
Applying the Midas Touch of Reproducibility
to High-Performance Computing

A. C. Minor
Dept. of Computer Science

Virginia Tech
acminor@vt.edu

W. Feng
Dept. of Computer Science

Virginia Tech
wfeng@vt.edu

Abstract—With the serial performance of CPUs improving
exponentially through the 1980s and 1990s and then plateauing
by the mid-2000s, the high-performance computing community
has seen parallel computing become ubiquitous, which, in turn,
has led to a proliferation of parallel programming models. This
diversity in hardware platform and programming model has
forced programmers to port their codes from one hardware
platform to another (e.g., CUDA on Nvidia GPU to OpenCL
on AMD GPU) and show reproducibility via ad-hoc testing. So,
to validate reproducibility between codes, we propose Midas, a
system to ensure that the results of the original code match the
results of the ported code by leveraging snapshots to capture the
state of a system before and after the execution of a kernel.

Index Terms—heterogeneous computing, parallel computing,
programming models, programming languages, reproducibility,
snapshots, validation.

I. INTRODUCTION

Today, heterogeneous computing is at a crossroads. Paral-
lel computing has become ubiquitous with multicore CPUs,
manycore GPUs and TPUs, and even FPGAs becoming the
norm. Unfortunately, with this proliferation of parallel comput-
ing platforms comes a variety of parallel programming models,
most of which are not cross-platform compatible.

As the high-performance computing (HPC) community up-
dates their facilities, this lack of cross-platform compatibility
becomes an issue, leading to vendor lock-in, decreased produc-
tivity, and ad-hoc testing of ported code.1 When organizations
change vendors and, in turn, parallel computing platforms,
existing code needs to be rewritten or ported to whatever
language the new platform supports.

CU2CL [1] facilitated the automated porting of code from
CUDA to OpenCL, but reproducibility was addressed via ad-
hoc testing only [2]. Likewise, AMD created a CUDA-like
environment called HIP, short for Heterogeneous Interface
for Portability, to enable porting code from Nvidia to AMD
platforms [3], using a tool called HIPify to convert CUDA
code to HIP code [4]. In the meantime, Intel created oneAPI,
which leverages SYCL and has a translator from CUDA to
SYCL called SYCLomatic [5].

1For example, DOE Oak Ridge National Laboratory’s previous fastest
supercomputer in the world, Summit, consisted of Nvidia GPUs programmed
with CUDA, while their latest fastest supercomputer in the world, Frontier,
consists of AMD GPUs programmed with HIP or OpenCL.

Rather than focus on which language to standardize upon,
we seek to address the “hidden elephant” in the room, namely
the need to rigorously validate the cross-platform porting
of code, which is aided by tools such as CU2CL, HIPify,
and SYCLomatic. However, without rigorous testing or with
only full-suite integration testing, the validation of large-scale
HPC codes is suspect, particularly when results are non-
deterministic, as the integration test might only test stochas-
tic equivalence. Consequently, tests must be finer-grained,
allowing for more deterministic testing and precision and
benefiting the porting of large-scale HPC codes by automati-
cally identifying where issues occur with finer-grained testing
and preventing potentially unexpected results that might be
smoothed over by a broad system-level test.

To address the issue of reproducibility, we propose Midas,
as depicted in Fig. 1. Midas is a system to ensure that the
results of the original code match the results of ported code.
It accomplishes this task by leveraging snapshots to capture
the state of a system before and after the execution of a kernel.
These snapshots can then be used to unit test the ported code
against the original code. By leveraging a snapshot-based test
flow, porting and testing can be made precise.

Fig. 1: Midas: Validating the Porting of GPU Source Code

II. SNAPSHOT TESTING AS A WORKFLOW

Using snapshots, we identify three types of translation
encountered in porting code:
• Porting: Raw translation
• Interpretation: Feature parity issues (e.g., queues, locks, ...)
• Refinement: Fitting target xPU, where x = {C,G, T, ...}

HPEC 2022 Waltham, MA



First, we define porting as the process of translation between
two different programming environments — in this paper,
CUDA to OpenCL, as our case study. To facilitate the porting
of large-scale HPC codes, programmers use source-to-source
translation tools, like CU2CL [1]. Once translated, rigorous
validation testing is needed to ensure reproducibility of the
ported code, as source-to-source translation is non-trivial and
has many corner cases. So, we seek to automatically probe
these corner cases of language translation and validate results.

Snapshotting provides tools to validate the results of source-
to-source translation. Fig. 2 shows an example of a software
process for testing the porting effort.2

Fig. 2: Porting Workflow.
Ki represents the ith kernel in the program

Second, we define interpretation as the creation or re-
definition of GPU framework features to deal with the lack
of feature parity between two programming frameworks. For
example, perhaps a source-to-source translation framework
can replace queues in one language with library calls to a
custom queue in another language. However, due to framework
differences, this might not be possible. Thus, interpretation is
necessary to change the way that the code is written but to
behave the same while fitting in the target framework.

Because source-to-source translators generally do not ad-
dress the problem of interpretation, we rely on the existence of
“stubs” to have points of insertion or interpretation for the code
constructs and missing features. These stubs allow code to run
without stopping and without failing to compile. However, the
results will not be the same, as functionality will be missing.

Snapshotting helps validate these issues in three ways: (1)
We can sidestep the issue of infinite looping and broken code
due to missing features. With a snapshot, we can unit test
kernels individually. Thus, we can test all working kernels
and assign members to fix any apparent issues. (2) We can
address the issue of filling in stubs. Some language features
might be missing a library. Thus, we can fill in stubs with an-
other library, handwritten or third-party, to match the features
needed for the code in question. The kernels using these stubs
can then be addressed one by one in parallel. (3) In addressing

2For this and subsequent figures, CUDA and OpenCL are provided as a
case-study example without loss of generality. They could be substituted with
other frameworks, e.g., SYCL and HIP.

larger language differences (e.g., absence of locks), we can re-
work multiple kernels with confidence that our final results are
the same. In the case that two or more kernels must be fused
or separated, we can validate units of work instead of kernels.
Fig. 3 shows the general process of interpretation workflows.

Fig. 3: Interpretation Workflow.
Ki represents the ith kernel in the program

Third, we define refinement to be the process of adapting
code to fit the programming framework or environment of the
newly ported code. It can also be defined as the process of
incrementally improving a code’s speed or readability. This
closely matches what software engineers refer to as refactor-
ing and can be illustrated by tuning the optimal execution
dimensions for a kernel or tweaking data structures to map on
the cache architecture of the target hardware. With snapshot
testing, not only can we continuously improve and refactor,
but we can also validate our changes on a kernel-by-kernel
and integration-test level. Furthermore, we can profile each
individual kernel’s execution time, separate from the whole-
program execution time. See Fig. 4 for a refactoring workflow.

Fig. 4: Refactoring Workflow.
Ki represents the ith kernel in the program

Snapshotting can be easily integrated into an existing testing
framework. It is as simple as choosing the points of integration
(where to validate pre-/post-conditions) and capturing the
relevant data.

HPEC 2022 Waltham, MA



III. MIDAS

Midas is our framework for providing easy-to-use and per-
formant snapshot-based testing for code porting. It consists of
three tools that address each of the aforementioned translation
tasks using software engineering to ease developer toil. Fig. 5
shows an image of the entire system.

Fig. 5: Midas System Overview

Golden serves as the foundation of Midas. It reliably
snapshots data to disk and compares the snapshots. Inspired
by the C++ library Approval Tests [6] and the concept of
“goldens,” goldens are a snapshot of what your data (input
or output) should be for a given function. Current snapshots
and goldens can then be compared to determine if your cross-
platform program has changed its behavior. Fig. 6 shows the
Golden workflow, i.e., save a snapshot from a verified source
to disk and then use it to validate future snapshots.

Fig. 6: Golden Workflow

Approval Tests as a framework behaves similarly; how-
ever, it has a major shortcoming for HPC workloads: it
mainly works with text data, though you can write your own
writer [7]. This shortcoming results in two major ramifications.
First, floating-point numbers must be rendered consistently
to text. Because we are comparing text, we cannot rely on
epsilon-based equality schemes; instead we need a consistent
truncating-based design. Second, due to the conversion of
floating-point numbers to strings, we incur both a performance
penalty and a memory penalty. The performance penalty is
obvious. The memory penalty can be understood with the
following reasoning. Suppose we want to compare a floating-
point number to eight decimal-place precision. This implies up
to eight characters in the text output plus the leading magni-
tude and the decimal position character, resulting in more than
eight bytes. Now consider the floating-point representations for
float and double, four bytes and eight bytes, respectively.

We are guaranteed the same or better performance for eight
bytes and can better handle the separation of data elements by
only requiring the need for a size (as all floating-points are
equal width). This analysis can be seen in Fig. 7.

Fig. 7: Storage Size between Storage Types

To accomplish this non-text-based snapshotting scheme, we
use Google Protocol Buffers (i.e., protobuf) [8] to handle
the representation of snapshots. With protobuf, you focus on
specifying the different members of a snapshot (type, repe-
tition, etc.), see Listing 1. Protobuf serializes this efficiently,
using a binary format [9]. By using a well-established library,
we get assurance of its future sustainability and its current
validity. Furthermore, protobuf has the ability to introspect
and compare its messages to each other. This can be used to
report missing members, added members, and non-matching
members for a message [10], as noted in Fig. 6. The end
user can then take this report and analyze what possible
issues might be occurring (i.e., logic bugs, epsilon differences,
missing fields, and so on).

message ReducePE {
// calculates kernel launch dims based
// off this and a macro constant
int32 natom = 1;
repeated lib.pb_float4 f4d = 2;
repeated lib.pb_float4 f4d_nonbond = 3;
repeated lib.pb_float4 f4d_bonded = 4;
int32 natomd = 5;
int32 workgroup_sized = 6;
}

Listing 1: Protobuf Snapshot Description for the FenZi Molec-
ular Dynamics Code

To use Golden directly, snapshots must be handmade for
each unit of work that we want to test. Because this process is
tedious and error-prone, we created Midas Touch, an interface
and collection of converters to handle common serialization
tasks. If needed, users can write custom converters using the
provided Midas Touch interfaces. Table I provides a listing
of the implemented converters.

Converter Description
Dim3 OpenCL and CUDA

Float2,3,4 OpenCL and CUDA
Complex CUDA, OpenCL complex handled by Float2

Int2,4 OpenCL and CUDA
Primitive OpenCL and CUDA, raw ints, floats, structs, etc.

Vector OpenCL and CUDA
MallocInteropArray OpenCL and CUDA, uses tracking logic to de-

termine array size

TABLE I: Midas Touch Converters

Using Midas Touch, we can focus directly on what we are
serializing instead of how we are serializing it. For example,

HPEC 2022 Waltham, MA



using
Converters::MallocInteropArrayConverter;

using Converters::PrimitiveConverter;
auto snapshot = some_protobuf_snapshot();
MallocInteropArrayConverter.Serialize(
someFloatArray,
[&](const auto &x) {
PrimitiveConverter.Serialize(

&x, [&](const auto &x) {
snapshot.add_some_float_array(x);

},
make_options<MemoryOptions::Host>());

},
make_options<MemoryOptions::Device>());

VectorConverter.Deserialize(
&someFloatArray,
snapshot.some_float_array(),
make_options<MemoryOptions::Device>(

FilledConverter(
PrimitiveConverter,
make_options<

MemoryOptions::Host>())));

Listing 2: Example Midas Touch Source Code

suppose we need to serialize an array of floats. Instead of
writing a for-loop along with the associated code to copy data
to and from the GPU properly, we can use Midas Touch and
simply say “dump this array from GPU to host.” This is highly
convenient when used with our allocation-snooping allocator
override. This allows source code to have the size of GPU
allocations snooped, using a simple C preprocessor macro.
Thus, when the data is serialized to disk, we do not have
to specify the size. This dump to array logic, along with the
corresponding deserialization code, can be seen in Listing 2.

Midas Touch is a generic framework that only handles
the serialization and deserialization parts of a snapshot. This
gives programmers the freedom to design their serialization
code in the best way that fits their system. For example,
we made explicit serialization and deserialization functions
that could then be used with other code to only serialize
the subsequent calls of a kernel. Looking at our previous
discussion on splitting and merging snapshots, the benefit of
this generic interface is apparent. For example, we can take
two snapshots’ serialization functions and combine them into
one to simulate a merged kernel. Examples of the freedom in
Midas Touch’s interface can be seen in Fig. 8.

Fig. 8: Midas Touch: Freedom of Snapshotting

With Midas Touch being verbose, so as to provide a
complete interface, we propose a third tool called Flamel that
enables the programmer to focus on what is being serialized.

Flamel is a high-level description language to generate
Midas Touch code. Flamel abstracts the descriptions for
fields of a snapshot to a TOML interface. TOML [11] is a
data-description language, similar to JSON. In our usage, we
specify metadata for a snapshot and do not worry about the
Midas Touch code that is generated for that snapshot. In the
end, we get a description of a snapshot that can be used to gen-
erate C++ functions for serialization and deserialization. This
abstraction allows for future replacement of the underlying
library code. For example, we might want to test Python code
and could implement code to generate the serialization code
in Python from our Flamel TOML descriptions. Furthermore,
we can store our descriptions in a database to analyze how
our snapshots change over time, instead of how our code
changes over time. Ultimately, researchers and others can more
easily generate snapshot code for their given problem, while
providing for greater introspection into the changes that occur
in a snapshot over time. See Fig. 9 for how Flamel could
integrate into such a system.

Fig. 9: Potential Flamel Workflow

IV. RESULTS

With Midas, users can incorporate a snapshot-based test-
ing workflow into their original testing workflow or into
a new testing workflow. In our case, we created a rigor-
ous testing framework using our snapshot-based testing and
GoogleTest [12].

As a case study, we use FenZi, a molecular dynamics code
written in CUDA [13] and then translated to OpenCL [2] via
CU2CL [1]. While we could not illustrate Midas’s incremental
porting benefits, as FenZi was already ported, we can show the
validation of the porting done at a fine granularity. Due to the
way that FenZi executes, the precise solution to the problem
is non-deterministic; thus, we could only validate the code
stochastically. However, analyzing the source code revealed
that virtually all the kernels could be tested deterministically.
Thus, using Midas at this point in the porting process,
we abstracted away the whole-program non-determinism to
show that the individual kernels themselves behave similarly,
without needing to be concerned with how the outputs might
change between runs.

Using Midas, we validated the kernels in the FenZi code
base. Furthermore, the CUDA source code and OpenCL
source code used varying numbers of parameters (e.g., up
to 39 parameters for the kernel BondedForce) and slightly
different interfaces (e.g., switching interfaces for memory
accesses between the two ports (e.g., using or not using

HPEC 2022 Waltham, MA



texture memory). Through this validation process, we detected
one minor error in the ported code (but not in the GPU
kernels) related to accidentally using previous global state.
This error only showed up in isolation and was benign in
the overall program runs. In addition, we found a minus-
cule difference in the epsilon results for a few kernels. For
reproducibility, we have provided our tests and our code
at https://github.com/vtsynergy/midas. A list-
ing of the kernels tested can be seen in Table II.

Kernels
BCMultiply BondedForce
CellBuild CellClean

CellUpdate ChargeSpreadMedium
ChargeSpreadSmall CheckCellOccupancy
CheckLatticeNum CheckNonbondNum

ConjugatedGradient CoordsUpdate
HalfKickGPU LatticeBuild

nbbuild exclbitvec NonBondForce
PMEForceLarge PMEForceMedium

ReduceCOM ReducePE
RestraintForce SolveBondConstraints

SolveVelocityConstraints UpdateCoords

TABLE II: Tested Kernels

V. CHALLENGES

In examining our snapshot testing for FenZi, we observed
several challenges.

Non-determinism can change snapshots between runs. If the
change was due to a bug across platform ports, we can validate
the said change and update the snapshot or port; but if it is
due to non-determinism, then the snapshot will continuously
change, whether a bug was introduced or fixed. For instance,
one source of non-determinism in parallel HPC code is atomic
operations across threads.

While we have encountered several non-deterministic ker-
nels, they have either used atomic operations that perform
a commutative operation on a result (e.g., reduction-style
workflow, as shown in Fig. 10) or that perform a reversible
operation. (By reversible, we mean that the operation can be
made deterministic by removing and/or imposing a theoreti-
cally valid ordering.) Thus, we have been able to avoid the
need to skip or to only partially test the non-deterministic
kernels.

Fig. 11 shows an example of a reversible kernel. For this
kernel, we are processing a set of three-dimensional (3D) ar-
rays. If an array cell has been previously updated, we move to
the next array in the stack and process the same cell location.
This forms a non-deterministic ordering of values along atomic
time. Furthermore, for our kernel, the generated values are
deterministic in value and contain the thread identification
(i.e., id) that processed them. So, we have a non-deterministic
ordering of deterministic values with thread id that can be
used to impose an output ordering. That is, we sort array cells
over time from smallest to largest thread id, which represents
a possible execution ordering. Thus, we can assert equality of
any two results via this deterministic transformation.

In addition, our system allows for small-scale testing which
can minimize the size of untested non-deterministic parts of
the code. For example, suppose that an individual kernel is
non-deterministic, but a collection of kernels run together
converges toward a single value. We can snapshot and compare
at the convergence point. This convergent point could be an
entire run of the system, or it could be subsets of the run,
as shown in Fig. 12. On the other hand, suppose that no
convergence exists in the output but only a small subset of
kernels is non-deterministic. We can still test a large number
of the deterministic kernels accurately and fully while leaving
the few non-deterministic kernels for other analyses, as shown
in Fig. 12.

Fig. 10: Commutative Reduction Example

atomic time

array N

array 0

One possible
thread ordering

3 5 1 2

atomic time

Normalized
thread ordering

1 2 3 5

atomic time

Fig. 11: Reversible Non-Determinism Example

Fig. 12: Non-deterministic Testing Workflow.
Ki represents the ith kernel in the program

VI. FUTURE WORK

Midas is a comprehensive reproducibility system, made for
adapting to today’s gamut of parallel programming models and

HPEC 2022 Waltham, MA



underlying parallel hardware. In the future, we seek to further
improve Midas and the porting workflow presented here. For
example, experimentally, we would like to have two teams
port a code base between two GPU platforms, i.e., have one
team use Midas while the other team does not. The port would
use current tools and technologies for porting to demonstrate
Midas’s benefits in a modern workflow. The teams should be
analyzed for completeness, bugs, speed of development, and
ease of use.

Further future work includes extending Midas to support
SYCL, HIP, and other GPU languages and platforms. This
would demonstrate Midas’s ability to address current and
future challenges in a repidly-changing landscape of HPC
systems. Along with this goal, we would like to see a port
of Midas that works with FPGAs.

From a software engineering perspective, We want snapshot
testing to be a platform usable by anyone. However, additional
work needs to be invested in determining the best interfaces
for doing so. Currently, we envision a study of the Flamel
snapshot description language and code generation. What is
the minimal subset needed? What extension points are needed
to fit current and future demands? What is the best code
generation platform to permit for the ease of adding custom
code generation?

Finally, based on our inspiration from Approval Tests, if a
snapshot does not match, a diff would be generated, which
can be used to see the differences between the golden snapshot
and the current snapshot [14]. In GPU codes, the amount of
data generated can be rather large. Furthermore, it is possible
that a small change can result in a large number of differences.
Thus, a text diff of all the number differences might be
a wasted effort to analyze. We hope for more studies to be
conducted on different visualizations of these diffs. For
example, a simple diff visualization might be to plot the
golden and current snapshot data and compare the results that
way. Alternatively, we could plot the frequency plot of the
data or conduct an analysis of the statistics of the data we
are analyzing. Which diff types are most useful is going to be
domain-specific and an investigation, as such, would need to
look at different, particular domains for ideas.

VII. CONCLUSION

Snapshot testing addresses raw translation, interpretation,
and refinement during the porting process. Our Midas artifact
is a comprehensive snapshot-testing framework for testing
compute kernels efficiently, accurately, and easily. It is generic
and can be integrated into existing workflows. To test our
design, we validated FenZi CUDA [13] to FenZi OpenCL [2]
showing that the code was indeed operating the same.

We would like to acknowledge similar work. Abramson
and Sosic in “A Debugging and Testing Tool for Supporting
Software Evolution” [15] designed a system for verifying
ports across platforms including serialization issues such as
big vs little-endian. Their work used debugging infrastruc-
ture, networks, and visualization to verify and find bugs in
cross-platform high performance computing code. They also

supported a version of serialization for testing. They did not
address GPU systems and their use of debugging infrastruc-
ture could be problematic with more advance optimizations,
including code reordering.

In this new world of transitioning HPC resources and
source-to-source translators, we hope our contribution of an
understanding of how snapshot-based testing can contribute to
GPU porting efforts along with a case study for FenZi CUDA
and FenZi OpenCL helps lead the way in validating ported
code. Non-determinism in GPU computing is a difficult topic
to address, we showed that it is possible in some circumstances
to continue to test in spite of non-deterministic code.

REFERENCES

[1] G. Martinez, M. Gardner, and W. Feng, “CU2CL: A CUDA-to-OpenCL
Translator for Multi- and Many-Core Architectures,” in 2011 IEEE 17th
International Conference on Parallel and Distributed Systems, 2011, pp.
300–307.

[2] P. Sathre, M. Gardner, and W. Feng, “On the Portability of CPU-
Accelerated Applications via Automated Source-to-Source Translation,”
in Proceedings of the International Conference on High Performance
Computing in Asia-Pacific Region, ser. HPC Asia 2019. New York,
NY, USA: Association for Computing Machinery, 2019, p. 1–8.
[Online]. Available: https://doi.org/10.1145/3293320.3293338

[3] HIP Programming Guide v4.5. https://rocmdocs.amd.com/en/latest/
Programming Guides/HIP-GUIDE.html.

[4] HIPIFY: Tools to translate CUDA source code into portable HIP C++
automatically. https://github.com/ROCm-Developer-Tools/HIPIFY.

[5] SYCLomatic. https://github.com/oneapi-src/SYCLomatic.
[6] Approval Tests. https://github.com/approvals/ApprovalTests.cpp.
[7] ApprovalTests.cpp: Writers. https://approvaltestscpp.readthedocs.io/en/

latest/generated docs/Writers.html.
[8] Protocol Buffers - Google’s data interchange format. https://developers.

google.com/protocol-buffers.
[9] (2022, 05) Protocol Buffers - Encoding. https://developers.google.com/

protocol-buffers/docs/encoding.
[10] (2021, 05) message differencer.h. https://developers.google.com/

protocol-buffers/docs/reference/cpp/google.protobuf.util.message
differencer.

[11] T. Preston-Werner, P. Gedam, et al. TOML: Tom’s Obvious Minimal
Language. https://github.com/toml-lang/toml.

[12] GoogleTest User’s Guide. https://google.github.io/googletest/.
[13] N. Ganesan, M. Taufer, B. Bauer, and S. Patel, “FENZI: GPU-Enabled

Molecular Dynamics Simulations of Large Membrane Regions Based
on the CHARMM Force Field and PME,” in 2011 IEEE International
Symposium on Parallel and Distributed Processing Workshops and Phd
Forum, 2011, pp. 472–480.

[14] L. Falco. (2011, 12) Using Reporters in Approval Tests. https://blog.
approvaltests.org/2011/12/using-reporters-in-approval-tests.html.

[15] D. Abramson and R. Sosic, “A Debugging and Testing Tool for
Supporting Software Evolution,” Autom. Softw. Eng., vol. 3, pp. 369–
390, 08 1996.

HPEC 2022 Waltham, MA

https://doi.org/10.1145/3293320.3293338
https://rocmdocs.amd.com/en/latest/Programming_Guides/HIP-GUIDE.html
https://rocmdocs.amd.com/en/latest/Programming_Guides/HIP-GUIDE.html
https://github.com/ROCm-Developer-Tools/HIPIFY
https://github.com/oneapi-src/SYCLomatic
https://github.com/approvals/ApprovalTests.cpp
https://approvaltestscpp.readthedocs.io/en/latest/generated_docs/Writers.html
https://approvaltestscpp.readthedocs.io/en/latest/generated_docs/Writers.html
https://developers.google.com/protocol-buffers
https://developers.google.com/protocol-buffers
https://developers.google.com/protocol-buffers/docs/encoding
https://developers.google.com/protocol-buffers/docs/encoding
https://developers.google.com/protocol-buffers/docs/reference/cpp/google.protobuf.util.message_differencer
https://developers.google.com/protocol-buffers/docs/reference/cpp/google.protobuf.util.message_differencer
https://developers.google.com/protocol-buffers/docs/reference/cpp/google.protobuf.util.message_differencer
https://github.com/toml-lang/toml
https://google.github.io/googletest/
https://blog.approvaltests.org/2011/12/using-reporters-in-approval-tests.html
https://blog.approvaltests.org/2011/12/using-reporters-in-approval-tests.html

	Introduction
	Snapshot Testing as a Workflow
	Midas
	Results
	Challenges
	Future Work
	Conclusion
	References

