
Comput Sci Res Dev
DOI 10.1007/s00450-012-0209-1

S P E C I A L I S S U E PA P E R

Performance characterization of data-intensive kernels on AMD
Fusion architectures

Kenneth Lee · Heshan Lin · Wu-chun Feng

© Springer-Verlag 2012

Abstract The cost of data movement over the PCI Express
bus is one of the biggest performance bottlenecks for ac-
celerating data-intensive applications on traditional discrete
GPU architectures. To address this bottleneck, AMD Fu-
sion introduces a fused architecture that tightly integrates
the CPU and GPU onto the same die and connects them
with a high-speed, on-chip, memory controller. This novel
architecture incorporates shared memory between the CPU
and GPU, thus enabling several techniques for inter-device
data transfer that are not available on discrete architectures.
For instance, a kernel running on the GPU can now directly
access a CPU-resident memory buffer and vice versa.

In this paper, we seek to understand the implications of
the fused architecture on CPU-GPU heterogeneous comput-
ing by systematically characterizing various memory-access
techniques instantiated with diverse memory-bound kernels
on the latest AMD Fusion system (i.e., Llano A8-3850).
Our study reveals that the fused architecture is very promis-
ing for accelerating data-intensive applications on heteroge-
neous platforms in support of supercomputing.

Keywords GPU · AMD Fusion · Memory transfer

This work was supported in part by an AMD Research Faculty
Fellowship and NSF grant IIP-0804155 for the NSF I/UCRC Center
for High-Performance Reconfigurable Computing (CHREC).

K. Lee · H. Lin · W.-c. Feng (�)
Department of Computer Science, Virginia Tech, Blacksburg, VA,
USA
e-mail: feng@cs.vt.edu

K. Lee
e-mail: klee1@cs.vt.edu

H. Lin
e-mail: hlin2@cs.vt.edu

1 Introduction

Graphics processing units (GPUs) continue to be increas-
ingly used for general-purpose computing, particularly in
the sciences and engineering. Their high peak performance
capabilities led to their inclusion into three of the top five
fastest supercomputers on the TOP500 List [13]. The ubiq-
uity of GPUs in home computers, via the commercial mar-
ket for gaming, has also accelerated their adoption for use
in HPC environments, especially for desktop HPC applica-
tions.

While GPUs can provide a tremendous amount of pro-
cessing power, the performance of data-intensive applica-
tions on GPUs can be bottlenecked by the cost of data com-
munication over PCI Express (PCIe). To best utilize a het-
erogeneous platform, it is often desirable to use fine-grained
kernels and assign each kernel to the most appropriate de-
vice, due to the radical architectural differences between
CPUs and GPUs. For instance, kernels with many divergent
branches will execute more efficiently on the CPU. Fine-
grained co-processing will increase CPU-GPU communi-
cation, further exacerbating the data communicating bottle-
neck on traditional discrete GPUs.

New “fused” CPU-GPU architectures, i.e., accelerated
processing units (APUs), such as AMD Fusion, alleviate the
PCIe bottleneck by placing the CPU and GPU on the same
die, interconnected with high-speed memory controllers.
The new architecture also features a single shared memory
between the CPU and GPU. As a consequence, the CPU can
directly access memory buffers on the GPU, and vice versa,
enabling new memory-access techniques for heterogeneous
computing.

In this paper, we seek to understand the challenges
and opportunities brought by fused architectures to data-
intensive GPU computing by systematically characterizing

mailto:feng@cs.vt.edu
mailto:klee1@cs.vt.edu
mailto:hlin2@cs.vt.edu


K. Lee et al.

the behavior of AMD Fusion with different memory-access
techniques. Memory-bound kernels are used to illustrate the
impact of these techniques on application performance. We
find that although AMD Fusion offers a fast interconnection
between the CPU and the GPU, taking advantage of this
new architecture is nontrivial because of the performance
heterogeneity along various memory paths in the system.
Nonetheless, with proper memory access design, fused ar-
chitectures can significantly outperform discrete architec-
tures for memory-bound kernels.

The rest of the paper is organized as follows. Section 2
presents an overview of the fused architecture, specifically
how it is different from a traditional discrete GPU. Sec-
tion 3 describes the experimental setup and gives a brief
overview of the applications under test. Section 4 presents
our results. Section 5 provides a discussion on modeling the
performance of applications. Section 6 outlines our related
work. Finally, Sect. 7 presents a discussion of the implica-
tions of the results as well as opportunities for future work.

2 Background

In this section, we discuss GPU and APU architecture basics
and present a brief overview of the OpenCL programming
model.

2.1 GPU and APU architectures

GPUs and APUs share most of the same architectural fea-
tures in their compute units, the heart of the computational
power for a GPU or APU. However, the two differ in how
their units are attached to the rest of the system. A compute
unit is somewhat analogous to a multi-core chip. It contains
registers, local memory, constant memory, and a single-
instruction, multiple-data (SIMD) engine. This SIMD en-
gine contains multiple computation cores called processing
elements (PEs). Instructions to these cores are dispatched in
lockstep, such that every PE performs either the same in-
struction or a nop (i.e., no operation) on every cycle. The
local and constant memories of the compute unit act as user-
managed caches of the high-latency global memory. There
is a single global memory on the device, which is where
communication between the host and device take place; it is
also the location where persistent data is stored and loaded
for kernel use. Every compute unit has access to the global
memory. Data in the local and constant memories are not
consistent between kernel executions.

The GPU and APU differ by where they are located in
the system. The GPU is a stand-alone device separated from
the CPU by the PCIe bus. The APU, on the other hand,
is a fused architecture, where the CPU and GPU cores are
co-located on the same die. In addition, the APU has a sin-
gle shared memory space between the processors. Accesses

Fig. 1 Architectural differences of the discrete and fused GPUs

Fig. 2 Detailed APU Memory Architecture, showing the GARLIC
(solid) and ONION (dashed) routes of data access from the GPU

to this shared memory space are facilitated through a high-
speed memory controller. In reality, the memory space is
still partitioned due to the relaxed constraints of GPU mem-
ory, but the memory controller allows for the user to see
an apparent shared memory between the cores, while also
allowing for faster transfers when compared to the PCIe
bus. Figure 1 shows the differences between the discrete and
fused GPU configurations.

2.2 APU memory paths

We present a brief overview of the APU memory system to
better understand the performance of the different memory
paths. Figure 2 shows a detailed model of the memory ar-
chitecture of the AMD Fusion APU [3].

All memory accesses by the GPU to system memory go
through the Unified NorthBridge (UNB), which is responsi-
ble for managing all GPU memory accesses. If the memory
being accessed by the GPU is either device memory or un-
cached CPU memory, the GPU will gain access to it directly
after the UNB, through the Radeon Memory Bus (aka the
Garlic route). If the memory needed by the GPU is in cached
CPU space, then the UNB must snoop the L2 cache of the
CPU to ensure coherency of memory. Accesses of this type



Performance characterization of data-intensive kernels on AMD Fusion architectures

are done through the AMD Fusion Complete Link (aka the
Onion route), which has lower performance compared to the
Garlic route.

CPU writes to cached host memory buffers are done
through the L2 cache, as is typical for CPU systems. Un-
cached memory reads and writes to both host and device
memory spaces are done through the write combine buffer,
which is used to increase performance for writes to mem-
ory in contiguous memory spaces. Reading from the device
memory by the CPU is very slow, because each read to de-
vice memory is uncached, and only one outstanding read is
allowed at any given point.

2.3 OpenCL framework

The work presented here uses the OpenCL framework for
GPU communication and computation. OpenCL is a vendor-
agnostic parallel computing framework from the Khronos
Group [10] that uses the following terminology. Each thread
running in a kernel on a device is called a workitem. These
workitems are combined into a workgroup. Workgroups are
assigned to the compute units of the device, which can be a
processor core on CPUs or a SIMD engine on GPU devices.
Each workgroup can execute on only one compute unit. We
will use the OpenCL terminology to discuss the work for the
rest of this paper.

3 Characterization methodology

We aim to systematically investigate the challenges and op-
portunities introduced by fused CPU+GPU architectures
to data-intensive computing. To this end, we first seek to
quantify the performance difference in memory accesses on
two types of architectures by running the BufferBandwidth
micro-benchmark, shipped with the AMD SDK, on an AMD
A8-3850 APU (Llano) and a AMD Radeon HD5870 dis-
crete GPU. (Section 4 provides details about the two de-
vices.) The BufferBandwidth benchmark exercises all possi-
ble memory-access paths in the system. Since the memory-
access performance is impacted by the CPU performance,
for a fair comparison, both the Llano and HD5870 were in-
stalled in the same machine.

Table 1 shows the memory performance results reported
by the BufferBandwidth benchmark. There are several key
observations from these results. First, copying data between
a host buffer and a device buffer is much faster, i.e., by more
than two-fold for both reads and writes, on Llano than the
HD5870. This is mainly due to the fast interconnection be-
tween the CPU and the GPU on Llano.

Second, accessing host memory from the GPU is signifi-
cantly faster on Llano, with an 11-fold improvement on read
and a 3.9-fold improvement on write performance. Note that

Table 1 BufferBandwidth Benchmark Results for AMD A8-3850
APU and AMD HD5870 GPU. The first two rows of data represent
the transfer time between the host and device memory buffers, which
is over the PCIe bus for discrete GPU systems. The remaining rows
represent the read and write performance of the specified processor di-
rectly on the specified memory buffer

Transfer Type AMD Llano AMD HD5870

Host Buffer → Device Buffer 2.61 GB/s 1.25 GB/s

Host Buffer ← Device Buffer 3.17 GB/s 1.39 GB/s

CPU ← Host Buffer (Read) 5.67 GB/s 5.64 GB/s

CPU → Host Buffer (Write) 5.46 GB/s 5.44 GB/s

GPU ← Host Buffer (Read) 16.26 GB/s 1.46 GB/s

GPU → Host Buffer (Write) 4.96 GB/s 1.28 GB/s

CPU ← Device Buffer (Read) 0.01 GB/s 0.01 GB/s

CPU → Device Buffer (Write) 7.49 GB/s 1.52 GB/s

GPU ← Device Buffer (Read) 17.54 GB/s 128.74 GB/s

GPU → Device Buffer (Write) 14.31 GB/s 98.60 GB/s

the HD5870 performance on reads and writes are as fast as
memory transfers over the PCIe bus. This is due to the fact
that these communications must take place over PCIe bus.
Interestingly, on Llano, accessing the host memory from the
GPU is also as fast as accessing device memory (16.26 GB/s
vs. 17.54 GB/s). This opens up the possibility of having the
GPU directly access data on the host side without copying
them over for applications with little data reuse. It is worth
noting that when accessing the host memory on Llano, the
read bandwidth is also four-fold higher than the write band-
width. This bandwidth imbalance needs to be carefully taken
into account in designing efficient data-access flow for ap-
plications.

Third, when accessing the device memory of the CPU,
Llano again offers a much higher (i.e., five-fold) write band-
width than the HD5870. Surprisingly, the read bandwidth
from a device buffer to the CPU is awfully low at 0.01 GB/s
for both Llano and HD5870. This is because each read to
device memory is uncached, and only one outstanding read
is allowed at any given point, as explained in Sect. 2.2. This
slow read link can be a serious performance bottleneck if
overlooked in the application design.

Finally, the memory bandwidth on the GPU device is
much higher on HD5870 than on Llano. This is partly be-
cause the HD5870 is equipped with faster memory than
Llano, i.e., DDR5 vs. DDR3. The HD5870 also has four
times as many compute units than Llano, i.e., 20 vs. 5, which
improves the aggregate memory access bandwidth.

From the above observations, we see that the fused ar-
chitecture possesses a more diverse memory-access profile
along various paths in the system. Although Llano offers
more efficient interconnection between the CPU and the
GPU, designing a data-access strategy that can best take ad-
vantage of this fast interconnection is nontrivial given the



K. Lee et al.

Fig. 3 Memory movement schemes

performance heterogeneity along different memory paths.
To systematically evaluate the potential of fused archi-
tectures, we perform a comparison study between APUs
and discrete GPUs by characterizing the behavior of a
set of memory-access approaches instantiated with diverse
memory-bound kernels, as described in the following sec-
tions.

3.1 Memory-Access Techniques

In our characterization study, we consider four different
memory-access approaches for a GPU kernel: Default,
CPU-Resident, GPU-Resident, and Mixed. Figure 3 pro-
vides a pictorial explanation of these methods.

The Default approach is the most commonly used data-
access approach on discrete GPUs. With this approach,
the input data is first copied from a host-side buffer to
a device-side buffer. The kernel then reads the input data
from and writes output data to device memory. Upon ker-
nel completion, the output data is copied back to a host-side
buffer.

The CPU-Resident approach stores all of the data in
the host memory. The GPU kernel reads the data from
and writes data to host-side buffers instead of device-
side buffers. Compared to the Default approach, the CPU-
Resident approach avoids data copies for both the input and
output data to and from the device-side buffer. In discrete
GPU systems, this memory-access approach causes an over-
head because reads and writes to host-side buffers from the
GPU must go across the PCIe bus.

The next approach is called GPU-Resident because all of
the data of an application resides in the device memory. The

CPU writes the input data directly to a device-side buffer,
and then the GPU kernel operates on this buffer and writes
the output data to another device-side buffer. Afterwards,
the output data is read directly from the device-side buffer
by the CPU. Compared to the Default approach, the GPU-
Resident approach saves the copy of the input data from the
host memory to the device memory, which is in favor of
fused architectures with fast write bandwidth from the CPU
to the device memory. Even on APUs such as Llano, reading
a device-side buffer directly from the CPU is very slow as
discussed above.

To address slow read performance of device memory
by the CPU in the GPU-Resident approach, we designed
a Mixed approach in which the data is written from the
CPU directly to the device-side buffer, and then after the
kernel completes the data is copied to a host-side buffer,
as in the Default method. At that point, data can be read
at normal speeds by the CPU. Note that copying a buffer
from device memory to host memory is much faster than
having the CPU read data elements within the device-side
buffer.

3.2 Kernel benchmarks

We choose four memory-bound applications that have a va-
riety of both memory accesses in the kernel as well as the
amount of data needed to be transferred between the CPU
and the GPU.

VectorAdd This application computes the value C = A+B
for vectors of length n. The work for this application can
be split by data partitions, and every three units of memory
transfer requires only one addition operation, making this
kernel extremely data-intensive. Each thread launched will
compute one value in C by loading the necessary values
from A and B.

Scan This application computes the exclusive prefix sum
for a vector, V, of length n. That is Xi = ∑

k<i Vk . This
computation requires a lot of synchronization between
threads in order to be performed effectively in parallel.
There are two steps for this algorithm, which both resem-
ble a reduce operation. Each thread computes an element
of the final result and may perform up as many local mem-
ory operations as there are number of threads in the work-
group.

Reduce The Reduce application computes the sum of a
vector, V. To be performed in parallel, synchronization
must occur between threads. There is roughly one addi-
tion operation preformed for each element of V. Each
thread loads a value from the input into a local array,
and then performs a reduction on that local array by hav-
ing each thread in the group perform a binary tree reduc-
tion.



Performance characterization of data-intensive kernels on AMD Fusion architectures

CRC This algorithm computes the cyclic redundancy code
for a given stream of bits, B. CRC is a hash func-
tion and returns only a single value back to the host
after completion. Each thread is responsible for a sin-
gle byte of the data stream, and performs multiple data
accesses to local memory. Afterwards, a reduction is
performed for threads in a workgroup, and the work-
group writes the value of the CRC back to global mem-
ory.

All four of the applications send n elements of data to
the accelerator. VectorAdd and Scan both return n elements,
while the Reduce and CRC applications only return a single
data element. Also, in each of these groupings there is one
computationally inexpensive kernel, and one more intensive
kernel. The VectorAdd and Reduce applications are com-
putationally simple. On the other hand, the Scan and CRC
applications require much more computation to complete.
VectorAdd and Reduce require one read from global mem-
ory, while the Scan and CRC require more synchronization
and memory accesses.

3.3 Comparison between fused and discrete architectures

One key question that we seek to answer is what are the ad-
vantages of fused architectures over discrete architectures
for memory-bound kernels. Ideally, in comparing two ar-
chitectures, we would like to use two GPU devices with
the same processing power but different interconnection to
the CPU. However, the GPU integrated in fused architec-
tures today is less powerful than typical discrete GPUs. That
is, Llano only has 5 compute units, but HD5870 has 20.
One useful technique for this purpose is device fission, an
OpenCL extension that allows dividing an OpenCL device
into multiple sub-devices. For instance, we can create a sub-
device out of HD5870 that consists of 5 compute units. This
extension is being mainlined into the OpenCL v1.2 specifi-
cation, but as of writing this feature has not be implemented
for the AMD HD 5870 GPU we used for our testing pur-
poses.

We address the above issue by controlling the number of
workgroups of an OpenCL kernel. Since a workgroup can
only be scheduled on one compute unit, we can have a ker-
nel use a portion of the GPU device by using a number of
workgroups less than the number of the compute units of
the GPU. Each thread then supports computation of mul-
tiple data points to support various input sizes. Llano has
5 compute units while the HD5870 has 20. We use 5 work-
groups in a GPU kernel when comparing the two to make the
performance capabilities of the two devices comparable. We
ensure that each workgroup is mapped to a different com-
pute unit by allocate all of the local memory available for
a compute unit. Because we allocate all of the local mem-
ory, the scheduler is unable to place any other workgroups
on that compute unit.

Table 2 Test systems

Platform Llano HD5870

Stream Processors 400 1600

Memory Bus Type DDR3 GDDR5

Device Memory 512 MB 1024 MB

Local Memory 32 KB 32 KB

Local Workgroup Size 256 threads 256 threads

Core Clock Frequency 600 MHz 850 MHz

Peak FLOPS 480 GFlops/s 2720 GFlops/s

CPU Clock Frequency 2.9 GHz 2.9 GHz

4 Characterization results

We first compare the performance of the two different mem-
ory paths, i.e., Garlic vs. Onion bus on the APU. Then we
evaluate the efficacy of different memory access approaches
on both discrete and fused architectures with memory-bound
kernels described in Sect. 3. Finally, we evaluate the poten-
tial advantages of fused architectures over discrete architec-
tures in accelerating two representative memory-bound ker-
nels. We next present a detailed analysis on some of the ob-
servations in experimental results in Sect. 5.

The configurations of the systems used in our study are
given in Table 2. We performed our experiments using the
AMD APP SDK v2.5, which supports OpenCL version 1.1.
The Windows 7 operating system was used for all of our
tests.

4.1 Garlic vs. onion routes

We performed two tests to test the difference in perfor-
mance when comparing the Garlic and Onion routes on the
fused architecture. First we performed another BufferBand-
width test on cached and uncached memory on the GPU.
GPU reads into uncached host buffer memory, via the Gar-
lic route, achieved a maximum bandwidth of 16.26 GB/s.
Reads to cached memory only achieved 6.36 GB/s.

In addition to seeing the results of the BufferBandwidth
tests, we ran an experiment that augments the VectorAdd
kernel1 to use cached memory access instead of uncached
ones. Using the Onion route had a negative impact on over-
all performance of the kernel, as shown in Fig. 4. As the
problem size increases, we see an increased degradation of
performance of the Onion route (note that the execution time
shown in Fig. 4 is in log scale).

1When using CPU-Resident memory, the Garlic route can be accessed
using the CL_MEM_(READ/WRITE)_ONLY flags when using the
clCreateBuffer function.



K. Lee et al.

4.2 Comparison of memory-access techniques

In order to understand the most efficient way of mapping
memory-bound kernels on GPUs, in this experiment, we
evaluate the four memory-access approaches with the four
benchmark applications as discussed in Sect. 3, on both
Llano and HD5870.

Figure 5 shows the performance results on Llano. Data
transfer time, kernel execution time and total execution
time are reported for each application and memory trans-
fer scheme. The data transfer times reported here were com-
puted as follows. Default memory transfers include the time
taken to write to a buffer and copy that buffer to the GPU

Fig. 4 Effect of Garlic and Onion routes on performance for the Vec-
torAdd application on the Llano system

and also the time to copy the output buffer to the CPU and
read from it. The other transfers include the time taken to
map, write to, and unmap the buffers, as well as map, read
from, and unmap the buffers after the kernel has executed.
The Mixed case measures the map/unmap time to the buffer,
as in the GPU- and CPU-resident cases. The read from the
device is handled as it is for the Default memory movement
case.

As can be seen in Fig. 5, the application performance pro-
file varies considerably for different benchmarks. In the Vec-
torAdd and Scan benchmarks, the amount of data being re-
turned by the kernel is proportional to the problem size. As
the problem size increases, the time spent on data transfer in-
creases dramatically for the GPU-Resident memory due to
the slow speeds of CPU reads from device memory. How-
ever, we also notice the higher cost of kernel execution for
the CPU-Resident memory case. The other kernel times are
almost identical because the memory is located in the same
memory space for the other three schemes. In summary, we
find the Mixed memory movement scheme shows the best
performance for these applications as it is able to achieve
good performance in the kernel execution, while also having
much better data transfer speeds than the GPU-Resident ap-
proach. However, this assessment is dependent on the prob-
lem size.

Compared to the VectorAdd and Scan benchmarks, both
the Reduce and CRC algorithms have little output data to

Fig. 5 Application performance broken down into data transfer and kernel execution time for the Llano system



Performance characterization of data-intensive kernels on AMD Fusion architectures

Fig. 6 Application performance broken down into data transfer and kernel execution time for the HD5870 system

return to the host after computation. In fact, GPU-Resident
incurs the least data-transfer time for Reduce as this bench-
mark has only one data element for the output. CRC has a
larger amount of output data, thus incur slightly higher data
transfer overhead for GPU-Resident on large problem sizes.
In terms of overall performance, the Mixed technique typ-
ically gives performance for data transfers somewhere be-
tween that of the CPU-Resident and the Default techniques.
This makes sense logically because the Mixed technique
performs on one side of the transfer in a similar way to CPU-
Resident and on the other side similar to the Default. Over-
all, the kernel performance for Mixed is generally identical
to the GPU-Resident as well as is near the performance of
the Default.

In summary, the main trade-off between CPU- and GPU-
Resident memory for the Llano APU is the difference in
bandwidth writing data to and from the device and the speed
of accesses to memory during kernel execution. Choosing
the best memory technique is also dependent on the prob-
lem size as well as the execution profile of the kernel.

The results of HD5870 are given in Fig. 6. One observa-
tion here is that the Default approach generally delivers the
best overall performance. This is because accessing data di-
rectly over PCIe is typically slow, thus copying data to/from
the device is more efficient. The only exception to this rule
is the Reduce application, where Mixed and GPU-Resident
outperform Default. This is due to the fact that writing data

from the CPU to device memory is more efficient than copy-
ing a host-side buffer to a device buffer (1.52 GB/s vs.
1.25 GB/s as shown in Table 1), and there is very little data
to read back to the host side.

4.3 Comparing discrete vs. fused architectures

When comparing the Llano and HD5870 systems, we note
a few key differences. For the discrete GPU, the kernel
performance of CPU-Resident memory was typically very
poor. The difference in performance between CPU-Resident
memory and the next fastest memory technique is as much
as 10 times. This is due to the fact that memory accesses to
these units of memory must take place over the PCIe bus,
which is high latency.

In order to fairly compare the APU and discrete GPU, we
limited the number of compute units of each of the devices
to five, which is the number of compute units found on the
fused APU. Performing our comparison this way, we see a
comparison of two roughly equally performing GPUs and
can therefore better compare the effects of the fused versus
discrete architecture. We assume that one main advantage of
the discrete architecture is that it can be equipped with faster
memory module and more powerful cores compared to the
fused architecture. We would like to understand that under
such an assumption, whether the fused architecture will be
advantageous in accelerating memory-bound kernels.



K. Lee et al.

Fig. 7 The results of Fused (Llano) and Discrete (HD 5870) perfor-
mance for the VectorAdd and Reduce applications

Figure 7 shows the performance of the Llano architec-
ture versus the HD5870 discrete GPU for the CRC and
VectorAdd applications. We used the Mixed approach on
Llano and the Default approach on HD5870. For applica-
tions requiring more computation (Scan and CRC), the dis-
crete GPU was able to make up for its slower data transfer
speeds in the kernel execution, but because of the relatively
small amount of computation that needed to be done per unit
of transfer, it was often not enough to gain a clear advan-
tage over Llano. In the cases where the application kernel
was simpler (VectorAdd and Reduce), there was even less
of a chance for the discrete GPU to catch up, which leads
to improved performance on the fused architecture. In fact,
Llano outperforms HD5870 by up to 57 % for the VectorAdd
benchmark.

5 Discussion

To gain insight into the results of this experiment, we present
a model describing the performance of applications for dif-
ferent memory speeds. The model is simple, but it can be
used to understand the general trends in the results. This
model is not intended to predict real performance of sys-
tems, but the model facilitates discussion of the results by il-
lustrating the major components of application performance
for data-intensive kernels. We compute the overall time
taken to complete the application, T , based on the band-
width to and from the device, Bw and Br and the speed of
reads and writes in the kernel itself, Kr and Kw . We also
consider the size of the input data, kernel reads and writes,

and output data (Si , Sr , Sw , and So, respectively) to make an
appropriate estimate.

T = Si

Bw

+ Sr

Kr

+ Sw

Kw

+ So

Br

(1)

Considering the difference between GPU-Resident and
CPU-Resident memory on the Llano machine for the Re-
duce application. The GPU-Resident memory will always
beat the CPU-Resident memory because the read transfer
bandwidth (Br ) is slower for the GPU-Resdient memory, but
the amount of data sent back is also very low (So) and is a
constant. As we increase the problem size, therefore, we will
always see better performance for the GPU-Resident mem-
ory. Conversely, in the VectorAdd application, the final term
is not a constant, and has the largest growth as we increase
problem size for GPU-Resident memory. In this case, we see
that CPU-Resident memory performs much better by avoid-
ing as large a growth in time.

The same kind of analysis can be performed on the CRC
application to understand the cross-over point between the
two devices. Substituting size values into Eq. (1), we have:

T = N

Bw

+ N

Kr

+ N

Kw

+ 1

Br

which can further be reduced to:

T = N

(
1

Bw

+ 1

Kr

+ 1

Kw

)

+ 1

Br

This equation shows a linear growth of time based on the
amount of data in the problem size, which has an intercept
of 1

Br
. The value of the intercept is lower for Llano, because

of the increase bandwidth speed of reads from that memory.
However, the faster speeds of kernel reads and writes en-
able the discrete GPU to outperform the fused architecture
when the problem size is large enough. This model helps us
to understand the architectural implications on application
performance as well as enable us to develop guidelines for
the usage of these memory techniques.

6 Related work

Because the AMD Fusion architecture is so new, there is a
dearth of literature discussing its performance and power.
Gutta et al. present an overview of the Fusion architecture
[8], but do not discuss its performance in GPU applications.
Daga et al. present an investigation similar to ours, but only
compares the importance of increased PCIe bandwidth using
the basic memory movement technique [6].

There are traditionally three methods for characteriz-
ing GPU system performance: reverse engineering, bench-
mark suites, and performance modeling. Relative to re-
verse engineering, Wong et al. present a method of micro-
benchmarking to understand the performance characteris-



Performance characterization of data-intensive kernels on AMD Fusion architectures

tics as well as underlying architecture of a NVIDIA graph-
ics card using CUDA [14]. Che et al. investigate the ap-
plications for the GPU and how being aware of the GPU’s
parallel architecture can generate speedups over traditional
serial implementations [4]. Similarly, in [11, 12], Ryoo et
al. present a method of optimization for discrete NVIDIA
GPUs.

Benchmark suites can be used to better understand the
characteristics of a system by comparing the results of a
wide array of different application profiles. The SHOC [7]
benchmark suite makes use of the micro-benchmarks to
determine performance characteristics for discrete GPUs.
Likewise, the Rodinia [5] benchmark suites present infor-
mation about performance differences between GPUs based
on the benchmark results.

With respect to performance modeling, Hong and Kim
present a model that fully takes memory bandwidth and
thread-level parallelism into account to improve the mod-
els performance estimate to 5 % for micro-benchmarks [9].
Baghsorkhi et al. present a performance model for data par-
allel kernels using the CUDA platform [2]. Finally, Aji et al.
present a model that takes global memory partition camping
into account to improve performance error rates, capturing
more system complexity [1].

7 Conclusion

This paper makes three major contributions in support of
heterogeneous supercomputing. First, we present a charac-
terization of memory-access techniques on the latest fused
CPU+GPU processor, namely the AMD Llano A8-3850
APU from their Fusion project. Second, with an understand-
ing of the characteristics of AMD Llano APU in place, we
can configure the less powerful Llano APU to outperform
more powerful discrete GPUs on memory-bound kernels by
as much as 55 %. By paying attention to the residency of
data in an application, we can achieve performance gains
against a naive implementation on the same system by as
much as 20 % on a typical data transfer. Third, we present a
analytical model that can be used to guide the use of these
memory accesses and to explain the performance for dif-
ferent memory-bound applications being used. This work
can be extended into a framework to automatically optimize
memory transfers for applications.

References

1. Aji A, Daga M, Feng W (2011) Bounding the effect of partition
camping in GPU kernels. In: 8th ACM int’l conference on comput-
ing frontiers. doi:http://doi.acm.org/10.1145/2016604.2016637

2. Baghsorkhi S, Delahaye M, Patel S, Gropp W, Hwu W (2010)
An adaptive performance modeling tool for GPU architectures.
ACM SIGPLAN Not 45:105–114. doi:http://doi.acm.org/10.1145/
1837853.1693470

3. Boudier P, Sellers G (2011) Memory system on fusion APUs:
The benefits of zero copy. In: AMD Fusion developer summit,
AMD. http://developer.amd.com/afds/assets/presentations/1004_
final.pdf

4. Che S, Boyer M, Meng J, Tarjan D, Sheaffer J, Skadron K
(2008) A performance study of general-purpose applications
on graphics processors using cuda. J Parallel Distrib Comput.
doi:10.1016/j.jpdc.2008.05.014

5. Che S, Boyer M, Meng J, Tarjan D, Sheaffer JW, Lee S-H,
Skadron K (2009) Rodinia: A benchmark suite for heterogeneous
computing. In: IEEE int’l symp. on workload characterization.
doi:10.1109/IISWC.2009.5306797

6. Daga M, Scogland T, Feng W (2011) Architecture-aware mapping
and optimization on a 1600-core GPU. In: IEEE int’l conf. on par-
allel and distributed systems

7. Danalis A, Marin G, McCurdy C, Meredith J, Roth P, Spafford K,
Tipparaju V, Vetter J (2010) The scalable heterogeneous comput-
ing (shoc) benchmark suite. In: 3rd workshop on general-purpose
computation on graphics processing units. doi:10.1145/1735688.
1735702

8. Gutta S, Foley D, Naini A, Wasmuth R, Cherepacha D (2011)
In: Int’l solid-state circuits conference digest of technical papers.
doi:10.1109/ISSCC.2011.5746314

9. Hong S, Kim H (2009) An analytical model for a GPU architecture
with memory-level and thread-level parallelism awareness. Com-
put Archit News 37:152–163. doi:10.1145/1555815.1555775

10. Khronos Group (2008) The khronos group releases opencl 1.0
specification

11. Ryoo S, Rodrigues C, Stone S, Baghsorkhi S, Ueng S, Hwu W
(2007) Program optimization study on a 128-core GPU. In: 1st
workshop on general purpose processing on graphics processing
units

12. Ryoo S, Rodrigues C, Baghsorkhi S, Stone S, Kirk D, Hwu W
(2008) Optimization principles and application performance eval-
uation of a multithreaded GPU using cuda. In: 13th ACM SIG-
PLAN symp. on principles and practice of parallel programming.
doi:http://doi.acm.org/10.1145/1345206.1345220

13. Top500 (2011) http://www.top500.org/
14. Wong H, Papadopoulou MM, Sadooghi-Alvandi M, Moshovos A

(2010) Demystifying GPU microarchitecture through mi-
crobenchmarking. In: IEEE Int’l symp. on performance analysis
of systems software. doi:10.1109/ISPASS.2010.5452013

Kenneth Lee received the BS degree in computer science from Vir-
ginia Tech in 2008. He is currently working toward the MS degree
in computer science at Virginia Tech under the direction of Dr. Wu-
chun Feng. His research interests include high performance computing
and GPU architectures, with an emphasis on memory management and
movement.

Heshan Lin received the BS degree in applied math from South China
University of Technology in 1998, the M.S. degree in computer science
from Temple University in 2004, and the Ph.D. degree in computer sci-
ence from North Carolina State University in 2009. He is a Research
Scientist in the Department of Computer Science at Virginia Tech. His
research interests include data-intensive parallel and distributed com-
puting, bioinformatics, cloud computing, and GPU (graphics process-
ing unit) computing.

Wu-chun Feng became an Associate Professor in the Department of
Computer Science and Department of Electrical & Computing Engi-
neering at Virginia Tech (VT) in January 2006. He leads the Syn-
ergy Lab and serves as site co-director of the NSF Center for High-
Performance Reconfigurable Computing at VT. He received B.S. de-
grees in Computer Engineering and Music (Honors) and M.S. degree
in Computer Engineering at Penn State University in 1988 and 1990,

http://doi.acm.org/10.1145/2016604.2016637
http://doi.acm.org/10.1145/1837853.1693470
http://doi.acm.org/10.1145/1837853.1693470
http://developer.amd.com/afds/assets/presentations/1004_final.pdf
http://developer.amd.com/afds/assets/presentations/1004_final.pdf
http://dx.doi.org/10.1016/j.jpdc.2008.05.014
http://dx.doi.org/10.1109/IISWC.2009.5306797
http://dx.doi.org/10.1145/1735688.1735702
http://dx.doi.org/10.1145/1735688.1735702
http://dx.doi.org/10.1109/ISSCC.2011.5746314
http://dx.doi.org/10.1145/1555815.1555775
http://doi.acm.org/10.1145/1345206.1345220
http://www.top500.org/
http://dx.doi.org/10.1109/ISPASS.2010.5452013


K. Lee et al.

respectively. He then earned his Ph.D. in Computer Science at the Uni-
versity of Illinois at Urbana-Champaign in 1996. His research interests
encompass a broad range of topics in efficient parallel computing, in-
cluding high-performance computing and networking, energy-efficient

(or green) supercomputing, accelerator-based computing, cloud com-
puting, grid computing, bioinformatics, and computer science peda-
gogy for K-12.


	Performance characterization of data-intensive kernels on AMD Fusion architectures
	Abstract
	Introduction
	Background
	GPU and APU architectures
	APU memory paths
	OpenCL framework

	Characterization methodology
	Memory-Access Techniques
	Kernel benchmarks
	Comparison between fused and discrete architectures

	Characterization results
	Garlic vs. onion routes
	Comparison of memory-access techniques
	Comparing discrete vs. fused architectures

	Discussion
	Related work
	Conclusion
	References


