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Abstract—Large-scale simulation can provide a
wide range of information needed to develop and
validate theoretical models for multiphase flow in
porous medium systems. In this paper, we consider a
coupled solution in which a multiphase flow simulator
is coupled to an analysis approach used to extract the
interfacial geometries as the flow evolves. This has
been implemented usingMPI to target heterogeneous
nodes equipped with GPUs. The GPUs evolve the
multiphase flow solution using the lattice Boltzmann
method while the CPUs compute upscaled measures
of the morphology and topology of the phase distri-
butions and their rate of evolution. Our approach is
demonstrated to scale to 4,096 GPUs and 65,536 CPU
cores to achieve a maximum performance of 244,754
million-lattice-node updates per second (MLUPS) in
double precision execution on Titan. In turn, this
approach increases the size of systems that can be
considered by an order of magnitude compared with
previous work and enables detailed in situ tracking of
averaged flow quantities at temporal resolutions that
were previously impossible. Furthermore, it virtually
eliminates the need for post-processing and intensive
I/O and mitigates the potential loss of data associated
with node failures.

Keywords-CUDA, Heterogeneous Computing,
Parallel Computing, GPGPU, Lattice Boltzmann
Method

I. Introduction
Multiphase flow processes in porous media are oper-

ative in many applications that include carbon seques-
tration, remediation of environmental contaminants and
enhanced oil recovery. The ability to describe these pro-
cesses in an averaged sense is essential due to the size and
complexity of these systems, and computational studies

have great promise to advance fundamental understand-
ing of the transport behavior. Multi-scale descriptions
have gained traction as a concrete way to resolve defi-
ciencies in the existing mathematical formulations that
are typically applied to describe multiphase transport
phenomena in porous media [1, 2]. These development
advance a theoretical basis for upscaled models and pro-
vide both general and specific forms of closures relations
that can be evaluated, advanced, and validated using
high resolution simulations that have until now been
beyond reach computationally. Theoretically approaches
have already established a rigorous connection between
microscopic flow processes and the larger-scale macro-
scopic behavior, and accurately tracking changes in in-
terfacial areas has been identified as critically important
to the closure of thermodynamically-consistent models
[3]. Directly simulating the microscopic details of flow
processes that occur within the complex micrometer-
sized interstices within the solid geometry provides a way
to advance these models.

The lattice Boltzmann method (LBM) is well-
established as a useful approach for numerical investiga-
tion of multiphase flow in porous media [4, 5, 6, 7]. The
computational properties of the LBM make it well-suited
for parallel implementation, and the performance and
scalability for GPU-based implementations have been
demonstrated for multiple computational fluid dynamics
applications [8, 9, 10]. For a multiphase implementation
the LBM targeting multiple GPU with MPI, Wang
et al. reported performance of 2850 MLUPS on 64
GPUs, demonstrating that excellent weak scaling can
be obtained provided that sufficiently large sub-domains
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are retained by each MPI process [11]. In order to
extend this performance to flow in porous media, GPU
implementations must not only solve for the multiphase
flow, but also accommodate complex solid boundary
conditions within GPU kernels. An additional challenge
is presented by the need to track the dynamics of
multiphase flow in large, complex systems in situ so that
the need to save the simulation state to disk at regular
intervals can be avoided.

In this paper we construct a scalable approach to the
simulation and analysis of multiphase flows that takes
advantage of heterogeneous parallelism by coupling an
GPU-based solution for the multiphase flow problem
to an analysis algorithm used to extract morphological
information on the CPU. This approach enables the
practical application of the LBM to study multiphase
flow in porous media on the world’s largest GPU-
equipped supercomputer. The implementation achieves
near-ideal weak scaling and achieves a performance of
244, 754 MLUPS for double-precision execution on 4, 096
GPU. The specific contributions of this work are as
follows:

1) development of a GPU-based simulator for multi-
phase flow in porous media using CUDA and MPI;

2) significant reduction in the need for I/O, data
storage, data transfer and post-processing analysis
due to performing all analysis on the CPU during
the course of a simulation;

3) evaluation of the scaling and load-balance for the
developed algorithm and demonstrate the perfor-
mance; and

4) show that the method can be used to extract
previously inaccessible scientific results from large-
scale simulations.

II. Background

A. Scientific Merit
Porous media include a wide range of natural and

synthetic materials in which flow processes can occur in
the interior spaces, also known as the pore-space. Direct
simulation of the microscopic details of multiphase flow
processes requires knowledge of the pore-space geometry
in which this flow occurs. In order to obtain sufficiently
complex geometries, dense sphere packs are often used.
The spheres represent the solid phase s, which is immo-
bile and non-deformable for our simulations. An example
sphere packs is shown in Fig. 1, in which non-overlapping
spheres with log-normally distributed radii have been
inserted into a cubic domain to serve as surrogate porous
media [12]. The region of the domain occupied by solid
phase is denoted by Ωs. In many cases it is important
to predict the behavior of two fluid phases, which are
referred to as the wetting (w) and non-wetting (n) fluids.

Figure 1. An example of a porous medium system constructed
from a random close packing of 85,519 spheres with log-normally
distributed radii

This classification is determined based on the contact
angle formed where the two fluids meet the solid phase.

For two-phase flow in porous media, capillary forces
tend to dominate other effects and the evolution of
the interfaces is a main factor that determines the
equilibrium and non-equilibrium behavior. Extracting
information about the dynamic behavior of interfaces is
not currently possible in an experimental setting, and
computational approaches currently provide the most
practical way to generate detailed insight into these
processes. For the systems considered in this work, three
interfaces can exist in: the interface between the wetting
and non-wetting fluids Ωwn, the interface between the
wetting fluid and the solid Ωws and the interface be-
tween the non-wetting fluid and the solid Ωns. Existing
approaches used to have been evaluate interfacial area
in porous medium systems that are approximately 4003

in size [13]. In this work we develop an approach that
can be applied to systems that are order of magnitude
larger, with analysis applied thousands of times over the
course of a single simulation.

In order to develop a coherent macroscopic multi-
phase flow model for porous media, it is necessary to
comprehend the behavior of a wide range of averaged
quantities that are obtained by integrating quantities
over the phase volumes, interfaces between phases, and
the common curve where all three phases coexist [1].
In this work we consider a relatively simple computa-
tional experiment that is of direct importance to the
advancement of multi-scale models for multiphase flow
in porous media. A non-equilibrium configuration of
multiple phases is initialized within the pore-space of
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a sphere packing, then the interfacial areas awn, aws
and ans are evaluated numerically as the system relaxes
toward equilibrium. The interfacial areas are computed
directly at intervals of T time steps throughout the
course of simulation. As a measure of the approach to
equilibrium, we evaluate the change in surface energy:

∆Es = γwn∆awn + (γns − γws)∆ans. (1)

The surface energy for the wn interface, γwn, can be
computed based on the parameters for the simulation.
The difference between the ns and ws interfacial en-
ergies, given by γns and γns respectively, is related
to the equilibrium contact angle by Young’s equation
[14]. The contact angle can be determined from on the
simulation parameters, permitting the computation of
∆Es based on the time history of interfacial areas [15].
It is important to note that while the evaluation of
the interfacial areas is a simple calculation, due to the
fact that a numerical approximation for the interfaces
is constructed explicitly it is also possible to track the
transient behavior of virtually any scalar, vector, or ten-
sor quantity averaged over the phase volumes, interfaces
or the common curve.

B. GPU-Accelerated Supercomputer Architecture
Due to their superior performance and energy effi-

ciency, GPUs are widely used to speedup scientific com-
putational applications. In the Top500 list [16] published
in November 2013, 41 systems, including two of the top
ten supercomputers, were installed with GPUs. Since
we carry out our experimental evaluations on Titan
supercomputer, ranking on No. 2 in the Top500 list
to date, we introduce Titan as the GPU-accelerated
supercomputer architecture.

Titan uses NVIDIA Kepler K20x GPU on the com-
putational nodes. Each Kepler K20x GPU has 6 GB
GDDR5 SDRAM device memory and 2688 CUDA Cores
in total. The peak performance of a GPU is 3.95 TFlops
and 1.31 TFlops in single precision and double precision,
respectively. A GPU contains 14 streaming multiproces-
sors (SMs), each of which consists of 192 CUDA Cores
as SIMD (single instruction, multiple data stream) units.
The device memory, also know as the global memory, is
shared by all the SMs in a GPU with 250 GB/sec peak
bandwidth.

We use Compute Unified Device Architecture
(CUDA) programming model provided by NVIDIA to
compose our program. The CUDA program consists of
CPU codes and GPU codes. The functions that will
be running on GPUs are called GPU kernels. A kernel
function will be running in parallel by a large number
of threads on GPU. The threads are grouped into the
block of threads and the grid of blocks. When a kernel
is launched (or offloaded) by the CPU, the parameters,

Figure 2. An example workflow depicting the simulation and
analysis of multiphase flow. Simulation data is written to disk and
transferred from the supercomputer to a local workstation where
analysis is performed. The time interval for analysis T is thereby
constrained by data movement and analysis bottlenecks.

such as the number of threads per block and the
number of blocks per grid, should be specified. Other
major parts of Titan include the AMD Opteron 6274
hexa-core processor and 32GB DDR3 main memory on
each node, and Cray Gemini interconnect to connect
nodes with a 3D torus architecture. We use CUDA
for the parallel computation on GPU and MPI for the
parallel communication on multiple nodes.

III. Computational Approach
A. Overall Simulator Design

This work considers a multiphase implementation of
the LBM that is written in CUDA and MPI and coupled
to an image processing code (written in C++) that
extracts the interfaces averages during the course of
simulation. The multiphase flow simulator is a GPU-
based implementation of the color model lattice Boltz-
mann scheme developed by McClure et al., a scheme
that was constructed to use both GPU and multi-core
CPU in tandem [15]. In this work, all LBM computations
are performed on the GPU and CPU are dedicated to
carrying out image-processing computations needed to
extract information from the simulation. This analysis
is performed using a porous medium marching cubes
(PMMC) algorithm developed to extract the interfaces
and calculate a variety of other averages [17]. The details
for each aspect of this approach are presented in the
following sections.

In order to enable large-scale simulations that can
meet the scientific objectives outlined for this applica-
tion, it is essential to define a scalable workflow. Very
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Figure 3. The overall design of the simulation tool considered in
this work relies on GPU to execute a simulation for the multiphase
flow while the CPU perform analysis at regular intervals through-
out the simulation. As a consequence, the interval for analysis T
can be chosen as a small value, yielding detailed information for
the system dynamics.

large systems must be considered in order to produce
generalizable results from pore-scale studies. However, it
is cumbersome to retain and analyze the resulting data.
This bottleneck is evident based on the workflow shown
in Fig. 2. In this example, a CPU-based implementation
of the LBM is used to provide the solution for the phase
indicator field φ(xi, t), the pressure field p(xi, t) and the
velocity field u(xi, t). The simulation is executed by P
MPI processes, each of which owns a subdomain of size
N × N × N . In order to extract averaged information
from the simulation, the solution was saved to disk every
T time steps and transferred to a local workstation
where the PMMC approach is applied to determine the
interfacial areas.

In order to track the dynamics of the system, the
simulation state is analyzed at intervals of T time steps.
For the present study tracking the interfacial areas, it is
sufficient to save only the phase indicator field to disk,
although this is not true in general. If the analysis is
to be performed as shown in Fig. 2, 8PN3 bytes will
be written to disk and transferred off of the cluster for
post-processing. The interval T is constrained by the
extreme costs of data transfer, in particular. Further-
more, the total system size PN3 is constrained by the
amount of memory available on the desktop machine
and the time required to execute the PMMC analysis
does not scale with the number of processors P . As a
consequence, the interval T becomes unacceptably large
as the P increases. Note that in the present study we are
interested in computing only four quantities: awn, aws,

ans and ∆Es.
In a GPU-based simulation, it is attractive to use the

idle CPU cores to perform analysis so I/O and data
transfer costs can be reduced. The strategy outlined
in Fig. 3 provides a way to avoid data transfers and
I/O while taking advantage of the available CPU. At
intervals of T time steps, the requisite data is transferred
from the GPU to the CPU using cudaMemcpy. Each
MPI process then applies the PMMC to extract the
local interfacial areas on the CPU, which are reduced to
obtain awn, aws and ans using MPI_Reduce. Only these
values are written to output, effectively eliminating the
cost of data transfer since the size of the output data
is no longer proportional to PN3. The time interval T
can be chosen such that the costs of carrying out the
averaging have minimal impact on the performance of
the LBM simulator itself. A typical multiphase LBM
calculation for multiphase flow in porous media requires
105 − 107 time steps. In this work we demonstrate that
excellent performance can be sustained while performing
averaging every T = 103 time steps such that dynamic
information multiphase flow processes can be collected
hundreds to thousands of times per simulation.

B. Multiphase Lattice Boltzmann Scheme

A variety of schemes have been constructed to model
multiphase flows using the lattice Bolztmann method.
The ‘color model’, originally proposed by Gunstensen,
has since been extended to describe flows in porous
media [7]. For the LBM, a set of discrete velocities
provide the mechanism to track the transport behavior.
The momentum transport solution relies on the D3Q19
discrete velocity set:

{0, 0, 0}T for q = 0
{±1, 0, 0}T , for q = 1, 2
{0,±1, 0}T , for q = 3, 4
{0, 0,±1}T for q = 5, 6
{±1,±1, 0}T , for q = 7, 8, 9, 10
{±1, 0,±1}T , for q = 11, 12, 13, 14
{0,±1,±1}T for q = 15, 16, 17, 18.

(2)

A mass transport solution can be performed using
the simpler D3Q7 velocity set, which corresponds to
q = 0, 1, 2, . . . , 6 in Eq. 2. Two sets of distributions are
instantiated locally from the density values ρw and ρn

and the flow velocity u. The mass transport distributions
are constructed according to:

gwq = wq

[
ρw (1 + ξq · u) + β

ρwρn

ρw + ρn
(n · ξq)

]
(3)

gnq = wq

[
ρn (1 + ξq · u)− β ρwρn

ρw + ρn
(n · ξq)

]
, (4)
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where q = 0, 1, . . . , 6. The vector n is the unit normal to
the interface, determined from phase indicator field:

φ = ρw − ρn

ρw + ρn
. (5)

The gradient of the phase indicator field is computed
according to

C(xi, t) = ∇φ =
Q−1∑
q=1

φ(xi + ξq, t)ξq, (6)

and the unit normal vector is :

n = ∇φ
|∇φ|

. (7)

For the D3Q7 model, the weights are w0 = 1/3 and
wq = 1/9 for q = 1, 2, . . . 6. Eqs. 3 and 4 enforce immis-
cibility of the two phases while satisfying local mass and
momentum conservation. Once the distributions have
been computed locally, they are “pushed" to neighboring
lattice sites to update the densities used in the next
timestep:

ρk(xi, t+ δt) =
6∑
q=0

gkq (xi − ξqδt, t). (8)

where k = w, n. This approach is distinct from other
LBMs because the distributions are not stored in mem-
ory. This has implications for parallel implementation
because the ρk must be updated atomically for multi-
threaded computation of Eq. 8.

To solve for the momentum transport, a set of distri-
butions fq are constructed to track the fluid properties
associated with each discrete velocity ξq appearing in
Eq. 2. The distributions evolve according to the lattice
Boltzmann equation (LBE):

fq(xi + ξqδt, t+ δt)− fq(xi, t) = Jq(xi, t), (9)

for q = 0, 1, . . . 18. The distributions can be used to
compute the fluid pressure:

p = 1
3

18∑
q=0

fq, (10)

and the fluid momentum:

j = ρu =
18∑
q=0

fqξq. (11)

The term Jq accounts for changes to fq that result from
inter-molecular collisions and interaction forces. The
form of Jq for our multiphase implementation matches
what is presented by McClure et al., where additional
details are available [15]. Most typically, solution of Eq.
9 is performed in two steps, known as the collision step:

f∗
q (xi, t) = Jq(xi, t), (12)

and the streaming step:

fq(xi + ξqδt, t+ δt) = f∗
q (xi, t). (13)

The collision step is the more computationally intensive
aspect of the LBM, whereas the streaming step relies
entirely on memory bandwidth. For flow in porous media
it is important to rely on multi-relaxation time (MRT)
approaches that are both more accurate and more
computationally intensive compared with the single-
relaxation time approaches that are frequently encoun-
tered in performance studies. In the MRT approach the
form of the collision operator is constructed from linear
combinations of the distributions [18, 19]:

f̂m =
Q−1∑
q=0

Mm,qfq (14)

and the collision term is defined as:

Jq =
Q−1∑
m=0

M∗
q,mλm

(
f̂eqm − f̂m

)
. (15)

The transformation matrix Mm,q and its inverse M∗
q,m

are defined for the D3Q19 velocity structure by
d’Humiëres and Ginzburg [20]. Each moment relaxes
toward its equilibrium value f̂eqm at a unique rate spec-
ified by λm. In the formulation proposed by Arhenholz
et al. the non-zero equilibrium moments incorporate
additional terms to accommodate an anisotropic contri-
bution to the stress tensor due to the surface tension
[7]:

f̂eq1 =
(
j2
x + j2

y + j2
z

)
+ σ|C| (16)

f̂eq9 =
(
2j2
x − j2

y − j2
z

)
+σ |C|2

(
2n2

x − n2
y − n2

z

)
(17)

f̂eq11 =
(
j2
y − j2

z

)
+ σ
|C|
2

(
n2
y − n2

z

)
(18)

f̂eq13 = jxjy + σ
|C|
2 nxny (19)

f̂eq14 = jyjz + σ
|C|
2 nynz (20)

f̂eq15 = jxjx + σ
|C|
2 nxnz (21)

where the parameter σ is linearly related to the interfa-
cial tension and the relaxation parameters λm relate to
the fluid kinematic viscosity.

For flow in porous media the distributions can be
ignored at all lattice sites that satisfy xi ∈ Ωs, where Ωs
is the part of domain occupied by the solid. A “bounce-
back” rule is applied to set a no-slip boundary condition
for the fluid phase at the solid wall: the most commonly
used rule for setting solid boundary conditions:

fq(xi, t+ δt) = fq+1(xi, t) if q is odd, (22)
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fq(xi, t+ δt) = fq−1(xi, t) if q is even. (23)

An analogous expression is applied for the mass trans-
port distributions gwq and gnq .

C. GPU Implementation of the LBM
Implementation of the LBM on a GPU represents a

considerably different task from CPU implementation.
Each GPU contains a large number of relatively sim-
plistic cores that are capable of carrying out tasks in
parallel. The CPU and GPU have their own dedicated
memory spaces, and initialized variables are copied to
the GPU where the main computations are performed.
At each interval T data is copied back to the CPU so that
analysis can be performed. CUDA kernels are based on
a SIMD model in which many threads execute identical
instructions simultaneously. Domain decomposition on
a GPU is structured so as to take advantage of the
multi-threaded framework. The number of threads and
the number of threadblocks can be varied to maximize
performance. Kernels provide instructions to the GPU
that account for all computations required to complete
each time step of the LBM. A set of registers are created
to store the nineteen distributions required to perform
computations at each lattice site. These values reside in
fast register memory once they have been accessed from
the main arrays. Computations are expressed in terms
of these registers in order to maximize performance.

The memory system of the GPU functions most
efficiently when the values read by each threadblock
are aligned within contiguous blocks of memory. When
data is properly aligned, the GPU is able to coalesce
memory accesses within each threadblock into a smaller
number of memory transactions. In order to use memory
bandwidth most efficiently, each half-warp of sixteen
threads should access contiguous memory blocks of size
32, 64, or 128 bytes. As a consequence, the layout of
the distributions f0, f1, . . . f18 must accommodate these
memory accesses. A full description of how the GPU
solution of Eqs. 9 – 21 is performed is available from
McClure et al [15]. In this work we also implement
the solution of Eqs. 3 – 8 equations on GPU. This
calculation maps to the GPU in a straightforward way,
although it is different from the solution of Eq. 9 in
that atomic operations are required to determine Eq. 8.
Double precision atomicAdd was therefore implemented
as suggested in CUDA programming guide [21].

D. Distributed Memory Implementation of the LBM us-
ing GPU

In order to obtain a distributed memory solution for
the multiphase flow problem, cubic sub-domains Ω(p) are
associated with each MPI process p = 0, 1, . . . P − 1.
The sub-domains are of equal size with N × N × N
lattice sites. The position of the solid phase is initialized

Pack send

buffer at

process p

Send data

from process p

to process r

Unpack

receive buffer

at process r

Figure 4. Graphical depiction of the MPI communication pattern
along a boundary for the LBM. Communicated distributions are
packed into contiguous send buffers on the GPU, ignoring lattice
sites at any xi ∈ Ωs. The data is then sent to the neighboring
process and unpacked to the appropriate location on the GPU.

using information provided from a sphere packing. The
list of spheres is read by the MPI process with p = 0,
then broadcast to all other processes. The sub-region of
the sphere packing assigned to process p is determined
from a cartesian process grid p = kPxPy + jPx + i,
where (i, j, k) provides the location of the subdomain
associated with process p. The full domain therefore
corresponds to a cartesian grid with P = Px × Py × Pz
sub-domains, where Px, Py and Pz are the number
of sub-domains in each direction. A solution for the
multiphase flow problem is obtained by concurrently
solving the LBM within each sub-domain and using MPI
to exchange information at the sub-domain boundaries.
Each MPI process requires enough memory to store the
sub-domain and a halo of width one that is used to
facilitate communication.

Based on the straightforward domain decomposition
strategy employed in our approach, each subdomain
communicates with immediately adjacent sub-domains
only. Communication is required to execute the stream-
ing step for the D3Q19 momentum transport solution
given in Eq. 13, for the D3Q7 mass transport solution
given in Eq. 8, and to fill in the values of φ within the
halo so that the color gradient can be computed in Eq.
6. To complete the streaming step at lattice site xi,
processor r must provide to processor p all distributions
fαq (xi) that satisfy xi − ξq ∈ Ω(r),xi − ξq 6∈ Ωs. The
symmetry of the discrete velocity set ensures that each
value received by processor p from processor r will mirror
a value sent by p to r. Each process p must therefore
communicate with 18 other processes to solve its part of
the problem. These include those process that share one
of the six faces: (i+1, j, k), (i−1, j, k), (i, j+1, k), (i, j−
1, k), (i, j, k+1), (i, j, k−1) and the processes which share
one of the twelve edges: (i+1, j+1, k), (i−1, j−1, k), (i+
1, j − 1, k), (i − 1, j + 1, k), (i + 1, j, k + 1), (i + 1, j, k +
1), (i− 1, j, k − 1), (i+ 1, j, k − 1), (i− 1, j, k + 1), (i, j +
1, k + 1), (i, j − 1, k − 1), (i, j + 1, k − 1), (i, j − 1, k + 1).
Full periodic boundary conditions are imposed such that
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Figure 5. Closeup view of a multiphase interfacial configuration
in a sub-region of a sphere packing. The wn interface Ωwn (red)
and the ns interface Ωns (pink) are also shown, constructed using
the PMMC algorithm. The solid spheres are also depicted.

all neighboring processes are determined.
Wang et. al described in detail the steps required

to implement GPU-based communications for a simi-
lar D3Q7/D3Q19 multiphase flow formulation [11]. A
significant difference in our implementation is that the
presence of an immobile solid phase significantly reduces
the number of communications that must be performed
for flows in porous media. The region of space occu-
pied by the solid phase Ωs typically represents 60-70%
of the total volume. Since communications never need
to be performed for any lattice sites xi ∈ Ωs, it is
possible to significantly reduce the size of the messages
passed. This communication procedure is summarized
by Fig. 4. The requisite communications are identified
by first constructing a list of the lattice sites xi on
each boundary for which xi 6∈ Ωs. This list is then
communicated to the adjacent receiving process, and
appropriately sized send and receive buffers are allocated
by each process within GPU memory. Send and receive
buffers are allocated for each pair of communicating
processes. Pack and unpack kernels are then constructed
so that communicated values are placed contiguously
within the send and receive buffers.

E. Porous Media Marching Cubes Algorithm (PMMC)
In the LBM, the interfacial regions tend to be diffuse

due to the way interactions are defined between the fluid
components. In order to evaluate the various interfacial
areas, the interfaces must first be extracted based on the
values of the phase indicator field. The marching cubes
algorithm provides a straightforward way to construct
interfaces as iso-contours of a three-dimensional function

defined on a lattice. In this algorithm, lists of triangles
are constructed to represent the corresponding surfaces
using linear interpolation [22]. The surfaces obtained
from the marching cubes algorithm are widely used in
visualization; in our case the triangles are used as the a
framework for numerical methods.

We used a previously developed variant of the march-
ing cubes algorithm that is designed specifically for the
case of two-phase flow in porous media. The objective is
to explicitly construct a numerical representation for all
three interfaces in a two-fluid phase system: Ωwn,Ωws
and Ωns. A typical multiphase interfacial configuration,
including the Ωwn and Ωns interfaces, is shown in Fig. 5
with the solid phase spheres. To construct these surfaces,
the PMMC algorithm requires: (1) the distance to the
solid surface evaluated at each lattice site and (2) the
values of the phase indicator field. The method is de-
scribed in detail by McClure et al. [17]. The basic steps
are as outlined follows:

1) construct the solid surface using the marching
cubes algorithm;

2) using linear interpolation, evaluate the phase indi-
cator field at the vertices of each triangle on the
solid surface;

3) again using linear interpolation, identify points on
the contact curve where all three phases coexist;

4) trim the solid surface at the contact line to form
the list of triangles that approximate the interfaces
Ωws and Ωns;

5) Using vertices obtained from marching cubes algo-
rithm and vertices on the common curve, construct
a list of triangles that approximate the Ωwn inter-
face within each cube.

In order to visualize the surface, all of the triangles
must be retained after they have been computed. How-
ever, visualization is not an objective of the present
study; we simply wish to evaluate the component interfa-
cial areas. As a result, triangle lists can be constructed
locally within each cube and then discarded once the
local contribution to awn, aws and ans has been deter-
mined. Since the full list of triangles is not retained, the
memory required by this approach is minimal. More im-
portantly, it avoids the possibility that dynamic memory
allocations will be necessary. The total number of tri-
angles can change significantly as flow processes evolve,
both globally and within an individual process. However,
since the maximum number of possible triangles within a
cube can be determined easily, this approach minimizes
the memory footprint for the CPU while guaranteeing
safe execution.

As the PMMC algorithm is embarrassingly parallel,
the steps required to integrate this analysis into a par-
allel LB simulator are straightforward. The distance to
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the solid surface is evaluated at the beginning of the
simulation and stored in CPU memory. Since the solid
is immobile, these values do not change and do not
need to be transferred to the GPU at any point during
the simulation. Information about the phase position is
provided by the phase indicator field φ, which evolves
on the GPU based on the multiphase flow dynamics.
As a result, this data needs to be transferred from the
GPU to the CPU each time that the PMMC algorithm
is applied.

For more generic interfacial averages such as surface
averaged curvatures, velocities and orientations, local
construction of the triangle lists remains the most ju-
dicious approach. In the general case, a larger amount
of data must be transferred from the GPU to the CPU,
including the pressure and velocity fields. Both the
number of averaged quantities and the complexity of the
averages computed impact the computational cost asso-
ciated with the CPU-based analysis. Since the amount of
computation depends on the amount of interfacial area
present, it is difficult to establish a concrete estimate for
the associated computational costs. However, our objec-
tive is to enable a simulation for which T is sufficiently
small to resolve the changes in the macroscopic behavior.

IV. Results and Discussion
A. Parallel Performance of the LBM

Parallel performance of the multiphase LBM simulator
was evaluated using Titan. Two sphere packings were
generated to serve as the domain for these calculations:
a packing of 11, 402 spheres with lognormal mean µ =
−2.23 and variance σ = 0.1, and a packing of 85, 539
spheres with lognormal mean µ = −2.24 and variance
σ = 0.1. The volume fraction occupied by Ωs was 0.631
for each packing. Strong scaling results were obtained
using these random close packings discretized to obtain
lattice sizes of 9603 and 19203, respectively. Details for
these simulations including the parallel efficiency are
provided in Table I, and a scaling plot is shown in Fig.
6. The ideal scaling line is based on a simulation per-
formed in a smaller packing consisting of 1, 896 spheres
discretized to 5403 and simulated using a 3×3×3 grid of
processes. A performance of 76 MLUPS were obtained
for each node in this simulation. Based on the initial
points in our strong scaling plots, the weak scaling for
this code is very nearly ideal.

B. Evaluation of Non-Equilibrium Interfacial Areas
In this section, we demonstrate the practical results

that are obtained by combining the GPU-based im-
plementation of the multiphase LBM coupled to with
the CPU-based multi-scale analysis tools described in
the previous sections. We consider the simulation of a
multiphase flow process in a packing of 11,402 spheres,

Table I
Strong Scaling for the Multiphase LBM

# Spheres Process Grid N3 MLUPS Efficiency
11,402 5× 5× 5 1923 9, 407 0.98
11,402 8× 8× 8 1603 15, 130 0.91
11,402 8× 8× 8 1283 31, 275 0.80
11,402 10× 10× 10 1203 50, 907 0.67
85,539 10× 10× 10 1923 74, 338 0.97
85,539 15× 15× 15 1283 199, 692 0.77
85,539 16× 16× 16 1203 244, 754 0.78
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Figure 6. Scaling results obtained for several domain sizes on
Titan, including strong scaling for both a 9603 lattice and a 19203

lattice. Ideal scaling is shown based on a 5403 simulation performed
on 27 GPU. Results are reported in million-lattice-node updates
per second (MLUPS).

discretized to obtain a lattice of 12003 and distributed
across P = 1000 MPI processes on Titan. The PMMC
approach was applied to extract multi-scale averages (in
this case the interfacial areas) at an interval of T = 1000
time steps. The simulation was initialized to correspond
with a non-equilibrium multiphase configuration corre-
sponding to a the non-wetting phase saturation equal
to 0.4. The system was then allowed to relax toward
equilibrium for a wall time equal to two hours. The
resulting plots for the interfacial areas Fig. 7 (a) - (c).
The change in surface energy is shown for each interval T
in Fig. 7 (d), which provides a measure of the proximity
to the ultimate equilibrium state.

The non-equilibrium interfacial area results obtained
using this approach are quite well-resolved. The relax-
ation process is plotted for awn, aws and ans in Fig. 7 (a)
(b) and (c). Each value was computed 163 times over the
course of 163, 000 time steps. The total size of the output
from this simulation was 20kB. In order to produce the
same results using the workflow shown in Fig. 2, the
required size of the output files can be computed in a
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Figure 7. Interfacial area and surface energy measurements
conducted during a multiphase flow simulation within a packing
11, 402 spheres on a lattice size of 12003. Area measurements were
calculated every 103 time steps and the duration of the simulation
was 163, 000 time steps.

straightforward manner:

163× PN3 × 8B = 2.25TB. (24)

The costs of transferring this data alone represent a
significant bottleneck that constrains the spatial resolu-
tion T that multi-scale information can be accessed. Not
only does this represent the first opportunity to study
these dynamics in detail, but the result is obtained for a
system that is an order of magnitude larger than what
has been considered in previous studies. Also note that
this calculation is for a two-hour simulation in which
a single multiphase flow configuration was considered.
In order to perform a complete study it is desirable to
consider hundreds of configurations corresponding to a
wide range of fluid saturations. Without an integrated
strategy to extract multi-scale information from the
simulation as it proceeds, many of the opportunities
to advance the state of scientific understanding for this
problem would be inaccessible.

The capability to extract multi-scale information from
simulations of this nature has immediate implications
and will enable a diverse set of computational studies
that were previously impossible. Averaged interfacial
properties and their time derivatives can be computed
accurately and efficiently. As a consequence, a wide
range of constitutive relationships that have been pro-
posed based on theoretical work can now be studied and
evaluated within a computational setting. Ongoing work
will expand the range of multi-scale information that can
be explored within this approach and pursue the closure
of new models for multiphase flow in porous media.

V. Conclusions
A scalable approach was constructed to simulate mul-

tiphase flow in porous medium systems. The approach
provides a viable means to extract interfacial areas
during the execution of multiphase flow simulations,
which can be scaled across thousands GPU-accelerated
nodes. The CPU cores are used to extract interfacial
areas in parallel during the course of the simulation, an
approach which enables high resolution studies of the
non-equilibrium dynamics of multiphase flow in porous
media. The practical reduction in I/O, data transfer
and storage requirements is approximately nine orders of
magnitude. The peak performance for the LBM reported
in this paper was 244, 754 MLUPS on 4, 096 GPU-
equipped nodes on the Titan supercomputer.
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