blob, and HDFS, we benchmarked

the systems and, as expected, found that the local FS performed far better than the other

two storage resources. Blob has higher write throughput than HDFS (3x), and HDFS has

Nabeel M. Mohamed Chapter 3. SeqInCloud 31

higher read throughput than Blob (1.4x). In addition to HDFS, MapReduce can directly

process the files that are available in blobs.

We have defined three storage mappings, which use different combinations of storage re-

sources for input/output in the workflow. The “All HDFS” mapping uses only HDFS, the

“All Blob” mapping uses blobs wherever possible, and the “Mix” mapping is structured as in

Fig. 3.10. This is done so that the best-suited storage resource based on the requirement of

each stage and throughput is chosen for input/output (I/O). For example, local FS cannot

be used in places where the data needs to be persistent after the completion of a job. In this

case, the blob is the preferred storage to store the final persistent output of the workflow

due to its higher write throughput and durability (when compared to HDFS).

Table Recalibration

Input: HDFS

Merge BAM

Input: HDFS

Output: Blob

Unified Genotyper

Input: Local

Combine Variant

Input: HDFS

Output: Blob

Output:
HDFS

Output:
Local

Output: HDFS

Figure 3.10: Feasible Input/Output Storage Resource for the “Mix” Mapping.

Results and Discussion

We have evaluated SeqInCloud on a 32-node Azure cluster, where each node is a medium

Hadoop on Azure (HoA) [62] instance. The medium instance is provisioned as a virtual

machine with two cores, 3.5 GB of RAM, and 500 GB of disk space. For the rest of the

paper, we will refer to each VM as a compute node. The compute nodes run Windows Server

Nabeel M. Mohamed Chapter 3. SeqInCloud 32

2008 R2 Enterprise and Hadoop 0.20.203. The MapReduce cluster is configured with 64 map

slots and 32 reduce slots. All experiments were run with a default HDFS block size of 256

MB. We used the following datasets from 1000 Genomes Project [63] in our experiments for

running the stages that follow the alignment stage: a 6-GB BAM file (NA12878) mapped

to chr20 and an 11-GB (NA21143) and 30-GB (NA10847) BAM file mapped to an entire

reference genome. The known variants database [64] used for count covariates stage is

dbsnp 135.b37.

Baseline Performance vs. SeqInCloud Performance

SeqInCloud partitions the input data by loci for the entire workflow. This results in maximal

utilization of cloud resources. Fig. 3.11 shows total execution time (in minutes) for local

realignment, quality recalibration, and genotyper stages in the workflow, using contig- and

loci-based partitioning. Contig-based partitioning serves as the baseline and uses local FS

for input/output. In general, existing parallel GATK implementations use contig-based

partitioning and rely on shared storage systems like Network File System (NFS) to access

the input/output data. Due to the lack of shared storage in HoA cloud environment, we used

the following procedure to obtain the baseline results. The entire BAM file and the reference

genome were distributed to the local FS of all cluster nodes, and each node was dynamically

assigned with a set of unique contigs. The baseline time corresponds to the parallel time

taken by the nodes to complete the above specified stages for its assigned contig.

Both baseline and SeqInCloud measurements were taken using a 32-node HoA cluster. As

discussed earlier, the baseline run mimics a traditional on-premises cluster environment,

which typically uses either a shared network filesystem (NFS) or a local filesystem for data

storage. In HoA environment, due to the non-availability of shared storage, the baseline

run uses the local filesystem of each node in the cluster to store and access data, whereas

SeqInCloud uses the Hadoop distributed filesystem (HDFS). Moreover, in the case of baseline

Nabeel M. Mohamed Chapter 3. SeqInCloud 33

445

222

160

195

0

50

100

150

200

250

300

350

400

450

500

NA12878 (Chr 20) NA21143

Ex
e

cu
ti

o
n

 T
im

e
 (

m
in

u
te

s)

Baseline SeqInCloud

2.78x

1.13x

Figure 3.11: Comparison of Baseline and SeqInCloud Execution Time of Entire Workflow
(Except Alignment Stage) for Datasets NA12878 and NA21143.

run, the single-contig NA12878 dataset can effectively utilize only a single cluster node for the

Local Realignment, CountCovariate, and TableRecalibration stages. This is because of the

functional requirement of contig-based or coarse-grained data partitioning, which mandates

that a contig should be processed only by a single process or compute instance. As a result,

the other 31 nodes in the cluster remain unutilized while running these three stages. For the

rest of the stages, all the 32 nodes in the cluster were completely utilized. This affects the

baseline workflow performance and accrues usage cost for idle resources. Since SeqInCloud

uses fine-grained or loci-based data partitioning, it uses the entire 32 node HoA cluster to

run all the stages in the pipeline. As a result, the run time of SeqInCloud is nearly 2.7-

fold faster than the baseline run time for the single-contig NA12878 dataset. In the case of

the 84-contig NA21143 dataset, where sequences are aligned to the entire reference genome,

SeqInCloud is nearly 1.13-fold faster than the baseline. The performance improvement for

NA21143 dataset is not as significant because the total number of map slots (64) is less than

the number of contigs (84) in the input dataset. We would see an increasing improvement in

performance as we keep increasing the number of map slots beyond 84, which is the baseline

Nabeel M. Mohamed Chapter 3. SeqInCloud 34

upper bound on scalability for the 84-contig NA21143 dataset.

Evaluation of Scalability

We evaluate the strong-scaling behavior of SeqInCloud by doubling the number of virtual

cores and measuring run time for a fixed workload size. We study scalability using the

24.3-GB NA10847 dataset (lossless compressed) and the 11-GB NA21143 dataset. The

MapReduce split size was set to the HDFS block size of 256 MB. The number of virtual

cores was varied between 8, 16, 32, and 64. Fig. 3.12 and Fig. 3.13 show the run time

of the major time-consuming stages in the workflow, i.e., IndelRealigner, CountCovariate,

TableRecalibration and UnifiedGenotyper. SeqInCloud exhibits near-linear scaling until 32

cores, after which the number of map waves becomes too small to observe much performance

improvement.

0

50

100

150

200

250

300

350

8 16 32 64

Ti
m

e
 (

in
 m

in
u

te
s)

No. of Logical Cores

Node Scalability for NA10847

Indel Realigner Count Covariate TabRec+UnifGen

Figure 3.12: Execution Time of the Major Stages in SeqInCloud for the 24.3 GB NA10847
Dataset.

In SeqInCloud, strong scaling depends on two major factors:

• Number of Map Waves, which is given by the number of map tasks divided by the

total number of map slots in the cluster. Due to the fixed workload requirement of

Nabeel M. Mohamed Chapter 3. SeqInCloud 35

0

20

40

60

80

100

120

140

160

180

200

16 32 48 64

Ti
m

e
 (

m
in

u
te

s)

No. of Logical Cores

Node Scalability for NA21143

Indel Realigner Count Covariates TableRecab+Genotyper

Figure 3.13: Execution Time of the Major Stages in SeqInCloud for the 11 GB NA21143
Dataset.

strong scaling, the number of map task remains the same, as we scale up/down the

number of virtual cores. However, as we double the number of virtual cores, the number

of map slots also doubles, and this halves the number of map waves. Since SeqInCloud

does not depend on the nature of the input dataset and the map tasks almost run for

the same duration, the number of map waves is one of the major components that

determines scalability of SeqInCloud. From our strong-scaling numbers, we observe

that doubling the number of virtual cores results in diminishing returns when the

number of map waves becomes smaller (less than 3). This result serves as a guideline,

as it enables one to know the maximum number of cluster nodes to be provisioned to

ensure maximum resource utilization, and in turn, to optimize resource usage cost.

• Number of Reducers, which is set to 9/10 of the number of reduce slots in the

cluster to have a single reduce wave. As we double the number of virtual cores, the

number of reduce slots also doubles. However, due to the fixed workload size, the size

of data that needs to be written by each reducer halves. Thus, the time taken by the

Nabeel M. Mohamed Chapter 3. SeqInCloud 36

reduce phase halves when we double the cluster size.

Mixing the Contig- and Loci-based Approaches:

SeqInCloud 2.0 employs a mix of contig- and loci-based approach in the local realignment

stage. This removes the performance bottlenecks along the pipeline. The newer version

runs on the latest Microsoft HDInsight service platform, which offers better network and

storage performance than the Microsoft Hadoop on Azure (HoA) platform. All the above

contributes to a performance improvement of 16% to 36% for different node configurations

and improved scalability as compared to SeqInCloud 1.0.

Here we discuss the results of employing a mix of contig- and loci-based approach for the

local realignment stage.

The experiments for this optimization were conducted on the Microsoft Azure HDInsight

service cluster, where each node is a large virtual machine instance configured with 4 cores,

7 GB of RAM and 1 TB of local disk space. The compute nodes are installed with Windows

Server 2008 R2 Enterprise and Hadoop 1.1.0. The MapReduce cluster is configured with a

HDFS block size of 256 MB. The experiments use a single 50-GB dataset (NA19066) and

two supporting files: the known sites database (dbsnp 135.b37) and the reference genome

(human).

Performance of SeqInCloud 1.0 vs SeqInCloud 2.0:

Fig. 3.14 compares the workflow execution time of SeqInCloud 1.0 and SeqInCloud 2.0 for

all stages excluding the alignment stage in the pipeline, using base versus mix approach.

The performance improvement varies between 16% and 36% due to the following reasons:

The local realignment stage is optimized such that the merge step is eliminated and the

index step is run in parallel. In addition, controlling the number of reducers in the local

realignment stage optimizes the number of parallel processing instances required for running

Nabeel M. Mohamed Chapter 3. SeqInCloud 37

the Mark-Duplicates stage. All these improvements are shown in the table that is embedded

in Figure 3.14. The table provides a breakdown of the execution time (in hours) for the

stages that are of interest.

0

5

10

15

20

25

30

4 nodes 8 nodes 16 nodes 32 nodesW
O

R
K

FL
O

W
 E

X
EC

U
TI

O
N

 T
IM

E
(I

N
 H

O
U

R
S)

NUMBER OF NODES

SeqInCloud 1.0 SeqInCloud 2.0

SeqInCloud
(32 nodes)

Merge Indexing
Mark -
Duplicate

Version 1.0 1.61 h 1.93 h 0.4 h

Version 2.0 NA 0.15 h 0.29 h

16.2 %

26.8 %

30.4 %

36.6 %

Figure 3.14: Performance Comparison of SeqInCloud 1.0 vs SeqInCloud 2.0

Scalability of SeqInCloud 2.0: We evaluated strong scaling by varying the number of

nodes (4, 8, 16 and 32) and measuring the execution time of all stages except the alignment

stage in the pipeline. SeqInCloud 2.0 exhibits near-linear scaling as shown in Fig. 3.15. The

graph also plots a best-fit linear trend line with an R-squared value of 0.9697, which is a

good fit as the R-squared value is much closer to 1. In addition, we can observe that the

scalability deviates a little from the linear trend line at the data point corresponding to 32

nodes. This is because of the same reason described earlier, which is the dataset size was

not sufficient enough to utilize all the cores of a 32-node cluster, i.e., the number of map

waves is only around 1.5 for processing a 50 GB dataset using 32 nodes and 256 MB HDFS

block size.

Evaluation of Performance Due to Storage Tiering

We evaluated the performance of SeqInCloud using different combinations of storage re-

Nabeel M. Mohamed Chapter 3. SeqInCloud 38

y = -6.349x + 30.1

R² = 0.9697

0

5

10

15

20

25

30

4 8 16 32

W
o

rk
fl

o
w

 E
xe

cu
ti

o
n

 T
im

e
 (

in
 h

o
u

rs
)

Number of Nodes
Total Time Linear (Total Time)

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

5
5.5

6
6.5

7

4 8 16 32

Ex
e

cu
ti

o
n

 T
im

e
 (

in
 h

o
u

rs
)

Number of Nodes

Sorting

Realignment

MarkDup

Covariates

BQR and
Genotyper

Figure 3.15: Execution Time of the Workflow and the Individual Stages for NA19066 Dataset
with Increasing Number of Nodes.

sources to identify the right mix that delivers the best performance. The results correspond

to the execution time of SeqInCloud from TableRecalibration until the final merge stage and

compares the “All blob” and “Mix” mappings with the “All HDFS” mapping. The improved

runtime of “Mix” or “All Blob” mapping in Fig. 3.16 is due to the higher write throughput

of the blob/local filesystem. For the TableRecalibration and UnifiedGenotyper stages, the

“All Blob” mapping showed an improvement of 20%. For the Merge Variant stage, “Mix”

and “All Blob” mappings showed an improvement of 29%. For the Merge BAM stage, “Mix”

mapping showed an improvement of 26.4%. Finally, the overall run time of “All Blob” map-

ping is better than the other two mappings. “All Blob” showed a performance improvement

of 20% and “Mix” showed a performance improvement of 19% over “All HDFS” mapping.

3.3.2 Data Transfer Optimizations

Reference-based Compression

SeqInCloud uses compression to optimize network and storage costs in the cloud. It uses

the CRAM [52] format, which is a reference-based compression mechanism that encodes

Nabeel M. Mohamed Chapter 3. SeqInCloud 39

74 65 59

38.06

28 32

24

17 17

0

20

40

60

80

100

120

140

160

All HDFS Mix All Blob

Ex
e

cu
ti

o
n

 T
im

e
 (

in
 m

in
u

te
s)

Storage Mapping

Merge
Variant

Merge BAM

TableRecab
+ Genotyper

Figure 3.16: Execution Time of “All HDFS”, “Mix” and “All Blob” Mappings.

and stores only the difference between a read sequence and reference genome. The CRAM

toolkit [65] , offered by the European Nucleotide Archive, contains tools and interfaces that

provide programmatic access for compression/decompression. In order to ensure sensitivity

and correctness of downstream analysis, SeqInCloud uses lossless compression by preserving

quality scores but excluding unaligned reads as well as read names and tags from each BAM

record.

The reference-based compression is implemented as shown in Fig. 3.17. After aligning reads

in parallel, each reducer writes its BAM file to HDFS. This is followed by a parallel sort of

the reads using the TotalOrderPartitioner interface provided by the MapReduce framework.

The sorted BAM records are converted to CRAM format by multiple reducers in parallel

using the CRAM toolkit. The CRAM files are then transferred to the cloud using the secure

file transfer service provided by the HoA framework. These CRAM files are typically 40% to

50% smaller than the BAM files, thus significantly reducing network traffic and costs. Once

the data transfer is completed, a remote MapReduce job is triggered, which uses multiple

mappers to decompress CRAM records to BAM records in parallel. The decompression

Nabeel M. Mohamed Chapter 3. SeqInCloud 40

results in a lossless BAM file, which is smaller than the original BAM file, thus reducing

storage costs.

CRAM

to

Lossless BAM

Network
CRAM

CRAM

CRAM

CRAM

Node

Node

Node

BAM

BAM

Align

Align

Align

On-premises

Figure 3.17: Reference-based Compression

From the above, compression is applicable under two scenarios: (1) when the sequence

alignment stage is carried out using on-premise Hadoop resources and the BAM file needs

to be transferred to the cloud and (2) when the final workflow result (i.e., the merged BAM

file) needs to be persistently stored in the Blob. For the latter, instead of storing data in

BAM format, it can be stored either in CRAM or lossless BAM format, thus bringing down

the storage cost considerably.

It is worth noting that GATK 2.0 has introduced a new walker ReduceReads, which performs

a lossy compression of the NGS BAM file and reduces its size by 100-fold. The reduced

BAM file has just the information necessary to make accurate SNP and indel calls using the

UnifiedGenotyper walker. Using the CRAM format for compression has broader applicability

than GATK ReduceReads, as the lossless BAM file can be used by other downstream analysis

tools. In addition, ReduceReads compression takes much longer than CRAM compression.

For instance, for a fragment of the NA12878 dataset of size 754 MB, the ReduceReads

compression took 112 minutes vs. 10 minutes for the CRAM compression.

Nabeel M. Mohamed Chapter 3. SeqInCloud 41

Acceleration Using the GPU

SeqInCloud uses compression to reduce data-transfer time from on-premise resources to

the cloud and improve overall performance. We use CUSHAW [66], a parallel GPU-based,

short-read aligner to realize our proposed client-plus-cloud model. CUSHAW is a CUDA-

compatible, short-read aligner based on Burrows-Wheeler transform (BWT). CUSHAW pro-

vides support to either produce both aligned and unaligned reads to a SAM file or produce

aligned reads to a SAM file and unaligned reads to a FASTQ file. For single-end alignment,

we set the maximum number of mismatches in the seed and full length to 0. This ensures

that reads that perfectly match the reference will be part of the SAM file and rest of the

reads will be part of the FASTQ file. The FASTQ file containing the unaligned reads will

be later aligned in the cloud.

As shown in Fig. 3.18, we use both the client and cloud simultaneously such that there is an

overlap of communication and computation between client and cloud. The unaligned reads

in the FASTQ file will be aligned using BWA in the cloud. The reads aligned using CUSHAW

in the client environment will be transferred to the cloud and sorted and merged along with

the other reads aligned by BWA in the cloud environment. This creates an opportunity to

overlap the data-transfer and alignment of imperfectly matched reads in the cloud with the

processing of perfectly matched reads and its transfer to the cloud. From our experiments,

we observed that we can overlap nearly 20% to 35% of the maximum time, the maximum

time being the time spent for the data-transfer and alignment of reads in the cloud. Also,

CUSHAW is able to perfectly align nearly 55% to 65% of the total number of reads.

Results and Discussion

Evaluation of Reference-based Compression

Nabeel M. Mohamed Chapter 3. SeqInCloud 42

FASTQ
Alignment

Local
realignment

samtools

Alignment

Merge

….

CUSHAW

FASTQ
BAM

BAM

FASTQ

BAM

SAM

(Aligned)

FASTQ

(Unaligned)

FASTQ Overlap = ~ 20% to 35% of the max time

Cloud

Client
+

Cloud

Cloud
Transfer

Cloud
Transfer

Cloud
Transfer

Cloud

Client + Cloud

Data transfer

Figure 3.18: Acceleration Using GPU

We evaluated the cost savings due to compression on a 14-node on-premise Hadoop cluster,

where each node consisted of two quad-core Intel Xeon E5462 processors with 8 GB of RAM.

The dataset used for evaluation is presented in the Fig. 3.19.

Dataset Size Mapped to

NA12878 6 GB Chromosome 20

NA21143 11 GB Human genome

NA10847 30 GB Human genome

ERR001268 1.7 GB Human genome

Figure 3.19: Dataset Used for Evaluation

The sequence alignment and sorting stage in the workflow were carried out using these on-

premise resources. As discussed earlier, using the CRAM format instead of BAM reduces

the amount of data transferred to the cloud by 40% to 50%. However, this improvement

in the data-transfer time comes with an additional overhead of compression from BAM to

CRAM on-premise and decompression from CRAM to lossless BAM in the cloud.3 This

overhead should be considered while evaluating the impact on workflow performance when

using the CRAM format instead of the BAM format. Here, the workflow performance refers

3The compression and decompression is achieved using interfaces from the CRAM toolkit.

Nabeel M. Mohamed Chapter 3. SeqInCloud 43

to the time taken to run the workflow until the alignment stage, including the data transfer,

compression and decompression time, if any. The workflow performance is said to break-even

when the performance using BAM format is equal to the performance using CRAM format,

as shown in Fig. 3.20.

synergy.cs.vt.edu

tbam

tcramtc td

BAM

BAM

CRAM

BAM

Local

RealignmentAlign

Network transfer time while using BAM format = tbam

Network transfer time while using CRAM format = tcram

∆t = tbam – tcram

Compression time = tc

Decompression time = td

Workflow performance “break-even” when, tc + td = ∆t

1Figure 3.20: Breakeven Point for Reference-based Compression

While using the CRAM format, the workflow performance reaches break-even when the sum

of compression and decompression time equals the delta improvement in the data-transfer

time. At break-even, we only observe storage savings without any impact on workflow

performance. The storage savings correspond to the percentage reduction in the size of

the lossless BAM file when compared with the original BAM file. For the datasets used in

our experiments, we observed break-even when using four to six on-premise nodes. When

the number of on-premise nodes was greater than the number of nodes used for achieving

break-even, we achieved an improvement in the workflow performance. Conversely, when

the number of on-premise nodes was less, we observed a dip in the workflow performance.

Nabeel M. Mohamed Chapter 3. SeqInCloud 44

Factor NA10847 NA21143 NA12878

Performance 34.5 % 21 % 23 %

Storage savings 20.3 % 16.3 % 43 %

% improvement in workflow performance and % storage savings

Figure 3.21: Performance Improvement and Storage Savings for NA10847, NA21143 and
NA12878 Datasets Due to Compression Using a 14-node On-premise Hadoop Cluster.

Fig. 3.21 shows the improvement in workflow performance and storage savings when using

the CRAM format instead of the BAM format. Here the number of on-premise nodes

(14) is greater than the break-even number of nodes (4-6). The performance improvement

varies across datasets, as the efficacy of compression while using reference-based compression

mechanisms like CRAM, largely depends on the nature of alignments in the input BAM

file. The nature of alignments refers to factors like the number of perfectly aligned reads,

the length of read names, the number of tags, the number of unaligned reads, and so on.

This determines the improvement in workflow performance, as it influences the compression,

decompression and data transfer times. The decompression at the cloud results in a lossless

BAM file, which has trimmed read names and does not contain tags, unaligned reads etc.,

when compared with the original BAM file. As a result, the storage savings also varies across

datasets.

Evaluation of GPU Acceleration Using CUSHAW

We have evaluated the baseline performance, where the FASTQ files are completely trans-

ferred to the cloud and aligned versus the performance of using GPU for accelerating the

alignment stage. The client machine consists of a single quad-core Intel Core i5-2400 with 8

GB RAM and 1 Tesla C2050 GPU, and for the cloud environment, we used a local cluster

comprised of a five-node cluster with a pair of quad-core AMD Opteron processors and 32

Nabeel M. Mohamed Chapter 3. SeqInCloud 45

GB RAM.

Fig. 3.22 shows the effect of using GPU acceleration for theoretically varying network band-

width between the client and cloud environment. The result shows that as we keep increasing

the network bandwidth, the data transfer time between the client and cloud environment

becomes negligible. As a result, the difference in execution time between the baseline and

GPU acceleration is determined solely by the difference in the alignment time, i.e., for align-

ing the complete FASTQ file vs pre-processing and aligning a fragment of the FASTQ file.

Here the execution time refers to the sum of data transfer and alignment time.

Figure 3.22: Evaluation of GPU Acceleration Using CUSHAW

3.4 Applicability of SeqInCloud to Other Cloud Plat-

forms

SeqInCloud is a pure MapReduce-based application written in Java. It is referred as a

pure MapReduce application as it is completely platform-independent and does not use any

Nabeel M. Mohamed Chapter 3. SeqInCloud 46

Hadoop streaming-based components in its parallel implementation. Hadoop streaming-

based parallel implementations are typically platform-dependent as it enables one to run

any platform-specific executable/binary in parallel using Hadoop. As a result, the base

SeqInCloud implementation, without any optimizations, can run on any on-premises or IaaS

/ PaaS cloud environments like Amazon EMR, Amazon EC2, Rackspace cloud servers, and

Google compute engine.

Here, we discuss the applicability of various SeqInCloud optimizations across different cloud

environments.

Compute Optimizations: Since fine-grained partitioning is only a data decomposition and

processing technique and does not use any cloud provider-specific solution, this optimization

is applicable to any cloud environment. Storage tiering evaluates the mapping of input,

intermediate, and output data across different storage resources. We use the local file-

system, HDFS, and Azure blob in the Microsoft HDInsight cluster. The physical storage

for HDFS comes from the local disks of the cluster. The local file-system is also from

the local disks, but is not managed by HDFS. It is used by the MapReduce jobs to stage

temporary data and is not valid across multiple MapReduce jobs. Both local FS and HDFS

are usually available in all cloud provider environments. The third storage resource, Azure

blob is a cloud storage offering from Microsoft. Other cloud providers typically have their

own cloud storage offering. For example, Amazon offers the Simple Storage Service (S3). In

a MapReduce job, the storage URI has an access scheme which delineates the backing store

for HDFS, for e.g. hdfs:// uses local disks, asv:// uses Azure blob and s3:// uses Amazon’s

storage service. Functionally, we have not tested if our implementation can work with a S3

URI in Amazon’s EMR. The performance numbers from SeqInCloud will also be different

across different cloud provider’s storage offerings.

Data-Transfer Optimizations: Reference-based compression is achieved using the CRAM

Nabeel M. Mohamed Chapter 3. SeqInCloud 47

toolkit which offers interfaces for programmatic compression/decompression. Since the

CRAM toolkit is written in Java, it is platform-independent and can run “as is” on any on-

premise resource plus cloud environment. The parallel compression/decompression achieved

using multiple cluster nodes is also implemented as a MapReduce application and hence

platform-independent, too. Acceleration using the GPU requires running a GPU-based

aligner, e.g., CUSHAW using the on-premises environment. CUSHAW is platform-dependent

and can run only in a Linux environment with a GPU. On the other hand, on the cloud side,

we use only the basic SeqInCloud implementation. Hence this optimization will work for all

cloud provider environments provided the on-premises environment is equipped with a single

Linux-based system that has NVIDIA CUDA-enabled GPUs based on Fermi architecture or

newer.

Chapter 4

CloudFlow: Distributed Workflow

Manager for the Cloud

CloudFlow is a distributed workflow management system for MapReduce clusters. Cloud-

Flow is built on top of an existing solution, Cloudgene, which enables users to compose,

run, and monitor MapReduce pipelines, using either a private or public cloud environment.

Cloudgene already provides an easy-to-use interface to compose and monitor flexible MapRe-

duce workflows, and it supports normal MapReduce jobs, streaming jobs, and MapReduce

pipelines.

CloudFlow adds many interesting features on top of Cloudgene, like directed acyclic graph

(DAG) support, simultaneous use of both client and cloud resources (hybrid cloud), on-

demand automated data transfer between client and cloud resources to satisfy data-dependency

for MapReduce jobs, on-demand cloud provisioning, and plugin support for users to imple-

ment their own byte-level or context-based compression plugins.

48

Nabeel M. Mohamed Chapter 4. CloudFlow 49

4.1 Cloudgene Overview

Cloudgene provides a graphical execution platform to improve the usability of MapReduce

programs. The MapReduce programs can be run either using private in-house clusters or

public clouds. Cloudgene consists of two independent modules: Cloudgene-Cluster and

Cloudgene-Mapred, as shown in Fig. 4.1. Cloudgene-Cluster provides the functionality to

instantiate a cluster using public cloud resources, i.e., Amazon EC2. This requires the user

to provide the cluster size, credentials, and other associated information. Cloudgene-Mapred

gets installed automatically on the head node of the provisioned cluster. Cloudgene-Mapred

provides the graphical interface to compose and monitor MapReduce jobs or pipelines.

MapReduce jobs or pipelines should be first defined using the manifest file provided by

the Cloudgene framework. Once the manifest file is defined, Cloudgene-MapRed presents

the user with an auto-generated GUI to configure MapReduce jobs or pipelines. Cloud-

gene provides support for running normal MapReduce jobs, streaming jobs, and MapReduce

workflows.

Cloudgene is implemented as a client-server framework. The client is designed using the

JavaScript framework, Sencha ExtJS. The server is designed using the RESTful web frame-

work, Restlet. The client and server communicate using JSON, a platform-independent

interchange format. The manifest file is defined using a popular name-value format file,

Yet Another Markup Language (YAML). The user defines parameters in the manifest file,

as shown in Fig. 4.2, which is then processed by the client framework and presented in an

interactive graphical wizard for the users to key-in the input values.

Nabeel M. Mohamed Chapter 4. CloudFlow 50

Figure 4.1: Cloudgene Modules

Figure 4.2: Cloudgene Manifest File

Nabeel M. Mohamed Chapter 4. CloudFlow 51

4.2 Design and Implementation

CloudFlow is built on top of Cloudgene and provides additional functionality, few of which

the other existing solutions provide and the rest offered uniquely by CloudFlow. The major

goal of CloudFlow is to provide a workflow manager that efficiently utilizes a hybrid client-

plus-cloud environment for running MapReduce-based pipelines. Here, we first discuss the

existing design of Cloudgene and the design of new features introduced by CloudFlow.

4.2.1 Cloudgene Architecture

As specified in the earlier sections, Cloudgene is implemented as a client-server frame-

work. Cloudgene-mapred server is implemented using Restlet, a RESTful web framework.

Cloudgene-mapred server runs either on the head node of a private on-premises cluster or

the head node of a public rented cloud cluster. The user configures the MapReduce job or

pipeline using a manifest file. The Cloudgene client parses the manifest file and dynamically

creates a graphical wizard for the user to configure MapReduce job or pipeline. Once the user

provides the input values and submits the job, the job parameters and their corresponding

values are communicated from the client (browser) to the Cloudgene server in JSON format.

In this section, the focus will be on the design of Cloudgene’s job submission module, as it is

a necessary prerequisite to understand the design of CloudFlow. The job inputs submitted

from the web client are sent to the Cloudgene-mapred server. Cloudgene-mapred’s server

initialization code creates a job queue, where the jobs submitted by users are enqueued in

order, as specified in Fig. 4.3. The enqueued job could be a simple MapReduce job or a

MapReduce pipeline comprising of multiple MapReduce jobs or stages. A job-queue thread

repeatedly polls the job queue for the arrival of new jobs. As soon as a new job arrives, the

job-queue thread spawns a worker thread and associates the worker thread with the newly

Nabeel M. Mohamed Chapter 4. CloudFlow 52

arrived job. The worker thread dequeues the job and submits it for execution using the

available cluster resources. It is evident from this design that the execution of different jobs

are independent and can be processed in parallel by different worker threads. The worker

thread writes the job status periodically to a database, which the Cloudgene server queries

during the monitoring of the submitted jobs from the client interface.

Job Queue

W1 (job1)

W2 (job2)

W3 (job3)

Worker thread executes all the
subworkflows in the job sequentially

Job queue thread

Queue MR Jobs Worker
Threads

Polls the queue

Create
threads

Figure 4.3: Cloudgene Job Submission Architecture

The above design has the following major shortcomings:

• Cloudgene can be configured to use either the cloud or client resource, but not both

simultaneously. In a hybrid environment, where the users have in-house clusters in

addition to the publicly rented cloud resources, Cloudgene cannot utilize both simul-

taneously for optimized execution of MapReduce pipelines.

• Cloudgene does not support DAG-based MapReduce pipelines. With the current de-

sign, the execution of the MapReduce pipeline is always sequential.

• It is the user’s responsibility to ensure that the data dependencies are met before

executing various stages within a MapReduce pipeline.

Nabeel M. Mohamed Chapter 4. CloudFlow 53

4.2.2 CloudFlow Architecture

CloudFlow is currently designed to work with Microsoft Azure cloud. Its design is modu-

lar such that it is easy to integrate CloudFlow with any other cloud providers, if desired.

CloudFlow has the minimal requirement of having a single-node, on-premise Hadoop config-

uration. The modified Cloudgene-mapred server, hereafter referred to as CloudFlow-mapred

server, runs in the head node of the on-premise cluster and acts as a driver for the work-

flow management system. It controls the provisioning of cloud resources, processes workflow

DAGs, spawns local/remote MapReduce jobs and automatically transfers data between the

client and cloud resources to ensure data dependency between different stages of the pipeline.

Similar to Cloudgene, the user configures the workflow in a manifest file. The client compo-

nent generates graphical wizards and takes input from the user. The input is communicated

to the CloudFlow-mapred server running in the local on-premise cluster. The Cloudflow-

Mapred server then drives the pipeline execution towards completion. A high-level overview

of CloudFlow architecture is shown in Fig. 4.4.

4.2.3 CloudFlow Features

With the existing design of Cloudgene, the execution of all stages in a MapReduce pipeline

is mandatory. Moreover, all the stages execute either on a private cluster or in a public

cloud. The execution of the pipeline is sequential in nature and does not support any kind

of parallelism. The input dataset for a stage could either be the output of its previous stage

or should be made available by the user in an appropriate location.

CloudFlow addresses the above shortcomings by providing users with the flexibility to en-

able/disable different stages in a MapReduce pipeline at runtime. In addition, it enables

users to specify the execution location of each stage in the pipeline, either the client or cloud

Nabeel M. Mohamed Chapter 4. CloudFlow 54

User
(browser)

Configure
workflow DAG

Client cluster
(Namenode)

Azure HDInsight
Cluster

Provision / Teardown cluster

Upload / Download data

Spawn Jobs

CloudFlow-mapred
REST server

Figure 4.4: CloudFlow - High Level Architecture

resources. This is shown clearly in the Fig. 4.5, where a check box is available near each

stage in the user interface to enable/disable its execution. The “Where to run” field collects

the desired execution location of each stage in the pipeline. The users choose either client or

cloud resource based on availability of the resource and security requirement of the dataset.

The below subsections discuss the different features offered by CloudFlow.

Directed Acyclic Graph (DAG) Support

CloudFlow supports DAG-based MapReduce pipelines. In order to support DAG-based

workflows, the users should be capable of specifying the dependency information between

different stages within a MapReduce pipeline. This support is implemented by using the

following extensions to the manifest file, as shown in Fig. 4.6.

Nabeel M. Mohamed Chapter 4. CloudFlow 55

Figure 4.5: CloudFlow User Interface

1. The ‘alias’ parameter, which is used to associate each stage in the pipeline with a

name. The dependency information can be specified using the alias name of each

stage.

2. The ‘dependency’ parameter, which specifies the control and data dependency infor-

mation of each stage in the pipeline, if applicable. The value of this parameter specifies

a single or a list of alias, which corresponds to other stages in the pipeline that needs

to complete before this stage can start its execution.

Once the user submits a job, which corresponds to a MapReduce pipeline, the CloudFlow im-

plementation parses the dependency information for each stage in the pipeline and constructs

a directed acyclic dependency graph. The vertex corresponds to a stage in the pipeline and

the edges specify the dependency between stages. Only those stages that are enabled by the

Nabeel M. Mohamed Chapter 4. CloudFlow 56

synergy.cs.vt.edu

- name: Table Recalibration
params: -nfv -nm -nmd -na -nra -nv -ref $reference -b $s1input -o $s1output

-djarloc $dpjarloc -p $s3platform -dbfile $dbfile
alias: s1
dependency: s0

- name: MergeResults
params: -nqr -nfv -nmd -na -nra -nv -ref $reference -b $s1output -o $finoutput

-djarloc $dpjarloc -p $s3platform
alias: s2
dependency: s1

DAG Support

1

Figure 4.6: CloudFlow DAG Configuration

user at runtime are part of this graph. The dependency graph is constructed by the server

thread as soon as the user submits a new job. This job is then enqueued into the job queue.

In the traditional Cloudgene architecture, a worker thread dequeues the job and runs the

pipeline in a sequential fashion. In CloudFlow, the worker thread instead queries a DAG

processor for the next set of candidate stages to run. The DAG processor processes the

constructed dependency graph and returns the set of vertices or stages that has an in-degree

of zero. An in-degree of zero implies that all data and control dependencies are met for

that stage. These stages can then run in parallel using both the client and cloud resources

simultaneously. Once a particular stage in the pipeline completes, the corresponding vertex

is removed from the dependency graph and the worker thread immediately queries the DAG

processor for the next set of eligible stages to run.

For example, in Fig. 4.7, the stage ‘s1’ has an in-degree of zero. The candidate set for the

first query would be ‘s1’. After ‘s1’ completes, the worker thread queries the DAG processor,

which returns ‘s2’ and ‘s3’. Now, the candidate set is {s2, s3}. After ‘s2’ and ‘s3’ completes,

‘s4’ is executed.

Nabeel M. Mohamed Chapter 4. CloudFlow 57

S1

S2

S3

S4

Traditional Cloudgene

S1

S2 S3

S4

S1-> dependency: none
S2-> dependency: S1
S3-> dependency: S1
S4-> dependency: S2, S3

CloudFlow

Client

Cloud

Client

ClientClient
or

Cloud

Figure 4.7: CloudFlow DAG Example Configuration

Hybrid Cloud Support

Hybrid cloud support corresponds to the simultaneous use of client and cloud resources for

the execution of MapReduce pipelines. As discussed earlier, Cloudgene uses a worker thread

per MapReduce pipeline and executes all the stages sequentially, either using the client or

cloud resources. In order to run multiple stages in parallel using both client and cloud

resources simultaneously, CloudFlow introduces the step queue, in addition to the job queue

in Cloudgene. The step queue sits below the DAG processor and enables asynchronous

execution of stages using distributed resources. The set of candidate vertices or stages

determined by the DAG processor is fed into this step queue, by the worker thread, for

execution. The step queue is periodically polled by a step queue thread. As soon as a vertex

or stage is queued, the step queue thread spawns a sub-worker thread for this stage and

then continues polling. This results in an asynchronous thread processing each stage of the

Nabeel M. Mohamed Chapter 4. CloudFlow 58

pipeline in parallel. As a result, multiple stages can be run independently and simultaneously

using the desired resources provided by the user.

Fig. 4.8 provides a good overview of the hybrid cloud support provided by CloudFlow.

Step
Q

u
eu

e

DAG Processor

Queue MR Jobs

Jo
b

Q

u
e

u
e

Job queue thread
(polls & creates
worker threads)

Worker
Thread

W1 (job1)

Step queue thread
(Polls & creates sub-worker threads)

Queues next eligible sub-workflows

Sub-worker
Threads

Launch MR job
in client

Launch MR job
in cloud

SW1 SW2… …

Figure 4.8: CloudFlow Hybrid Cloud Support

The sub-worker thread uses Apache Templeton [67] or WebHCat interface to spawn local

or remote MapReduce jobs. Templeton provides a REST-based interface for launching both

normal and streaming MapReduce jobs. The job launch via WebHCat returns a job ID (Job

ID of the Templeton controller job), which can be used to query the status of running jobs.

Automatic Data Dependency Handling

CloudFlow implements automatic data-dependency handling for MapReduce pipelines. In

traditional Cloudgene, it is the user’s responsibility to ensure that the data is available

either by manually importing the data or by having the data available from the output of

the previous stage. In order to provide this support in CloudFlow, the users should specify

Nabeel M. Mohamed Chapter 4. CloudFlow 59

the input and output dataset required for each stage in the MapReduce pipeline. This

support is implemented using the following two extensions in the manifest file, as shown in

Fig. 4.9.

1. The ‘stepinput’ parameter, which is used to specify the input dataset (file or directory)

required by each stage in the pipeline. The input data should be prefixed with the

appropriate access scheme (HDFS or asv) based on where the data is currently available

(HDFS or blob).

2. The ‘stepoutput’ parameter, which is used to specify the output data (file or directory)

produced by each stage in the pipeline. The output data gets automatically prefixed

with the appropriate access scheme based on where stage is configured to run.

- name: Table Recalibration
params: -nfv -nm -nmd -na -nra -nv -ref $reference -b $s1input -o $s1output

-djarloc $dpjarloc -p $s3platform -dbfile $dbfile
stepinput: $reference,$s1input,$dpjarloc,$dbfile
stepoutput: $s1output

- name: MergeResults
params: -nqr -nfv -nmd -na -nra -nv -ref $reference -b $s1output -o $finoutput

-djarloc $dpjarloc -p $s3platform
stepinput: $reference,$s1output,$dpjarloc
stepoutput: $finoutput

Data dependency support

Figure 4.9: CloudFlow Data-Dependency Configuration

CloudFlow parses the “stepinput” and “stepoutput” values and initializes a global table

with this information. This table contains the name of the data (with the access scheme

removed) and the current location of the data (client, cloud or both). The sub-worker thread

consults this table before launching the MapReduce job corresponding to a particular stage

in the pipeline. Based on the execution location (either client or cloud) of a stage, the re-

Nabeel M. Mohamed Chapter 4. CloudFlow 60

quired dataset might be already available in the correct location or CloudFlow automatically

transfers it to the correct location. A sample global table is shown in Fig. 4.10.

Filename Location

dir1/dir2/file1 Client

dir1/file2 Cloud

Dir2/file1 Both

Parse stepinput & stepoutput
from config file

Figure 4.10: CloudFlow Data-Dependency Table

User-defined Plugin Support

Before the data is transferred (from client to cloud or vice versa), CloudFlow invokes the

data transformation plugins registered by the user, if any. These plugins refer to certain

functionality, such as compression or encryption, as implemented by the user. For example,

the compression transformation might usually involve either byte-level or reference-based,

i.e., contextual, compression. Reference-based compression typically requires an additional

application-specific support file to assist the compression and decompression process. The

transformation routine is invoked by the sub-worker thread before the data is transferred and

the reverse-transformation routine is invoked by the same thread after the data is transferred

and before it is used. CloudFlow optimizes the transformation, reverse-transformation, and

data transfer phases using MapReduce processing. This will be discussed later in the opti-

mization section.

Nabeel M. Mohamed Chapter 4. CloudFlow 61

On-demand Cloud Provisioning

The main driver behind CloudFlow is the CloudFlow-mapred server that runs in the client

cluster and implements on-demand cloud provisioning. Having the workflow management

driver at the client gives us the flexibility to provision cloud resources only when there is

a need to offload computations to the cloud. This greatly helps in optimizing cloud costs

as the cloud resources need not be provisioned statically before the start of the MapReduce

pipeline. On-demand provisioning also avoids under-utilization of cluster resources and saves

energy cost.

Facilitating Easy Debugging

CloudFlow supports running the entire MapReduce pipeline using the local client resources

before offloading it to the cloud. This is similar to the support offered by local Oozie

runner. This feature ensures that the pipeline runs to completion without issues before

provisioning cloud resources. A successful dry run before the actual execution is highly

advantageous as it enables one to debug any library, configuration or data availability related

issues locally before moving the computation to the cloud. Provisioning cloud resources and

then debugging issues incurs unnecessary cost for idle resources.

4.3 CloudFlow Optimizations

CloudFlow optimizes data transfers from client to cloud and vice versa using MapReduce. In

addition, MapReduce is used to optimize the user-defined transformations that are defined by

plugins. Using MapReduce for data transfers and transformations results in higher utilization

of cluster resources. It also gives us the aggregate bandwidth and aggregate processing

Nabeel M. Mohamed Chapter 4. CloudFlow 62

capacity of the cluster to transfer and transform data, respectively.

CloudFlow uses the below algorithm to transfer data from client to cloud after applying

transformations.

Step 1:

Generate a list of files to transfer from client to cloud

Let the file list be ‘flist’

Step 2:

a. Split ‘flist’ among the nodes of the MapReduce cluster

using a custom InputFormat

b. Let each partition of ‘flist’ be ‘part flist’

Step 3:

In each mapper on the client

if (transformation enabled) {

a. Apply transformation to ‘part flist’ owned by this mapper

b. Send the transformed files to the cloud (Blob, in-case of

Azure)

c. Remove the transformed files from local HDFS

} else {

Send ‘part flist’ to the cloud

}

Step 4:

if (transformation enabled) {

a. Construct a file list with the names of the transformed

files. Let the list be ‘part flist names’. ‘part flist names’

correspond to the transformed names of each file in ‘part flist’

Nabeel M. Mohamed Chapter 4. CloudFlow 63

b. Send the file list ‘part flist names’ to the cloud

c. Create a remote MapReduce job to split ‘part flist names’ list

among cloud nodes

d. In each mapper on the cloud

d.1. Call the reverse-transformation routine for the files

owned by this mapper

d.2. Delete the original transformed file from the Blob

}

Here is the algorithm used by CloudFlow to transfer data from cloud to client after applying

the transformation.

Step 1:

Generate a list of files to transfer from cloud to client

Let the file list be ‘flist’

Let ‘final list = flist’

Step 2:

if (transformation enabled) {

a. Send ‘flist’ to the cloud

b. Create a remote MapReduce job to split ‘flist’ among cloud

nodes

c. In each mapper on the cloud

c.1. Call transformation routine to transform the files

owned by each mapper

d. Construct a file list ‘t flist’ containing the names

Nabeel M. Mohamed Chapter 4. CloudFlow 64

of the transformed files on the client

e. Let ‘final list = t flist’

}

Step 3:

a. Split ‘final list’ among multiple nodes in the client cluster,

using a custom InputFormat

b. In each mapper on the client

b.1. Receive a portion of final list owned by this mapper from

the cloud

b.2. if (transformation enabled) {

b.2.1. Reverse-transform the files that are part of the

‘final list’ owned by this mapper

b.2.2. Delete the transformed file from the cloud

}

The flowchart in Fig. 4.11 provides a high-level overview of the entire process.

4.4 Case Study

We use SeqInCloud as a case study to test the feature set of CloudFlow. We built CloudFlow

based on our insights and learning from running SeqInCloud on Azure. As discussed earlier,

SeqInCloud is a data-intensive genome analysis pipeline that runs on Azure platform using

Hadoop MapReduce. In this section we present how SeqInCloud can make use of the feature

set that CloudFlow offers.

Nabeel M. Mohamed Chapter 4. CloudFlow 65

Check data table for

the location of

stepinput

Client

??

No

Yes

Run on Cloud ?

Yes

Data ready

Flatten the directory

and create a file list

Transform

??

Send data

using

MapReduce

No

Yes
Use MapReduce to

transform and send

data in parallel

Spawn a

MapReduce job in

the cloud to reverse-

transform the data

Launch Job

Launch Job

Launch Job

Figure 4.11: CloudFlow Data-Dependency Flowchart

DAG & Hybrid Cloud Support: The stages in SeqInCloud are sequential in nature

except the last stage where the merging of the BAM output (“.bam” fragments) and merging

of variant output (“.vcf” files) can be run simultaneously. The merging of the BAM fragments

is done by a single process that runs on the head node of the cluster. Moving this computation

to the cloud does not help as the scale of the cluster is immaterial here. However, the merging

of variant files scales linearly as we increase the cluster size. Hence, running the merge variant

stage using large-scale resources like the cloud will be beneficial. This is a good instance of

hybrid resource usage as the merging of BAM fragments and merging of variant files will run

simultaneously using both client and cloud resources. Below is a snippet of the YAML file

for this configuration.

Nabeel M. Mohamed Chapter 4. CloudFlow 66

- name: Table Recalibration

alias: s1

dependency: none

runlocation: Client

- name: Merge BAM

alias: s2

dependency: s1

runlocation: Client

- name: Merge Variant

alias: s3

dependency: s1

runlocation: Cloud

Automatic Data-Dependency Handling: Let us assume that the “TableRecalibration

and Genotyper” stage is configured to run using on-premise resources. Two steps fork from

this stage. Out of these two, the merge BAM step is configured to run using on-premise

resources, and the merge variant step is configured to run using cloud resources. Below is a

snippet of the YAML files that shows the input and output configuration for these stages.

The parameter values that has a ‘$’ sign in the front will be taken as input from the users

using the generated user interface.

- name: Table Recalibration

Nabeel M. Mohamed Chapter 4. CloudFlow 67

alias: s1

dependency: none

runlocation: Client

stepinput: $reference,$s1input,$dbfile,$ipjar

stepoutput: $s1mergeout, $s1variantout

- name: Merge BAM

alias: s2

dependency: s1

runlocation: Client

stepinput: $reference,$s1mergeout,$ipjar

stepoutput: $s2out

- name: Merge Variant

alias: s3

dependency: s1

runlocation: Cloud

stepinput: $reference,$s1variantout,$ipjar

stepoutput: $s3out

As described earlier CloudFlow parses the “stepinput” and “stepoutput” values and initial-

izes a global table. Initially, the global table looks as shown in Table 4.1.

After stage “s1” completes, the DAG processor returns s2, s3 as the candidate stages to

run. As configured by the user, “s2” will be run using client resources and “s3” using

cloud resources. The data-dependency module parses the “stepinput” and “stepoutput”

Nabeel M. Mohamed Chapter 4. CloudFlow 68

Name Location
$reference Client
$s1input Client
$dbfile Client
$ipjar Client

$s1mergeout Client
$s1variantout Client

$s2out Client
$s3out Cloud

Table 4.1: Data-Dependency Table – Initial Values

parameters of each stage and triggers the data transfer as required. In our case, the stage

“s2” has all the required data available at the client. But for stage “s3”, the input needs to

be transferred to the cloud before the stage could run. The data-dependency module makes

use of the MapReduce framework to transfer data in parallel to the cloud. After the data

transfer, the global table looks as shown in Table 4.2.

Name Location
$reference Both
$s1input Client
$dbfile Client
$ipjar Both

$s1mergeout Client
$s1variantout Both

$s2out Client
$s3out Cloud

Table 4.2: Data-Dependency Table – After Data Transfer

User-defined Plugin Support: As described earlier, the users can register plugins for data

transformation before transferring data to the cloud. The transformation might be a normal

byte-level compression or a domain-specific transformation. For example, in SeqInCloud, the

input to the stages are BAM files. Instead of transferring the BAM file directly to the cloud,

the transformation routine could implement either the reference- or GPU-based compression,

Nabeel M. Mohamed Chapter 4. CloudFlow 69

as discussed in SeqInCloud data-transfer optimizations. The data-dependency module will

ensure that the transformation and reverse-transformation routines are invoked during the

data transfer. There is not much opportunity here to compress the input of merge variant

stage as the variant files are already smaller in size.

4.5 Applicability of CloudFlow to Other Cloud Plat-

forms

Since CloudFlow is a ExtJS and REST-based server implementation, the majority of its

features are platform-independent, such as DAG support, hybrid cloud support, and user-

defined plugin support. As such and to facilitate broader adoption, CloudFlow is architected

in a modular fashion so that it is easier to extend to a variety of other cloud provider

environments.

Currently, the only aspects of CloudFlow that are specific to Microsoft HDInsight are the

data-management interface and the on-demand cloud provisioning interface. The former uses

the Azure Blob API to make the data available in the Azure Blob for running MapReduce

jobs. The latter uses the Azure management API to provision cloud resources. Thus, in

order to extend CloudFlow to other cloud environments, the data-management interface

and on-demand cloud provisioning interface need to be instantiated.

Chapter 5

Conclusions and Future Work

5.1 Conclusions

In this section, we present a summary of our work on SeqInCloud, a highly scalable realization

of a widely used, genome analysis pipeline on the Windows Azure platform and CloudFlow,

a workflow manager for running MapReduce-based pipelines using hybrid client and cloud

resources.

In addition to the realization of SeqInCloud, this thesis presents an evaluation of running

SeqInCloud, a data-intensive bioinformatic pipeline, on Microsoft Azure. We evaluate the

strong-scaling behavior of SeqInCloud by varying the number of virtual cores from 8 to 64

and observe that SeqInCloud shows near-linear scalability. SeqInCloud optimizes network

and storage costs with the help of a compressed sequence format, i.e., CRAM or by the use

of GPUs for data pre-processing. It also optimizes the I/O throughput by mapping the data

onto different storage resources on Azure, according to their characteristics. SeqInCloud is

easy to configure and does not require installation of any additional packages.

70

Nabeel M. Mohamed Chapter 5. Conclusions and Future Work 71

Based on our experience and learning from running SeqInCloud on Azure, we also design

and realize an efficient framework for running such data-intensive workflows using a hybrid

setup of client and cloud resources. Specifically, we present CloudFlow, a workflow manager

for running MapReduce-based pipelines like SeqInCloud using distributed resources. Cloud-

Flow supports the simultaneous use of client and cloud resources, resulting in an optimized

workflow that reduces execution time, when there are multiple stages in the workflow that

run concurrently. CloudFlow also supports automated data transfers between the client and

cloud resources to satisfy data dependencies before the execution of stages in the pipeline.

CloudFlow provides users with the flexibility to define plugins for data transformations. The

data transformations and transfers are optimized by using MapReduce processing, which effi-

ciently utilizes the aggregate bandwidth and capacity of all nodes in the MapReduce cluster.

From our learning and analysis, we observe that MapReduce is an excellent fit for large-scale,

data-intensive scientific workloads. Our work on SeqInCloud can significantly benefit life sci-

entists as it “accelerates” the time to genetic variant discovery. This, in turn, accelerates the

identification of causes for diseases and aids in certain fields like population-scale sequencing

and comparative genomics, for example.

Cloud computing is in the early stage of adoption among life scientists. The major issues for

the shift in focus towards the cloud are as follows: data security, software configuration and

setup overhead, data transfer overhead, and lack of availability of an easy-to-use interface

to configure bioinformatic workflows. CloudFlow addresses these issues and aims to increase

the adoption of cloud computing for running data-intensive scientific workloads.

Nabeel M. Mohamed Chapter 5. Conclusions and Future Work 72

5.2 Future Work

In the future, we intend to bundle SeqInCloud as a virtual machine image and offer it to

the community via public cloud storage services like Azure Blob. We plan to improve the

pipeline by adding new variant analysis stages from GATK. We also plan to build a model

to predict the execution time of different stages within the pipeline, based on various factors

like dataset size, compute and I/O characteristics, MapReduce parameters, and so on. Once

the execution time of the workflow is modeled, we can provision only the required number

of nodes for each stage and thereby meet the performance and cost budget requirements of

the user.

For CloudFlow, we would like to improve the feature set by providing support for data

triggers and locality, for example. We plan to build a model to determine the optimal

location (either client or cloud cluster) to execute different stages in a workflow. This model

will be based on the client and cloud cluster configuration, I/O characteristics, network

transfer cost, as well as compute and storage costs. We also plan to extend CloudFlow to

support a mix of MapReduce and non-MapReduce stages in a workflow. Another feature

that is worth incorporating is the use of both client and cloud resources simultaneously for

running a single stage of the workflow and later merging the results.

Bibliography

[1] Lincoln D. Stein, “The case for cloud computing in genome informatics,” Genome Bi-

ology, vol. 11, no. 5, p. 207, 2010.

[2] Michael C. Schatz, Ben Langmead, and Steven L. Salzberg, “Cloud computing and the

DNA data race,” Nature Biotechnology, vol. 28, no. 7, pp. 691–693, 2010.

[3] Monya Baker, “Next-generation sequencing: adjusting to data overload,” Nature Meth-

ods, vol. 7, pp. 495–499, 2010.

[4] Scott D. Kahn, “On the Future of Genomic Data,” in SCIENCE, vol. 331, 2011, pp.

728–729.

[5] Wetterstrand KA., “DNA Sequencing Costs: Data from the NHGRI Genome

Sequencing Program (GSP),” accessed: 08-18-2013. [Online]. Available: www.genome.

gov/sequencingcosts

[6] “Windows Azure CDN,” accessed: 08-18-2013. [Online]. Available: http://www.

windowsazure.com/en-us/home/features/caching/

[7] Ronald C. Taylor, “An overview of the Hadoop/MapReduce/HBase framework and its

current applications in bioinformatics,” in Proceedings of the 11th Annual Bioinformat-

73

www.genome.gov/sequencingcosts
www.genome.gov/sequencingcosts
http://www.windowsazure.com/en-us/home/features/caching/
http://www.windowsazure.com/en-us/home/features/caching/

Nabeel M. Mohamed Bibliography 74

ics Open Source Conference, ser. BOSC 2010, vol. 11, no. S12. BMC Bioinformatics,

2010, p. S1.

[8] Hugo Y.K. Lam, Cuiping Pan, Michael J. Clark, Phil Lacroute, Rui Chen, Rajini

Haraksingh, Maeve O’Huallachain, Mark B. Gerstein, Jeffrey M. Kidd, Carlos D. Bus-

tamante, and Michael Snyder, “Detecting and annotating genetic variations using the

HugeSeq pipeline,” Nature Biotechnology, vol. 30, no. 3, pp. 226–229, 2012.

[9] Abhishek Roy, Yanlei Diao, Evan Mauceli, Yiping Shen, and Bai-Lin Wu, “Massive

genomic data processing and deep analysis,” in Proceedings of the VLDB Endowment,

vol. 5, no. 12. ACM, 2012, pp. 1906–1909.

[10] Ben Langmead, Kasper D. Hansen, and Jeffrey T. Leek, “Cloud-scale RNA-sequencing

differential expression analysis with Myrna,” Genome Biology, vol. 11, no. 8, p. R83,

2010.

[11] Jourdren L., Bernard M., Dillies MA., and Le Crom S., “Eoulsan: a cloud computing-

based framework facilitating high throughput sequencing analyses,” Bioinformatics,

vol. 28, no. 11, pp. 1542–1543, 2012.

[12] Ben Langmead, Michael C. Schatz, Jimmy Lin, Mihai Pop, and Steven L. Salzberg,

“Searching for SNPs with cloud computing,” Genome Biology, vol. 10, no. 11, p. R134,

2009.

[13] Luca Pireddu, Simone Leo, and Gianluigi Zanetti, “MapReducing a genomic sequenc-

ing workflow,” in MapReduce ’11 Proceedings of the second international workshop on

MapReduce and its applications. ACM, 2011, pp. 67–74.

[14] Maria Fischer, Rene Snajder, Stephan Pabinger, Andreas Dander, Anna Schossig, Jo-

hannes Zschocke, Zlatko Trajanoski, and Gernot Stocker, “SIMPLEX: Cloud-Enabled

Nabeel M. Mohamed Bibliography 75

Pipeline for the Comprehensive Analysis of Exome Sequencing Data,” PLoS ONE, vol. 7,

no. 8, 2012.

[15] Jeffrey Dean and Sanjay Ghemawat, “MapReduce: simplified data processing on large

clusters,” in Communications of the ACM, vol. 51, no. 1. ACM, 2008, pp. 107–113.

[16] Thilina Gunarathne, Tak-Lon Wu, Judy Qiu, and Geoffrey Fox, “MapReduce in the

Clouds for Science,” in Cloud Computing Technology and Science. IEEE, 2010, pp.

565–572.

[17] Enis Afgan, Dannon Baker, Nate Coraor, Brad Chapman, Anton Nekrutenko, and

James Taylor, “Galaxy CloudMan: delivering cloud compute clusters,” BMC Bioinfor-

matics, vol. 11, no. S12, p. S4, 2010.

[18] Konstantinos Krampis, Tim Booth, Brad Chapman, Bela Tiwari, Mesude Bicak, Dawn

Field, and Karen E. Nelson, “Cloud BioLinux: pre-configured and on-demand bioinfor-

matics computing for the genomics community,” BMC Bioinformatics, vol. 13, no. 42,

2012.

[19] Thilina Gunarathne, Tak-Lon Wu, Jong Youl Choi, Seung-Hee Bae, and Judy Qiu,

“Cloud computing paradigms for pleasingly parallel biomedical applications,” Concur-

rency and Computation: Practice and Experience, vol. 23, no. 17, pp. 2338–2354, 2011.

[20] Ben Langmead, Cole Trapnell, Mihai Pop, and Steven L. Salzberg, “Ultrafast and

memory-efficient alignment of short DNA sequences to the human genome,” Genome

Biology, vol. 10, no. 3, p. R25, 2009.

[21] Li R., Li Y., Fang X., Yang H., Wang J., Kristiansen K., and Wang J., “SNP detection

for massively parallel whole-genome resequencing,” Genome Research, vol. 19, no. 6,

pp. 1124–32, 2009.

Nabeel M. Mohamed Bibliography 76

[22] “Hadoop Streaming,” accessed: 08-18-2013. [Online]. Available: http://hadoop.apache.

org/docs/stable/streaming.html

[23] Michael C. Schatz, “CloudBurst: highly sensitive read mapping with MapReduce,”

Bioinformatics, vol. 25, no. 11, pp. 1363–1369, 2009.

[24] McKenna A., Hanna M., Banks E., Sivachenko A., Cibulskis K., Kernytsky A.,

Garimella K., Altshuler D., Gabriel S., Daly M., and DePristo M.A., “The Genome

Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequenc-

ing data.” Genome Research, vol. 20, pp. 1297–1303, 2010.

[25] DePristo M.A., Banks E., Poplin R., Garimella K., Maguire J., Hartl C., Philippakis

A., del Angel G., Rivas M.A., Hanna M., McKenna A., Fennell T., Kernytsky A.,

Sivachenko A., Cibulskis K., Gabriel S., Altshuler D., and Daly M., “A framework

for variation discovery and genotyping using next-generation DNA sequencing data,”

Nature Genetics, vol. 43, no. 5, pp. 491–498, 2011.

[26] “GATK Queue,” accessed: 08-18-2013. [Online]. Available: http://gatkforums.

broadinstitute.org/discussion/1306/overview-of-queue

[27] “Oracle Grid Engine,” accessed: 08-18-2013. [Online]. Available: http://en.wikipedia.

org/wiki/Oracle Grid Engine

[28] Luca Pireddu, Simone Leo, and Gianluigi Zanetti, “SEAL: a distributed short read

mapping and duplicate removal tool,” Bioinformatics, vol. 27, no. 15, pp. 2159–2160,

2011.

[29] Simone Leo and Gianluigi Zanetti, “Pydoop: a Python MapReduce and HDFS API for

Hadoop,” in Proceedings of the 19th ACM International Symposium on High Perfor-

mance Distributed Computing. ACM, 2010, pp. 819–825.

http://hadoop.apache.org/docs/stable/streaming.html
http://hadoop.apache.org/docs/stable/streaming.html
http://gatkforums.broadinstitute.org/discussion/1306/overview-of-queue
http://gatkforums.broadinstitute.org/discussion/1306/overview-of-queue
http://en.wikipedia.org/wiki/Oracle_Grid_Engine
http://en.wikipedia.org/wiki/Oracle_Grid_Engine

Nabeel M. Mohamed Bibliography 77

[30] Simone Leo, Federico Santoni, and Gianluigi Zanetti, “Biodoop: Bioinformatics on

Hadoop,” in International Conference on Parallel Processing Workshops. IEEE, 2009,

pp. 415–422.

[31] Matsunaga A., Tsugawa M., and Fortes J., “CloudBLAST: Combining MapReduce

and Virtualization on Distributed Resources for Bioinformatics Applications,” in

ESCIENCE, vol. 62. ACM, 2008, pp. 222–229.

[32] “Hadoop,” accessed: 08-18-2013. [Online]. Available: http://hadoop.apache.org

[33] Sebastian Schonherr, Lukas Forer, Hansi Weissensteiner, Florian Kronenberg, Gunther

Specht, and Anita Kloss-Brandstatter, “Cloudgene: A graphical execution platform

for MapReduce programs on private and public clouds,” BMC Bioinformatics, vol. 13,

no. 1, p. 200, 2012.

[34] “Sencha ExtJS,” accessed: 08-18-2013. [Online]. Available: http://www.sencha.com/

products/extjs

[35] “Restlet Framework,” accessed: 08-18-2013. [Online]. Available: http://restlet.org

[36] “JavaScript Object Notation,” accessed: 08-18-2013. [Online]. Available: http:

//www.json.org/

[37] “Apache Oozie,” accessed: 08-18-2013. [Online]. Available: oozie.apache.org

[38] Jianwu Wang, Daniel Crawl, and Ilkay Altintas, “Kepler + hadoop: a general architec-

ture facilitating data-intensive applications in scientific workflow systems,” in Proceed-

ings of the 4th Workshop on Workflows in Support of Large-Scale Science, ser. WORKS

’09, no. 12. ACM, 2009, pp. 12:1–12:8.

[39] Samuel Angiuoli, Malcolm Matalka, Aaron Gussman, Kevin Galens, Mahesh Vangala,

David Riley, Cesar Arze, James White, Owen White, and W. Florian Fricke, “Clovr: A

http://hadoop.apache.org
http://www.sencha.com/products/extjs
http://www.sencha.com/products/extjs
http://restlet.org
http://www.json.org/
http://www.json.org/
oozie.apache.org

Nabeel M. Mohamed Bibliography 78

virtual machine for automated and portable sequence analysis from the desktop using

cloud computing,” BMC Bioinformatics, vol. 12, no. 1, p. 356, 2011.

[40] Joshua Orvis, Jonathan Crabtree, Kevin Galens, Aaron Gussman, Jason M. Inman,

Eduardo Lee, Sreenath Nampally, David Riley, Jaideep P. Sundaram, Victor Felix, Brett

Whitty, Anup Mahurkar, Jennifer Wortman, Owen White, and Samuel V. Angiuoli,

“Ergatis,” Bioinformatics, vol. 26, no. 12, pp. 1488–1492, 2010.

[41] “Vappio,” accessed: 08-18-2013. [Online]. Available: http://vappio.sourceforge.net/

[42] “Amazon Elastic Compute Cloud,” accessed: 08-18-2013. [Online]. Available:

http://aws.amazon.com/ec2/

[43] “Amazon Elastic Map Reduce,” accessed: 08-18-2013. [Online]. Available: http:

//aws.amazon.com/elasticmapreduce/

[44] “Windows Azure HDInsight,” accessed: 08-18-2013. [Online]. Available: https:

//www.hadooponazure.com

[45] Mohamed Abouelhoda, Shadi Issa, and Moustafa Ghanem, “Tavaxy: Integrating Tav-

erna and Galaxy workflows with cloud computing support,” BMC Bioinformatics,

vol. 13, no. 1, pp. 77+, 2012.

[46] Wolstencroft Katherine, Haines Robert, Fellows Donal, Williams Alan, Withers David,

Owen Stuart, Soiland-Reyes Stian, Dunlop Ian, Nenadic Aleksandra, Fisher Paul, Bha-

gat Jiten, Belhajjame Khalid, Bacall Finn, Hardisty Alex, Nieva de la Hidalga Abraham,

P. Balcazar Vargas Maria, Sufi Shoaib, and Goble Carole, “The taverna workflow suite:

designing and executing workflows of web services on the desktop, web or in the cloud,”

Nucleic Acids Research, 2013.

http://vappio.sourceforge.net/
http://aws.amazon.com/ec2/
http://aws.amazon.com/elasticmapreduce/
http://aws.amazon.com/elasticmapreduce/
https://www.hadooponazure.com
https://www.hadooponazure.com

Nabeel M. Mohamed Bibliography 79

[47] Jeremy Goecks, Anton Nekrutenko, James Taylor, and The Galaxy Team, “Galaxy: a

comprehensive approach for supporting accessible, reproducible, and transparent com-

putational research in the life sciences,” Genome Biology, vol. 11, no. 8, p. R86, 2010.

[48] “BroadInstitute best practices for variant calling with the GATK,” accessed: 08-

18-2013. [Online]. Available: http://www.broadinstitute.org/gatk/guide/topic?name=

best-practices

[49] Heng Li and Richard Durbin, “Fast and accurate long-read alignment with Bur-

rowsWheeler transform,” Bioinformatics, vol. 26, no. 5, pp. 589–595, 2009.

[50] “Windows Azure,” accessed: 08-18-2013. [Online]. Available: www.windowsazure.com/

en-us/

[51] Li H., Handsaker B., Wysoker A., Fennell T., Ruan J., Homer N., Marth G., Abecasis G.,

and Durbin R., “The Sequence Alignment/Map format and SAMtools,” Bioinformatics,

vol. 25, no. 16, pp. 2078–2079, 2009.

[52] Hsi-Yang Fritz M., Leinonen R., Cochrane G., and Birney E., “Efficient storage of

high throughput DNA sequencing data using reference-based compression,” Genome

Research, vol. 21, pp. 734–740, 2011.

[53] “Windows Azure Blob,” accessed: 08-18-2013. [Online]. Available: http://www.

windowsazure.com/en-us/develop/net/how-to-guides/blob-storage/

[54] “Cloud Service Models,” accessed: 08-18-2013. [Online]. Available: http://www.

inspurglobal.com/article-366.html

[55] “Windows Azure Blob Storage Concepts Simplified,” ac-

cessed: 08-18-2013. [Online]. Available: http://www.azurecloudpro.com/

windows-azure-blob-storage-concepts-simplified/

http://www.broadinstitute.org/gatk/guide/topic?name=best-practices
http://www.broadinstitute.org/gatk/guide/topic?name=best-practices
www.windowsazure.com/en-us/
www.windowsazure.com/en-us/
http://www.windowsazure.com/en-us/develop/net/how-to-guides/blob-storage/
http://www.windowsazure.com/en-us/develop/net/how-to-guides/blob-storage/
http://www.inspurglobal.com/article-366.html
http://www.inspurglobal.com/article-366.html
http://www.azurecloudpro.com/windows-azure-blob-storage-concepts-simplified/
http://www.azurecloudpro.com/windows-azure-blob-storage-concepts-simplified/

Nabeel M. Mohamed Bibliography 80

[56] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung, “The google file system,” in

Proceedings of the nineteenth ACM symposium on Operating systems principles. ACM,

2003, pp. 29–43.

[57] “Variant Call Format,” accessed: 08-18-2013. [Online]. Available: http://www.

1000genomes.org/node/101

[58] Nabeel M. Mohamed, Heshan Lin, and Wu-chun Feng, “Accelerating data-intensive

genome analysis in the cloud,” in 5th International Conference on Bioinformatics and

Computational Biology (BICoB). ISCA, 2013, pp. 297–304.

[59] Heng Li and Nils Homer, “A survey of sequence alignment algorithms for next-

generation sequencing,” Briefings in Bioinformatics, vol. II, no. 5, pp. 473–483, 2010.

[60] Dong Xie, “Bioinformatics On Windows,” accessed: 08-18-2013. [Online]. Available:

http://bow.codeplex.com/releases

[61] Matti Niemenmaa, Aleksi Kallio, Andre Schumacher, Petri Klemelae, Eija Korpelainen,

and Keijo Heljanko, “Hadoop-BAM: directly manipulating next generation sequencing

data in the cloud,” Bioinformatics, vol. 28, no. 6, pp. 876–877, 2012.

[62] “Hadoop on Azure,” accessed: 08-18-2013. [Online]. Available: https://www.

hadooponazure.com

[63] The 1000 Genomes Project Consortium, “A map of human genome variation from

population-scale sequencing,” Nature, vol. 467, no. 7, pp. 1061–1073, 2010.

[64] Sherry S.T., Ward M.H., Kholodov M., Baker J., Phan L., Smigielski E.M., and Sirotkin

K., “dbSNP: the NCBI database of genetic variation,” Nucleic Acids Research, vol. 29,

no. 1, pp. 308–311, 2001.

http://www.1000genomes.org/node/101
http://www.1000genomes.org/node/101
http://bow.codeplex.com/releases
https://www.hadooponazure.com
https://www.hadooponazure.com

Nabeel M. Mohamed Bibliography 81

[65] “CRAM Toolkit,” accessed: 08-18-2013. [Online]. Available: http://www.ebi.ac.uk/

ena/about/cram toolkit

[66] Liu Yongchao, Schmidt Bertil, and L. Maskell Douglas, “Cushaw: a cuda compatible

short read aligner to large genomes based on the burrows-wheeler transform,” Bioinfor-

matics, vol. 28, no. 14, pp. 1830–1837, 2012.

[67] “Apache Templeton,” accessed: 08-18-2013. [Online]. Available: http://people.apache.

org/∼thejas/templeton doc latest/

http://www.ebi.ac.uk/ena/about/cram_toolkit
http://www.ebi.ac.uk/ena/about/cram_toolkit
http://people.apache.org/~thejas/templeton_doc_latest/
http://people.apache.org/~thejas/templeton_doc_latest/

	Introduction
	Motivation
	Related Work
	Contributions
	Document Overview

	Background
	Cloud Service Models
	Microsoft Azure
	Apache Hadoop
	Genome Analysis Toolkit
	Overview of File Formats

	SeqInCloud: Sequence Analysis in the Cloud
	Overview
	Design and Implementation
	SeqInCloud Workflow Stages

	SeqInCloud Optimizations
	Compute Optimizations
	Data Transfer Optimizations

	Applicability of SeqInCloud to Other Cloud Platforms

	CloudFlow: Distributed Workflow Manager for the Cloud
	Cloudgene Overview
	Design and Implementation
	Cloudgene Architecture
	CloudFlow Architecture
	CloudFlow Features

	CloudFlow Optimizations
	Case Study
	Applicability of CloudFlow to Other Cloud Platforms

	Conclusions and Future Work
	Conclusions
	Future Work

	Bibliography

