MOON: MapReduce On Opportunistic eNvironments

Heshan Lin
Virginia Tech
hlin2@cs.vt.edu

Xiaosong Ma
North Carolina State U.
Oak Ridge Nat'l Lab

Jeremy Archuleta
Virginia Tech
jsarch@cs.vt.edu

ma@cs.ncsu.edu

Wu-chun Feng
Virginia Tech
feng@cs.vt.edu

ABSTRACT

MapReduce offers an ease-of-use programming paradigm for
processing large data sets, making it an attractive model
for distributed volunteer computing systems. However, un-
like on dedicated resources, where MapReduce has mostly
been deployed, such volunteer computing systems have sig-
nificantly higher rates of node unavailability. Furthermore,
nodes are not fully controlled by the MapReduce framework.
Consequently, we found the data and task replication scheme
adopted by existing MapReduce implementations woefully
inadequate for resources with high unavailability.

To address this, we propose MOON, short for MapReduce
On Opportunistic eNvironments. MOON extends Hadoop,
an open-source implementation of MapReduce, with adap-
tive task and data scheduling algorithms in order to offer
reliable MapReduce services on a hybrid resource architec-
ture, where volunteer computing systems are supplemented
by a small set of dedicated nodes. Our tests on an emulated
volunteer computing system, which uses a 60-node cluster
where each node possesses a similar hardware configuration
to a typical computer in a student lab, demonstrate that
MOON can deliver a three-fold performance improvement
to Hadoop in volatile, volunteer computing environments.

Categories and Subject Descriptors

C.2.4 [Computer Systems Organization|: Computer-
Communication Networks— Distributed systems; C.4 [Com-
puter Systems Organization]: Performance of Systems—
Fault tolerance

General Terms

Performance, Reliability

Keywords
MapReduce, Cloud Computing, Volunteer Computing

Mark Gardner
Virginia Tech
mkg@vt.edu

Zhe Zhang
Oak Ridge Nat'l Lab

zhezhang@ornl.gov

1. INTRODUCTION

With the advent in high-throughput scientific instruments
as well as Internet-enabled collaboration and data sharing,
rapid data growth has been observed in many domains, sci-
entific and commercial alike. Processing vast amounts of
data requires computational power far beyond the capabil-
ity of individual workstations. Despite the success of com-
modity clusters, such platforms are still expensive to acquire
and maintain for many institutions, necessitating affordable
parallel computing.

Cloud computing continues to increase in its popularity in
the scientific computing community because of its flexibility
and potential in reducing the investment in HPC infrastruc-
tures. However, two major concerns need to be addressed
before public cloud computing becomes mainstream. First,
paying to run on commercial clouds has not yet been accom-
modated in current computing resource funding and support
models. Second, the cost of data movement to and from the
clouds over the wide-area network can be expensive and time
consuming. In the meantime, the maturation of volunteer
computing systems [22, 3, 6, 4] offers a low-cost alternative
for building private clouds within institutions. However,
those volunteer computing systems are traditionally built
for CPU-intensive, embarrassingly parallel workloads. With
heterogeneous nodes in a come-and-go nature, standard par-
allel programming models such as MPI do not work well on
volunteer computing systems.

The emergence and growing popularity of MapReduce [8]
may bring a change to the volunteer computing landscape.
MapReduce is a popular programming model for cloud com-
puting, which simplifies large-scale parallel data process-
ing. Its flexibility in work distribution, loosely synchronized
computation, and tolerance for heterogeneity are ideal fea-
tures for opportunistically harnessed volunteer computing
resources. While this union is conceptually appealing, a vi-
tal issue needs to be addressed — computing resources in
volunteer computing systems are significantly more volatile
than in dedicated computing environments, where MapRe-
duce has mostly been deployed so far.

For example, while Ask.com per-server unavailability rate
is an astonishingly low 0.000455 [25], availability traces col-
lected from an enterprise volunteer computing system [18]
showed a very different picture: individual node unavail-
ability rates average around 0.4 with as many as 90% of
the resources simultaneously inaccessible (Figure 1). Unlike
dedicated systems, software/hardware failure is not the ma-
jor contributor to resource volatility on volunteer computing

systems. Volunteer computing nodes can be shut down at
the owners’ will. Also, typical volunteer computing frame-
works such as Condor [22] consider a computer unavailable
for external jobs whenever keyboard or mouse events are de-
tected. In such a volatile environment, it is unclear how well
existing MapReduce frameworks perform.

85 7

@
@

Percentage Unavailability

Figure 1: Percentage of unavailable resources mea-
sured on a production volunteer computing system.

In this work, we first evaluated Hadoop, a popular, open-
source MapReduce run-time system [1], on an emulated vol-
unteer computing system and observed that the volatility
of opportunistic resources creates several severe problems.
First, the Hadoop Distributed File System (HDF'S) provides
reliable data storage through replication, which on volatile
systems can have a prohibitively high replication cost in or-
der to provide high data availability. For instance, when the
machine unavailability rate is 0.4, eleven replicas are needed
to achieve 99.99% availability for a single data block, assum-
ing that machine unavailability is independent'. Handling
large-scale correlated resource unavailability requires even
more replication.

Second, Hadoop does not replicate intermediate results,
i.e., the output of Map tasks. When a node becomes in-
accessible, the Reduce tasks processing intermediate results
on this node will stall, resulting in Map task re-execution or
even livelock.

Third, Hadoop task scheduling assumes that the majority
of the tasks will run smoothly until completion. However,
tasks can be frequently suspended or interrupted on volun-
teer computing systems. The default Hadoop task replica-
tion strategy, designed to handle failures, is insufficient to
handle the high volatility of volunteer computing platforms.

To mitigate these problems in order to realize the com-
puting potential of MapReduce on volunteer computing sys-
tems, we have a created a novel amalgamation of these two
technologies to produce MOON— MapReduce On Oppor-
tunistic eNvironments. MOON adopts a hybrid resource ar-
chitecture by provisioning a small set of dedicated, reliable
computers to supplement the volatile personal computers.
Leveraging such a hybrid architecture, MOON then extends
Hadoop’s task and data scheduling to greatly improve the
QoS of MapReduce services. Together with detailed descrip-
tions of MOON, we present extensive evaluation of its design
on an emulated volunteer computing system. Our results
show that MOON can deliver as much as a 3-fold speedup
to Hadoop, and even finish MapReduce jobs that could not
be completed previously in highly volatile environments.

!The availability of 11 replicas is 1 — 0.4 = 0.99996.

2. BACKGROUND
2.1 Volunteer Computing

Many volunteer computing systems have been developed
to harness idle desktop resources for high-throughput com-
puting [3, 4, 6, 22]. A common feature shared by these
systems is non-intrusive deployment. While studies have
been conducted on aggressively stealing computer cycles [20]
and its corresponding impact [14], most production volun-
teer computing systems allow users to donate their resources
in a conservative way by not running external tasks when
the machine is actively used. For instance, Condor allows
jobs to execute only after 15 minutes of no console activity
and a CPU utilization level lower than 0.3.

2.2 MapReduce

MapReduce is a programming model designed to simplify
parallel data processing [8]. Google has been using MapRe-
duce to handle massive amount of web search data on large-
scale commodity clusters. This programming model has
also been found effective in other application areas includ-
ing machine learning [5], bioinformatics [19], astrophysics
and cyber-security [12].

A MapReduce application is implemented through two
user-supplied primitives: Map and Reduce . Map tasks
take input key-value pairs and generate intermediate key-
value pairs through certain user-defined computation. The
intermediate results are subsequently converted to output
key-value pairs in the reduce stage with user-defined reduc-
tion processing. Google’s MapReduce production systems
use its proprietary high-performance distributed file system,
GFS [11], to store the input, intermediate, and output data.

2.3 Hadoop

Hadoop is an open-source cluster-based MapReduce im-
plementation written in Java [1]. It is logically separated
into two subsystems: the Hadoop Distributed File System
(HDFS), and a master-worker MapReduce task execution
framework.

HDF'S consists of a NameNode process running on the
master and multiple DataNode processes running on the
workers. To provide scalable data access, the NameNode
only manages the system metadata, whereas the actual file
contents are stored on the DataNodes. Each file in the sys-
tem is stored as a collection of equal-sized data blocks. For
1/0 operations, an HDFS client queries the NameNode for
the data block locations, with subsequent data transfer oc-
curring directly between the client and the target DataN-
odes. Like GFS, HDFS achieves high data availability and
reliability through data replication, with the replication de-
gree specified by a replication factor (3 by default).

To control task execution, a single JobTracker process
running on the master manages job status and performs task
scheduling. On each worker machine, a TaskTracker pro-
cess tracks the available execution slots: a worker machine
can execute up to M Map tasks and R Reduce tasks simul-
taneously (M and R set to 2 by default). A TaskTracker
contacts the JobTracker for an assignment when it detects
an empty execution slot on the machine. Tasks of different
jobs are scheduled according to job priorities. Within a job,
the JobTracker first tries to schedule a non-running task,
giving high priority to the recently failed tasks, but if all
tasks for this job have been scheduled, the JobTracker spec-

ulatively issues backup tasks for slow running ones. These
speculative tasks help improve job response time.

3. MOON DESIGN RATIONALE AND AR-
CHITECTURE OVERVIEW

MOON targets institutional intranet environments, where
volunteer personal computers (PCs) are connected with a
local area network with relatively high bandwidth and low
latency. However, PC availability is ephemeral in such en-
vironments. Moreover, large-scale, correlated unavailabil-
ity can be normal [16]. For instance, many machines in a
computer lab will be occupied simultaneously during a lab
session. Similarly, an important cultural event may prompt
employees to check news websites, resulting in a large per-
centage of PCs unavailable for volunteer computing.

Observing that opportunistic PC resources are not de-
pendable enough to offer reliable compute and storage ser-
vices, MOON supplements a volunteer computing system
with a small number of dedicated compute resources. The
MOON hybrid architecture has multiple advantages. First,
placing a replica on dedicated nodes can significantly en-
hance data availability without imposing a high replication
cost on the volatile nodes, thereby improving overall re-
source utilization and reducing job response time. For ex-
ample, the well-maintained workstations in our research lab
have had only 10 hours of unscheduled downtime in the past
year which is equivalent to a 0.001 unavailability rate. As-
suming the average unavailability rate of a volunteer com-
puting system is 0.4 and the failure of each volatile node
is independent, achieving 99.99% availability only requires
one copy on the dedicated node and three copies on the
volatile nodes®. Second, long-running tasks with execution
times much longer than the Mean Time Between Failure
(including temporary inaccessibility due to the owner’s ac-
tivities) of volunteered machines may be difficult to finish on
purely volatile resources because of frequent interruptions.
Scheduling those long-running tasks on dedicated resources
can guarantee their completion. Finally, with those ded-
icated nodes, the system can function even when a large
percentage of nodes are temporarily unavailable.

MOON is designed to run atop existing volunteer comput-
ing systems. For non-intrusive deployment, a MOON worker
can be wrapped inside a virtual machine and distributed to
each PC, as enabled by Condor [22] and Entropia [6]. Con-
sequently, MOON assumes that no computation or commu-
nication progress can be made on a PC when it is actively
used by the owner, and it relies on the heartbeat mechanism
in Hadoop to detect the PC availability.

In addition, there are several major assumptions in the
current MOON design:

e As will be discussed in Section 4, we assume that col-
lectively, the dedicated nodes have enough aggregate
storage for at least one copy of all active data in the
system. We argue that this solution is made practical
by the decreasing price of commodity servers and hard
drives with large capacity.

e We assume that the security solutions of existing desk-
top grid systems (e.g., Condor) can be applied to the

2The availability of a data block with one dedicated replica
and three volatile replicas is 1 — 0.4% x 0.001 = 0.99994.

MOON system. Consequently, we do not directly ad-
dress the security issue in this paper.

e For general applicability, we conservatively assume that
the node unavailability cannot be known a priori. In
the future, we will study how to leverage node-failure
predictability to enhance scheduling decisions under
certain environments.

It is worth noting that this paper aims at delivering a
proof-of-concept study of the MOON hybrid design, as well
as corresponding task scheduling and data management tech-
niques. The efficacy of the proposed techniques is gauged
with expansive performance evaluations. Our initial results
shown in this paper demonstrate the merits of the hybrid
design and the complex interaction between system param-
eters. This motivates automatic system configuration based
on rigorous performance models, which is part of our im-
mediate plan for future work. Please also note that MOON
is designed to support general MapReduce applications and
does not make assumptions on job characteristics.

4. MOON DATA MANAGEMENT

In this section, we present our enhancements to Hadoop
to provide a reliable MapReduce service from the data man-
agement perspective. Within a MapReduce system there are
three types of user data — input, intermediate, and output.
Input data are processed by Map tasks to produce interme-
diate data, which are in turn consumed by Reduce tasks to
create output data. The availability of each type of data has
different QoS implications.

For input data, temporary inaccessibility will stall com-
putation of corresponding Map tasks, whereas loss of the in-
put data will cause the entire job to fail. Intermediate and
output data, on the other hand, are more resilient to loss,
as they can be reproduced by re-executing the Map and/or
Reduce tasks involved. However, once a job has completed,
lost output data is irrecoverable if the input data have been
removed from the system. In this case, a user will have to
re-stage the previously removed input data and re-issue the
entire job, acting as if the input data was lost. In any of
these scenarios, the completion of the MapReduce job can
be substantially delayed.

Note that high data durability [7] alone is insufficient to
provide high quality MapReduce services. When a desktop
computer is reclaimed by its owner, job data stored on that
computer still persists. However, a MapReduce job depend-
ing on those data will fail if the data is unavailable within a
certain execution window of a job. As such, the MOON data
management focuses on improving overall data availability.

As mentioned in Section 1, we found that existing Hadoop
data management is insufficient to provide high QoS on
volatile environments for two main reasons.

e The replication cost to provide the necessary level of
data availability for input and output data in HDFS
on volunteer computing systems is prohibitive when
the volatility is high.

e Non-replicated intermediate data can easily become
temporarily unavailable for a long period of time or
permanently unavailable due to user activity or soft-
ware/hardware failures on the worker node where the
data is stored, thereby unnecessarily forcing re-execution
of the relevant Map tasks.

To address these issues, MOON augments Hadoop data
management in several ways to leverage the proposed hy-
brid resource architecture to offer a cost-effective and robust
storage service.

4.1 Multi-dimensional, Cost-effective Replica-
tion Service

MOON provides a multi-dimensional, dynamic replication
service to handle volatile volunteer computing environments
as opposed to the static data replication in Hadoop. MOON
manages two types of resources — supplemental dedicated
computers and volatile volunteer nodes. The number of dedi-
cated computers is much smaller than the number of volatile
nodes for cost-effectiveness purposes. To support this hybrid
scheme, MOON extends Hadoop’s data management and de-
fines two types of workers: dedicated DataNodes and volatile
DataNodes. Accordingly, the replication factor of a file is
defined by a pair {d,v}, where d and v specify the number
of data replicas on the dedicated and volatile DataNodes,
respectively. For well-maintained dedicated computers with
low unavailability rates, d is recommended to be set as 1 for
efficient utilization of dedicated resources.

Intuitively, since dedicated nodes have much higher avail-
ability than volatile nodes, placing replicas on dedicated
DataNodes can significantly improve data availability and
in turn minimize the replication cost on volatile nodes. Be-
cause of the limited aggregated network and I/O bandwidth
on dedicated computers, the major challenge is maximizing
the utilization of the dedicated resources to improve ser-
vice quality while preventing the dedicated computers from
becoming a system bottleneck. To this end, MOON’s repli-
cation design differentiates between various data types at
the file level and takes into account the load and volatility
levels of the DataNodes.

MOON defines two types of files, i.e., reliable and oppor-
tunistic. Reliable files are used to store data that cannot be
lost under any circumstances. One or more dedicated copies
are always maintained for a reliable file so that it can toler-
ate outage of a large percentage of volatile nodes. MOON
always stores input data and system data required by the job
as reliable files. In contrast, opportunistic files store tran-
sient data that can tolerate a certain level of unavailability
and may or may not have dedicated replicas. Intermediate
data will always be stored as opportunistic files. On the
other hand, output data will first be stored as opportunistic
files while the Reduce tasks are completing, and once all are
completed they are then converted to reliable files.

The separation of reliable files from opportunistic files is
critical in controlling the load level of dedicated DataN-
odes. When MOON decides that all dedicated DataNodes
are nearly saturated, an I/O request to replicate an oppor-
tunistic file on a dedicated DataNode will be declined (de-
tails described in Section 4.2). Additionally, by allowing
output data to be first stored as opportunistic files enables
MOON to dynamically direct write traffic towards or away
from the dedicated DataNodes as necessary. Furthermore,
only after all data blocks of the output file have reached its
replication factor, will the job be marked as complete and
the output file be made available to users.

To maximize the utilization of dedicated computers, MOON
attempts to have dedicated replicas for opportunistic files
when possible. When dedicated replicas cannot be main-
tained, the availability of the opportunistic file is subject to

the volatility of volunteer PCs, possibly resulting in poor
QoS due to forced re-execution of the related Map or Re-
duce tasks. While this issue can be addressed by using a
high replication degree on volatile DataNodes, such a solu-
tion will inevitably incur high network and storage overhead.

MOON addresses this issue by adaptively changing the
replication requirement to provide the desired QoS level.
Specifically, consider a write request of an opportunistic
file with replication factor {d,v}. If the dedicated repli-
cas are rejected because the dedicated DataNodes are sat-
urated, MOON will dynamically adjust v to v’, where v’ is
chosen to guarantee that the file availability meets the user-
specified availability level (e.g., 0.9) pursuant to the node
unavailability rate p (i.e., 1 — p”, > 0.9). If p changes be-
fore a dedicated replica can be stored, v" will be recalculated
accordingly. Also, no extra replication is needed if an op-
portunistic file already has a replication degree higher than
v’. In the current implementation, p is estimated by having
the NameNode monitor the faction of unavailable DataN-
odes during the past 1 minute. This can be replaced with
more accurate/detailed predicting methods.

The rationale for adaptively changing the replication re-
quirement is that when an opportunistic file has a dedicated
copy, the availability of the file is high, thereby allowing
MOON to decrease the replication degree on volatile DataN-
odes. Alternatively, MOON increases the volatile replica-
tion degree of a file as necessary to prevent forced task re-
execution caused by unavailability of opportunistic data.

Similar to Hadoop, when any file in the system falls below
its replication factor, this file will be put into a replication
queue. The NameNode periodically checks this queue and
issues replication requests giving higher priority to reliable
files. With this replication mechanism, the dedicated repli-
cas of an opportunistic file will eventually be achieved. What
if the system is constantly overloaded with jobs with large
amounts of output? While not being handled in the current
MOON design, this scenario can be addresed by having the
system stop scheduling new jobs from the queue after ob-
serving that a job is waiting too long for its output to be
coverted to reliable files.

4.2 Prioritizing I/O Requests

When a large number of volatile nodes are supplemented
with a much smaller number of dedicated nodes, providing
scalable data access is challenging. As such, MOON priori-
tizes the I/O requests on the different resources. To alleviate
read traffic on dedicated nodes, MOON factors in the node
type in servicing a read request. Specifically, for files with
replicas on both volatile and dedicated DataNodes, read re-
quests from clients on volatile DataNodes will always try
to fetch data from volatile replicas first. By doing so, the
read requests from clients on the volatile DataNodes will
only reach dedicated DataNodes when none of the volatile
replicas are available.

When a write request occurs, MOON prioritizes I/O traf-
fic to the dedicated DataNodes according to data vulner-
ability. A write request from a reliable file will always be
satisfied on dedicated DataNodes. However, a write request
from an opportunistic file will be declined if all dedicated
DataNodes are close to saturation. As such, write requests
for reliable files are fulfilled prior to those of opportunistic
files when the dedicated DataNodes are fully loaded. This
decision process is shown in Figure 2.

Data Type

@
Q

>

=

)

ic

Q A

>

=

g Are dedicated Volatile
g odes saturated? DataNode
n

| Replication Queue

Figure 2: Decision process to determine where data
should be stored.

To determine whether a dedicated DataNode is close to
be saturated, MOON uses a sliding window-based algorithm
as show in Algorithm 1. MOON monitors the I/O band-
width consumed at each dedicated DataNode and sends this
information to the NameNode piggybacking on the heart-
beat messages. The throttling algorithm running on the Na-
meNode compares the updated bandwidth with the aver-
age 1/0 bandwidth during a past window. If the consumed
I/0 bandwidth of a DataNode is increasing but only by a
small margin determined by a threshold T}, the DataNode
is considered saturated. On the contrary, if the updated
I/0 bandwidth is decreasing and falls more than threshold
Ty, the dedicated node is unsaturated. Such a design is to
avoid unnecessary status switching caused by load oscilla-
tion. Since there is a delay between when the request is
assigned and when the corresponding I/O-bandwidth incre-
ment is detected, MOON puts a cap (Cr) on the number
of requests that can be assigned to a dedicated DataNode
during a throttling window.

4.3 Handling Ephemeral Unavailability

Within the original HDF'S, fault tolerance is achieved by
periodically monitoring the health of each DataNode and
replicating files as needed. If a heartbeat message from
a DataNode has not arrived at the NameNode within the
NodeEzpirylInterval the DataNode will be declared dead and
its files are replicated as needed.

This fault tolerance mechanism is problematic for oppor-
tunistic environments where transient resource unavailabil-
ity is common. If the NodeEzpirylnterval is shorter than
the mean unavailability interval of the volatile nodes, these
nodes may frequently switch between live and dead states,
causing replication thrashing due to HDF'S striving to keep
the correct number of replicas. Such thrashing significantly
wastes network and I/O resources and should be avoided.
On the other hand, if the NodeFxpirylnterval is set too long,
the system would incorrectly consider a “dead” DataNode
as “alive”. These DataNodes will continue to be sent I/O
requests until it is properly identified as dead, thereby de-
grading overall 1/O performance as the clients experience
timeouts trying to access the nodes.

To address this issue, MOON introduces a hibernate state.
A DataNode enters the hibernate state if no heartbeat mes-

sages are received for more than a NodeHibernatelnterval,
which is much shorter than the NodeFxpiryInterval. A hi-
bernated DataNode will not be supplied any I/O requests so
as to avoid unnecessary access attempts from clients. Ob-
serving that a data block with dedicated replicas already has
the necessary availability to tolerate transient unavailability
of volatile nodes, only opportunistic files without dedicated
replicas will be re-replicated. This optimization can greatly
save the replication traffic in the system while preventing
task re-executions caused by the compromised availability
of opportunistic files.

Algorithm 1 I/O throttling on dedicated DataNodes

Let W be the throttling window size

Let Ty be the control threshold

Let bwy be the measured bandwidth at timestep k
Input: current I/O bandwidth bw;

Output: setting throttling state of the dedicated node

avg_bw = (Z;;LW bw;) /W
if bw; > avg_bw then
if (state == unthrottled) and (bw; < avg_bw+(1+1Ty))
then
state = throttled
end if
end if
if bw; < avg_bw then
if (state == throttled) and (bw; < avg_bw * (1 — Ty))
then
state = unthrottled
end if
end if

S. MOON TASK SCHEDULING

One important mechanism that Hadoop uses to improve
job response time is to speculatively issue backup tasks for
“stragglers”, i.e. slow running tasks. Hadoop considers a
task as a straggler if the task meets two conditions: 1) it has
been running for more than one minute, and 2) its progress
score lags behind the average progress of all tasks of the
same type by 0.2 or more. The per-task progress score,
valued between 0 and 1, is calculated as the fraction of data
that has been processed in this task.

In Hadoop, all stragglers are treated equally regardless of
the relative differences between their progress scores. The
JobTracker (i.e., the master) simply selects stragglers for
speculative execution according to the order in which they
were originally scheduled, except that for Map stragglers,
priority will be given to the ones with input data local to
the requesting TaskTracker (i.e., the worker). The maximum
number of speculative copies (excluding the original copy)
for each task is user-configurable, but set at 1 by default.

Hadoop speculative task scheduling assumes that tasks
run smoothly toward completion, except for a small fraction
that may be affected by the abnormal nodes. Such an as-
sumption is easily invalid in opportunistic environments; a
large number of tasks will likely be suspended or interrupted
due to temporary or permanent outages of the volatile nodes.
For instance, in Condor, a running external job will be sus-
pended when the mouse or keyboard events are detected.
Consequently, identifying stragglers based solely on tasks’
progress scores is too optimistic.

e First, when the machine unavailability rate is high, all

instances of a task can possibly be suspended simulta-
neously, allowing no progress to be made on that task.

e Second, fast progressing tasks may be suddenly slowed
down when a node becomes unavailable. Yet, it may
take a long time for suspended tasks with high progress
scores to be allowed to have speculative copies issued.

e Third, the natural computational heterogeneity among
volunteered nodes, plus additional productivity vari-
ance caused by node unavailability, may cause Hadoop
to issue a large number of speculative tasks (similar to
the observation made in [24]), resulting in a waste of
resources and an increase in job execution time.

Therefore, MOON adopts speculative task execution strate-
gies that are aggressive for individual tasks to prepare for
high node volatility, yet overall conservative considering the
collectively unreliable environment. We describe these tech-
niques in the rest of this section. Below we will describe
our general-purpose scheduling in sections 5.1 and 5.2, and
hybrid-architecture-specific augmentations in 5.3.

5.1 Ensuring Sufficient Progress with High Node

Volatility

In order to guarantee that sufficient progress is made on
all tasks, MOON characterizes stragglers into frozen tasks
(tasks where all copies are simultaneously suspended) and
slow tasks (tasks that are not frozen, but satisfy the Hadoop
criteria for speculative execution). The MOON scheduler
composes two separate lists, containing frozen and slow tasks
respectively, with tasks selected from the frozen list first. In
both lists, tasks are sorted by the progress made thus far,
with lower progress ranked higher.

It is worth noting that Hadoop does offer a task fault-
tolerant mechanism to handle node outage. The JobTracker
considers a TaskTracker dead if no heartbeat messages have
been received from the TaskTracker for an TrackerExpiryln-
terval (10 minutes by default). All task instances on a dead
TaskTracker will be killed and rescheduled. Naively, using
a small TrackerEzxpirylInterval can help detect and relaunch
inactive tasks faster. However, using a too small value for
the TrackerFExpiryInterval will cause many suspended tasks
to be killed prematurely, thus wasting resources.

In contrast, MOON considers a TaskTracker suspended if
no heartbeat messages have been received from the Task-
Tracker for a SuspensionInterval, which can be set to a
value much smaller than TrackerEzpirylInterval, so that node
anomaly can be detected early. All task instances running
on a suspended TaskTracker are then flagged inactive, in
turn triggering frozen task handling. Inactive task instances
on such a TaskTracker are not killed right away, in the hope
that it returns to normal shortly.

MOON imposes a cap on the number of speculative copies
for a task similar to Hadoop. However, a speculative copy
will be issued to a frozen task regardless of the number of its
copies, so that progress can always be made for each task.

5.2 Two-phase Task Replication

The speculative scheduling approach discussed above only
issues a backup copy for a task after it is detected as frozen
or slow. Such a reactive approach is insufficient to handle
fast progressing tasks that become suddenly inactive. For
instance, consider a task that runs at a normal speed until
99% complete and then is suspended. A speculative copy

will only be issued for this task after the task suspension is
detected by the system, upon which the computation needs
to be started all over again. To make it worse, the specula-
tive copy may also become inactive before its completion. In
the above scenario, the delay in the reactive scheduling ap-
proach can elongate the job response time, especially when
this happens toward the end of the job.

To remedy this, MOON separates the job progress into
two phases, normal and homestretch, where the homestretch
phase begins once the number of remaining tasks for the job
falls below H% of the currently available execution slots.
The basic idea of this design is to alleviate the impacts of un-
expected task interruptions by proactively replicating tasks
toward the job completion. Specifically, during the home-
stretch phase, MOON attempts to maintain at least R active
copies of any remaining task regardless its progress score. If
the unavailability rate of volunteer PCs is p, the probability
that a task will become frozen decreases to p*.

The motivation of the two-phase scheduling stems from
two observations. First, when the number of concurrent
jobs in the system is small, computational resources become
more underutilized as a job gets closer to completion. Sec-
ond, a suspended task will delay the job more toward the
completion of the job. To constrain the resources used by
task replication, MOON also enforces a limit on the total
concurrent speculative task instances for a job to H% of
the available execution slots. No more speculative tasks will
be issued if the concurrent number of speculative tasks of a
job reaches that threshold. This means that the actual task
replication degree gradually increases as the job approaches
its completion.

While increasing R can reduce the probability of job freez-
ing, it increases resource consumption. The optimal config-
uration of H% and R will depend on how users will want
to trade-off resource consumptions and performance. We
will evaluate various configurations of the two parameters
in Section 6.

5.3 Leveraging Hybrid Resources

MOON attempts to further decrease the impact of volatil-
ity during both normal and homestretch phases by replicat-
ing tasks on the dedicated nodes. When the number of tasks
in the system is smaller than the number of dedicated nodes,
a task will be always be scheduled on dedicated nodes if there
are empty slots available. Doing this allows us to take ad-
vantage of the much more reliable CPU resources available
on the dedicated computers (as opposed to using them as
pure data servers).

Intuitively, tasks with a dedicated speculative copy are
given lower priority in receiving additional task replicas, as
these nodes tend to be much more reliable. More specifically,
when selecting a task from the slow task list as described in
Section 5.1, the ones without a dedicated replica will be con-
sidered first. Similarly, tasks that already have a dedicated
copy do not participate the homestretch phase, thus saving
task replication cost. As another consequence, long running
tasks that have difficulty in finishing on volunteer PCs be-
cause of frequent interruptions will eventually be scheduled
and guaranteed completion on the dedicated nodes.

6. PERFORMANCE EVALUATION

On production volunteer computing systems, machine avail-
ability patterns are commonly non-repeatable, making it

difficult to fairly compare different strategies. Meanwhile,
traces cannot easily be manipulated to create different node
availability levels. In our experiments, we emulate a vol-
unteer computing system with synthetic node availability
traces, where node availability level can be adjusted.

We assume that node outage is mutually independent and
generate unavailable intervals using a normal distribution,
with the mean node-outage interval (409 seconds) extracted
from the aforementioned Entropia volunteer computing node
trace [18]. The unavailable intervals are then inserted into
8-hour traces following a Poisson distribution such that in
each trace, the percentage of unavailable time is equal to a
given node unavailability rate. At runtime of each experi-
ment, a monitoring process on each node reads in the as-
signed availability trace, and suspends and resumes all the
Hadoop/MOON processes on the node accordingly 3

Our experiments are executed on System X at Virginia
Tech, comprised of Apple Xserve G5 compute nodes with
dual 2.3GHz PowerPC 970FX processors, 4GB of RAM, 80
GByte hard drives. System X uses a 10Gbs InfiniBand net-
work and a 1Gbs Ethernet for interconnection. To closely
resemble volunteer computing systems, we only use the Eth-
ernet network in our experiments. Arguably, such a machine
configuration is similar to those in many student labs today.
Each compute node runs the GNU/Linux operating system
with kernel version 2.6.21.1. The MOON system is devel-
oped based on Hadoop 0.17.2.

Our experiments use two representative MapReduce ap-
plications, i.e., sort and word count, that are distributed
with Hadoop. The configurations of the two applications
are given in Table 1*. For both applications, the input data
is randomly generated using tools distributed with Hadoop.

Table 1: Application configurations.

Application | Input Size | # Maps # Reduces
sort 24 GB 384 | 0.9 x AwailSlots
word count 20 GB 320 20

6.1 Speculative Task Scheduling Evaluation

We first evaluate the MOON scheduling design using two
important job metrics: 1) job response time and 2) the total
number of duplicated tasks issued. The job response time is
important to user experiences. The second metric is impor-
tant as extra tasks will consume system resources as well as
energy. ldeally, we want to achieve short job response time
with a low number of speculative tasks.

On opportunistic environments both the scheduling algo-
rithm and the data management policy can largely impact
the job response time. To isolate the impact of speculative
task scheduling, we use the sleep application distributed
with Hadoop, which allows us to simulate our two target
applications with faithful Map and Reduce task execution
times, but generating only insignificant amount of interme-
diate and output data (two integers per record of interme-
diate and zero output data).

3In our implementation, the task suspension and resume is
achieved by sending the STOP and CONT signals to the
targeting processes.

4These two applications with similar data input sizes were
also used in other MapReduce studies, e.g., [24].

We feed the average Map and Reduce execution times
from sort and word count benchmarking runs into sleep.
We also configure MOON to replicate the intermediate data
as reliable files with one dedicated and one volatile copy, so
that intermediate data are always available to Reduce tasks.
Since sleep only deals with a small amount of intermediate
data, the impact of data management is minimal.

The test environment is configured with 60 volatile nodes
and 6 dedicated nodes, resulting in a 10:1 of volatile-to-
dedicated (V-to-D) node ratio (results with higher V-to-
D node ratio will be shown in Section 6.3). We compare
the original Hadoop task scheduling policy and the MOON
scheduling algorithm described in Section 5. For the Hadoop
default scheduling, we control how quickly it reacts to node
outages by using 1, 5, and 10 (default) minutes for Track-
erFxpiryInterval. These polices are denoted as HadooplM,
HadoopbM and Hadoop10M, respectively. With even larger
values of TrackerExpirylnterval, the Hadoop performance
gets worse and hence those results are not shown here. For
MOON, We use 1 minute for SuspensionInterval, and 10
minutes for TrackerEzpirylnterval for a fair comparison. Re-
call from Section 5.2 that there are two parameters in MOON
to control the aggressiveness of the two-phase scheduling: 1)
the homestretch threshold H% and 2) the number of active
copies R. To demonstrate the impacts of the selection of the
two parameters, we vary H from 20 to 40 to 60. For each H
value, R is increased from 1 to 3. Finally, we also test the
enhancement with hybrid resource awareness (as described
in Section 5.3) for H =20 and R = 2.

Figure 3(a) shows the execution time for the sort ap-
plication with increasing node availability rates. For the
Hadoop scheduling, it is clear that the job execution time
reduces as TrackerFExpiryInterval decreases. This is because
with a shorter TrackerExpirylInterval, the JobTracker can
detect the node outage sooner and issue speculative copies
to the executing tasks on the unavailable nodes. In Hadoop,
a TaskTracker is considered dead if no heartbeat messages
have been sent from it within the TrackerExpirylnterval,
and in turn, all running tasks on the TaskTracker will be
killed and rescheduled. Consequently, the reducing in ex-
ecution time by decreasing TrackerEzpirylInterval will in-
evitably come at a cost of higher numbers of task replicas, as
shown in Figure 3(b). Thus, the default Hadoop scheduling
is not flexible to simultaneously achieving short job response
time and a low quantity of speculative tasks.

With two-phase scheduling, the job response time is com-
parable among all configurations at 0.1 node unavailabil-
ity rate. However, when the node unavailability rate gets
higher, it is clear that increasing R from 1 to 2 can deliver
considerable improvements for a same H value, due to the
decreasing probability of a task being frozen toward the end
of job execution. However, further increasing R to 3 does not
help in most cases because the resource contention caused
by the extra task replicas offsets the benefit of reducing task-
suspension. In fact, the job response time deteriorates when
R increases from 2 to 3 in some cases.

Interestingly, increasing H does not bring in significant de-
crease in job response time, suggesting 20% of the available
slots are sufficient to accommodate the task replicas needed
for the test scenarios. In terms of the number of speculative
tasks, as expected, the number of duplicated tasks generally
increases as higher H or R values are used. However, the
number of duplicated tasks issued at various H values be-

3000 | Hadoopto ——= R HAORS @z Hybrid-H20R2 memmm]
Hadoop5M =—=1 H20R3 H60R1 =3
Hadoop1M mmmmm H40R1 === H60R2

H20R1 ===

2500 HE0R3

2000

1500

Execution Time(s)

1000

500

Machine Unavailable Rate

(a) Execution Time

180

Hadoop1OM ——— H20R2 H40R3 @@ Hybrid-H20R? memmm
160 | Hadoop5M =—= H20R3 HBOR1 =3
Hadoop1M mmmmm H40R1 === H60R2

H20R1 === H40R2 Eoz=em H60R3

140

Number of Duplicated Tasks

Machine Unavailable Rate

(b) Number of Duplicated Tasks

Figure 3: Sort execution profile with Hadoop and MOON scheduling policies.

Hadoop10M —— H20R2 sy H40R3 ez Hybrid-H20R?2 memmm
2500 | Hadoop5M == H20R3 H60R1 ===
Hadoop1M mmmmm H40R1 ===2 H60R2

H20R1 ===
2000

1500

Execution Time(s)

1000

500

Machine Unavailable Rate

(a) Execution Time

v T
140 | Hadoop1OM —— H40R3 mxxxxxd Hybrid-H20R2
HadoopSM =—=

Hadoop1M mmmmm
120 | H20R1 =—33

Number of Duplicated Tasks

Machine Unavailable Rate

(b) Number of Duplicated Tasks

Figure 4: Wordcount execution profile of Hadoop and MOON scheduling policies.

comes closer as the node unavailability rate increases. Recall
that speculative tasks will only be issued after all original
tasks have been rescheduled. As a result, the candidate tasks
for speculative execution are in the last batch of executing
original tasks. As the node unavailability level increases, the
number of available slots decreases and so does the number
of candidate tasks for speculative execution. The fact that
the number of duplicated tasks is comparable across differ-
ent H levels at 0.5 node unavailability rate suggests that at
this volatile level the number of speculative tasks issued is
smaller than 20% of the available slots.

One advantage of the MOON two-phase scheduling algo-
rithm is that it provides the necessary knobs for users to
tune the system for overall better performance under cer-
tain resource constraint, i.e., by allowing aggressive replica-
tion for individual tasks yet retaining control of the overall
replication cost. According to the execution profile of both
execution time and the number of speculative tasks, with-
out enabling the hybrid-aware enhancement, H20R2 delivers
an overall better performance with relatively lower replica-
tion cost among various MOON two-phase configurations.
Compared to the Hadoop default scheduling, H20R2 out-
performs Hadoop1M in job response time by 10%, 13% and
40% at 0.1, 0.3 and 0.5 node unavailability rates, respec-
tively. Meanwhile, H20R2 issues slightly more (11%) dupli-
cated tasks than Hadoop at 0.1 node unavailability rate, but
saves 38% and 57% at 0.3 and 0.5 node availability rates, re-
spectively. Further, H20R2 with the hybrid-aware enhance-
ment brings in additional savings in job execution time and
task replication cost. Particularly, Hybrid-H20R2 runs 23%
faster and issues 19% less speculative tasks than H20R2 at
0.5 node unavailability rate. In summary, when tuned prop-

erly, MOON scheduling can achieve significantly better per-
formance than the Hadoop scheduling with comparable or
lower replication cost.

Figure 4 shows the execution profile of the word count
application. The overall trends of default Hadoop schedul-
ing are very similar to those of the sort application. For the
MOON two-phase scheduling, while the overall performance
trends are still similar, one noticeable difference is that the
performance differences between various configurations are
smaller at 0.3 node unavailability rate. One possible reason
is that word count has a much smaller number of reduce
tasks. Interestingly, among MOON configurations without
hybrid-aware enhancement, H20R2 again achieves an over-
all better performance and lower replication cost, indicating
the possibility of having a common configuration for a class
of applications. Similarly, MOON H20R2 delivers consider-
able performance improvements (up to 29%) to Hadoop1M
but with a much lower task replication cost (up to 58%).
Hybrid-H20R2 again delivers additional performance gain
and saving at replication cost to H20R2.

Overall, we found that the default Hadoop scheduling pol-
icy may enhance its capability of handling task suspensions
in opportunistic environments, but at the cost of short-
ening TrackerFExzpirylnterval and issuing more speculative
tasks. The two-phase scheduling and hybrid-aware schedul-
ing approaches in MOON provide effective tuning mecha-
nism for users to achieve overall significant improvements
over Hadoop, especially when the node unavailability is high.

6.2 Replication of Intermediate Data

In a typical Hadoop job, there is a shuffle phase in the
beginning of a Reduce task. The shuffle phase copies the

4500 [
4000 FVO-V3 rxza
3500 [-VO-V5 Ex=
3000 |FHA-V2 Ex=x=
2500 -

2000

Execution Time(s)

1500

1000

0.3
Machine Unavailable Rate

(a) sort

3000

2500 -y g

2000 [FHA-V2 ExXxX= 1

1500 4

Execution Time(s)

1000 4

0.3
Machine Unavailable Rate

(b) word count

Figure 5: Compare impacts of different replication policies for intermediate data on execution time.

corresponding intermediate data from all Map tasks and is
time-consuming even in dedicated environments. On op-
portunistic environments, achieving efficient shuffle perfor-
mance is more challenging, given that the intermediate data
could be unavailable due to frequent machine outage. In
this section, we evaluate the impact of MOON’s intermedi-
ate data replication policy on shuffle efficiency and conse-
quently, job response time.

We compare a wolatile-only (VO) replication approach
that statically replicates intermediate data only on volatile
nodes, and the hybrid-aware (HA) replication approach de-
scribed in Section 4.1. For the VO approach, we increase
the number of volatile copies gradually from 1 (V0-V1) to 5
(VO-v5). For the HA approach, we have MOON store one
copy on dedicated nodes when possible, and increase the
minimum volatile copies from 1 (HA-V1) to 3 (HA-V3). Re-
call that in the HA approach, if the data block does not yet
have a dedicated copy, then the number of volatile copies of a
data block is dynamically adjusted such that the availability
of a file reaches 0.9.

These experiments use 60 volatile nodes and 6 dedicated
nodes. To focus solely on intermediate data, we configure
the input/output data to use a fixed replication factor of
{1, 3} across all experiments. Also, the task scheduling algo-
rithm is fixed at Hybrid-H20R2, which was shown to deliver
overall better performance under various scenarios.

In Hadoop, a Reduce task reports a fetch failure if the
intermediate data of a Map task is inaccessible. The Job-
Tracker will reschedule a new copy of a Map task if more
than 50% of the running Reduce tasks report fetch failures
for the Map task. We observe that with this approach, the
reaction to the loss of Map output is too slow, and as a
result, causing hourly long execution time for a job as a re-
duce task would have to acquire data from hundreds of Map
outputs. We remedy this by having the JobTracker issue a
new copy of a Map task if 1) three fetch failures have been
reported for the Map task and 2) there is no active replicas
of the Map output.

Figure 5(a) shows the results of sort. As expected, en-
hanced intermediate data availability through the VO repli-
cation clearly reduces the overall execution time. When the
unavailability rate is low, the HA replication does not exhibit
much additional performance gain. However, HA replica-
tion significantly outperforms VO replication when the node
unavailability level is high. While increasing the number
of volatile replicas can help improve data availability on a

highly volatile system, this incurs a high performance cost
caused by the extra I/O. As a result, there is no further ex-
ecution time improvement from V0-V3 to VO-V4, and from
V0-V4 to VO-V5, the performance actually degrades. With
HA replication, having at least one copy written to dedi-
cated nodes substantially improves data availability, with a
lower overall replication cost. More specifically, HA-V1 out-
performs the best VO configuration, i.e., VO-V3 by 61% at
the 0.5 unavailability rate.

With word count, the gap between the best HA configu-
ration and the best VO configuration is small. This is not
surprising, as word count generates much smaller intermedi-
ate/final output and has much fewer Reduce tasks, thus the
cost of fetching intermediate results can be largely hidden by
Map tasks. Also, increasing the number of replicas does not
incur significant overhead. Nonetheless, at the 0.5 unavail-
ability rate, the HA replication approach still outperforms
the best VO replication configuration by about 32.5%.

To further understand the cause of performance variances
of different policies, Table 2 shows the execution profile col-
lected from the Hadoop job log for tests at 0.5 unavailability
rate. We do not include all policies due to space limit. For
sort, the average Map execution time increases rapidly as
higher replication degrees are used in the VO replication
approach. In contrast, the Map execution time does not
change much across different policies for word count, due
to reasons discussed earlier.

The most noticeable factor causing performance differ-
ences is the average shuffle time. For sort, the average
shuffie time of V0-V1 is much higher than other policies due
to the low availability of intermediate data. In fact, the aver-
age shuffle time of VO-V1 is about 5 times longer than that of
HA-V1. For VO replication, increasing the replication degree
from 1 to 3 results in a 54% improvement in the shuffle time,
but no further improvement is observed beyond this point.
This is because the shuffle time is partially affected by the
increasing Map execution time, given that the shuffle time
is measured from the start of a reduce task till the end of
copying all related Map results. For word count, the shuffle
times with different policies are relatively close except with
V0-V1, again because of the smaller intermediate data size.

Finally, since the fetch failures of Map results will trigger
the re-execution of corresponding Map tasks, the average
number of killed Map tasks is a good indication of the inter-
mediate data availability. While the number of killed Map
tasks decreases as the VO replication degree increases, the

Table 2: Execution profile of different replication policies at 0.5 unavailability rate.

sort word count
Policy VO-V1 | VO-V3 | VO-V5 | HA-V1 | VO-V1 | VO-V3 | VO-V5 | HA-V1
Avg Map Time (s) 21.25 42 71.5 41.5 100 | 110.75 113.5 112
Avg Shuffle Time (s) 1150.25 528 563 210.5 752.5 | 596.25 584 559
Avg Reduce Time (s) 155.25 84.75 | 116.25 74.5 50.25 28 28.5 31
Avg #Killed Maps 1389 55.75 31.25 18.75 | 292.25 325 30.5 23
Avg #Killed Reduces 59 47.75 55.25 34.25 18.25 18 15.5 12.5

HA replication approach in general results in a lower number
of Map task re-executions.

6.3 Overall Performance Impacts of MOON

To evaluate the impact of MOON on overall MapReduce
performance, we establish a baseline by augmenting Hadoop
to replicate the intermediate data and configure Hadoop to
store six replicas for both input and output data, to attain
a 99.5% data availability when the average machine unavail-
ability is 0.4 (selected according to the real node availability
trace shown in Figure 1). For MOON, we assume the avail-
ability of a dedicated node is at least as high as that of three
volatile nodes together with independent failure probability.
That is, the unavailability of dedicated node is less than
0.4%, which is not hard to achieve for well maintained work-
stations. As such, we configure MOON with a replication
factor of {1, 3} for both input and output data.

In testing the native Hadoop system, 60 volatile nodes
and 6 dedicated nodes are used. These nodes, however are
all treated as volatile in the Hadoop tests as Hadoop can-
not differentiate between volatile and dedicated. For each
test, we use the VO replication configuration that can de-
liver the best performance under a given unavailability rate.
It worth noting that we do not show the performance of the
default Hadoop system (without intermediate data replica-
tion), which was unable to finish the jobs under high ma-
chine unavailability levels, due to intermediate data losses
and high task failure rate.

The MOON tests are executed on 60 volatile nodes with 3,
4 and 6 dedicated nodes, corresponding to a 20:1, 15:1 and
10:1 V-to-D ratios. The intermediate data is replicated with
the HA approach using {1,1} as the replication factor. As
shown in Figure 6, MOON clearly outperforms Hadoop-VO
for 0.3 and 0.5 unavailable rates and is competitive at a 0.1
unavailability rate, even for a 20:1 V-to-D ratio. For sort,
MOON outperforms Hadoop-VO by a factor of 1.8, 2.2 and
3 with 3, 4 and 6 dedicated nodes, respectively, when the
unavailability rate is 0.5. For word count, the MOON per-
formance is slightly better than augmented Hadoop, deliv-
ering a speedup factor of 1.5 compared to Hadoop-VO. The
only case where MOON performs worse than Hadoop-VO is
for the sort application at the 0.1 unavailability rate and
the V-to-D node ratio is 20:1. This is due to the fact that
the aggregate 1/O bandwidth on dedicated nodes is insuffi-
cient to quickly absorb all of the intermediate and output
data; as described in Section 4.1, a reduce task will not be
flagged as complete until its output data reaches the pre-
defined replication factor (including 1 dedicate copy). Note
that while our experiments focus on the performance of exe-
cuting MapReduce jobs, one important advantage of MOON
lies in its ability of tolerating large-scale correlated node
unavailability, which is impractical for MapReduce on pure

volatile resources.

3000 T T

Hadoop-VO ——
MOON-HybridD3 KxXx=
2500 |- MOON-HybridD4 &==x=
MOON-HybridD6 &=z

2000
1500

1000

Execution Time(s)

500

0

Machine Unavailable Rate

(a) sort

3000 T

T
Hadoop-VO ——
MOON-HybridD3 ExXx=
2500 |- MOON-HybridD4 &x=x=
MOON-HybridD6 &=z

2000
1500

1000

Execution Time(s)

500

Machine Unavailable Rate

(b) word count

Figure 6: Overall performance of MOON vs.
Hadoop with VO replication

7. DISCUSSION

While automatic system configuration is out of the scope
of the paper, our performance evaluations provide some in-
sights about the trade-off in provisioning the hybrid resources.
Particularly, users will be interested in knowing how much
dedicated resources are needed for a certain volunteer com-
puting system. Compared to MapReduce on pure volatile
resources, MOON can achieve high data availability with
much lower replication cost, and in turn, significantly re-
duce the cost of Map task re-execution caused by the loss
of intermediate data. However, despite MOON’s scalable
I/O scheduling design, the limited I/O bandwidth on the
dedicated nodes could cause an extra delay in the task ex-
ecution. Therefore, the dedicated resources should be pro-
visioned such that a good balance is achieved between the
saving of Map task re-execution and the extra write delay
on dedicated nodes.

However, an optimal hybrid resource configuration de-
pends on a myriad of factors including the Map and Re-

duce task execution time, the node unavailability rate, the
I/0 bandwidths on both volatile and dedicated nodes, and
the sizes of different types of MapReduce data etc., letting
alone the dynamics in the system created by the specula-
tive task executions. Note that the more I/O intensive is
an application, the more dedicated nodes are required to
achieve good performance, as suggested the performance dif-
ferences between the sort and word count applications. In
practice, a good provisioning configuration can be found by
performance-tuning the most data-intensive application on
the target system. In fact, the sort benchmark is a good
tuning candidate as it has a very high 1/O-to-compute ratio.

Due to the testbed constraint, the current MOON design
does not explore optimizations that take into account the
network topologies. In the future, we plan to investigate
task scheduling and data placement policies for large sys-
tems with multi-level network hierarchies. For instance, one
possibility is to improve the aggregate bandwidth between
volatile nodes and dedicated nodes by distributing dedicated
computers in different subnets where the computers are in-
terconnected with high-bandwidth networks.

8. RELATED WORK

Several storage systems have been designed to aggregate
idle disk spaces on desktop computers within local area net-
work environments [2, 15, 23, 9]. Farsite [2] aims at building
a secure file system service equivalent to centralized file sys-
tem on top of untrusted PCs. It adopts replication to ensure
high data reliability, and is designed to reduce the replica-
tion cost by placing data replicas based on the knowledge of
failure correlation between individual machines. Glacier [15]
is a storage system that can deliver high data availability un-
der large-scale correlated failures. It does not assume any
knowledge of the machine failure patterns and uses erasure
code to reduce the data replication overhead. Both Farsite
and Glacier are designed for typical I/O activities on desk-
top computers and are not sufficient for high-performance
data-intensive computing. Freeloader [23] provides a high-
performance storage system. However, it aims at providing
a read-only caching space and is not suitable for storing mis-
sion critical data.

Gharaibeh et. al. proposed a low-cost reliable storage
system built on a combination of scavenged storage of desk-
top computers and a set of low-bandwidth dedicated storage
such as Automated Tape Library (ATL) or remote storage
system such as Amazon S3 [10]. Their prosed system focuses
sole on storage and mainly supports read-intensive work-
loads. Also, the storage scavenging in their system does not
consider the unavailability caused by the owner activities on
a desktop computer. While also adopting a hybrid resource
provisioning approach, MOON handles both computation
and storage as well as investigates the interactions between
the two within the MapReduce programming model.

There have been studies in executing MapReduce on grid
systems, such as GridGain [13]. There are two major differ-
ences between GridGain and MOON. First, GridGain only
provides computing service and relies on other data grid sys-
tems for its storage solution, whereas MOON provides an in-
tegrated computing and data solution by extending Hadoop.
Second, unlike MOON, GridGain is not designed to provide
high QoS on opportunistic environments where machines
will be frequently unavailable. Sun Microsystems’ Compute
Server technology is also capable of executing MapReduce

jobs on a grid by creating a master-worker task pool where
workers iteratively grab tasks to execute [21]. However,
based on information gleaned from [21], it appears that this
technology is intended for use on large dedicated resources,
similarly to Hadoop.

When executing Hadoop in heterogenous environments,
Zaharia et. al. discovered several limitations of the Hadoop
speculative scheduling algorithm and developed the LATE
(Longest Approximate Time to End) scheduling algorithm [24].
LATE aims at minimizing Hadoop’s job response time by
always issuing a speculative copy for the task that is ex-
pected to finish last. LATE was designed on heterogeneous,
dedicated resources, assuming the task progress rate is con-
stant on a node. LATE is not directly applicable to op-
portunistic environments where a high percentage of tasks
can be frequently suspended or interrupted, and in turn the
task progress rate is not constant on a node. Currently, the
MOON design focuses on environments with homogeneous
computers. In the future, we plan to explore the possibility
of combining the MOON scheduling principles with LATE
to support heterogeneous, opportunistic environments.

Finally, Ko et al. discovered that the loss of interme-
diate data may result in considerable performance penalty
in Hadoop even under dedicated environments [17]. Their
preliminary studies suggested that simple replication ap-
proaches, such as relying on HDFS’s replication service used
in our paper, could incur high replication overhead and is
impractical in dedicated, cluster environments. In our study,
we show that in opportunistic environments, the replication
overhead for intermediate data can be well paid off by the
performance gain resulted from the increased data availabil-
ity. Future studies in more efficient intermediate data repli-
cation will of course well complement the MOON design.

9. CONCLUSION AND FUTURE WORK

In this paper, we presented MOON, an adaptive system
that supports MapReduce jobs on opportunistic environ-
ments, where existing MapReduce run-time policies fail to
handle frequent node outages. In particular, we demon-
strated the benefit of MOON’s data and task replication
design to greatly improve the QoS of MapReduce when run-
ning on a hybrid resource architecture, where a large group
of volatile, volunteer resources is supplemented by a small
set of dedicated nodes.

Due to testbed limitations in our experiments, we used ho-
mogeneous configurations across the nodes used. Although
node unavailability creates natural heterogeneity, it did not
create disparity in hardware speed (such as disk and net-
work bandwidth speeds). In our future work, we plan to
evaluate and further enhance MOON in heterogeneous envi-
ronments. Additionally, we would like to deploy MOON on
various production systems with different degrees of volatil-
ity and evaluate a variety of applications in use on these
systems. Lastly, this paper investigated single-job execu-
tion, and it would be interesting future work to study the
scheduling and QoS issues of concurrent MapReduce jobs on
opportunistic environments.

10. ACKNOWLEDGMENTS

This research is supported in part by NSF grants CNS-
0546301, CNS-0915861, and CSR-0916719 as well as Xi-
aosong Ma’s joint appointment between North Carolina State

University and Oak Ridge National Laboratory. We thank
Advanced Research Computing at Virginia Tech (ARCQVT)
for the use of System X cluster in support of this research.

11.

[1]
2]

8]

4

[5]

(6]

(7]

8]

[9]

(10]

REFERENCES
Hadoop. http://hadoop.apache.org/core/.
A. Adya, W. Bolosky, M. Castro, R. Chaiken,
G. Cermak, J.Douceur, J. Howell, J. Lorch,
M. Theimer, and R. Wattenhofer. FARSITE:
Federated, available, and reliable storage for an
incompletely trusted environment. In Proceedings of
the 5th Symposium on Operating Systems Design and
Implementation, 2002.
D. Anderson. Boinc: A system for public-resource
computing and storage. Grid Computing, IEEE/ACM
International Workshop on, 0, 2004.
Apple Inc. Xgrid. http://www.apple.com/server/
macosx/technology/xgrid.html.
S. Chen and S. Schlosser. Map-reduce meets wider
varieties of applications meets wider varieties of
applications. Technical Report IRP-TR-08-05, Intel
Research, 2008.
A. Chien, B. Calder, S. Elbert, and K. Bhatia.
Entropia: Architecture and performance of an
enterprise desktop grid system. Journal of Parallel
and Distributed Computing, 63, 2003.
B.-G. Chun, F. Dabek, A. Haeberlen, E. Sit,
H. Weatherspoon, M. F. Kaashoek, J. Kubiatowicz,
and R. Morris. Efficient Replica Maintenance for
Distributed Storage Systems. In NSDI’06: Proceedings
of the 3rd conference on Networked Systems Design €
Implementation, pages 4—4, Berkeley, CA, USA, 2006.
USENIX Association.
J. Dean and S. Ghemawat. Mapreduce: simplified
data processing on large clusters. Commun. ACM,
51(1), 2008.
G. Fedak, H. He, and F. Cappello. Bitdew: a
programmable environment for large-scale data
management and distribution. In SC ’08: Proceedings
of the 2008 ACM/IEEE conference on
Supercomputing, pages 1-12, Piscataway, NJ, USA,
2008. IEEE Press.
A. Gharaibeh and M. Ripeanu. Exploring Data
Reliability Tradeoffs in Replicated Storage Systems. In
HPDC ’09: Proceedings of the 18th ACM international
symposium on High performance distributed
computing, pages 217-226, New York, NY, USA, 2009.
ACM.
S. Ghemawat, H. Gobioff, and S. Leung. The Google
file system. In Proceedings of the 19th Symposium on
Operating Systems Principles, 2003.
M. Grant, S. Sehrish, J. Bent, and J. Wang.
Introducing map-reduce to high end computing. 3rd
Petascale Data Storage Workshop, Nov 2008.

(13]

(14]

(15]

(16]

(21]

(22]

GridGain Systems, LLC. Gridgain.
http://www.gridgain.com/.

A. Gupta, B. Lin, and P. A. Dinda. Measuring and
understanding user comfort with resource borrowing.
In HPDC' ’04: Proceedings of the 13th IEEE
International Symposium on High Performance
Distributed Computing, pages 214—224, Washington,
DC, USA, 2004. IEEE Computer Society.

A. Haeberlen, A. Mislove, and P. Druschel. Glacier:
Highly durable, decentralized storage despite massive
correlated failures. In Proceedings of the 2nd
Symposium on Networked Systems Design and
Implementation (NSDI’05), May 2005.

B. Javadi, D. Kondo, J.-M. Vincent, and D. P.
Anderson. Mining for Statistical Models of
Availability in Large-Scale Distributed Systems: An
Empirical Study of SETI@home. In 17th IEEE/ACM
International Symposium on Modelling, Analysis and
Simulation of Computer and Telecommunication
Systems (MASCOTS), September 2009.

S. Ko, I. Hoque, B. Cho, and I. Gupta. On
Availability of Intermediate Data in Cloud
Computations. In 12th Workshop on Hot Topics in
Operating Systems (HotOS XII), 2009.

D. Kondo, M. Taufe, C. Brooks, H. Casanova, and
A. Chien. Characterizing and evaluating desktop
grids: an empirical study. In Proceedings of the 18th
International Parallel and Distributed Processing
Symposium, 2004.

A. Matsunaga, M. Tsugawa, and J. Fortes.
Cloudblast: Combining mapreduce and virtualization
on distributed resources for bioinformatics. Microsoft
eScience Workshop, 2008.

J. Strickland, V. Freeh, X. Ma, and S. Vazhkudai.
Governor: Autonomic throttling for aggressive idle
resource scavenging. In Proceedings of the 2nd IEEE
International Conference on Autonomic Computing,
2005.

Sun Microsystems. Compute server.
https://computeserver.dev.java.net/.

D. Thain, T. Tannenbaum, and M. Livny. Distributed
Computing in Practice: The Condor Experience.
Concurrency and Computation: Practice and
Experience, 2004.

S. Vazhkudai, X. Ma, V. Freeh, J. Strickland,

N. Tammineedi, and S. Scott. Freeloader: Scavenging
desktop storage resources for bulk, transient data. In
Proceedings of Supercomputing, 2005.

M. Zaharia, A. Konwinski, A. Joseph, R. Katz, and
I. Stoica. Improving mapreduce performance in
heterogeneous environments. In OSDI, 2008.

M. Zhong, K. Shen, and J. Seiferas. Replication degree
customization for high availability. SIGOPS Oper.
Syst. Rev., 42(4), 2008.

