
Towards Enhancing
Performance, Programmability, and Portability

in Heterogeneous Computing

Konstantinos Krommydas

Dissertation submitted to the Faculty of the
Virginia Polytechnic Institute and State University

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy
in

Computer Science and Applications

Wu-chun Feng, Chair
Ali Butt

Yong Cao
Ruchira Sasanka

Eli Tilevich

November 30, 2016
Blacksburg, Virginia

Keywords: Performance, Programmability, Heterogeneous Architectures, Parallel Computing,
Programming Framework

Copyright 2016, Konstantinos Krommydas

Towards Enhancing
Performance, Programmability, and Portability

in Heterogeneous Computing

Konstantinos Krommydas

(ABSTRACT)

The proliferation of a diverse set of heterogeneous computing platforms in conjunction with the

plethora of programming languages and optimization techniques on each language for each un-

derlying architecture exacerbate widespread adoption of such platforms. This is especially true

for novice programmers and the non-technical-savvy masses that are largely precluded from the

advantages of high-performance computing. Moreover, different groups within the heterogeneous

computing community (e.g., computer architects, tool developers, and programmers) are presented

with new challenges with respect to performance, programmability, and portability (or the three

P’s) of heterogeneous computing.

In this work we discuss such challenges and identify benchmarking techniques based on compu-

tation and communication patterns as an appropriate means for the systematic evaluation of het-

erogeneous computing with respect to the three P’s. Our proposed approach is based on OpenCL

implementations of the Berkeley dwarfs. We use our benchmark suite (OpenDwarfs) in char-

acterizing performance of state-of-the-art parallel architectures, and as the main component of a

methodology (Telescoping Architectures) for identifying trends in future heterogeneous architec-

tures. Furthermore, we employ OpenDwarfs in a multi-faceted study on the gaps between the

three P’s in the context of the modern heterogeneous computing landscape. Our case study spans a

variety of compilers, languages, optimizations, and target architectures, including the CPU, GPU,

MIC, and FPGA. Based on our insights and extending aspects of prior research (e.g., in com-

pilers, programming languages, and auto-tuning), we propose the introduction of grid-based data

structures as the basis of programming frameworks and present a prototype unified framework

(GLAF) that encompasses a novel visual programming environment with code generation, auto-

parallelization, and auto-tuning capabilities. Our results, which span scientific domains, indicate

that our holistic approach constitutes a viable alternative towards enhancing the three P’s and fur-

ther democratizing heterogeneous, parallel computing for non-programming-savvy audiences, and

especially domain scientists.

This work has been supported in part by the Institute for Critical Technology and Applied Sci-

ence (ICTAS), NSF Center for High-Performance Reconfigurable Computing (CHREC), two Intel

internships, and NASA/SSAI.

iii

Towards Enhancing

Performance, Programmability, and Portability

in Heterogeneous Computing

Konstantinos Krommydas

(GENERAL AUDIENCE ABSTRACT)

In the past decade computing has moved from single-core machines, that is machines with a CPU

that can execute code in a serial manner, to multi-core ones, i.e., machines with CPUs that can

execute code in a parallel fashion. Another paradigm shift that has manifested in the past years

entails computing that utilizes heterogeneous processing, as opposed to homogeneous processing.

In the latter case a single type of processor (CPU) is responsible for executing a given program,

whereas in the former case different types of processors (such as CPUs, graphics processors or

other accelerators) collaborate in an effort to tackle computationally difficult problems in a fast,

parallel manner.

The shift to multi-core, parallel, heterogeneous computing described above is accompanied by an

associated shift in programming languages for such platforms, as well as techniques to optimize

programs for high performance (i.e., execution speed). The unique complexities of parallel and het-

erogeneous computing exacerbate widespread adoption of such platforms. This is especially true

for novice programmers and the non-technical-savvy masses that are largely precluded from the

advantages of high-performance computing. Challenges include obtaining fast execution speeds

(i.e., performance), easiness of programming (i.e., programmability), and the ability to execute

programs across different heterogeneous platforms (i.e., portability). Performance, programmabil-

ity, and portability constitute the 3 P’s of heterogeneous computing.

In this work we discuss the above challenges in detail and provide insights and solutions for differ-

ent interest groups within the computing community, such as computer architects, tool developers

and programmers. We propose an approach for evaluating existing heterogeneous computing plat-

forms based on the concept of dwarf-based benchmarks (i.e., applications that are characterized

by certain computation and communication patterns). Furthermore, we propose a methodology

for utilizing the dwarf concept for evaluating potential future heterogeneous platforms. In our

research we attempt to quantify the trade-offs between performance, programmability, and porta-

bility in a wide set of modern heterogeneous platforms. Based on the above, we seek to bridge

the 3 P’s by introducing a programming framework that democratizes parallel algorithm develop-

ment on heterogeneous architectures for novice programmers and domain scientists. Specifically,

our framework produces parallel, optimized code implementations in multiple languages with the

potential of executing across different heterogeneous platforms.

v

ACKNOWLEDGEMENTS

First, I would like to thank my advisor, Professor Wu-chun Feng who has guided me throughout

my Ph.D journey. He has served as a role model and inspiration for me from the onset and has

provided invaluable knowledge and insights, especially of the kind that textbooks cannot teach. Dr.

Feng, a huge thank you for taking me in the lab back in 2010 and standing by me as my academic

father.

A big thank you to my committee members: Professor Ali Butt, Doctor Yong Cao, Doctor Ruchira

Sasanka, and Professor Eli Tilevich. I appreciate all your feedback on my work, as well as the time

you put into serving in my Ph.D. committee.

Being part of a a great lab, the Synergy Lab, has greatly benefited me both personally and profes-

sionaly. A big thank you to all current and former members of the lab for your feedback on the

work throughout the years, your support, and the good times in the lab!

I was also very lucky to have been given the opportunity to work as an intern with Intel for about a

year in total. The work done there under the guidance of Dr. Ruchira Sasanka greatly steered the

direction of my dissertation and I will always be grateful to him for being my mentor, and for his

guidance, help, and support, not only during my time at Intel, but also afterwards.

My gratitude also goes to all the entities that funded my work: ICTAS, which honored me with

a four-year fellowship and the freedom to freely pursue my research interests; the Computer Sci-

ence department of Virginia Tech through teaching assistantships; the National Science Founda-

tion CHREC program for a graduate research assistantship; Intel Corporation for two internships;

NASA and SSAI for a graduate research assistantship.

As far as life outside of the lab is concerned, I’ve been happy to enjoy the friendship of wonderful

people throughout these years. That would include the Greek community at Virginia Tech that has

made me feel like home. Special thanks to my friends Nikolaos Artavanis, Manousos Valyrakis,

Ioannis Kokkinidis, and Takis Apostolellis with Anna Delinikola and little Alkaios! Also, a big

thank you to Engin Sengezer, Brian Jalaian, and so many more friends for all the good times in

vi

downtown Blacksburg and beyond. Thank you, last, to my Greek buddies Christos Papagiannopou-

los and Achilleas Mamalis who kept in touch all these years via our frequent Skype calls.

Finally, I would like to present my gratitude and love to my family back in Greece: my parents,

Anastasios and Maria, and my sister Efstathia with her family, Achilleas and little Maria. All,

for their never-ending support throughout my Ph.D. studies, and the former for investing in my

lengthy education journey and instilling in me the love for learning, as well. Together with my

Greek family, a last big thank you and my love to my very own family here, Armani Chien. Thank

you for your love, support, for being patient and understanding, for bringing more fun in my

everyday life, and most importantly for being my other half.

vii

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Research Questions . 5

1.3 Contributions . 7

1.4 Outline . 8

2 Background 9

2.1 Heterogeneous Architectures . 9

2.1.1 General-Purpose Graphics Processing Unit (GPGPU) 10

2.1.2 Intel Many Integrated Cores Architecture (MIC) 13

2.1.3 Field-Programmable Gate Array (FPGA) 15

2.2 Programming Languages for Heterogeneous Architectures 16

2.2.1 OpenCL . 17

2.2.2 Altera OpenCL (AOCL) . 19

2.2.3 Silicon OpenCL (SOpenCL) . 22

3 Related Work 26

3.1 On Performance . 27

3.1.1 Performance Evaluation and Benchmarking 27

3.1.2 Optimizing Performance: Software Approaches 35

3.1.3 Optimizing Performance: Hardware Approaches 39

3.2 On Programmability and Portability . 42

viii

3.2.1 Programmability . 43

3.2.2 Portability . 60

4 On the Performance of Heterogeneous Platforms 67

4.1 On the Performance of Architecture-Agnostic Dwarf-Based Applications 70

4.1.1 OpenDwarfs Benchmark Suite . 72

4.1.2 Experimental Setup . 75

4.1.3 Results . 79

4.2 On the Performance of Manually Optimized Dwarf-Based Applications: GEM, an
N-Body Dwarf . 109

4.2.1 Molecular Modeling via Electrostatic Surface Potential (ESP) 110

4.2.2 Evaluated Platforms . 111

4.2.3 Algorithm Mapping to Heterogeneous Platforms 113

4.2.4 Optimization . 115

4.2.5 Results and Discussion . 120

4.3 On the Performance of OpenCL as a Programming Method for FPGAs: a Prelimi-
nary Study with Altera OpenCL . 128

4.3.1 Experimental Setup . 130

4.3.2 FPGA Optimizations: Results and Insights 131

4.4 Enhancing Performance via Heterogeneous Architectures: an Architectural Ap-
proach . 135

4.4.1 Architectural Unification in the History of Computing 138

4.4.2 Methodology . 140

4.4.3 Results . 146

4.4.4 Discussion . 157

4.5 Conclusion . 160

5 On the Programmability and Portability of Heterogeneous Platforms 163

5.1 A High-Level Discussion on Programmability and Portability 165

5.2 On the Programmability and Portability: A Case-Study with GEM 168

ix

5.2.1 Measuring Code Complexity . 170

5.2.2 Experimental Setup . 172

5.2.3 Optimization Levels and Programmability 173

5.2.4 Performance Impact . 178

5.3 On Bridging the Performance, Programmability and Portability Gap of Heteroge-
neous Platforms . 180

5.3.1 GLAF Framework . 182

5.3.2 Capabilities . 188

5.3.3 Example Applications . 212

5.3.4 Evaluation: Fixed Target Architectures 216

5.3.5 Evaluation: Reconfigurable Target Architectures 223

5.3.6 Discussion . 230

5.4 A GLAF Case Study with NASA . 232

5.4.1 Background . 235

5.4.2 Extensions to GLAF . 237

5.4.3 Results . 240

5.5 Conclusion . 248

6 Summary and Future Work 251

6.1 Summary . 251

6.2 Future Work . 254

6.2.1 OpenDwarfs . 254

6.2.2 Telescoping Architectures . 256

6.2.3 GLAF . 258

Bibliography 263

x

List of Figures

1.1 High-level overview: Existing and proposed approaches to evaluating and enhanc-
ing performance, programmability, and portability of current and future heteroge-
neous platforms . 6

2.1 NVIDIA Kepler K20 block diagram . 12

2.2 Intel Xeon Phi block diagram . 14

2.3 Altera OpenCL execution flow . 21

2.4 FPGA memory organization . 23

4.1 Parallel OpenCL implementation of GEM . 80

4.2 GEM performance results . 82

4.3 Parallel OpenCL implementation of Needleman-Wunsch 86

4.4 NW performance results . 88

4.5 NW profiling on HD 7660D . 88

4.6 Parallel OpenCL implementation of SRAD . 91

4.7 SRAD performance results . 92

4.8 Parallel OpenCL implementation of BFS . 95

4.9 Example that shows load imbalance of BFS . 96

4.10 BFS performance results . 97

4.11 BFS cache performance comparison between HD 7970 and HD 7660D 98

4.12 Parallel OpenCL implementation of CRC and example 101

4.13 CRC look-up table semantics . 102

4.14 CRC performance results . 103

xi

4.15 Representation and parallel OpenCL implementation of CSR 106

4.16 CSR performance results . 107

4.17 Electrostatic potential interactions between a molecular surface point and atom
charges within the molecule . 112

4.18 Mapping of GEM algorithm . 116

4.19 Shuffling optimization . 120

4.20 Step by step optimizations . 122

4.21 Bittware S5-PCIe-HQ architectural diagram . 130

4.22 Optimized GEM kernel implementations . 133

4.23 Performance of Clusters on a Chip (CoC): Speed-up over single-GPU baseline for
all possible combinations (100) restricted by the maximum number of Base Units
(BUs), for three classes of synthetic benchmarks 149

4.24 Performance vs. area results . 151

4.25 Performance per area results . 152

5.1 Programmability example: Matrix multiplication 167

5.2 The “missing middle” in high-performance computing [119] 168

5.3 The progression and instantiation of each level of optimization on each architecture
with the number of Source Lines of Code (SLOC) and Cyclomatic Complexity
(CC) used in each implementation . 174

5.4 (a) Scalar/CUDA code (b) Vector intrinsics code for Xeon Phi (c) Vector intrinsics
code for Sandy Bridge CPU . 177

5.5 The percentage of best achieved performance achieved with each level of optimiza-
tion . 179

5.6 GLAF user interface: a GLAF step (code boxes are automatically filled through a
point-and-click interface) . 182

5.7 Examples of grid declaration in GLAF . 184

5.8 Internal representation objects for parallelism analysis back-end 187

5.9 Example (simplified) of grid object internal representation 187

5.10 Example of automatically generated C code . 189

5.11 Overview of the automatic code generation process 190

xii

5.12 Algorithm for automatic code generation . 191

5.13 GLAF OpenCL code generation . 192

5.14 Example GLAF program for explaining OpenCL code generation 193

5.15 GLAF OpenCL auto-generated code . 194

5.16 Parallelism back-end pseudocode (related internal objects used are described in
Figure 5.8) . 199

5.16 Parallelism back-end pseudocode (related internal objects used are described in
Figure 5.8) (cont.) . 200

5.16 Parallelism back-end pseudocode (related internal objects used are described in
Figure 5.8) (cont.) . 201

5.17 Auto-tuning options page . 204

5.18 Generated code for declaration and accessing different data layouts 204

5.19 High-level overview of the “write once - run anywhere” concept in GLAF 205

5.20 Initiation Interval (II) optimization . 208

5.21 Examples of data visualization methods in GLAF 212

5.22 Performance results for the example applications developed, auto-tuned by the
GLAF framework . 217

5.23 Results: Execution time and FPGA resource utilization (lower is better) 225

5.24 Performance results: Speed-up of GLAF-generated versions versus the original
serial implementation of Synoptic SARB . 243

5.25 Parallel scalability: Speed-up of fastest GLAF-generated version (GLAF-parallel
v3) with varying number of threads (T) versus GLAF serial implementation of
Synoptic SARB . 247

xiii

List of Tables

3.1 Applications and architecture-aware optimizations 37

4.1 Dwarf instantiations in OpenDwarfs . 73

4.2 OpenDwarfs benchmark test parameters/inputs 76

4.3 Configuration of the target fixed architectures . 78

4.4 FPGA implementations details . 78

4.5 Architectural parameters . 121

4.6 Achieved performance over theoretical peak . 128

4.7 Features of GEM kernel implementations . 133

4.8 Configuration of the target fixed architectures . 141

4.9 Defining Base Unit (BU) for chip area size . 141

4.10 OpenDwarfs benchmark test parameters/inputs 143

4.11 Execution time (in msec) of dwarf benchmarks 143

4.12 CoCs with FPGA: CE utilization and speed-up vs. corresponding CoC without
FPGA . 155

5.1 Architectural parameters . 173

5.2 Kernel implementations . 224

5.3 Subroutines implemented using GLAF . 241

5.4 Synoptic SARB implementations . 243

xiv

Chapter 1

Introduction

In this chapter we motivate our work, outline the important research questions we seek to address,

and present our contributions in the context of this dissertation.

1.1 Motivation

The past decade has seen a divergence from the traditional single-core computing paradigm. Single-

core CPUs gave their place to multi-core processors initially, and subsequently to massively par-

allel platforms of heterogeneous nature. Chip multi-processors by Intel, AMD, IBM and other

CPU vendors are an example of the former, whereas systems employing general-purpose graph-

ics processing units (GPGPUs) constitute a prime example of the latter. More recent examples

of heterogeneous systems that encompass varying types of cores include accelerators, like Intel

1

2

Xeon Phi of the Intel Many Integrated Cores (MIC) architecture, or even reconfigurable devices

(FPGAs) and digital signal processors (DSPs).

The aforementioned deluge of heterogeneous platforms has inevitably introduced a new set of

problems for the computing community, including – but not limited to – computer architects,

programmers, and compiler/tool/run-time systems writers. Computer architects, for example, need

a set of algorithms to use for iteratively designing, evaluating the efficacy of their designs, and

identifying the architectural innovations that ultimately benefit applications. Programmers, on the

other hand, face the problem of selecting a platform and language combination with which to build

their applications. Last, but not least, compiler and tool writers require specific use cases to guide

development and testing of back-end optimizations and tools of broad applicability.

The main challenges entailed in the context of the above landscape are tightly coupled with the

themes of performance, programmability and portability, or the three Ps of Heterogeneous Com-

puting [106]:

• Performance refers primarily to the execution time of a computer program. Faster execution

of a program is a generally accepted metric of success. However, throughput of produced

results can be more important in certain domains. Additionally, power-related considerations

constitute an important part of the issue and especially on the road to exascale. Performance

depends largely on the hardware itself and the underlying micro-architecture as designed

by chip architects, but performance efficiency (or the extent to which specific hardware is

efficiently utilized) is equally important. It mainly behooves the programmer, who needs

3

to possess deeper knowledge of the architectural details and appropriate optimizations, to

“unlock” the hardware’s full potential.

• Programmability is interrelated to the concept of performance (and performance efficiency)

and refers to the level of difficulty a programmer faces in his/her attempts to exploit the hard-

ware’s theoretical peak performance. As such, any discussion on programmability entails

intrinsic trade-offs between programming effort and the resulting performance. Programma-

bility is a multi-faceted problem that includes issues related to programming languages, com-

pilers and tools, as well as the hardware itself, as different architectures feature varying levels

of difficulty in achieving sufficient performance efficiency.

• Portability is a characteristic of code and can be distinguished in two types: functional

portability and performance portability. The former indicates that a certain computer pro-

gram written in a certain language can be compiled for and run on different platforms and

can generate identical output given the same input. This does not address any notion of

performance. The latter, performance portability, on the other hand, implies equally fast

performance across platforms (given the relative “computational power” of the platforms at

hand).

All three P’s [106] described above interact with each other in intricate ways and are character-

ized by trade-offs that interested groups (like the ones we mentioned at the very start, i.e., com-

puter architects, programmers, compiler/tool/run-time systems writers) need to take into account

in achieving their – also potentially conflicting – goals.

4

By design, certain heterogeneous platforms have a higher theoretical peak performance than oth-

ers. This theoretical performance, however, is not only practically impossible, but it also depends

on multiple factors, including the programmer’s skills (which in turn depends on the programming

language used), programming language abstractions, and the robustness of compilers and associ-

ated tools. All the above considered, results may also vary depending on the type of application

at hand; certain types of applications that expose certain types of parallelism may be better on one

platform over another, or they may be easier to express/implement and optimize in one language

over another. In addition, certain parallelization opportunities or optimizations may be achieved

through hardware or software (run-time systems, compilers, etc.) Benchmark suites have been

traditionally used to perform evaluation studies and to compare computer systems. Over the past

decade, benchmark suites have also been used to guide and even drive innovation in computer

architecture. However, there has not been a systematic way or reasoning behind the choice of

certain applications for a benchmark suite. The high-performance computing (HPC) community

has merely focused on covering a large number of application areas (e.g., imaging, sorting, matrix

operations) or some broad hardware-related requirements (e.g., floating point arithmetic, integer

arithmetic). Moreover, the majority of benchmark suites are written in a specific language tied to a

specific architecture, and potentially with architecture-specific optimizations, thus precluding fair

cross-architecture evaluations and comparisons.

In order to address the problems of performance, programmability and portability in light of the

above and in a systematic and generalizable way, our multi-faceted study exploits benchmarks that

capture the computation and communication patterns (i.e., dwarfs or motifs) of present and future

5

applications. Specifically, we propose, implement changes to, and use OpenDwarfs, a benchmark

suite based on the concept of the Berkeley dwarfs [28], i.e., cross-domain recurring patterns of

computation and communication.

1.2 Research Questions

In short, the three key research questions we identify and address in this work are the following:

(1) What are the performance implications of architectural features found in modern heteroge-

neous architectures, and what is an appropriate means for their systematic identification? How

can we extend such a methodology to determine the future of heterogeneous architectures?

(2) What are the trade-offs between performance, programmability, and portability for heteroge-

neous computing, given the complex ecosystem of languages, compilers, tools, and optimiza-

tion methods?

(3) How and to what degree can we enhance performance and programmability and ensure func-

tional portability and a certain level of performance portability via tools and frameworks?

Figure 1.1 depicts the scope of the above questions and the utility of our work in the context of the

hardware/software stack. We discuss the details of prior work and differences to our approach in

more detail in the Related Work chapter (Chapter 3).

6

Benchmark		
applica.ons	
(arbitrarily	
chosen,	non-
portable,	
language/

architecture-
specific)	

current	
architectures	

future	
architectures	

Execution
Simulation: Slow, detail
over breadth of design

space

?
Enhancing the three P’s tied on a subset of
languages, architectures, lack of generality

Enhancing a subset of the three 3 P’s tied
on a subset of languages, architectures,

lack of generality

Domain-specific	
languages	

Problem-solving	
environments	

Auto-tuning	
frameworks	

Op.mized	
libraries	

Source-to-source	
translators	

Programming	
languages	

Enhancing	Performance,	
Programmability,	Portability		

Evalua;ng	Performance,	Programmability,	Portability	
		

(a) Existing approaches for the three P’s

OpenDwarfs	
Benchmark	

suite		
(computa)on	
pa,erns,	
portable,	

architecture-
agnos)c)	current	

architectures	
future	

architectures	

Execution

Telescoping Architectures:
Speed, breadth of design

space evaluation

?

GLAF	
programming	
framework	

Enhancing the three P’s in a holistic manner
across the spectrum of modern architectures,

domain scientists as a primary intended
audience

Evaluating the three P’s across the
spectrum of modern architectures,

generality of applicability of insights via
computation patterns

Graphical User Interface
Auto-parallelization

Auto code generation

Fortran	 C	 OpenCL	

Paralleliza)on/Op)miza)ons	

Any application (or dwarf)

(b) Proposed approaches for the three P’s

Figure 1.1: High-level overview: Existing and proposed approaches to evaluating and enhancing
performance, programmability, and portability of current and future heterogeneous platforms

7

1.3 Contributions

This dissertation seeks to shed light on the conflicting issues of performance, programmability,

and portability (functional and performance) in the context of an ever-evolving heterogeneous

computing landscape. The overarching contributions of this PhD dissertation are the following:

• We present a multi-targeted performance evaluation on a subset of uniformly optimized

OpenCL dwarfs across a diverse set of parallel platforms [176, 175] (Section 4.1). Subse-

quently, we characterize performance of gradually optimized implementations of an n-body

dwarf across the programming languages and platforms spectrum [180, 177] (Sections 4.2

and 4.3) and use OpenDwarfs as a means to identify trends towards future heterogeneous

architectures [174] (Section 4.4).

• We present a study on programmability and the trade-offs between performance, programma-

bility, and portability in a multi-dimensional study that includes multiple optimization levels,

programming languages and techniques, and target architectures to include CPUs, GPUs, In-

tel MIC [180] (Section 5.2).

• We attempt to enhance performance, programmability, and portability by proposing the in-

troduction of grid-based data structures and presenting a prototype implementation of a

framework, called GLAF, that seeks to address the three P’s for CPUs, Intel MIC, GPUs,

and FPGAs [178, 179] (Section 5.3), in a holistic approach by encompassing a novel vi-

sual programming environment and auto-parallelizing, auto-tuning framework. In addition

8

to dwarf-based benchmarks, we use GLAF to develop and evaluate a large-scale satellite

imaging application by NASA (Section 5.4).

1.4 Outline

The rest of the dissertation is organized as follows:

Chapter 2 discusses relevant background information and Chapter 3 presents related work. Chap-

ters 4 and 5 contain the core of our research contributions, as discussed above. Specifically, in

Chapter 4 we explore issues related to performance from various standpoints by using OpenDwarfs

and discuss how insights drawn can benefit different interest groups. We examine performance ob-

tained by applying architecture-aware optimizations in the context of a specific dwarf (n-body)

across current heterogeneous platforms and programming languages. We then go beyond existing

architectures and propose a dwarf-based methodology for evaluating future deeply heterogeneous

architectures. Chapter 5 extends Chapter 4 by exploring the dimension of programmability and

the entailed trade-offs in the context of an n-body dwarf, as well as portability. In order to narrow

the identified gaps between performance, programmability and portability, we set forth to address

the issue of enhancing programmability and portability by introducing a grid-based programming

abstraction in the context of frameworks like GLAF, our relevant research prototype. Finally,

Chapter 6 summarizes this dissertation and proposes related future research work.

Chapter 2

Background

This work seeks to address the issues of performance, programmability and portability in the con-

text of heterogeneous architectures. In this chapter we provide background information on GPUs,

the Intel Xeon Phi co-processor and FPGAs, key representatives of heterogeneous architectures.

Also, we introduce OpenCL, Altera OpenCL and SOpenCL, i.e., major programming languages

and tools at the disposal of programmers of such architectures that we will encounter throughout

this work.

2.1 Heterogeneous Architectures

In this section we present an architectural overview of heterogeneous architectures that we use

throughout this dissertation, namely the general-purpose graphics processing unit (GPGPU), the

Intel Many Integrated Cores architecture (MIC), and the field-programmable gate array (FPGA).

9

10

2.1.1 General-Purpose Graphics Processing Unit (GPGPU)

Graphics Processing Units (GPUs) have been traditionally used for graphics rendering. With the

advent of programmable shaders, a GPU programmer could recast certain problems in terms of

graphics primitives. This process, using graphics-oriented APIs (OpenGL, DirectX), was low-level

and counter-intuitive. The GPU architectures have since evolved to support general-purpose com-

putation using higher-level programming languages, such as Brook [49], originally, and CUDA

and OpenCL [19], subsequently.

A GPU is in fact a stream processor. Each of the two major GPU manufacturers employs different

terminology for the building block of a GPU: AMD uses the term compute unit, while NVIDIA

dubs it streaming multiprocessor. Both are effectively wide SIMD processors. The GPU further

differentiates itself from the CPU via its memory design, which consists of a hierarchy of manually

managed memories along with relaxed coherence semantics. The most abundant type of memory

is global memory whose bandwidth and latency are both high. Moreover, GPUs contain a cache

hierarchy, where the lower-level cache usually functions as software-managed scratch space. The

way such caches are divided among compute units/streaming multiprocessors is highly dependent

on the GPU architecture family.

NVIDIA, AMD, and Intel are the main vendors manufacturing GPGPUs. The former two provide

both discrete and integrated GPU variants targeting the computer gaming community, as well as

the HPC segment, while Intel mainly targets the laptop market with its integrated GPU line. Dis-

crete GPUs come in the form of PCIe cards and data transfers between the GPU and the host CPU

11

are required due to memory spaces’ physical separation. Integrated GPUs (as part of Acceler-

ated Processing Units (APUs)) are physically located on the same die with the CPU cores, hence

obviating the need of (costly) PCIe communication.

All three vendors support programming their GPUs using OpenCL. Due to its extended use in

our work, we provide more details for OpenCL in Section 2.2.1. NVIDIA GPUs can also be

programmed using CUDA, which bears many similarities to OpenCL. CUDA is NVIDIA’s flag-

ship programming model for the GPU. It is a C-like parallel language with support for single-

instruction, multiple-thread (SIMT) processing. A CUDA program comprises a host part executing

on the CPU and one (or more) kernel(s) that are executed on the GPU. The level of parallelization

depends on how the programmer partitions computation in grids, thread blocks, and threads. At

the highest level, a kernel consists of a number of blocks organized into grids, wherein each block

is further composed of threads.

Throughout our work, we make use of GPUs from both NVIDIA and AMD that span both cate-

gories mentioned above (i.e., discrete, integrated). To illustrate the basic GPU features presented

above, we provide further discussion for NVIDIA K20c, which belongs to the Kepler microar-

chitecture family. K20c is a representative GPU used in the HPC segment (many architectural

concepts from NVIDIA GPUs are found in AMD ones, and vice versa). We use this specific GPU

extensively in our evaluations in Sections 4.2 and 5.2.

Figure 2.1 provides an architectural block diagram of the NVIDIA Kepler K20 discrete GPU.

K20 contains a number of next-generation streaming multiprocessors (SMXs), which effectively

serve as “wide SIMD” processors, ranging in width from 32 to 192. Each SMX includes 64KB

12

GigaThread	 Engine	

SMX	

SMX	

SMX	 SMX	 SMX	 SMX	 SMX	 SMX	

SMX	 SMX	 SMX	 SMX	 SMX	

L2	 Cache	

PCIe	 Host	 Interface	

M
em

or
y	

Co
nt
ro
lle
r	 M

em
ory	

Controller	
M
em

ory	
Controller	

M
em

or
y	

Co
nt
ro
lle
r	

M
em

or
y	

Co
nt
ro
lle
r	

Chip boundary

To
 G

D
D

R
5

m
em

or
y

To
 G

D
D

R
5

m
em

or
y

To
 G

D
D

R
5

m
em

or
y

To G
D

D
R

5 m
em

ory
To G

D
D

R
5 m

em
ory

SMX: Streaming Multiprocessor

Figure 2.1: NVIDIA Kepler K20 block diagram

of configurable L1 cache that can also be used as software-managed scratch space (i.e., shared

memory). Each block’s threads are executed in parallel on a single SMX in groups of 32, called

warps. In Kepler, four warp schedulers per SMX orchestrate the scheduling of warps for execution

on available execution units. Having a large number of blocks (and hence warps) allows the high

latency to global memory to be hidden, as the scheduler brings in another available warp while the

other stalls waiting for data from global memory. For SIMT operation, if all the threads of a warp

execute the same instruction, then GPU resources are fully utilized. When threads do not execute

the same instruction at any given moment (e.g., because of data-dependent conditional branches),

execution is serialized, thus adversely impacting performance.

13

2.1.2 Intel Many Integrated Cores Architecture (MIC)

Intel Xeon Phi (codenamed Knight’s Corner) is the first commercially available product in Intel’s

MIC co-processor line. It integrates the low-latency of multi-core CPUs and higher-latency/higher-

throughput of vector-like computing (a la GPU) for co-processing.

Figure 2.2 shows an architectural diagram of Intel Xeon Phi, which is realized as a PCIe card.

Whereas a traditional Intel Xeon contains 2, 4, or 8 cores clocked at a high frequency (e.g.,

3.0 GHz), Intel Xeon Phi contains an order of magnitude more processors (i.e., 61), where each

processor features four-way multi-threading while running at a pedestrian 1.09 GHz, for a total

of 244 hardware threads. Although each of the lower-clocked CPU-based cores of Xeon Phi is

based on an older Pentium core design, each core comes with enhancements that differentiate it

from the traditional Xeon. In addition to a 64-bit architecture, it features a dual-issue, in-order

execution pipeline, where a 512-bit-wide vector and a scalar unit can accommodate corresponding

instructions simultaneously.

The memory hierarchy consists of 32KB of 8-way L1 instruction and data caches and a 512KB

unified L2 cache per core for a total of 32MB of fully coherent L2 cache per card as well as 8GB

GDDR5 memory.

For communication, a specialized version of the Intel ring bus interconnects the Xeon Phi cores

together. For communication outside of Xeon Phi, each Xeon Phi card can communicate with the

host CPU using TCP/IP over PCIe. For details on the MIC architecture, see [74].

14

Core	

L2	
Cache	

Core	

L2	
Cache	

Core	

L2	
Cache	

Core	

L2	
Cache	

Core	

L2	
Cache	

Core	

L2	
Cache	

Core	

L2	
Cache	

Core	

L2	
Cache	

M
EM

O
RY

	 	 I
/O

	 M
EM

O
RY	 	 I/O

	

GDDR5	
Memory	
Controller	

GDDR5	
Memory	
Controller	

PCIe	 I/O	
Logic	

PCIe	 I/O	

. . .

. . .

Bidirectional Ring Bus

Figure 2.2: Intel Xeon Phi block diagram

Relative to programmability, Xeon Phi targets the portability and performance of both legacy code

and new code by adopting a parallel programming paradigm that is compatible with the x86 in-

struction set architecture (ISA). Using C/C++ with OpenMP or Pthreads is a typical way of pro-

gramming Xeon Phi, while other methods using proprietary software like Intel Cilk [241] or Thread

Building Blocks (TBB) [231] can be used. Xeon Phi runs a minimal operating system, which can

be used to treat the card itself as a distinct computer in its own right. Xeon Phi’s uOS is based

on the Linux kernel with BusyBox and other basic Linux services (e.g., services required to com-

municate with the host). The above allows native execution on the co-processor, in addition to an

offload computational model that is similar to that of a GPU. Specifically, the parallel part of the

code is offloaded to the co-processor by use of simple compiler directives.

15

2.1.3 Field-Programmable Gate Array (FPGA)

Compared to the fixed hardware of the CPU and GPU architectures, FPGAs (Field-Programmable

Gate Arrays) are configured post-fabrication. FPGAs are configurable integrated circuits (ICs) that

include large numbers of adaptive logic modules (ALMs), digital signal processing (DSP) blocks,

as well as memory blocks. An FPGA board may include PCIe, Ethernet, or other interfaces, mem-

ory controller interfaces, as well as an integrated CPU to form a system on chip (SoC) solution.

“Programming” the FPGA, entails setting the configuration bits that specify the functionality of

the configurable high-density arrays of blocks mentioned above and the programmable routing

channels (reconfigurable interconnects) between them.

FPGAs offer the highest degree of flexibility in tailoring the architecture to match the application,

since they essentially emulate the functionality of an ASIC (Application Specific Integrated Cir-

cuit). Moreover, they avoid the overheads of the traditional ISA-based von Neumann architecture

followed by CPUs and GPUs and can trade-off computing resources and performance by select-

ing the appropriate level of parallelism to implement an algorithm. Since reconfigurable logic is

more efficient in implementing specific applications than multicore CPUs, it enjoys higher power

efficiency than any general-purpose computing substrate.

The main drawbacks of FPGAs are two-fold. First, they are traditionally programmed using

Hardware Description Languages (VHDL or Verilog), a time-consuming and labor-intensive task,

which requires deep knowledge of low-level hardware details. In this work we abstain from using

VHDL or Verilog. Instead, we turn to using SOpenCL [225] and Altera OpenCL [25]. The former

16

constitutes one of the first attempts to use OpenCL as a means to describe hardware and targets

Xilinx FPGAs. The latter is the first commercial attempt, by Altera, to use OpenCL for program-

ming Altera FPGAs. Using these higher-level languages we alleviate the burden of implementing

accelerators in FPGAs by utilizing the same (or similar) OpenCL code-base used for CPU and

GPU programming. Second, the achievable clock frequency in reconfigurable devices is lower (by

an order of magnitude) compared to high-performance processors. In fact, most FPGA designs

operate in a clock frequency less than 200 MHz, despite aggressive technology scaling. As we see

in next chapters, this does not – by itself – imply worse performance.

FPGAs have many applications in diverse fields. Examples include aerospace and defense, auto-

motive industry, audio/video/image processing and wireless communications. The cost and per-

formance of FPGAs make them a potentially cost-efficient alternative over ASICs for certain ap-

plications. FPGAs have also started being used in the context of large-scale datacenter services

(specifically Microsoft Bing search-engine) [237]. With Altera’s acquisition by Intel, it is expected

that FPGA fabric will make its way onto the CPU die with the intent to act as a reconfigurable ac-

celerator for specific compute- or data-intensive tasks.

2.2 Programming Languages for Heterogeneous Architectures

In this section we discuss three main means of parallel programming of heterogeneous systems that

we extensively use in this dissertation. Specifically, we introduce OpenCL and Altera OpenCL –

its FPGA-specific instantiation. Last, we present Silicon OpenCL (SOpenCL), a means of pro-

17

gramming FPGAs using OpenCL that predates commercial FPGA-specific implementations of

OpenCL.

2.2.1 OpenCL

OpenCL provides a parallel programming framework for a variety of devices, ranging from con-

ventional Chip Multiprocessors (CMPs) to combinations of heterogeneous cores such as CMPs,

GPUs, and FPGAs. OpenCL (Open Compute Language) represents a coordinated standardization

effort to allow cross-platform (e.g., CPU, GPU, MIC, FPGA) programming in support of a truly

unified heterogeneous ecosystem. Key hardware vendors spanning the CPU, GPU, FPGA domains

provide their OpenCL implementation, allowing code written for one platform to be (functionally)

portable to another. OpenCL is based on a subset of ISO C99 with appropriate extensions to

accommodate expressing parallelism, data transfers between the host/device, error-management,

etc.

Its platform model comprises a host processor and a number of compute devices. Each device

consists of a number of compute units, which are subsequently subdivided into a number of pro-

cessing elements. An OpenCL application is organized as a host program and a number of kernel

functions. The host part executes on the host processor and submits commands that refer to either

the execution of a kernel function or the manipulation of memory objects. Kernel functions con-

tain the computational part of an application and are executed on the compute devices. The work

18

that corresponds to a single invocation of a kernel is called a work-item. Multiple work-items are

organized in a work-group.

OpenCL allows for geometrical partitioning of the grid of independent computations to an N-

dimensional space of work-groups, with each work-group being subsequently partitioned to an

N-dimensional space of work-items, where 1 ≤ N ≤ 3. Once a command that refers to the

execution of a kernel function is submitted, the host part of the application defines an abstract

index space, and each work-item executes for a single point in the index space. A work-item is

identified by a tuple of IDs, defining its position within the work-group, as well as the position of

the work-group within the computation grid. Based on these IDs, a work-item is able to access

different data elements (SIMD style) or follow a different path of execution.

Data transfers between host and device occur via the PCIe interface in the cases of discrete GPUs

and other types of co-processors like Intel Xeon Phi. In such cases, the large gap between the

(high) computation capability of the device and the (comparatively low) PCIe bandwidth may in-

cur significant overall performance deterioration. The problem is aggravated when an algorithmic

pattern demands multiple kernel launches between costly host-to-device and device-to-host data

transfers. Daga et al. [79] re-visit Amdahl’s law to account for the parallel overhead incurred by

data transfers in accelerators like discrete or fused GPUs. Similar behavior, with respect to re-

stricting available parallelism is observed in CPUs and APUs, too, when no special considerations

are taken during OpenCL memory buffer creation and manipulation. In CPUs (CPU-as-device

scenario) with appropriate buffer allocation and transfers the data transfer part can be practically

eliminated. In APUs, due to the tight coupling of the CPU and GPU core on the same die, and

19

depending on the exact architecture, more data transfer options are available for faster data trans-

fers between the CPU and GPU side. Lee et al. [184] and Spafford et al. [262] have studied the

tradeoffs of fused memory hierarchies.

2.2.2 Altera OpenCL (AOCL)

Altera was the first FPGA vendor to support programming its FPGAs using OpenCL. Specifically,

Altera provides a compiler (AOC) and a set of tools (including a profiler) that a programmer can

use to build and run OpenCL applications on Altera FPGAs. AOCL supports the embedded profile

of version 1.0 of the OpenCL specification, however it extends it with support for AOCL channels

and features of OpenCL 2.0 (such as shared virtual memory (SVM) and OpenCL pipes).

The Altera OpenCL toolset supports a software-like programming workflow. Specifically, Altera

recommends OpenCL development in stages, rather than single-step development and compilation.

The main reason is that full compilation is in the order of hours (depending on the complexity of the

OpenCL kernels). Thus, a simple error in the implemented algorithm would require re-compilation

of the code if found after the fact. On the other hand, multistep AOCL design flow splits the design

process into four discrete steps, highlighting algorithmic design rather than low-level hardware

implementation details:

(a) Intermediate compilation: Pertains to a first-order compilation that does not generate the hard-

ware configuration file (.aocx). Rather, it generates the appropriate Verilog files that describe the

input OpenCL kernel(s) in Hardware Design Language (HDL) and provides an original estimation

20

about the hardware resources that will be used (based on the target board that the compilation takes

place for). This step is fast (in the order of minutes), identifies any syntax errors and generates an

Altera Offline Compiler Object file (.aoco) that can be used in step (b), that is emulation. Along

with the above object file, it generates other intermediate files with useful information, among

which an optimization report. Information in this file can be used to further optimize the OpenCL

kernel code.

(b) Emulation: In this step the user can emulate the kernels that were compiled in step (a) on an x86

host and detect any functional errors in the code. Symbolic debugging (for object files compiled

with the appropriate flag) is possible and facilitates locating errors in the implemented algorithm.

(c) Profiling: After ensuring syntactic and functional correctness of the OpenCL kernel code, the

user can re-compile the kernel code with a profiling flag. This flag instructs AOC to instrument

performance counters in the generated hardware, i.e., the Altera Offline Compiler Executable file

(.aocx). This compilation step is in the order of hours. On execution, information from perfor-

mance counters is collected in a utility file (.mon) and can be used within the provided profiler to

identify performance bottlenecks.

(d) Full deployment: The above steps (a)-(c) are iterated over until satisfactory kernel performance

is obtained. Once this is done, the user can procede to the last step. In this step AOC performs full

compilation to generate the final .aocx file that will be used.

The resulting file (.aocx) of the above workflow corresponds to the OpenCL kernel file (.cl) and

is executed on the FPGA. Once we obtain the .aocx file, OpenCL on Altera FPGAs follows the

21

same execution flow as its GPU counterparts (Section 2.2.1), the only difference being that the

device is now the FPGA instead of the GPU. The host program that runs on the x86 host (or an

on-board CPU in system-on-chip (SoC) solutions) is compiled using gcc/g++ and linking with the

appropriate Altera libraries. In the general case, execution starts on the host, where appropriate

initializations, memory allocation on the FPGA device and data transfers take place, and then

kernel execution is invoked on the FPGA. Once computation is over, output data is transferred

back to the host. The above is illustrated in Figure 2.3.

Host code
(C & .h files)

Device code
(OpenCL

Kernel file)

OpenCL program
Host code + Device code

Altera SDK
for OpenCL

Standard C
compiler

FPGA binary:
ocl_kernels.aocx

x86 executable:
<exec_name>

PCI-e

Figure 2.3: Altera OpenCL execution flow

Kernel execution on the hardware level on the FPGA fundamentally differs from that on GPUs.

Specifically, the latter follows a SIMT (Single Instruction Multiple Threads) paradigm, where

22

parallel threads execute the same instruction on different input data concurrently. In FPGAs par-

allelism is mainly exposed as pipeline parallelism and is achieved via deeply pipelined hardware

circuitry; that is generated hardware circuitry handles different stages of the kernel for different

input data in a pipelined fashion. Depending on available hardware resources each pipeline can be

replicated in order to achieve even higher degrees of parallelism. Due largely to the fundamental

differences discussed above and the fact that “programming” FPGAs effectively implies config-

uring re-configurable hardware (rather than utilizing fixed hardware), optimization strategies for

FPGAs are quite different than the GPU ones.

2.2.3 Silicon OpenCL (SOpenCL)

SOpenCL [225] is the first academic attempt to automatically generate hardware accelerators using

OpenCL, thus dramatically minimizing development time and increasing productivity. SOpenCL

enables quick exploration of different architectural scenarios and evaluation of the quality of the

design in terms of computational bandwidth, clock frequency, and size. The final output of this pro-

cedure is synthesizable Verilog, functionally equivalent to the original OpenCL kernels, which can

in turn be used to configure an FPGA. Despite the above merits of SOpenCL, and the advantages

of high-level synthesis (HLS) tools in general, a well-thought manual hardware implementation

in a hardware design language by an experienced designer is expected to be better-performing.

The large span of potential solutions, stemming from the customization capabilities of the FPGA

fabric, further exacerbates the job of a HLS tool.

23

Data
Path

RGU0

RGU1

SOUT Out
BRAM

DDR
Mem.
Cntrl.

Virtex 6 FPGA

In0

In1 In1
BRAM

In0
BRAM

Out

SOpenCL accelerator

DDR3 PCIe

LX760 board

Figure 2.4: FPGA memory organization

One of the design choices lies, for example, in the number of accelerators that may fit in a given

FPGA. Figure 2.4 shows a single-accelerator SOpenCL design in a Xilinx LX760 board with a Vir-

tex 6 FPGA. In a SOpenCL design the program data inputs are initially transferred to the DDR3

board-level memory from where they are transferred to the on-chip FPGA BRAMs. Likewise, all

outputs are transferred from the BRAMs back to the DDR3 memory. For a single FPGA acceler-

ator, input data are stored sequentially in BRAMs without any special partitioning across multiple

BRAM banks. This is typically the biggest obstacle for achieving high bandwidth and, hence, high

performance. For multiple accelerators, manual partitioning of the data across multiple BRAMs is

required in order to exploit the increased bandwidth requirements.

SOpenCL includes a front-end that is a source-to-source compiler that adjusts the parallelism gran-

ularity of an OpenCL kernel to better match the hardware capabilities of the FPGA. OpenCL kernel

code specifies computation at a work-item granularity. A straightforward approach would map a

work-item to an invocation of the hardware accelerator. This approach is suboptimal for FPGAs

24

which incur heavy overhead to initiate thousands of work-items of fine granularity. SOpenCL, in-

stead, applies source-to-source transformations that collectively aim to coarsen the granularity of

a kernel function at a work-group level. The main step in this series of transformations is logical

thread serialization. Work-items inside a work-group can be executed in any sequence, provided

that no synchronization operation is present inside a kernel function. Based on this observation, the

execution of work-items is serialized by enclosing the instructions in the body of a kernel function

into a triple nested loop, given that the maximum number of dimensions in the abstract index space

within a work-group is three. Each loop nest enumerates the work-items in the corresponding di-

mension, thus serializing their execution. The output of this stage is a semantically equivalent C

code at the work-group granularity.

SOpenCL’s back-end flow is based on the LLVM compiler infrastructure [183] and generates the

synthesizable Verilog for synthesizing the final hardware modules of the accelerator. The function-

ality of the back-end supports bitwidth optimization, predication, and swing modulo scheduling

(SMS) [197] as separate LLVM compilation passes: (a) Bitwidth optimization is used to mini-

mize the width of functional units and wiring connecting them, to the maximum expected width

of operands at each level of the circuit, based on the expected range of input data and the type of

operations performed on input and intermediate data. Experimental evaluation on several integer

benchmarks shows significant area and performance improvement due to bitwidth optimizations.

(b) Predication converts control dependencies to data dependences in the inner loop, transforming

its body to a single basic block. This is a prerequisite in order to apply modulo scheduling in the

subsequent step. (c) Swing modulo scheduling is used to generate a schedule for the inner loops.

25

The scheduler identifies an iterative pattern of instructions and their assignment to functional units

(FUs), so that each iteration can be initiated before the previous ones terminate. SMS creates soft-

ware pipelines under the criterion of minimizing the Initiation Interval (II), which is the constant

interval between launches of successive work-items. Lower values of Initiation Interval correspond

to higher throughput since more work-items are initiated and, therefore, more results are produced

per cycle. That makes the Initiation Interval the main factor affecting computational bandwidth in

modulo scheduled loop code.

Chapter 3

Related Work

Heterogeneous computing has seen important advances and increasing adoption since the mid-

2000s, and significant work has been done that spans the areas of performance, programmability

and portability – the three P’s we seek to address in this dissertation. To better understand the

research themes in the above areas, and put our work in perspective, we conduct a thorough survey

of related research published in related venues. 1

First, we discuss work that adress various aspects of performance (Section 3.1), and then pro-

grammability and portability (Section 3.2). As the above aspects are deeply interrelated (per our

motivation discussion in Chapter 1), one should keep in mind that the works presented in one cat-

egory may have direct implications in another, too. For example, auto-tuning research can have

1PPoPP, HPDC, PACT, ICS, PoPL, CGO, ASPLOS, IPDPS, OOPSLA (SPLASH), PLDI, SC, CCGrid, IISWC,
ISC, CF, Cluster, ICSE, ICSM

26

27

positive impact in both performance and programmability and may be presented in the most ap-

propriate category below.

3.1 On Performance

In this section we discuss prior research works that focus on the aspect of performance. First, we

present related work on performance evaluation and benchmarking, and then we highlight prior

work on enhancing performance via software or hardware approaches.

3.1.1 Performance Evaluation and Benchmarking

Heterogeneous computing has emerged to address limitations in transistor scaling, prohibitive heat

dissipation levels, and power/energy related constraints. The need to circumvent the above road-

blocks ultimately lies on the ongoing demand for faster devices, i.e., increased performance. In

order to address the issue of performance from various perspectives (e.g., programmer’s, soft-

ware’s, tools’, and hardware’s), HPC engineering and research have highlighted the importance of

developing benchmark suites. In [141] Hoefler and Belli outline twelve ways to improve measuring

and reporting parallel computing performance results.

Benchmarks have traditionally followed a design concept in which different applications stress

different subsystems of a computing device (such as memory, network, processor) or different ca-

pabilities within a subsystem (e.g., integer or floating point arithmetic in the CPU). While useful

28

for the purpose they were created, traditional benchmark suites (e.g., EEMBC [101], SPEC [263],

PARSEC [42], ALPBench [192]) are of limited utility in the context of heterogeneous computing

for various reasons. Specifically, such suites are written in languages that target CPU execution

and cannot execute on heterogeneous architectures. Also, they tend to focus on concrete imple-

mentations of specific applications, which is inherently restrictive in that it goes against the very

concept of generality required to capture trends in parallel computing.

The emergence of OpenCL as a common programming model for heterogeneous architectures fa-

cilitated a solution towards the first problem mentioned above. To address the latter shortcoming

of traditional benchmark suites, a different approach has been proposed, which entails benchmarks

that capture high-level computation and communication patterns in an attempt to stress heteroge-

neous devices in a holistic way. In [256] the authors emphasize the need for benchmarks to be

related to scientific paradigms, where a paradigm defines what the important problems in a scien-

tific domain are and what the set of accepted solutions is. This notion of paradigm parallels that

of the computational dwarf. A dwarf (or motif) is an algorithmic method that encapsulates a spe-

cific computation and communication pattern. The seven original dwarfs, attributed to P. Colella’s

unpublished work, became known as Berkeley’s dwarfs, after Asanovic et al. [28] formalized the

dwarf concept and complemented the original set of dwarfs with six more. Based in part on the

dwarfs, Keutzer et al. later attempted to define a pattern language for parallel programming [166].

Various new benchmark suites have emerged in an attempt to target heterogeneous architectures.

Notable ones include Rodinia [63], OpenDwarfs [107], SHOC [84], Parboil [244] and SPEC AC-

CEL [161]. Of these benchmark suites, only two follow the dwarfs classification. Rodinia [63],

29

originally released in 2010, was built around the concept of dwarfs and included applications writ-

ten in CUDA (to target GPU architectures) and OpenMP (for shared-memory multi-processors).

Starting in 2013, Rodinia began translating their benchmarks to OpenCL. OpenDwarfs [107]

(originally known as “OpenCL and the 13 Dwarfs” 2) was first released in 2012 and was the first

benchmark suite to provide a thorough collection of dwarf-based benchmarks written in OpenCL,

which enabled seamless cross-platform support. Part of the benchmarks were developed in-house,

while others were derived from corresponding CUDA implementations in Rodinia. The newer

version of OpenDwarfs extends support to Altera FPGAs via Altera OpenCL.

The remaining benchmark suites do not follow the dwarfs classification. SHOC [84] (Scalable

Heterogeneous Computing) benchmark suite does not follow the dwarfs classification. Its applica-

tions, written in OpenCL and CUDA, are divided into two categories: a) stability tests that stress

OpenCL devices by running computationally demanding kernels, and b) performance tests that

are divided into three levels that span from testing low level device characteristics to high-level

device performance via real application kernels. Parboil [244], developed by the IMPACT Re-

search Group at University of Illinois at Urbana-Champaign in 2008, originally included CUDA

implementations of benchmarks derived from various sources. Later [269], it evolved to include

OpenCL implementations (including architecture-aware optimized versions). While Parboil in-

cludes benchmarks that span application domains, it is not explicitly organized in dwarf categories.

However, at the core of its design philosophy lies the concept of providing largely architecture-

agnostic implementations in addition to GPU-optimized ones. SPEC ACCEL [161], released in

2OpenDwarfs has been a collaborative effort within the Synergy Lab at Virginia Tech

30

2014 by the SPEC High Performance Group (HPG), contains two application suites in OpenCL

(19 benchmarks) and OpenACC (15 benchmarks). Both SPEC ACCEL suites are largely derived

from Parboil and Rodinia, as well as NAS Parallel Benchmarks [218, 33] (originally in MPI and

OpenMP).

According to a similar approach, benchmarks seek to capture the behavior of real-world, full-scale

applications, assuming the role of a proxy in terms of application characteristics (proxy-apps). No-

tably, they do so by obfuscating any details unecessary in terms of the algorithm. Benchmarks can

range from larger applications to minimal ones (or mini-apps). Department of Energy (DOE) labs

(e.g., Livermore, Sandia, and Los Alamos National Labs) maintain repositories of proxy applica-

tions of interest, for example Lawrence Livermore National Lab (LLNL) [2], Los Alamos National

Lab (LANL) [11] and Sandia National Lab [12].

While benchmark suites, contain collections of applications, as discussed above, there is the possi-

bility of certain levels of redundancy. In [67] the authors explore the “characteristics of workloads

used in high performance and technical computing” and seek to quantify the diversity of such per-

formance characteristics and compare with commercial applications. They explore the memory

access patterns of the benchmarks under consideration (like NAS Parallel Benchmarks) and ana-

lyze their instruction decomposition. A similar approach is followed in [130], where the authors

present a framework to automatically recognize performance idioms in scientific applications. Via

a detailed study, they conclude that the proposed idioms (similar in concept to the dwarfs idea) can

fully cover 100% of six NAS Parallel Benchmark benchmarks and that performance approxima-

tions of the full benchmarks using the idioms can be possible. Computation and communication

31

patterns or idioms are one way of identifying diversity (or lack thereof) in benchmarks. Other

studies [88] use the concept of codelets, i.e., small fragments of code that do not overlap. Such

codelets may be general enough to coincide with idioms (as in [130]) or even dwarfs, or much

simpler code fragments. With codelets redundancy can be identified at the granularity of a single

benchmark rather at the granularity of a benchmark suite. The latter case corresponds to stud-

ies, which identify similarities in benchmark suite components via characterization and diversity

analysis, a more formal process of comparing applications to one another in the context of a bench-

mark suite. Examples include [160, 230], which examine benchmark similarity and redundancy in

SPEC CPU2006, and show that a subset of the benchmarks can be used to estimate certain average

benchmark characteristics. In [117] the authors conduct diversity analysis on the NVIDIA CUDA

SDK, Parboil, and Rodinia for the GPU, while in [41, 64] the authors focus on SPLASH-2 and Ro-

dinia, respectively, and its similarities with Parsec on the CPU and GPU. In [20] Adhinarayanan

et al. perform diversity analysis and subset GPGPU workloads in SPEC ACCEL, as well as other

benchmark suites. As shown above, it is a fact indeed that benchmark suites are typically charac-

terized by a certain degree of redundancy. Eliminating such redundancy is beneficial, especially in

the cases of architectural design, where simulation time can be orders of magnitude higher com-

pared to execution time on actual hardware. In the latter case, it may be faster to execute more

benchmarks (i.e., even redundant one) than perform a diversity analysis and subsetting process.

From a practical standpoint, one of the main uses of benchmark suites is to characterize architec-

tures. In works like [63, 64, 84, 244, 248] and [269] the authors discuss architectural differences

between contemporary CPUs and GPUs of the time using many of the benchmark suites that we

32

mentioned before. One of the main limitations of these original works is that they mostly focus

on CUDA benchmark implementations and NVIDIA GPUs. Works like [198, 223] extend charac-

terization of heterogeneous platforms on more recent architectures, like Intel MIC, Kepler-based

NVIDIA GPUs, etc. and provide comparisons with the OpenACC programming model. A more

detailed discussion on the implications of architectural features with respect to algorithms and in-

sight on future architectural design requirements is given in [191], while in [212] the authors con-

duct a preliminary study with a subset of Rodinia benchmarks on the Intel Xeon Phi co-processor.

With respect to FPGAs, there is early work done with respect to using OpenCL as a program-

ming model for hardware design and comparing its performance with hardware design languages

(HDLs) or high-level synthesis (HLS) languages. Most works focus on a single application case

study. Examples include [249, 257, 65, 110]. OpenDwarfs was one of the first benchmark suites

to be used for evaluating Xilinx FPGAs using OpenCL via SOpenCL 3 and to later include sup-

port for Altera FPGAs via OpenCL. Another work towards this direction is [220]. As we mention

in Chapter 1 benchmarks constitute the basis for multi-faceted studies on performance that tar-

get computer architects, compiler, tool, run-time systems developers, and programmers. There

is a myriad of examples for each of the above categories; below we provide just a representative

sampling. Benchmark suites, mainly Rodinia and Parboil, have been widely used to character-

ize performance of heterogeneous architectures and suggest alternatives with respect to a diverse

set of architectural features, such as memory architecture [209, 156, 113] and pipelines [136].

With respect to run-time systems, compilers and tools, examples include Starchart [157], Ope-

nARC [190], automatic memory management in GPUs using compiler-assisted runtime [226], a

3FPGA work contributed by Dr. M. Owaida, Dr. C. D. Antonopoulos, and Dr. N. Bellas

33

high-level programming model [96], and scheduling work [185, 247]. Various efforts in determin-

ing optimization techniques for programmers to use with multi-core CPUs and GPUs have been

reported. Detailed studies on optimization techniques for the CPU and GPU, along with architec-

tural comparisons with respect to performance differences are presented in [191, 267, 245]. None

of the above work considers the optimization search-space for Intel Xeon Phi.

In our attempt to evaluate performance across heterogeneous platforms and address the issue from

multiple standpoints, we utilize benchmarks that follow the dwarfs categorization, specifically

the OpenDwarfs benchmark suite. Such a benchmark suite, whose application selection delin-

eates modern parallel application requirements, can constitute the basis for comparing and guid-

ing hardware and architectural design. As we mention above, on a parallel path with OpenD-

warfs, which was based on OpenCL from the onset, many existing benchmark suites were re-

implemented in OpenCL and new ones were released (e.g., Rodinia [63], SHOC [84]). Most of

them were originally developed as GPU benchmarks, translated to OpenCL from CUDA imple-

mentations, and as such still carried optimizations that favor GPU platforms (and in most cases

NVIDIA-based). OpenDwarfs, too, itself originally belonged to this category. This, however, vio-

lates the portability requirement for benchmarks that mandates a lack of bias for one platform over

another [28, 256] and prevents drawing broader conclusions to be drawn with respect to hardware

innovation. In our work we revise and extend the original OpenDwarfs [107] in an attempt to

present an all-encompassing benchmark suite for heterogeneous computing. Specifically, we build

on the dwarf-based categorization of applications, also followed in Rodinia, but at the same time

provide architecture-agnostic implementations, like Parboil, thereby combining the best features

34

of the two and making OpenDwarfs the first all-around complete benchmark suite for heteroge-

neous computing. We describe our contributions to the original OpenDwarfs benchmark suite in

detail in Section 4.1 in detail.

In this work (Section 4.1), 4 we complement prior research by characterizing OpenDwarfs on a di-

verse set of modern parallel architectures, including CPUs, Accelerated Processing Units (APU),

discrete GPUs, the Intel Xeon Phi co-processor, as well as on Xilinx FPGAs. As a matter of

fact, the parts of the work that focus on AMD APUs and Intel Xeon Phi (code-named Knight’s

Corner) are among the first of their kind and related experiments were able to evaluate the corre-

sponding architectures before their official release. In contrast to most related work that stresses

the optimizations required for performance, our evaluation work with OpenDwarfs focuses on

architecture-agnostic benchmark implementations in order to highlight the computation and com-

munication patterns themselves. The trend of incorporating GPUs and co-processors like Intel

Xeon Phi in computer clusters made such up-to-date studies imperative (four supercomputers in

Top500 list’s top ten [276] make use of such accelerators). Even more so, when the benchmarks

used in such studies capture characteristics of real-world applications (i.e., benchmarks based on

the dwarf concept) that such systems are routinely used for.

4Most of this work predates or is contemporary to the most recent ones mentioned in this chapter.

35

3.1.2 Optimizing Performance: Software Approaches

Optimizing performance via software approaches can be split into two large categories: (a) gen-

eral tools with broader scope and (b) enhancing the performance of specific algorithms using

architecture-aware optimizations.

General Tools for Optimizing Performance

This category includes compilers, optimized libraries, domain-specific languages and problem-

solving environments, as well as auto-tuning frameworks and run-time systems. These tools we

term general in the sense that they have broader scope than the complementary category that lists

architecture-aware optimizations in specific applications.

Compilers, range from the widely used GNU and Intel compilers for traditional languages to more

exotic and/or research-oriented ones. The latter category includes works like [35] and [291] for

GPUs. In [35] the authors describe a compiler framework for auto-parallelization and associated

optimizations of affine loop nests, while in [291] optimizations such as memory coalescing and

tiling are automatically applied for GPGPU compiled codes. Similar works (e.g., Apricot [238])

exist for other heterogeneous platforms like Intel MIC. Last, OpenARC [190] is an open-source

compiler that seeks to accelerate research for directive-based heterogeneous computing.

As far as optimized libraries are concerned there is a wealth of them, targeting heterogeneous

architectures – mainly GPUs. For example, cuFFT [5] provides fast GPU implementations for

CUDA-enabled NVIDIA GPUs, while clFFT [1] extends similar functionalities to AMD GPUs.

36

cuBLAS [3], MAGMA [275] (with OpenCL GPU [94] and Intel MIC [126] ports), include GPU-

and Xeon-Phi-accelerated linear algebra libraries, respectively. CUSP [6] is the corresponding

library for sparse linear algebra and graph computations in NVIDIA GPUs. Thrust [18] is a paral-

lel template library that provides support for CUDA (among others) by including optimized GPU

versions [39] of algorithms like sort, reduce, scan, etc. Last, NVIDIA Performance Primitives

(NPP) [15] and CUDA Math Library [4] provide fast implementations of image and signal pro-

cessing functions and standard math functions, respectively, on the GPU. A similar collection by

Intel (Intel Integrated Performance Primitives [8] and Intel Math Kernel Library [9]) targets Intel

CPUs and Intel MIC.

With respect to domain-specific languages, problem-solving environments and auto-tuning frame-

works plenty of research has been done that covers a broad range of scientific domains and appli-

cations. Due to their extra importance with respect to programmability and portability we discuss

the above categories in detail in the following related sections (Section 3.2.1 and Section 3.2.2).

Architecture-Aware Optimizations in Applications

Research that targets optimizing specific applications is abundant, given the different platform

architectures, languages, optimization choices, as well as the number of unique applications itself.

Hence, the below is not meant to be a complete collection of related optimization work, as this

could easily be a whole dissertation in its own merit. Instead, in this section we seek to provide a

37

Table 3.1: Applications and architecture-aware optimizations

Dwarf Platform Notes
N-Body Methods
GROMACS Cell [224] Cell Porting GROMACS molecular dynamics code on CellBE
Rodriguez et al. [243] GPU GPU acceleration of cutoff pair potentials
NAMD Cell [254] Cell Non-bonded force-field MD on STI CellBE
Williams et al. [59] (see notes) Fast multipole method on Intel, AMD, Sun CPUs and GPU
Grape-8 [202] (see notes) Special-purpose accelerator for gravitational n-body sim.
Pennycook et al. [229] MIC Extreme vectorization for molecular dynamics
Anton2 [250] (see notes) Special-purpose molecular dynamics supercomputer
Sparse Linear Algebra
Tang et al. [273] MIC Storage format and optimizations for SpMV on Intel MIC
Dalton et al. [83] GPU Optimization of SpMV using merge path
Williams et al. [284] (see notes) SpMV on AMD, Intel, Sun CPU and STI CellBE
Choi et al. [71] GPU BSCR, BELLPACK, auto-tuning of SpMV on GPU
Bell et al. [38] GPU Focus on sparse formats for GPU SpMV
Nath et al. [219] GPU Symmetric matrix-vector product (SYMV)
yaSpMV [288] GPU SpMV framework, reduces bandwidth issues
Graph Traversal
CRONO [22] CPU For futuristic multi-core targets
Pannotia [62] GPU Irregular GPU graph application benchmarks
Enterprise [196] GPU Energy efficient and fast BFS (#45 in Graph 500)
Paredes et al. [228] MIC Fastest Intel Xeon Phi Top-down BFS algorithm
Beamer et al. [36] GPU Direction-optimizing BFS for low-diameter graphs
Wu et al. [287] GPU Uses high-level programming for GPU graph analytics
Spectral Methods
Nukada et al. [222] GPU Multi-GPU 3D FFT for TSUBAME 2.0
cusFFT [280] GPU Sparse FFT
Structured Grids
Datta et al. [85] (see notes) Stencil for Intel, AMD, Sun, IBM CPUs and NVIDIA GPU
Dynamic Programming
Rucci et al. [186] MIC Smith-Waterman optimizations in hybrid CPU and MIC

38

sampling of works whose main target is heterogeneous architectures and that have been published

in top-tier conferences.

We present some of the most current work that targets heterogeneous computing in Table 3.1.

We group the applications using the dwarfs categorization and put special focus on n-body meth-

ods, due to the fact that we use GEM, an n-body application, as our case study for discussing

performance optimizations and programmability vs. performance trade-offs in Chapters 4 and 5,

respectively. We include notes that highlight important aspects of the respective works.

With respect to architecture-aware optimizations (Section 4.2) for increased performance in hetero-

geneous platforms, we provide a detailed case study on an electrostatic surface potential (ESP) cal-

culation algorithm that falls under the n-body dwarf category, called GEM. The need for faster elec-

trostatic surface potential (ESP) calculation execution, as part of molecular dynamics applications,

has led to the development of multi- and many-core CPU and GPU implementations [163, 266, 80],

as well as implementations on other heterogeneous computing platforms (IBM Cell [254]). Spe-

cialized hardware implementations using application-specific integrated circuits (ASIC), such as

MD-GRAPE3 [217] have been deployed to provide molecular dynamics acceleration, as well. In

contrast to these works, which optimize molecular dynamics on previous generations of parallel

architectures, our work is one of the first to address optimization of a molecular modeling applica-

tion on the most recent NVIDIA GPU architecture at the time (i.e., Kepler) and most importantly

the Intel Xeon Phi co-processor. Working with pre-release versions of the hardware we conduct

and evaluate performance optimizations on the new architectures, including both application and

evaluation of traditional optimizations, as well as unique novel optimizations only applicable to

39

the new hardware. Our careful design of experiments following gradually optimized implementa-

tions serves as the basis for a detailed study that explores the performance and programmability

trade-offs (Section 5.2). An important contribution of our work, compared to related work, is the

evaluation of OpenCL as a means to program hardware (FPGAs). Our work in Chapter 4 is once

more among the first to publish experiments with OpenCL on FPGA targets. Combined with our

implicit evaluation of OpenCL optimizations in Chapter 5 it is the first, (together with [187] which

also implicitly does so) to provide an analysis of basic Altera OpenCL design choices and the first,

to the best of our knowledge, to provide a detailed analysis the more advanced Altera OpenCL

optimizations for the FPGA.

3.1.3 Optimizing Performance: Hardware Approaches

One aspect of optimizing performance lies in enhancing the software, via architecture-specific

optimizations, given a certain, existing platform (e.g., GPU). Another aspect, lies in changing the

platform itself, so it is amenable to providing higher performance gains for applications. In the

previous section we discussed the former aspect, while here we present work related to the former.

Specifically, we discuss research that seeks to increase heterogeneity at the node level.

In [45], Borkar discusses the prospect of many-core architectures that comprise hundrends or thou-

sands of cores, as an answer to the unreasonable power envelop of integrating multiple complex

cores on a die. In the proposed solution the cores correspond to simpler cores versus “fat” cores

(e.g., typical Xeon cores). This concept materialized with Intel Many Integrated Core (MIC) ar-

40

chitecture (up to 61 cores in Knight’s Corner and 72 cores in Knight’s Landing co-processors).

Borkar’s work refers to homogeneous cores, as opposed to the following works, however it pro-

vides useful background related to fine-grain power management, memory bandwidth, on-die net-

works and system resiliency for many-core systems that are also relevant in the heterogeneous

context.

In [181] Kumar et al. study single-ISA heterogeneous multi-core architectures. Specifically, they

present a chip-level multi-processor with four Alpha cores of varying complexity and power con-

sumption, with the same ISA. Their evaluation is simulation-based and includes certain assump-

tions (e.g., oracle scheduling, assumed architectural and power-related characteristics). One as-

sumption is that different workload phases can be assigned to the most appropriate core type, while

the non-appropriate type of cores are switched off. The authors conclude that the proposed multi-

core architecture demonstrates up to three times higher energy efficiency with small sacrifices in

performance.

Chung et al. [75] try to answer the question: “Does the future include custom logic, FPGAs, and

GPGPUs?” To address the question in the context of performance scaling and energy efficiency

they investigate designs that place unconventional cores alongside traditional CPU cores. They

focus on an analytical model that extends Hill and Marty’s work [139] to include unconventional

cores, i.e., custom logic, FPGAs, and GPUs. As in [181] their methodology includes assumptions

with respect to the parallel workloads, like perfect scheduling and infinite divisibility.

In [199] Lukefahr et al. propose Composite Cores, an architecture that brings the notion of hetero-

geneity within a single core, with the main target being to reduce switching overheads – typically

41

observed in other heterogeneous computing approaches. Composite Cores is based around the con-

cept of big and little compute micro-engines that are characterized by high performance and high

energy efficiency, respectively. Cycle-accurate simulations show their design achieves consider-

able energy savings (18%) at minimal performance loss (5%). Along a similar path, in [153] Ipek

et al. introduce Core Fusion, a reconfigurable CMP where smaller cores can dynamically morph

into a larger CPU, according to an application’s needs. In [54] the authors propose HeteNode,

a novel node architecture where the CPU(s) and co-processors are directly connected via a sys-

tem controller, in an effort to decrease the communication overhead observed with the traditional

co-processing paradigm.

Last, Chien et al. [68] propose an alternative approach to heterogeneity and energy efficiency

through hardware customization. Specifically, they argue about steering away from the traditional

90/10 optimization paradigm that guides architectural designs and addresses the “common case”.

Instead, they propose the 10x10 architecture that includes cores (or micro-engines) optimized for

ten different 10% cases (where the number ten is arbitrarily chosen). Guha et al. [122] examine

a broad selection of benchmarks from major benchmark suites in order to cluster applications by

computation and memory behavior. Conceptually, each of these clusters would correspond to the

“10%” cases optimally executed by each of the “10” corresponding micro-engines. [69] presents

a case study, on a higher-level, of a “7x7” architecture.

Beyond the above detailed approaches, other studies have attempted to project the technology and

architecture trends (which are indeed expected to be heterogeneous). One such key study is the

2008 DARPA Exascale Technology Report (ETR). Another appears in [171] and uses the data

42

from the TOP500 list (like the 2008 DARPA ETR) to update the ETR projections and identify an

additional heterogeneous class of architectures, beyond the previously proposed categories (heavy-

weight, light-weight).

Our work, complements prior work in that it tries to address heterogeneous computing, but does so

in the context of what we term telescoping architectures. In contrast to the above works, we omit

a theoretical analysis or simulator-based approaches, in favor of a high-level practical approach

with considerable breadth, where we conceptually combine existing heterogeneous architectures

and evaluate their performance, under certain assumptions. As shown in previous works above,

assumptions in initial approaches for novel architectures are acceptable (but need to be refined

and addressed in subsequent work). Clusters on a Chip (CoCs), as defined in Section 4.4, in

contrast to [181] have disparate ISAs. However, as opposed to some of the other works, they

can be universally programmed using OpenCL. In our work, we employ dwarf-based benchmarks

for evaluation purposes that allow a certain level of generalization of conclusions. The majority

of the work, except “10x10”-related papers that use the notion of clustering of computation and

communication patterns, uses standard benchmarks that may not allow such broader insights.

3.2 On Programmability and Portability

In this section we present related work that addresses the aspects of programmability and portabil-

ity of parallel heterogeneous systems. Among others, we discuss approaches that entail domain-

43

specific languages, auto-tuning frameworks, programming languages, and library-based frame-

works.

3.2.1 Programmability

Parallel computing, both homogeneous and heterogeneous, and its ensuing computational power is

of paramount importance across scientific domains, with many applications in engineering, math-

ematics, physics, biology, and elsewhere. We see many specific examples in Section 3.1. Parallel

computing has enabled scientists to perform complex computations faster, do so with unprece-

dented amounts of data, and obtain more accurate results previously sacrificed over computation

speed.

Until the recent past, high-performance computing was a privilege of government labs, large re-

search universities and companies that could afford to build and maintain expensive (and power-

demanding) supercomputers. With the parallel computing revolution of the mid-2000s parallelism

has become mainstream and what was once considered “supercomputing” is now available at rea-

sonable cost to a broader audience.

At the heart of accessible parallel computing lies different types of cores (i.e., heterogeneous

cores), among which CPUs, GPUs, co-processors (e.g., Intel Xeon Phi), and reconfigurable ar-

chitectures (i.e., FPGAs). Parallel programming, especially in the context of a heterogeneous envi-

ronment, can prove challenging for expert programmers, and even more so for non-programmers,

or novice programmers. Making heterogeneous parallel programming easier, i.e., enhancing the

44

programmability aspect, is crucial; domain scientists typically belong to that second category. Ac-

celerating scientific advances hinges on domain scientists’ ability to focus on their science, while

being able to express and solve the computational aspect of their problems fast.

A survey among a high number of researchers that span scientific domains that was presented in

Supercomputing (SC) 2011 [235] is illustrative of the state of the practice in computational science.

The survey concludes that:

• Programming constitutes a high percentage of overall research time.

• For 50% of the participants in the survey the program execution time is less than 24 hours

(of which 20% less than one hour).

• When it comes to strategies for enhancing performance, half participants replied they use

none, while smaller percentages use techniques such as data layout optimizations (5%), loop

optimizations (17%), or compiler flags (9%).

• Specifically for parallelism, 33% does not use any form of parallelism, 11% uses loop-level

parallelism, and 7% thread-level parallelism. The majority uses job parallelism (51%).

• 40% of the researchers use desktop-computing only to address their computational needs.

A 2009 study [129] that takes into account the answers of 2000 users reaches similar conclusions.

Given the above, namely the importance of parallel computing for domain scientists (as well as

general-purpose users) and their reluctance to commit time for learning to write efficient code,

45

researchers have followed various approaches to address the programmability aspect of parallel

computing.

The most transparent way to make parallel platforms more programmable requires the program-

mer to only provide a sequential version of the algorithm. Then, modern compilers, like GCC,

Intel/Cray/PGI, perform loop parallelization and code vectorization, among a wider collection

of optimizations. Exploiting the auto-vectorization and auto-parallelization features of compil-

ers can be challenging, and failure may ensue due to restrictions enforced by the conservative

nature of compiler optimization algorithms or specific programming practices followed by the

programmer (although ongoing research tries to address issues like vectorizing partially vectoriz-

able loops [32]). While the above completely automated methods (i.e., most programmable) can

offer great performance for more trivial cases, they cannot easily address the general case.

In this section, we first discuss related studies on the subject of programmability, and then we

present representative examples from the corpus of related work as categorized in three broad

categories:

1. Domain-specific languages (DSLs), problem-solving environments (PSEs), and auto-tuning

frameworks.

2. Programming languages.

3. Source-to-source translators.

46

Previous Studies on Programmability

Various studies provide insights on various aspects of programming parallel platforms. We provide

an overview below:

Hochstein et al. [140] present an interesting study on parallel programmer productivity. Their study

is unique in that it constitutes one of the first empirical studies in the area that compares parallel

programming models used in CS graduate curricula across four major colleges. The authors seek

to evaluate programmability not as a matter of number of source lines of code (SLOC), but more

so as the effort per SLOC from a practical standpoint. Another experimental study [159] highlights

the best practices and common pitfalls when teaching parallel computing to science faculty. The

concepts from this work (e.g., importance of showing parallelism, interactivity, visual results) are

important and can be implemented in the context of programming frameworks targeted towards

novice programmers (e.g, domain scientists) to facilitate embracing a parallel mindset for develop-

ing applications. The work of Burckhardt et al. [51] focuses on the importance of visual results and

interactivity, also mentioned above, and discusses a departure from the “traditional edit-compile-

run cycle” to what is termed “live programming” characterized by continuous feedback in the form

of a user interface.

In [53] the authors propose several metrics for measuring programmability and productivity. While

they focus on evaluating Unified Parallel C (UPC) [77] in a CPU environment (which they find to

be equally programmable to MPI), these metrics have a more general applicability (e.g., when

extending UPC for GPU cluster computing [66]). As far as GPU computing is concerned, an

47

early study on CAPS HMPP and PGI directives is provided in [133]. A later work by Lee and

Vetter [189] shows a thorough evaluation of directive-based models for GPUs via 13 applications

and comparisons with hand-tuned CUDA implementations. The paper concludes that directive-

based models can provide reasonable performance with increased programmability.

A more extensive study [72] includes an insightful discussion on programmability and portability

experimenting with three benchmarks from the dwarfs taxonomy across 12 different programming

languages and platforms (including Intel, AMD and IBM CPUs, NVIDIA GPU, IBM Cell Broad-

band Engine). The quantitative measures include lines of code, development time, and achieved

performance (percentage over peak for a given platform). The above work does not consider

OpenCL [19], since it was still in beta release at the time. In [245] the authors attempt to quan-

tify the Ninja Gap, i.e., the programming effort required to close the performance gap between

mostly automated (i.e., more programmable) parallel implementations and hand-tuned code ver-

sions. Also, they discuss means of increasing programmability via hardware support, focusing

on Intel Many Integrated Cores (MIC) architecture. Subsequent studies [293, 268] specifically

focus on performance portability of OpenCL programs. The former studies three benchmarks –

again from the dwarfs taxonomy, across Intel and AMD CPUs, discrete NVIDIA GPU, integrated

Intel GPU, as well as an AMD APU. The latter explores performance portability of six bench-

marks across the CPU and GPU only. In both cases, the authors identify the performance porta-

bility gap between naive and architecture-aware implementations and identify appropriate tuning

knobs for performance portable programming. Other works compare the performance versus pro-

48

grammability gap across languages for CPUs or across heterogeneous architectures (OpenMP ver-

sus OpenCL [253], CUDA versus OpenCL [104], OpenACC versus OpenMP [283]).

Last, more recent studies include [81] and [204]. In the former Daga et al. conduct a programma-

bility analysis of C++ AMP and OpenACC versus OpenCL on AMD discrete GPUs and APUs,

and conclude that despite the increased programmability, performance is not in par with OpenCL

hand-written code. In the latter, the authors evaluate emerging parallel programming models like

Kokkos [39], RAJA [145], OpenACC, and OpenMP 4.0 versus CUDA and OpenCL. Their con-

clusion is that performance of the above models lie within a 5-20% of the CUDA/OpenCL code

for a much better programmability and that programmability of each of these models will be the

deciding factor for the breadth of their adoption.

Domain-Specific Languages, Problem-Solving Environments, and Auto-Tuning Frameworks

Domain-specific languages (DSLs), problem-solving Environments (PSEs), and auto-tuning frame-

works are an approach often favored by domain scientists. Such solutions offer the added benefit

of high-performance, often a result of automatic optimizations based on domain knowledge. This

specific nature of the above, however, is a double-edged sword, in that it also introduces the prob-

lem of lack of generality of applicability. Such solutions focus to very function-specific codes, like

dense linear algebra code (ATLAS) [76] or FFT (FFTW) [108], or even more specific subareas

within a class of problems [115, 87, 98].

49

Irrespective of that, most are also restrictive in terms of target language and/or architecture on

which the code is to be executed (e.g., GPU, CUDA, OpenCL [86, 193]) thereby lacking the

aspect of portability. Additionally, they tend to have reduced utility as replacement blocks of

code in pre-existing, legacy scientific code. Auto-tuning frameworks incorporate techniques such

as those discussed in the performance-related discussion (Section 3.1). Different DSLs, PSEs,

and auto-tuning frameworks span different domains. Stencil algorithms is an area that has been

thoroughly researched and many auto-tuning frameworks have been proposed. Some focus on

GPU architectures (NVIDIA, AMD, or both) [277, 142, 203], while others, like PATUS [73] or

FAST [200], target both the CPU and GPU. While the above works can exploit single-node het-

erogeneous environments, works like [292] provide opportunities for running stencil codes on a

cluster of GPUs. Examples from other areas include sparse linear algebra [272], graph analyt-

ics (Green Marl) [144], machine learning (OptiML) [57], mesh-based PDE solvers (Liszt) [91],

and biomedical image analysis and visualization (Diderot) [70]. In [271] the authors describe

Chestnut, a domain-specific parallel GPU programming language for parallel multi-dimensional

grid applications, and Roccom [158] discusses a software integration framework in the context

of parallel multi-physics simulations. In [165] the authors conduct a comprehensive review of

domain-specific languages for FPGA computing.

Generally, DSLs/PSEs can be more generic within a domain (e.g., handle multiple dimensions of

stencils), while others can be more specific (e.g., focus on code generation of 3D stencils [292]).

Moreover, certain DSLs/PSEs can perform auto-tuning without user annotation (e.g., [200]), while

others, like Mint [277] require the user to annotate code, from which the DSL/PSE can provide a

50

GPU implementation, for instance. Requiring user annotation adds a level of indirection that re-

duces programmability, but can typically provide better performance. In [146, 172] the authors fo-

cus on SIMD architectures. The former, ASPAS, addresses parallel sorting with code vectorization

on x86-based architectures, focusing on Intel Xeon Phi. The latter conducts high-level restructur-

ing of a program to expose ISA-independent vectorizable codelets and then generates ISA-specific

code with appropriate SIMD-related optimizations. Finally, on the task-level, [215] constitutes an

empirical auto-tuning framework that estimates performance benefits from auto-parallelization on

the section-level and optimizes the program accordingly.

Another category of tools seeks to exploit familiarity of computational scientists with software

like Mathematica or MATLAB. Early on, in works like [43], loop-based MATLAB code is trans-

formed to the more efficient array-based MATLAB code. Moreover, opportunities for utilizing

MATLAB’s (faster) functions are identified and substitute the appropriate blocks of code. Later,

with the advent of general-purpose GPU computing, research focused on providing automatic sup-

port of GPUs. For instance, in [236] the authors address automatic compilation of MATLAB

programs to allow for synergistic execution on a CPU+GPU heterogeneous environment, while

in [251] the authors seek to automate GPU computing by using MATLAB. Wolfram and Maple

have themselves added GPU support in their products, Mathematica and MATLAB, respectively.

For example, Mathematica provides the CUDALink [147] package that contains GPU-accelerated

functions from areas like linear algebra and image processing, while also giving users the ability

to develop their own GPU-accelerated functions, in a way arguably simpler than writing CUDA

itself. Except for CUDALink, Mathematica provides analogous support for OpenCL, with their

51

OpenCLLink [148], thus obviating the need for OpenCL programming. MATLAB provides sim-

ilar functionality, which is currently limited to NVIDIA GPUs only, via the Parallel Computing

Toolbox [149]. The latter provides high-level constructs that can substitute OpenMP for within-

chip multi-threading, as well as MPI for cluster computing.

Programming Languages for Programmability

On the programming languages side, there have been many proposed approaches that either define

a new programming model and programming language from scratch, provide higher-level ab-

stractions (e.g., directive-based approaches), or libraries that can be used in the context of existing

languages.

In the case of shared-memory chip multi-processors (CMPs), Pthreads [52] and OpenMP [82]

have long remained the “traditional” ways to approach parallelism, with the latter being a far

more programmable solution compared to the former. As alternatives to the above, Intel provides

Intel Cilk Plus [241] and Thread Building Blocks [231]. The former provides C/C++ language

extensions to allow expressing task and data parallelism within applications. The latter is a library

that includes, among others, a number of generic parallel algorithms, synchronization primitives,

and support for dependency and data flow graphs. The above allow easy expression of loop- and

task-level parallelism.

One method that is efficient in expressing computations at a more abstract level is array program-

ming, as introduced by K. Iverson and implemented in APL [154]. In such cases, for example,

52

the operation X+Y on arrays is allowed, performs the addition operation across all elements of X

and Y, and returns the result in an array form. Concepts of array programming are found in mod-

ern mathematical software (such as Mathematica and MATLAB), or languages like Fortran90.

Similarly, NumPy arrays [278] provide a means to accomodate multi-dimensional generic data

and is incorporated in the same-named package for numerical computation with Python, together

with tools for integrating C/C++ and Fortran code. POOMA [240], a library originally devel-

oped at the Los Alamos National Lab, includes similar functionalities for arrays (among other

data structures), with an emphasis on parallelism and ease of programming. Other approaches,

like OOPAL [214] unify the concept of array programming and object-oriented programming to

provide the combined advantages of developing code using object interfaces and expressiveness

of array programming. In [124] the authors propose Hierarchically Tiled Arrays (HTAs); in many

applications spanning scientific domains tiles or blocks constitute an important data arrangement

in terms of performance (parallelism and data locality). HTAs is a data type that provides an easy

way of manipulating (creation, usage, dynamic partitioning, etc.) tiles for sequential and more

importantly parallel programming.

Following, we provide a representative sampling from the literature that showcases further means

of enhancing programmability:

SWARM [31] is an open-source programming framework for the development of efficient multi-

core programs. SWARM, as opposed to the OpenMP compiler-based approach, provides library

functions and directives (a la OpenMP) and supports loop-level parallelism, as well as task-level

parallelism. In [195] the authors introduce Merge, another library-based programming model for

53

heterogeneous multi-core systems that aims at increasing programmability. In Merge, the user

develops a program by using high-level language extensions that are based on the MapReduce

model. Mapping and distribution of the computation in parallel across heterogeneous components

is automated by the Merge compiler and runtime.

Chapel [58] is a language designed as part of DARPA’s High Productivity Computing Systems

(HPCS) program and is specifically focused on programmability. It presents an alternative pro-

gramming approach, encompassing a full-blown programming language, designed with programma-

bility and portability in mind, that supports a multi-threaded execution model via high-level ab-

stractions for task-, loop-, data-level parallelism and concurrency. The original version of Chapel

has since been improved with added support for accelerators [255]. The same, single program

written in Chapel can hence be now used to program across the spectrum of CPUs, Intel MIC, and

GPUs.

PetaBricks [27], on the other hand, specifically attempts to solve programmability when the need

arises to employ hybrid algorithms (i.e., a combination of algorithms, based on problem size and/or

input data set features). Specifically, PetaBricks is a language that allows the user to express

algorithmic choices, while letting the compiler performing the appropriate optimizations. The

authors’ evaluation highlights the importance of enabling auto-tuned hybrid algorithms, given their

higher performance than individual ones.

In [281] the authors present a programming approach whereby users develop object-oriented stream

programs using aspects. The proposed aspect-based method reportedly simplifies programming ac-

celerators and provides performance close (approximately 80%) to hand-optimized CUDA code on

54

GPUs. Lime [97] is another proposed language, Java-compatible, that seeks to eliminate low-level

requirements of languages like OpenCL and CUDA (e.g., explicit memory allocation on the device

side and accompanying data transfers). The high-level object-oriented language provided by Lime

constitutes an extension to Java with constructs that address heterogeneous architectures like GPUs

and FPGAs. Experiments show that benchmarks developed with Lime achieve performance that

lies between 75-140% of the corresponding hand-tuned OpenCL implementations.

HMPP, presented in [44] is a programming “workbench” that is based on the codelets concept

(analogous to what a kernel is in OpenCL). HMPP includes HMPP directives for declaring, exe-

cuting codelets, as well as directives for memory data transfers between a CPU and an accelera-

tor. After a two-pass compilation, HMPP compiler produces an executable for the host-side pro-

gram and the accelerator implementation of the codelets in the form of dynamic shared libraries.

hiCUDA [128] is an attempt to provide yet another higher level abstraction for GPU programming,

by providing directives that hide issues such as GPU memory allocation and data transfers from

the programmer. Wolfe et al. [286] introduce the PGI accelerator directives for heterogeneous

computing, the “ancestor” of OpenACC [282]. The latter, co-developed by Cray, CAPS, NVIDIA,

and PGI, provides a standardized directive-based way to program heterogeneous systems that has

effectively rendered it the “OpenMP analogous” for heterogeneous computing.

In [78] the authors discuss extensions of x10 [61] for GPU, i.e., compiling x10 to CUDA. Other

works [290, 201] extend the Habanero execution model [56] – a Java implementation of x10 –

for modern heterogeneous architectures and exhibit significant improvements with respect to pro-

grammability and portability.

55

With OpenMPC [186] Lee and Eigenmann propose a high-level programming interface that ex-

tends OpenMP with appropriate directives in support of a higher-performing version of what was

presented in [188]. With these extensions not only can programs originally written with OpenMP

directives run on (NVIDIA) GPUs, but also can be tuned for performance without having to re-

sort to expressing related optimizations in CUDA. Another OpenMP-like programming model,

OmpSs [99, 102], uses StarSs [233] to address programmability and portability. Experiments

with six benchmarks indicate increased productivity, as well increased performance over the cor-

responding OpenCL and OpenMP implementations on the CPU and GPU.

Latest developments in the programming languages category include Regent [258] and Tangram [60].

The former is a language for HPC programs composed with tasks and logical regions. The latter is

a programming language based on the synthesis of codelets, i.e., reusable code building blocks.

Programmability in a heterogeneous context within a compute node is one thing. Extending the

notion of heterogeneity in a multi-node environment is yet another challenging problem. In his

keynote at CCGrid 2013 [260], Mark Snir discusses programming models for high-performance

(cluster) computing. When it comes to programmability/productivity, he notes that coding pro-

ductivity is overrated, because coding constitutes a small fraction compared to debugging, tuning,

and testing. He claims that MPI is good enough and should continue to be used for exascale com-

puting. But, he notes that it is not just MPI, but MPI+X, which may be a problem, in which case

research should focus on X, rather than on the MPI part. In the latest work by Kim, Lee, and Vet-

ter [169] the authors propose an MPI+OpenACC framework for heterogeneous clusters based on

accelerators. Based on evaluations that include the Titan supercomputer the authors conclude that

56

IMPACC achieves better performance for an easier programming approach than MPI+OpenACC

separately. Earlier works, such as MPI-ACC [23] attempt to integrate support for auxiliary mem-

ory systems (e.g., GPU), beyond the CPU memory space that is de facto supported in MPI. Works

like SnuCL [170] and LibWater [118] extend OpenCL for cluster environments, while rCUDA [95]

does the same using CUDA. In [93] the authors target cluster computing by presenting a hybrid

parallel programming model with Unified Parallel C (UPC) and MPI. In [210] the authors discuss

X10, a PGAS language, and specific examples in the context of scientific computation and dis-

cuss aspects of programmability for domain scientists. XMP is a PGAS language and in [216]

the authors explore in detail the productivity of the language and compare it to UPC. In [50] the

authors seek to enhance productivity of clusters that include GPUs with OpmSs, an extension to

the directive-based StarSs [233]. In [242, 155] the authors attempt to address programmability

of HPC cluster computing via algorithmic skeleton interfaces (Triolet), and via a framework for

hybrid parallel programming that combines Charm++ [164] and MPI, respectively. Last, in [289]

the authors similarly propose novel language extensions to OpenMP, but in this case the target is to

support multiple accelerators on which data and computation regions can be offloaded. Associated

compiler and runtime support is provided to handle multi-GPU scenaria.

Works addressing other architectures like Cell Broadband Engine Architecture (CBEA) [162]

include CellSs [40] and the work by Kunzman and Kale [182]. Both works seek to enhance

programmability of the CellBE heterogeneous platform by annotating existing code; CellSs is

based on OpenMP-like annotation that is handled by the CellSs compiler, while [40] extends the

Charm++[164] programming model with accelerated entry methods.

57

Source-to-Source Translation

Another category of tools that provide a certain degree of programmability are source-to-source

translators. Such tools, take a certain language at their input and output the equivalent code in

another. In the case of source-to-source translators the user does not need to know both languages

(i.e., input and output); knowing one implies being able to obtain code in the other, supported by the

source-to-source translator. While source-to-source translators affect programmability, their main

advantage remains portability, so we present some important work in source-to-source translation

in our discussion on portability (Section 3.2.2). Here we focus on three example cases where a

source-to-source translator facilitates entry in a non-CPU domain via a CPU or GPU-oriented lan-

guage/programming paradigm. For example, in [188] the authors introduce OpenMP to CUDA

source-to-source translation. The proposed compilation framework includes techniques for reduc-

ing memory transfers and optimizing global memory accesses. In [238] the authors present Apri-

cot, an optimizing compiler framework that automates translation of OpenMP code to Intel MIC

offload language extensions. This allows direct execution of OpenMP programs on Intel Xeon Phi,

while a cost model selects at run-time code regions to be offloaded onto the co-processor, also

keeping data transfers to the minumum necessary. Our third example, [187] uses OpenARC [190],

an open-source compiler framework for directive-based accelerator computing. It focuses on en-

abling OpenACC to OpenCL for FPGA source-to-source translation. This includes extensions to

the OpenACC directives to assist FPGA-friendly optimizations, as well as FPGA-targeted opti-

mizations folded into the compiler itself.

58

Programmability of FPGAs

Programmability in heterogeneous computing, where platforms may include multi-core CPUs,

GPUs, Intel MIC, as is evident from the above is a challenging task. Programmability in hetero-

geneous computing when we factor in FPGA targets arguably becomes a daunting endeavor. We

present most work related to programmability in FPGAs separately here.

Industry-led and academic attempts have long seeked to facilitate FPGA programming via differ-

ent methods [30] than direct use of RTL-level hardware design languages (HDLs), like Verilog

or VHDL. HDL design is largely based on structural descriptions of the design. While using be-

havioral descriptions in HDL is possible, it is considered a bad design practice by many hardware

programmers. Behavioral description of a program, conversely, is the traditional way of program-

ming in software engineering. As such, to make FPGA programming accessible to non-hardware

programmers, switching to a high-level, behavioral approach led to High-Level Synthesis (HLS).

High-level synthesis approaches can be broadly divided to two main categories, text-based and

model-based/GUI-based:

Text-based: This approach adopts text-based programming in languages that allow behavioral al-

gorithm description on a higher level than HDL. There are languages specifically devised for HLS,

like Bluespec [221], but typically require a steep learning curve and cannot take advantage of ex-

isting code. Most HLS languages are based on C/C++ (e.g., C-to-Verilog, Impulse C, Catapult

C, Mitrion C, Synphony C by Synopsys, Vivado HLS by Xilinx). Discussion on HLS frameworks

based on C are provided in [30, 208]. While the core of these languages is C/C++, there are restric-

59

tions on certain language features (e.g., recursion) and the code often needs to be annotated with

language-specific constructs. A big advantage is the ability for fairly easy reuse of existing C/C++

code. A big disadvantage is that these variations are based on C/C++ that was designed as sequen-

tial language, thereby the majority lacks intrinsic support for describing parallelism. HLS based on

languages like CUDA (FCUDA [227]) or OpenCL (Altera OpenCL [24], SOpenCL [225]), which

were designed with parallelism in mind address this problem. FCUDA requires CUDA code anno-

tation, which is then source-to-source translated to AutoPilot C and synthesized to an RTL design.

The OpenCL tools listed above follow a similar approach. At the last step HDL code is generated

and synthesized to produce the FPGA binary. Liquid Metal [150] by IBM offers a unified pro-

gramming language (Lime) and can target a wide range of heterogeneous architectures, including

multi-core CPUs, GPUs, and FPGAs.

Model-based/GUI-based: Tools in this category are based on graphical interfaces. NI LabVIEW

FPGA Module [151] extends the capabilities of LabVIEW graphical development workflow using

functional blocks and interconnects and allows targeting NI FPGAs. Matlab HDL Coder [206]

follows a similar model-based approach allowing using Simulink models and Matlab functions to

generate portable, synthesizable VHDL and Verilog code. Generated code can target Xilinx and

Altera FPGAs, while both vendors (Xilinx with SysGen and Altera with DSP Builder) provide

their Simulink blocksets that allow efficient synthesis of pre-defined functions. Other graphical

model-based design tools include SystemVue [167] and VisualSim [211].

60

3.2.2 Portability

Among the three P’s of heterogeneous computing (Performance, Programmability, Portability),

portability is the last, but not least important aspect we seek to address in this work. It incorporates

the aspects of functional portability, i.e., the ability of a given program to execute across similar

or even fundamentally different platforms, and performance portability, i.e., the ability of a given

program to not only execute correctly across platforms, but also do so at a proportionally equal

performance. As is evident, performance portability implies functional portability.

With heterogeneous computing being a (relatively) new and ongoing trend, the bulk of research

efforts have targeted performance and programmability (in this order) as a first-order concern,

rather than programmability. Despite this, though, there is still plenty of research on the portability

domain with different approaches aspiring to provide functional or performance portability.

We classify the related work in three main categories and present representative examples of each

below:

• Library-based frameworks.

• Compiler frameworks and source-to-source translation.

• Programming language frameworks.

61

Library-Based Frameworks

The first approach entails library-based frameworks. Specifically, libraries of frequently used al-

gorithms (where each library contains multiple functionally equivalent implementations of an al-

gorithm) are available in the context of a framework. APIs are presented to the user, where the API

is typically disjoint from any specific implementation. Such a framework may automatically iden-

tify the best performing implementation for a given set of input data and target execution platform

and transparently execute in any one of the supported target platforms. Implementation and tar-

get platform selection is achieved by means of a manual or automatic modeling process. In [274]

the authors present such an approach in the context of STAPL [26], where implementation is se-

lected via an automatic model. Other libraries, that have been widely used include Thrust [39],

and Kokkos [100]. The former is a library of parallel algorithms that resembles the C++ Standard

Template Library (STL). As is the case with other representative libraries in this category, Thrust

provides a high-level interface that enables programmers to write portable programs across CPUs

and GPUs. The latter (Kokkos) [100] is available as part of Trilinos [134] and defines manycore

parallel abstractions that can be used to form applications that benefit from Kokkos backends’ per-

formance portability. Specifically, a series of mini-apps are implemented using Kokkos and their

performance on multi-core CPUs and GPUs fall within 90% of the device-specific optimized code.

Other libraries in the related literature include SkePU [103] and SkelCL [265], both of which are

based on algorithmic skeletons. Both these programming libraries support CPU and GPU systems

(SkePU also supports multi-GPU systems). MAGMA [275] is a linear algebra for multi-core archi-

tectures, GPU, and Xeon Phi, effectively providing LAPACK/ScaLAPACK functionality on hybrid

62

architectures. MAGMA provides features like multi-precision support for high performance, hy-

brid algorithms and multi-GPU support. Most recently, Helal et al. [131] present MetaMorph, a

library framework that seeks to provide performance portability in heterogeneous targets. Other

works discuss performance portability of domain-specific libraries, like [89] for FFT in GPU ar-

chitectures. Beyond the above, we discuss other important libraries in Section 3.1.2 (where we

focus more on their performance aspect).

Compiler Frameworks and Source-to-Source Translation

The second approach we study here is with regards to compiler frameworks and source-to-source

translation. In [123] Gummaraju et al. present Twin Peaks, a software platform that enables

OpenCL code originally developed for GPU execution to run efficiently on the CPU via runtime-

assisted cache and functional unit utilization techniques. Similarly, Ocelot [92] is a dynamic com-

pilation framework, which allows translating, optimizing, and executing code originally written for

GPUs (CUDA/PTX) via LLVM to other non-GPU multi-threaded targets (i.e., multi-core CPUs).

Prior work, like MCUDA [270] also attempts to provide portability across the GPU and CPU,

this time by mapping the CUDA programming model to multi-core CPU architectures, showing

efficient execution on both types of architectures. In [205] Martinez et al. present CU2CL, the

first CUDA-to-OpenCL source-to-source translator claiming to provide performance for OpenCL

automatically generated codes that is “on par with the manually ported counterparts.” Subsequent

work [112] extends [205] and enhances the robustness of the tool, also providing proof of (more)

successul translation for a broader set of benchmarks, including larger ones (in terms of lines of

63

code). Along a similar path with CU2CL, in [168] the authors discuss similarities and differences

between CUDA and OpenCL and propose an automatic translation framework between the two.

Their implementation of such a framework reportedly provides a certain degree of performance

portability. OpenCL can run across platforms, including the GPU, so the OpenCL-to-CUDA part

of the translator offers code portability, but adds little to the gamut of supported platforms. On

the other hand, similar to CU2CL, the automatic CUDA-to-OpenCL translation opens up more

opportunities for alternate target platforms for users. The authors in [187] develop an OpenACC-

to-FPGA translation framework, based on OpenARC [190]. This allows code originally written for

GPU targets to be functionally, and – to a certain degree – performance portable on (Altera) FPGA

targets. This is one of the first works to address performance portability via a high-level program-

ming approach on the FPGA domain. Last, DMML (Distributed Multiloop Language) [48] con-

stitutes another tool for achieving performance portability by means of an intermediate language

and nested pattern transformations. Rather than single-node, DMML enables efficient execution

on heterogeneous clusters with non-uniform memory and accelerators, like GPUs.

Programming Language Frameworks

This approach proposes the use of programming language frameworks that not only offer pro-

grammability, but also portability across multiple platforms. An example of such an approach is

MapCG [143], a high-level programming model based on the MapReduce framework that supports

multi-core CPUs and (NVIDIA) GPUs. As an added bonus to portability, the MapReduce-based

programming provides a layer of programmability. Chapel [58] is a language designed as part of

64

DARPA’s High Productivity Computing Systems (HPCS) program and is specifically focused on

programmability. The original version of Chapel itself has been extended [255] to support accel-

erators. A single Chapel program can now offer satisfactory performance portability across CPUs,

Intel MIC, and GPUs. Specifically for GPUs, the achieved performance is comparable to the corre-

sponding CUDA implementations, thereby achieving both functional and performance portability.

As in MapCG, Chapel as a high-level language increases programmability, while relevant com-

piler back-ends enable transformations suitable for CPU and GPU and MIC architectures. In [232]

the authors extend PetaBricks [27], a high-level programming model that allows the user to define

choices. An auto-tuner subsequently selects the best for a given case. For the case of heteroge-

neous architectures the PetaBricks extensions in this work entail OpenCL kernel code generation

– when possible – and a run-time system to integrate GPU targets work allocation and associated

memory management. Similarly, Cashmere [137] is a programming system for heterogeneous ar-

chitectures. It utilizes and builds on Satin [279] and Many-Core Levels (MLC) [138] programming

models, allowing OpenCL code generation and handling execution across CPUs, Intel MICs, and

GPUs, with good scalability and high efficiency. Last, TANGRAM [60] is a programming system

(language, compiler, run-time) based on codelets, i.e., interchangeable, reusable code snippets,

that seeks to ascertain cross-platform performance portability. The language is rich in supporting

data parallelism primitives and work decomposition, among others. Based on related experiments

TANGRAM delivers over 70% of the performance of existing high-performing libraries (cuBLAS,

cuSPARSE, etc.)

65

Our work in identifying the performance and programmability gap (Section 5.2) complements

prior works (e.g., [245]) in that it explores a wider range of optimizations (including the new

shuffle feature of Kepler GPU architecture and the – then – novel Intel Xeon Phi and associated

optimizations) and provides a more thorough analysis of the optimizations and their impact for the

n-body class of problems. Finally, as part of directive-based parallel implementations, we con-

tribute an analysis of compiler-hinted parallelization for GPUs using OpenACC and provide direct

comparisons between the corresponding optimization levels across all three platforms, rather than

focusing on the speed-ups and performance gap within a single platform. With respect to perfor-

mance differences across different programming models, our work with the Grid-Based Language

and Auto-tuning Framework (GLAF) 5 (Section 5.3) attempts to eliminate the problem by au-

tomating code-generation with a set of appropriate optimizations in different programming models

(currently OpenMP and OpenCL) from a single program developed in our visual programming

framework.

Programming heterogeneous platforms using directive-based extensions is easier than lower-level

languages like CUDA or OpenCL. Still, it behooves the programmer to identify and appropriately

annotate the parallel regions. In most cases satisfactory performance cannot be achieved, unless

the programmer uses appropriate clauses to handle data allocation in an efficient manner. While

the above approaches may be acceptable by programmers, they may constitute a burden that non-

programmers – like domain scientists – may be reluctant to undertake. Our work (Section 5.3.1)

complements the category of auto-vectorization and auto-parallellization, by generating code that

5The GLAF work originated at Intel by Dr. Ruchira Sasanka

66

is more amenable to auto-vectorizing and auto-parallelizing compilers. The auto-generated code

automatically takes advantage of extensions like OpenMP and can be extended to exploit language

extensions like OpenACC. The important contribution of our work, however, lies on programma-

bility. Specifically, developing code using our research prototype framework (GLAF) enables

novice programmers or non-programmers to develop programs in a visual, intuitive way.

Last, our work attempts to address the need for a programming abstraction and framework that

is general enough to be of use across domains, as problems in engineering and sciences may be

composed by multiple different parts that the restrictive nature of auto-tuners may not be able to

directly address. Generality also refers to multiple target languages and architectures. Grid-based

data structures, which lie at the basis of our GLAF framework (Section 5.3.1), have also been

the central datatype of languages/extensions (APL [154], NumPy [278]). In GLAF the grid data

structure is – among others – meant to support a programming paradigm that resembles the famil-

iar spreadsheet workflow (where cells/tables undergo transformations based on formulas/macros).

GLAF extends this familiar paradigm in ways to enable complex, general-purpose program devel-

opment, and addresses the need for performance via parallelism support and other optimizations

in automatically generated code. Following related conclusions from prior works [159, 51], we

enhance upon existing work by integrating the visualization aspect in programming, where data

and the operations on data (i.e., code) coexist during the development stage.

Chapter 4

On the Performance of Heterogeneous

Platforms

In this chapter we focus on the first of the three P’s [106]: Performance. As we state in Chapter 1,

the proliferation of heterogeneous computing platforms presents the parallel computing commu-

nity with new challenges. One such challenge entails evaluating the performance of such parallel

architectures, and identifying the architectural and compiler/tool/run-time systems infrastructure

innovations that ultimately benefit applications. To address this challenge, we propose the need for

benchmarks that capture the computation and communication patterns (i.e., dwarfs or motifs) of

applications, both present and future.

We introduce OpenDwarfs, a benchmark suite that currently realizes the Berkeley dwarfs in OpenCL,

a vendor-agnostic and open-standard computing language for parallel computing. Employing

67

68

OpenDwarfs enables us to characterize a diverse set of modern fixed and reconfigurable parallel

platforms: multi-core CPUs, discrete and integrated GPUs, Intel Xeon Phi co-processor, as well

as a FPGA. We describe the computation and communication patterns exposed by a representative

set of (architecture-agnostic) dwarfs, and obtain relevant profiling data and execution information,

with the goal of drawing conclusions that highlight the complex interplay between dwarfs’ patterns

and the underlying hardware architecture of modern parallel platforms.

While our study with architecture-agnostic dwarf implementations achieves the above goal by

focusing on the computation and communication patterns, it only sheds light to part of the perfor-

mance aspect. A thorough study of performance (optimization, evaluation, and characterization)

calls for architecture-aware optimizations across a diverse set of platforms and languages/language

extensions. To this end, we switch our focus from performance evaluation of architecture-agnostic

implementations with respect to dwarf patterns, to architecture-aware optimizations on CPU, GPU,

and Intel Xeon Phi (MIC) using the C language (with SIMD/OpenMP/OpenACC extensions), and

CUDA. While, in this chapter we focus on a detailed study on performance, in Section 5.2 we dis-

cuss the aspects of programmability and performance versus programmability trade-offs, as well

as portability.

Recent advances in heterogeneous computing attempt to render FPGAs a major target architec-

ture. While until very recently OpenCL was not officially supported on FPGAs, Altera and Xilinx

– the two major FPGA vendors – have now extended the typical hardware design language (HDL)

programming model by introducing a design process based on OpenCL-based toolchains that re-

sembles the traditional CPU software development workflow. We present an overview of OpenCL

69

for Altera FPGAs in Section 2.2.2. In this chapter, we seek to explore the FPGA-specific optimiza-

tion space and provide insights on the performance obtained via such optimizations and the early

versions of the Altera OpenCL (AOCL) compiler.

We conclude this chapter on performance by exploring the trends in heterogeneous computing that

may help sustain increasing performance benefits on the road to exascale. Historically, architec-

tural innovation has telescoped the HPC community from the commodity (Beowulf) cluster in a

machine room, i.e., a multi-node system with Ethernet interconnect, to a commodity cluster on a

chip, i.e., multicore CPU with an ondie interconnect. We project that this “telescoping architec-

ture” will apply more broadly to heterogeneous computing, namely from heterogeneous clusters

like Tianhe-2 in a machine room to on a chip. To that end, we present an experimental study

that relies on dwarf-based benchmarking and that extends the notion of telescoping architectures

to identify the ideal mixture of compute engines (CEs) and the number of such CEs on a chip to

create a heterogeneous “cluster on a chip” (CoC). Specifically, we experiment with heterogeneous

architectures that contain single or multiple instances of CPUs, GPUs, Intel MICs, and FPGAs to

demonstrate their performance efficacy given continuing advances in hardware technology, soft-

ware, tools, and run-time support.

70

4.1 On the Performance of Architecture-Agnostic Dwarf-Based

Applications

Over the span of the last decade, the computing world has borne witness to a parallel computing

revolution, which delivered parallel computing to the masses while doing so at low cost. This

democratization was ultimately by necessity as the power wall had been reached with respect to

processor design and future improvements in computing capability would only be achieved by in-

creasing both the number of and types of processing cores, thus creating a heterogeneous comput-

ing environment. The programmer has been presented with a myriad of new computing platforms

promising ever-increasing performance. Already existing -albeit at a lower core count- multi-core

CPUs, were complemented by many-core GPUs, APUs (accelerated processing units, i.e., a CPU

and GPU fused on a single die), various types of co-processors (e.g., Intel Xeon Phi), and even

FPGAs. Programming these platforms entails familiarizing oneself with a wide gamut of pro-

gramming environments, (such as AMD Brook, NVIDIA CUDA, Cilk+) along with optimization

strategies strongly tied to the underlying architecture. The aforementioned realizations present the

parallel computing community with two challenging problems:

(a) The need of a common means of programming these architectures that obviates the need for

learning a number of different parallel programming languages, and

(b) The need of a common means of evaluating this diverse set of parallel architectures.

71

The former problem was effectively solved through a concerted industry effort that led to a new

parallel programming model, i.e., OpenCL. Through a standardization procedure spearheaded

by companies including Apple, Intel, AMD, IBM, NVIDIA, and Qualcomm OpenCL emerged

as a programming model that would serve heterogenous computing’s needs. Other efforts, like

SOpenCL [225] and Altera OpenCL [24] enable transforming OpenCL kernels to equivalent syn-

thesizable hardware descriptions, thus facilitating exploitation of FPGAs as hardware accelerators,

while obviating the overhead of additional development cost and expertise.

The latter problem cannot be sufficiently addressed by the existing benchmark suites. Such bench-

marks suites (e.g., SPEC CPU [132], PARSEC [42]) are often written in a language tied to a partic-

ular architecture (e.g., C, C++ or FORTRAN for CPU benchmarking). and porting the benchmarks

to another platform would typically mandate re-writing them using the programming model suited

for the platform under consideration. Given OpenCL’s ability to target a wide range of parallel

platforms, one could argue that re-casting these benchmark suites as OpenCL implementations

would solve the problem. The additional caveat in simply re-casting these benchmarks as OpenCL

implementations is that existing benchmark suites represent collections of overly specific applica-

tions that do not address the question of what the best way of expressing a parallel computation

is. This impedes innovations in hardware design, which will come as a quid pro quo, only when

software idiosyncrasies are taken into account at design and evaluation stages. This is not going

to happen unless software requirements are abstracted in a higher level and represented by a set of

more meaningful benchmarks.

72

4.1.1 OpenDwarfs Benchmark Suite

OpenDwarfs is a benchmark suite that comprises 13 of the computation and communication pat-

terns (i.e., dwarfs), as defined in [28]. The dwarfs and their corresponding instantiations (i.e.,

applications) are shown in Table 4.1. The current OpenDwarfs release provides full coverage of

the dwarfs, including more stable implementations of the Finite State Machine and Backtrack &

Branch and Bound dwarfs. CSR (Sparse Linear Algebra dwarf) and CRC (Combinational Logic

dwarf) have been extended to allow for a wider range of options, including running with varying

work-group sizes or running the main kernel multiple times.

An important departure from previous implementations of OpenDwarfs is related to the uniformity

of optimization level across all dwarfs. More precisely, none of the dwarfs contains optimizations

that would make a specific architecture more favorable than another. Use of shared memory, for

instance, in many of the dwarfs in previous OpenDwarfs releases favored GPU architectures. Also,

work-group sizes should be left to the OpenCL run-time to select for the underlying architecture,

rather than being hard-coded (in which case they may be ideal for a specific architecture, but sub-

optimal for another). Such favoritism limits the scope of a benchmark suite, in that it takes away

from the general suitability of an architecture with respect to the computation and communication

pattern intrinsic to a dwarf and rather focuses attention into very architecture-specific and often

exotic software optimizations. We claim that architectural design should be guided by the dwarfs

on the premise that they form basic, recurring, patterns of computation and communication, and

73

Table 4.1: Dwarf instantiations in OpenDwarfs

Dwarf Dwarf Instantiation
Dense Linear Algebra LUD (LU Decomposition)
Sparse Matrix-Vector Matrix CSR (Compressed Sparse-Row Vector
Multiplication Multiplication)
Graph Traversal BFS (Breadth-First Search)
Spectral Methods FFT (Fast Fourier Transform)
N-body Methods GEM (Electrostatic Surface Potential Calculation)
Structured Grid SRAD (Speckle Reducing Anisotropic Diffusion)
Unstructured Grid CFD (Computational Fluid Dynamics)
Combinational Logic CRC (Cyclic Redundancy Check)
Dynamic Programming NW (Needleman-Wunsch)
Backtrack & Branch and Bound NQ (N-Queens Solver)
Finite State Machine TDM (Temporal Data Mining)
Graphical Models HMM (Hidden Markov Model)
MapReduce StreamMR

that the ensuing architectures following this design approach would be efficient without the need

for the aforementioned optimizations (at least the most complex ones for programmers).

Of course, the above point does not detract from the usefulness of optimized dwarf implementa-

tions for specific architectures that may employ each and every software technique available to

get the most of the current underlying architecture. In fact, we have ourselves been working on

providing such optimized implementations for dwarfs on a wide array of CPUs, GPUs and MIC

(e.g., N-body methods [180]). The open source nature of OpenDwarfs actively encourages the

developers’ community to embrace and contribute to this goal, as well.

In the end, optimized and unoptimized implementations of dwarf benchmarks are complementary

and one would argue essential constituent parts of a complete benchmark suite. We identify three

cases that exemplify why the above is a practical reality:

74

(a) Hardware (CPU, GPU, etc.) vendors are mostly interested in the most optimized implemen-

tation for their device, in order to stress their current device’s capabilities. When designing

a new architecture, however, they need a basic, unoptimized implementation based on the

dwarfs’ concept, so that the workloads are representative of broad categories, on which they

can subsequently build and develop their design in a hardware-software synergistic approach.

(b) Compiler writers also employ both types of implementations: the unoptimized ones to test their

compiler back-end optimizations on and the (manually) optimized ones to compare the efficacy

of such compiler optimizations. Once more, the generality of the benchmarks, being based on

the dwarfs concept, is of fundamental importance in the generality (and hence success) of new

compiler techniques.

(c) Independent parts/organizations (e.g., lists ranking hardware, IT magazines) want a set of

benchmarks that is portable across devices and in which all devices start from the same starting

point (i.e., unoptimized implementations) for fairness in comparisons/rankings.

In order to enhance code uniformity, readability and usability for our benchmark suite, we have

augmented the OpenDwarfs library of common functions. For example, we have introduced more

uniform error checking functionality and messages, while a set of common options can be used

to select and initialize the desired OpenCL device type at run-time. CPU, GPU, Intel Xeon Phi

and FPGA are the currently available choices. Finally, it retains the previous version’s timing

infrastructure. The latter offers custom macro definitions, which record, categorize and print timing

information of the following types: data transfer time (host to device and device to host), kernel

75

execution time, and total execution time. The former two are reported both as an aggregate, and in

its constituent parts (e.g., total kernel execution time, and time per kernel- for multi-kernel dwarf

implementations).

The build system has remained largely the same, except for changes allowing the selection of

the Altera OpenCL SDK for FPGA execution, while a test-run make target allows for installation

verification and execution of the dwarfs using default small test datasets. FPGA support for Altera

FPGAs is offered, but currently limited to two of the dwarfs, due to lack of complete support of

the OpenCL standard by the Altera OpenCL SDK, which requires certain alterations to the code

for successful compilation and full FPGA compatibility [25]. We plan to provide full coverage in

upcoming releases. For completeness in the context of this work we use SOpenCL for full Xilinx

FPGA OpenCL support.

4.1.2 Experimental Setup

This section presents our experimental setup. First, we present the software setup and methodology

used for collecting the results and discuss the hardware used in our experiments.

Software and Experimental Methodology

For benchmarking our target architectures we use OpenDwarfs (as discussed in Section 4.1.1),

available for download at https://github.com/opendwarfs/OpenDwarfs.

76

The CPU/GPU/APU software environment consists of 64-bit Debian Linux 7.0 with kernel version

2.6.37, GCC 4.7.2 and AMD APP SDK 2.8. AMD GPU/APU drivers are AMD Catalyst 13.1. Intel

Xeon Phi is hosted on a CentOS 6.3 environment with the Intel SDK for OpenCL applications

XE 2013. For profiling we use AMD CodeXL 1.3 and Intel Vtune Amplifier XE 2013 for the

CPU/GPU/APU and Intel Xeon Phi, respectively. In Table 4.2 we provide details about the subset

of dwarf applications used and their input datasets and/or parameters. Kernel execution time and

data transfer times are accounted for and measured by use of the corresponding OpenDwarfs timing

infrastructure. In turn, the aforementioned infrastructure lies on the OpenCL events (which return

timing information as a cl ulong type) to provide accurate timing in nanosecond resolution.

Table 4.2: OpenDwarfs benchmark test parameters/inputs

Benchmark Problem Size
GEM Input file & parameters: nucleosome 80 1 0.
NW Two protein sequences of 4096 letters each.
SRAD 2048x2048 FP matrix, 128 iterations.
BFS Graph: 248,730 nodes and 893,003 edges.
CRC Input data-stream: 100MB.
CSR 20482 x 20482 sparse matrix.

Hardware

In order to capture a wide range of parallel architectures, we pick a set of representative device

types: a high-end multi-core CPU (AMD Opteron 6272) and a high-performance discrete GPU

(AMD Radeon HD 7970). An integrated GPU (AMD Radeon HD 6550D) and a low-powered

low-end CPU (A8-3850), both part of a heterogeneous Llano APU system (i.e., CPU and GPU

fused on the same die), as well as a newer generation APU system (Trinity) comprising an A10-

77

5800K and an AMD Radeon HD 7660D integrated GPU. Finally, an Intel Xeon Phi co-processor.

Details for each of the aforementioned architectures are given in Table 4.3.

To evaluate OpenDwarfs on FPGAs, we use the Xilinx Virtex-6 LX760 FPGA on a PCIe v2.1

board, which consumes approximately 50 W and contains 118560 logic slices. Each slice includes

4 LUTs and 8 flip-flops. FPGA clock frequency ranges from 150 to 200 MHz for all designs.

FPGAs can be reconfigured in various ways, leading to a potentially huge design space. We pro-

vide representative alternative hardware implementations with increasing hardware resources for

each dwarf, loop unrolling, where applicable (detailed in Table 4.4). These alternative imple-

mentations indicate the trade-offs between performance and area on the FPGA, and illustrate the

performance scalability with additional hardware (i.e., more accelerator instantiations). Given the

FPGA’s reconfigurable nature, it is important how the SOpenCL tool automates hardware design,

based on the OpenCL code. We discuss such details in more detail in Section 2.2.3. Generating a

lower-performing implementation may appear counter-intuitive, however design restrictions, such

as energy-efficiency and area requirements (often associated with a target device’s cost), may favor

a low-performing implementation over a fast, area- and power-demanding one that may only fit in

a high-end FPGA.

78

Table 4.3: Configuration of the target fixed architectures

Model AMD Opteron AMD Llano AMD Radeon AMD A10- AMD Radeon AMD Radeon Intel Xeon Phi
6272 A8-3850 HD 6550D 5800K HD 7660D HD 7970 P1750

Type CPU CPU* Integr. GPU* CPU* Integr. GPU* Discrete GPU Co-processor
Frequency 2.1 GHz 2.9 GHz 600 MHz 3.8 GHz 800 MHz 925 MHz 1.09 GHz
Cores 16 4 5† 4 6† 32† 61
Threads/core 1 1 5 1 4 4 4
L1/L2/L3 16/2048/ 64/1024/- 8/128/- 64/2048/- 8/128/- 16/768/- 32/512/-
Cache (KB) 8192‡ (per core) (L1 per CU) (per 2 cores) (L1 per CU) (L1 per CU) (per core)
SIMD (SP) 4-way 4-way 16-way 8-way 16-way 16-way 16-way
Process 32nm 32nm 32nm 32nm 32nm 32nm 22nm
TDP 115W 100W* 100W* 100W* 100W* 210W 300W
GFLOPS (SP) 134.4 46.4 480 121.6 614.4 3790 2092.8
† Compute Units (CU) ‡ L1: 16KBx16 data shared, L2: 2MBx8 shared, L3: 8MBx2 shared *

CPU and GPU fused on the same die, total TDP

Table 4.4: FPGA implementations details

GEM
FPGA A(1) Single accelerator
FPGA A(1) LU Single accelerator, 4-way inner loop unrolling
FPGA A(12) LU Multiple accelerators (12), 4-way inner loop unrolling

NW
FPGA A(1) Single accelerator per OpenCL kernel
FPGA A(5) LU Multiple accelerators (5) per OpenCL kernel,

fully unrolled inner loop
SRAD

FPGA A(1) Single accelerator per OpenCL kernel
FPGA A(5) LU Multiple accelerators (5) per OpenCL kernel,

fully unrolled inner loop
BFS

FPGA A(1) Single accelerator per OpenCL kernel
CRC

FPGA A(1) Single accelerator
FPGA A(20) Multiple accelerators (20)
FPGA A(20) DP Multiple accelerators (20), enhanced data

partitioning across BRAMs
CSR

FPGA A(1) Single accelerator
FPGA A(1) LU Single accelerator, fully unrolled inner loop

79

4.1.3 Results

Here we present our results of running a representative subset of the dwarfs on a wide array of

parallel architectures. After we verify functional portability across all platforms, including the

FPGA, we characterize the dwarfs and illustrate their utility in guiding architectural innovation,

which is one of the main premises of the OpenDwarfs benchmark suite.

N-body Methods: GEM

The n-body class of algorithms refers to those algorithms that are characterized by all-to-all com-

putations within a set of particles (bodies). In the case of GEM, our n-body application, the elec-

trostatic surface potential of a biomolecule is calculated as the sum of charges contributed by all

atoms in the biomolecule due to their interaction with a specific surface vertex (two sets of bodies).

Listing 4.1 presents the pseudo-code for GEM: for each vertex near the biomolecule surface, all

atoms contribute a certain amount of electrostatic potential that is added to the running total.

t o t a l p o t e n t i a l = 0

f o r i = 0 to n u m o f v e r t i c e s

f o r j = 0 to num of a toms

C a l c u l a t e e l e c t r o s t a t i c p o t e n t i a l k between v e r t e x (i) , atom (j)

t o t a l p o t e n t i a l += k

end f o r

end f o r

re turn t o t a l p o t e n t i a l

Listing 4.1: GEM algorithm

80

…
	

W
or
kg
ro
up

	 0
	

…
	

0	

1	

2	

3	

N	

BLOCKS=120;	
blockDimX=blockDimY=64;	 //example	 values	
globalWorkSize[2]={blockDimX*blockDimY,	 BLOCKS};	
localWorkSize[2]={blockDimX*blockDimY,	 1);	
for(i=0;	 i<n_verTces;	 i+=(blockDimX*blockDimY)*BLOCKS){	

	 kernel();	
}	

vertex_num=getGlobalVertexNumber();	
for(i=0;	 i<num_atoms;	 i++){	

	 total_ESP[vertex_num]+=electrostaTc	 potenTal	 	
	 contribuTon	 from	 interacTon	 of	 vertex[vertex_num]	 	
	 and	 atom[i]	

}	

VerTces	 Atoms	

0	

…
	

4195	

1	

W
or
kg
ro
up

	 1
19
	

0	

…
	

4195	

1	

…
	

Host	 code:	

Kernel:	

Figure 4.1: Parallel OpenCL implementation of GEM

In Figure 4.1 we illustrate the computation pattern of GEM and present the parallel implementation

using OpenCL (host and device parts of the code). Each work-item accumulates the potential at a

single vertex due to every atom in the biomolecule. A number of work-groups (BLOCKS=120 in

our example) each having blockDimX*blockDimY work-items (4096 in our example) is launched,

until all vertices’ potential has been calculated.

GEM’s computation pattern is regular, in that the same amount of computation is performed by

each work-item in a work-group and no dependencies hinder computation continuity. Total ex-

ecution time mainly depends on the maximum computation throughput. Computation itself is

characterized by floating point (FP) arithmetic, including (typically expensive) division and square

root operations that constitute one of the main bottlenecks. Special hardware can provide low la-

tency alternatives of these operations, albeit at the cost of minor accuracy loss that may or may

81

not be acceptable for certain types of applications. Such fast math implementations are featured in

many architectures and typically utilize look-up tables for fast calculations.

With respect to data accesses, atom data is accessed in a serial pattern, simultaneously by all

work-items. This facilitates efficient utilization of cache memories available in each architecture.

Figure 4.2 and Table 4.3 can assist in pinpointing which architectural features are important for

satisfactory GEM performance: good FP performance and sufficient first-level cache. With respect

to the former, the Opteron 6272 and A10-5800K CPUs reach about 130 GFLOPS and A8-3850

falls behind by a factor of 2.9, as defined by their number of cores, SIMD capability and core

frequency. However, the cache hierarchy between the three CPU architectures is fundamentally

different. The Opteron 6272 has 16K of L1 cache per core, which is shared among all 16 cores.

Given the computation and communication pattern of n-body dwarfs, such types of caches may be

an efficient choice. Cache miss rates at this level (L1) are also indicative of the fact. For example,

A8-3850 with 64KB of dedicated L1 cache per core is characterized by a 0.55% L1 cache miss

rate, with Opteron 6272 at 10.2% and A10-5800K a higher 24.25%. Those data accesses that result

in L1 cache misses are mostly served by L2 cache and rarely require expensive RAM memory

accesses. Measured L2 cache miss rates are 4.5%, 0.18% and 0%, respectively, reflecting the L2

cache capability of the respective platforms (Table 4.3). Of course, the absolute number of accesses

to L2 cache, depend on the previous level’s cache misses, so a smaller percentage on a platform

tells only part of the story if we plan to compare different platforms to each other. In cases where

data accesses follow a predictable pattern, like in GEM, specialized hardware can predict what

data is going to be needed and fetch it ahead of time. Such hardware prefetch units are available

82

0	

100000	

200000	

300000	

400000	

500000	

600000	

700000	

O
pt
er
on

	6
27
2	

A8
-3
85
0	

A1
0-
58
00
K	

HD
	6
55
0D

	

HD
	7
97
0	

HD
	7
66
0D

	

Xe
on

	P
hi
	P
17
50
	

FP
GA

_A
(1
)	

FP
GA

_A
(1
)_
LU

	

FP
GA

_A
(1
2)
_L
U
	

Ex
ec
u&

no
n	
&m

e	
(in

	m
se
c.
)	

gem_kernel	

Data	transfer	

0	

5000	

10000	

Figure 4.2: GEM performance results

– and of advanced maturity – in multi-core CPUs. This proactive loading of data can take place

between the main memory and last level cache (LLC) or between different cache levels. In all

three CPU platforms, a large number of prefetch instructions is emitted, as seen through profiling

the appropriate counter, which, together with the regular data access patterns, verify the overall

low L1 cache miss rates mentioned earlier.

Xeon Phi’s execution is characterized by high vectorization intensity or the ratio of vector pro-

cessing unit (VPU) elements active to the number of VPU instructions executed (12.84, the ideal

being 16), which results from regular data access patterns and implies efficient auto-vectorization

on behalf of the Intel OpenCL compiler and its implicit vectorization module. However, profiling

reveals that the estimated latency impact is high indicating that the majority of L1 misses result

in misses in L2 cache, too. This signifies the need for optimizations such as data reorganization

83

and blocking for L2 cache or the introduction of a more advanced hardware prefetch unit in future

Xeon Phi editions – currently there is lack of automatic (i.e., hardware) prefetching to L1 cache

(only main memory to L2 cache prefetching is supported). Further enhancement of the ring in-

terconnect that allows efficient sharing of the dedicated (per core) L2 cache contents across cores

would also assist in attaining better performance for the n-body dwarf. While Xeon Phi, lying

between the multi-core CPU and many-core GPU paradigms, achieves good overall performance

for this unoptimized and architecture agnostic code implementation, it falls behind its theoretical

maximum performance of nearly 2 TFLOPS.

With respect to GPU performance, raw FP performance is one of the deciding factors as well.

As a result, the HD 7970 performs the best and is characterized by the best occupancy (70%),

compared to 57.14% and 37.5% for HD 7660D and HD 6550D, respectively. In all three cases,

cache hit rates are over 97% (reaching 99.96% for HD 7970, corroborating that our conclusions for

the CPU cache architectures hold for GPUs, too, for this class of applications (i.e, n-body dwarf).

Correspondingly, the measured percentage of memory unit stalls is held at low levels. In fact, the

memory unit is kept busy for over 76% of the time for all three GPU architectures, including all

extra fetches and writes and taking any cache or memory effects into account.

Although FPGAs are not made for FP performance, SOpenCL produces accelerators whose perfor-

mance lies between that of CPUs and GPUs. SOpenCL instantiates modules for single-precision

FP operations, such as division and square root. Partially unrolling the outer loop executed by

each thread four times results in nearly 4-fold speed-up (FPGA A(1) LU) compared to the base

84

accelerator configuration (FPGA A(1)). Multiple accelerators can be instantiated and process in

parallel different vertices on the grid, thus providing even higher speed-up (FPGA A(12) LU).

Dynamic Programming: Needleman-Wunsch (NW)

Dynamic programming is a programming method in which a complex problem is solved by de-

composition into smaller subproblems. Combining the solutions to the subproblems provides the

solution to the original problem. Our dynamic programming dwarf, Needleman-Wunsch, performs

protein sequence alignment, i.e., identification of the similarity level between two given strings of

amino acids. Listing 4.2 presents the NW algorithm: the potential pairs of sequences are organized

in a 2D matrix M. The first step of the algorithm, on which we focus in this problem, is concerned

with filling the 2D matrix M with scores, from the top left to the bottom right, in a step-wise man-

ner. The first row and column are initialized as shown in the pseudo-code. Subsequently, each

elements score in the 2D matrix depends on the values of its northwest, west, and north neigh-

bors and in whether a match, insertion, or deletion operation yields the higher score. S[i,j] is the

substitution matrix that contains the score of the aminoacids in the (i, j) position, as given from a

pre-defined similarity/substitution matrix S.

85

Read two s e q u e n c e s A, B

Read s u b s t i t u t i o n m a t r i x S

f o r i = 0 to l e n g t h (A)

M[i , 0] = i ∗ g a p p e n a l t y

end f o r

f o r j = 0 to l e n g t h (B)

M[0 , j] = j ∗ g a p p e n a l t y

end f o r

f o r i = 1 to l e n g t h (A)

f o r j = 1 to l e n g t h (B)

M a t c h s c o r e = M[i − 1 , j − 1] + S [Ai , Bj]

I n s e r t i o n s c o r e = M[i − 1 , j] + g a p p e n a l t y

D e l e t i o n s c o r e = M[i , j − 1] + g a p p e n a l t y

M[i , j] = max (Match sco re , I n s e r t i o n s c o r e , D e l e t i o n s c o r e)

end f o r

end f o r

Listing 4.2: NW algorithm

Figure 4.3 illustrates its computation pattern and two levels of parallelism, along with the OpenCL

parallel mapping of the algorithm. Each element of the 2D matrix depends on the values of its west,

north and northwest neighbors. This set of dependencies limits available parallelism and enforces

a wavefront computation pattern. On the first level, blocks of computation (i.e., OpenCL work-

groups) are launched across the anti-diagonal and on the second level, each of the work-group’s

work-items works on cells on each anti-diagonal. Available parallelism at each stage is variable,

starting with a single work-group, increasing as we reach the main anti-diagonal and decreasing

again as we reach the bottom right. Parallelism varies within each work-group in a similar way,

as shown in the respective figure, where a variable number of work-items work independently

in parallel at each anti-diagonal’s level. Needleman-Wunsch algorithm imposes significant syn-

86

i=1	 i=2	 i=3	 i=4	

i=2	 i=3	 i=4	 j=3	

i=3	 i=4	 j=3	 j=2	

i=4	 j=3	 j=2	 j=1	

0	 3	 15	 7	 11	

3	

7	

11	

15	

m=0	
tx=0	

m=1	
tx=1	

m=2	
tx=2	

m=3	
tx=3	

m=1	
tx=0	

m=2	
tx=1	

m=3	
tx=2	

n=2	
tx=2	

m=2	
tx=0	

m=3	
tx=1	

n=2	
tx=1	

n=1	
tx=1	

m=3	
tx=0	

n=2	
tx=0	

n=1	
tx=0	

n=0	
tx=0	

0	 1	 2	 3	

0	

1	

2	

3	

for(i=1;	 i<=block_width;	 i++){	
	 globalWorkSize[0]=i*localWorkSize[0];	
	 globalWorkSize[1]=1*localWorkSize[1];	
	 Kernel();	

}	
for(j=block_width-‐1;	 i>=1;	 j-‐-‐){	

	 globalWorkSize[0]=i*localWorkSize[0];	
	 globalWorkSize[1]=1*localWorkSize[1];	
	 Kernel();	

}	
	

tx=getLocalId();	
for(m=0;	 m<BLOCK_SIZE;	 m++){	

	 if(tx<=m)	 calculate	 cell;	
	 barrier();	

}	
for(n=BLOCK_SIZE-‐2;	 n>=0;	 n-‐-‐){	

	 if(tx<=n)	 calculate	 cell;	
	 barrier();	

}	

Kernel:	

Host	 code:	

Figure 4.3: Parallel OpenCL implementation of Needleman-Wunsch

chronization overhead (repetitive barrier invocation within the kernel) and requires modest integer

performance. Computations for each 2D matrix cell entail calculating an alignment score that de-

pends on the three neighboring entries (west, north, northwest) and a max operation (i.e., nested if

statements).

In algorithms like NW that are characterized by inter- and intra-work-group dependencies there are

two big considerations. First, the overhead for repetitively launching a kernel (corresponding to

inter-work-group synchronization), and second, the cost of the intra- work-group synchronization

via barrier() or any other synchronization primitives. Introducing system-wide (hardware) barriers

would help to solve the former of the problems, while optimization of already existing intra-work-

87

group synchronization primitives would be beneficial for this kind of applications for the latter

case.

Memory accesses follow the same pattern as computation, i.e., for each element the west, north

and northwest elements are loaded from the reference matrix. For each anti-diagonal m within a

work-group (Figure 4.3), the updated data from anti-diagonal m-1 is used.

Figure 4.4 shows the performance results for NW. As we can observe, GPUs do not perform

considerably better than the CPUs. In fact, the Opteron 6272 surpasses all GPUs (and even Xeon

Phi), when we only take kernel execution time into account. What needs to be emphasized in the

case of algorithms, such as NW, is the variability in the characteristics of each kernel iteration. In

Figure 4.5 we observe such variability for metrics like the percentage of the time the arithmetic

and logical unit (ALU) is busy, the cache hit rate, and the percentage of time the fetch unit is busy

or stalled, on the HD 7660D. Similar behavior is observed in the case of the HD 6550D. Most of

these metrics can be observed to be a function of the number of active wavefronts in every kernel

launch. For instance, the cache hit rate follows an inverse-U-shaped curve, as do most of the

aforementioned metrics. In both cases, occupancy is below 40% (25% for HD 6550D) and ALU

packing efficiency barely reaches 50%, which indicates a mediocre job on behalf of the shader

compiler in packing scalar and vector instructions as VLIW instructions of the Llano and Trinity

integrated GPUs (i.e., HD 6550D and HD 7660D).

As expected, the FPGA performs the best when it comes to integer code, in which case, its perfor-

mance lies closer to GPUs than to CPUs. Multiple accelerators (five pairs) and fully unrolling the

innermost loop deliver higher performance (FPGA A(5) LU) than a single pair (FPGA A(1)) and

88

0	

100	

200	

300	

400	

500	

600	

700	

800	

900	

O
pt
er
on

	6
27
2	

A8
-3
85
0	

A1
0-
58
00
K	

HD
	6
55
0D

	

HD
	7
97
0	

HD
	7
66
0D

	

Xe
on

	P
hi
	

P1
75
0	

FP
GA

_A
(1
)	

FP
GA

_A
(5
)_
LU

	

Ex
ec
u&

on
	&
m
e	
(in

	m
se
c.
)	 nw2_kernel	

nw1_kernel	

Data	transfer	

Figure 4.4: NW performance results

0	

5	

10	

15	

20	

25	

30	

35	

40	

45	

1	 18
	

35
	

52
	

69
	

86
	

10
3	

12
0	

13
7	

15
4	

17
1	

18
8	

20
5	

22
2	

23
9	

25
6	

23
9	

22
2	

20
5	

18
8	

17
1	

15
4	

13
7	

12
0	

10
3	 86
	

69
	

52
	

35
	

18
	 1	

Pe
rc
en

ta
ge
	

Number	 of	 wavefronts	

	 ALUBusy	

	 CacheHit	

	 FetchUnitBusy	

	 FetchUnitStalled	

Figure 4.5: NW profiling on HD 7660D

89

render the FPGA implementation the fastest choice for the dynamic programming dwarf. In the

FPGA implementation of NW, the pattern of data fetches favors decoupling of the compute path

from the data fetch & fetch address generation unit, as well as from the data store & store address

generation unit. This allows aggressive data prefetching in buffers ahead of the time of the actual

data requests.

Structured Grids: Speckle Reducing Anisotropic Diffusion (SRAD)

Structured grids refers to those algorithms in which computation proceeds as a series of grid up-

date steps. It constitutes a separate class of algorithms from unstructured grids, in that the data

is arranged in a regular grid of two or more dimensions (typically two-dimensional or three-

dimensional). SRAD is a structured grid application that attempts to eliminate speckles (i.e., lo-

cally correlated noise) from images, following a partial differential equation approach. Listing 4.3

presents the SRAD algorithm: it consists of two passes over a 2D image (structured grid). The first

pass calculates the diffusion coefficient for each pixel of the image. The second pass updates the

image using (among others) the diffusion coefficients that correspond to the neighboring pixels.

Figure 4.6 presents a high-level overview of the parallel mapping (using OpenCL) of the SRAD

algorithm, without getting into the specific details (parameters, etc.) of the method, and Fig-

ure 4.7 shows the performance results. Performance is determined by FP compute power. The

computational pattern is characterized by a mix of FP calculations including divisions, addi-

tions and multiplications. Many of the computations in both SRAD kernels are in the form:

x = a ∗ b + c ∗ d + e ∗ f + g ∗ e. These computations can easily be transformed by the com-

90

piler to multiply-and-add operations. In such cases, special fused multiply-and-add units can offer

a faster alternative to the typical series of separate multiplication and addition. While such units

are already existent, more instances can be beneficial for the structured grids dwarf.

Read image I [num rows , num cols]

J [num rows , num cols] = exp (I [num rows , num cols])

f o r i = 0 to num rows

f o r j = 0 to num cols

dN [i] [j] = J [i − 1] [j] − J [i] [j]

dS [i] [j] = J [i + 1] [j] − J [i] [j]

dW[i] [j] = J [i] [j − 1] − J [i] [j]

dE [i] [j] = J [i] [j + 1] − j [i] [j]

C a l c u l a t e v a r i o u s p a r a m e t e r s a s f u n c t i o n o f t h e above

C a l c u l a t e d i f f u s i o n c o e f f i c i e n t c [i] [j] a s f u n c t i o n o f t h e above

end f o r

end f o r

f o r i = 0 to num rows

f o r j = 0 to num cols

cN = c [i − 1] [j]

cS = c [i + 1] [j]

cW = c [i] [j − 1]

cE = c [i] [j + 1]

D = cN ∗ dN [i] [j] + cS ∗ dS [i] [j] +

cW ∗ dW[i] [j] + cE ∗ dE [i] [j]

J [i] [j] = J [i] [j] + 0 . 2 5 ∗ lambda ∗ D

end f o r

end f o r

Listing 4.3: SRAD algorithm

A series of if statements (simple in kernel1, nested in kernel2) handles boundary conditions and

different branches are taken by different work-items, potentially within the same work-group.

91

Loop	 for	 iter	 number	 of	 itera/ons{	
	 calculate	 sta/s/cs	 for	 the	 region	 of	 interest 	 	
	 blockX=columns/BLOCK_SIZE;	
	 blockY=rows/BLOCK_SIZE;	
	 localWorkSize[2]={BLOCK_SIZE,	 BLOCK_SIZE};	
	 globalWorkSize[2]={blockX*localWorkSize[0],	
	 	 	 	 	 	 	 	 	 	 blockY*localWorkSize[1]};	
	 kernel1();	
	 kernel2();	

}	

(Each	 work-‐item	 (i,j)	 works	 on	 a	 2D	 table	 element)	
dN[i][j]=J[north][j]-‐J[i][j];	
dS[i][j]=J[south][j]-‐J[i][j];	
dW[i][j]=J[i][west]-‐J[i][j];	
dE[i][j]=J[i][east]-‐J[i][j];	
Calculate	 various	 parameters	 based	 above	 	
values	 &	 ini/al	 J[i][[j]	 value;	
Using	 the	 above	 value,	 calculate	 diffusion	 	
coefficient	 c[i][j];	

(Each	 work-‐item	 (i,j)	 works	 on	 a	 2D	 table	 element)	
cN=c[i][j];	
cS=c[north][j];	
cW=c[i][j];	
cE=c[i][east];	
D=cN*dN[i][j]+cS*dS[i][j]+cW*dW[i][j]+cE*dE[i][j];	
J[i][j]=J[i][j]+0.25*lambda*D;	

Host	 code:	

Kernel1:	

Kernel2:	

Figure 4.6: Parallel OpenCL implementation of SRAD

92

0	

10000	

20000	

30000	

40000	

50000	

60000	

70000	

80000	

90000	

100000	

O
pt
er
on

	6
27
2	

A8
-3
85
0	

A1
0-
58
00
K	

HD
	6
55
0D

	

HD
	7
97
0	

HD
	7
66
0D

	

Xe
on

	P
hi
	P
17
50
	

FP
GA

_A
(1
)	

FP
GA

_A
(5
)_
LU

	

Ex
ec
u&

on
	&
m
e	
(in

	m
se
c.
)	

srad_kernel2	

srad_kernel1	

Data	transfer	

0	

2000	

4000	

6000	

Figure 4.7: SRAD performance results

Since boundaries constitute only a small part of the execution profile, especially for large datasets,

these branches do not introduce significant divergence. In the case of CPU and Xeon Phi exe-

cution, branch misprediction rate never exceeded 1%, while on the GPUs vector ALU utilization

(VALUUtilization) remained above 86% indicating a high number of active vector ALU threads in

a wave and consequently minimal branch divergence and code serialization.

Following its computational pattern, memory access patterns in SRAD, as in all kinds of sten-

cil computation, are localized and statically determined, an attribute that favors data parallelism.

Although the data access pattern is a priori known, non-consecutive data accesses prohibit ideal

caching. As in the NW case, where data is accessed in a non-linear pattern, data locality is an

issue here, too. Cache hit rates, especially for the GPUs, remain low (e.g., 33% for HD 7970).

This leads to the memory unit being stalled for a large percentage of the execution time (e.g., 45%

93

and 29% on average for HD 7970, for the two OpenCL kernels – srad kernel1 and srad kernel2).

Correspondingly, the vector and scalar ALU instruction units are busy for a small percentage of

the total GPU execution time (about 21% and 5.6% for our example, on the two kernels on HD

7970). All this is highlighted by comparing performance across the three GPUs, and once more,

indicates the need for advancements in the memory technology that would make fast, large caches

more affordable for computer architects.

On the CPU and Xeon Phi side, large cache lines can afford to host more than one row of the

2D input data (depending on the input sequences’ sizes). The huge L3 cache of the Opteron

6272, along with its high core count, make it very efficient in executing this structured grid dwarf.

In such algorithms, the balance between cache and compute power distinguishes a good target

architecture. Of course, depending on the input data set there are obvious trade-offs, as in the case

of GPUs, which despite their poor cache performance are able to hide the latency by performing

more computation simultaneously while waiting for the data to be available.

An FPGA implementation with a single pair of accelerators (one accelerator for each OpenCL

kernel) offers performance worse even than that of the single-threaded Opteron 6272 execution

(FPGA A(1)). This is attributed mainly to the complex FP operations FPGAs are notoriously

inefficient at. Multiple instances of these pairs of accelerators (five pairs in FPGA A(5) LU) can

process parts of the grid independently, bringing FPGA performance close to that of multicore

CPUs. Different work-groups access separate portions of memory, hence multiple accelerators

instances access different on-chip memories, keeping accelerators isolated and self-contained.

94

Graph Traversal: Breadth-First Search (BFS)

Graph traversal algorithms entail traversing a number of graph nodes and examining their charac-

teristics. As a graph traversal application, we select a BFS implementation. Listing 4.4 presents

the BFS algorithm. The algorithm start from the root node and visit all the immediate neighbors.

Subsequently, for each of these neighbors the corresponding (unvisited) neighbors are inspected.

The whole process is repeated until the whole graph is traversed.

Mark a l l nodes as ” n o t v i s i t e d ”

I n i t i a l i z e empty queue Q

Q. enqueue (s t a r t node)

whi le (Q i s n o t empty)

c u r n o d e = Q. dequeue ()

i f (c u r n o d e has n o t been v i s i t e d)

v i s i t e d [c u r n o d e] = t r u e

f o r (a l l edges <cu r node , ne ighbo r >)

i f (n e i g h b o r has n o t been v i s i t e d)

Q. enqueue (n e i g h b o r)

end i f

end f o r

end i f

end whi l e

Listing 4.4: BFS algorithm

BFS’s computation pattern can be observed through a simple example (Figure 4.9), along with its

parallel OpenCL implementation (host and device side code) in Figure 4.8. The BFS algorithm’s

computation pattern is characterized by an imbalanced workload per kernel launch that depends on

the sum of the degrees deg(vi) of the nodes at each level. For example (Figure 4.9), deg(v0)=3, so

95

0"

5" 6"

1" 3"2"

4"

)d=getGlobalId();"
if()d<numNodes"and"node_as_source[)d]==1){"

"node_as_source[)d]=0;;"
"for"(all"neighbors"neighb[i]"of"current"node)"
" "if(!node_visited[neighb[i]]){"
" " "cost[neighb[i]]=cost[)d]+1;"
" " "update_node_info[neighb[i]]=1;"
" "} " ""

}"

)d=getGlobalId();"
if()d<numNodes"and""
update_node_info==1){"

"node_as_source[)d]=1;"
"mark"node_visited[)d]=1;"
"update_node_info[)d]=0;"
"stop=0;"

}"

maxThreads=numNodes"<"maxThreads?numNodes":"maxThreads;"
globalWorkSize=(numNodes/maxThreads)*maxThreads+'

" " "((numNodes%maxThreads)==0?0:maxThreads);"
localWorkSize=max_threads;"
node_as_source[]={1,0,0,0,0,0,0};""
node_visited[]={1,0,0,0,0,0,0};"
update_node_info[]={0,0,0,0,0,0,0};""
cost[]={0,0,0,0,0,0,0};"
"Iter.' Kernel' Thread'id'(8d)'

0" 1" 2" 3" 4" 5" 6"

1" kernel1" �" � � � � � �
1" kernel2" � � � � � � �
2" kernel1" � � � � � � �
2" kernel2" � � � � �" �" �

3" kernel1" � � � � �" �" �

4" kernel2" � � � � � � �

Kernel1:' Kernel2:'

do{"
"stop=1;"
"kernel1();"
"kernel2();"

}while(stop==0);"

Host'code:'

Figure 4.8: Parallel OpenCL implementation of BFS

only three work-items perform actual work in the first invocation of kernel2. Subsequently, kernel1

has three work-items, as well. Second invocation of kernel2 performs work on three nodes again

(deg(v1) + deg(v2) + deg(v3) = 8, but nodes v0, v1, v2 have already been visited, so effective deg(v1)

+ deg(v2) + deg(v3) = 3). Computation itself is negligible, being reduced to a simple addition with

respect to each node’s cost.

In Figure 4.10 we show the results obtained by executing BFS across our test platforms. The way

the algorithm works might lead to erroneous conclusions, if only occupancy and ALU utilization

is taken into account, as in all three GPU cases it is over 95% and 88%, respectively (for both

kernels). The problem lies in the fact that not all work-items perform useful work, and the fact

that the kernels are characterized by reduced compute intensity (Figure 4.9). In such cases, up to

96

0"

5" 6"

1" 3"2"

4"

)d=getGlobalId();"
if()d<numNodes"and"node_as_source[)d]==1){"

"node_as_source[)d]=0;;"
"for"(all"neighbors"neighb[i]"of"current"node)"
" "if(!node_visited[neighb[i]]){"
" " "cost[neighb[i]]=cost[)d]+1;"
" " "update_node_info[neighb[i]]=1;"
" "} " ""

}"

)d=getGlobalId();"
if()d<numNodes"and""
update_node_info==1){"

"node_as_source[)d]=1;"
"mark"node_visited[)d]=1;"
"update_node_info[)d]=0;"
"stop=0;"

}"

maxThreads=numNodes"<"maxThreads?numNodes":"maxThreads;"
globalWorkSize=(numNodes/maxThreads)*maxThreads+'

" " "((numNodes%maxThreads)==0?0:maxThreads);"
localWorkSize=max_threads;"
node_as_source[]={1,0,0,0,0,0,0};""
node_visited[]={1,0,0,0,0,0,0};"
update_node_info[]={0,0,0,0,0,0,0};""
cost[]={0,0,0,0,0,0,0};"
"Iter.' Kernel' Thread'id'(8d)'

0" 1" 2" 3" 4" 5" 6"

1" kernel1" �" � � � � � �
1" kernel2" � � � � � � �
2" kernel1" � � � � � � �
2" kernel2" � � � � �" �" �

3" kernel1" � � � � �" �" �

4" kernel2" � � � � � � �

Kernel1:' Kernel2:'

do{"
"stop=1;"
"kernel1();"
"kernel2();"

}while(stop==0);"

Host'code:'

Figure 4.9: Example that shows load imbalance of BFS

a certain degree of problem size or for certain problem shapes, the number of compute units or

frequency are not of paramount importance and high-end cards, like HD 7970 are about as fast

as an integrated GPU (e.g., HD 7660D). The above is highlighted by the hardware performance

counters that indicate poor ALU packing (e.g., 36.1% and 38.9% for the two BFS OpenCL kernels,

on HD 7660D). Similarly, for HD 7970, the vector ALU is busy only for 5% (approximate value

across kernel iterations) of the GPU execution time, even if the number of active vector ALU

threads in the wave is high (VALUUtilization: 88.8%).

For similar reasons, CPU execution performance is capped on Opteron 6272, which performs only

marginally better than A8-3850. It is interesting to see that A10-5800K and even Xeon Phi, with

97

0	

100	

200	

300	

400	

500	

600	

700	

800	

O
pt
er
on

	6
27
2	

A8
-3
85
0	

A1
0-
58
00
K	

HD
	6
55
0D

	

HD
	7
97
0	

HD
	7
66
0D

	

Xe
on

	P
hi
	

P1
75
0	

FP
GA

_A
(1
)	

Ex
ec
u&

on
	&
m
e	
(in

	m
se
c.
)	 bfs_kernel2	

bfs_kernel1	

Data	transfer	

Figure 4.10: BFS performance results

8- and 16-way SIMD are characterized by lack of performance scalability. Why performance of

A10-5800K is not at least similar to that of A8-3850 could not be pinpointed during profiling.

However, in both A10-5800K and Xeon Phi cases, we found that the OpenCL compiler could

not take advantage of the 256- and 512-bit wide vector unit, because of the very nature of graph

traversal.

With respect to data accesses, BFS exhibits irregular access patterns. Each work-item accesses

discontiguous memory locations, depending on the connectivity properties of the graph, i.e, how

nodes of the current level being inspected are being connected to other nodes in the graph. Fig-

ure 4.9 is not only indicative of the resource utilization (work-items doing useful work), but of

the inherent irregularity of memory accesses that depend on run-time assessed multiple levels of

indirection, as well. Available caches’ size define the cache hit rate, even in these cases, so HD

98

0	

2	

4	

6	

8	

10	

12	

14	

1	 34
	

67
	

10
0	

13
3	

16
6	

19
9	

23
2	

26
5	

29
8	

33
1	

36
4	

39
7	

43
0	

46
3	

49
6	

52
9	

56
2	

59
5	

62
8	

66
1	

69
4	

72
7	

76
0	

79
3	

Ca
ch
e	
hi
t	 r
at
e	
(%

)	

Kernel	 launch	 sequence	

HD7970_bfs_Kernel1	

HD7660D_bfs_Kernel1	

HD7970_bfs_Kernel2	

HD7660D_bfs_Kernel2	

Figure 4.11: BFS cache performance comparison between HD 7970 and HD 7660D

7970, which provides larger amounts of cache memory provides higher cache hit rates compared

to the HD 7660D (varying for each kernel iteration, Figure 4.11).

The FPGA implementation of BFS (FPGA A(1)) is the fastest across all tested platforms. While

kernel1 is not as fast as in the fastest of our GPU platforms, minimal execution time for kernel2

and data transfer time render it the ideal platform for graph traversal, despite the irregular, dy-

namic memory access pattern (which causes the input streaming unit to be merged with the data

path, eliminating the possibility of aggressive data prefetching). In the SOpenCL-produced FPGA

implementation, data for the graph nodes and edges is stored in the on-chip FPGA BRAMs, which

are characterized by very fast (single-cycle) latency. By generating multiple memory addresses

in every clock cycle, graph nodes can be accessed with minimal latency (provided there are no

conflicts to the same BRAM) contributing to overall faster execution times.

99

Combinational Logic - Cyclic Redundancy Check (CRC)

Cyclic Redundancy Check (CRC) is an error-detecting code designed to detect data errors (e.g.,

during to network transmission). A polynomial division by a predetermined CRC polynomial is

performed on the input data stream and the division remainder constitutes the stream’s CRC value.

This value is typically added to the end of the transmitted data stream. At the receiver end, a

division of the augmented data stream with the (same, pre-determined) polynomial, will yield zero

remainder on successful transmission. CRC algorithms that perform at the bit level are rather

inefficient and many optimizations have been proposed that operate in larger units, namely 8, 16

or 32 bits. Listing 4.5 presents the basic CRC algorithm working on an 8-bit granularity.

P o l y n o m i a l = 0xEDB88320

l e n g t h = l e n g t h o f message (i n b y t e s)

prevCRC32 = 0

c r c = prevCRC32 XOR 0xFFFFFFFF

whi le (r e m a i n i n g b y t e s i n message)

c r c = c r c XOR c u r r e n t b y t e o f message

f o r (j = 0 to 8)

i f (c r c & 1)

c r c = (c r c >> 1) XOR P o l y n o m i a l

e l s e

c r c = c r c >> 1

end i f

end f o r

end whi l e

re turn ˜ c r c

Listing 4.5: CRC algorithm

100

The implementation in OpenDwarfs follows a byte-based table-driven approach, where the values

of the look-up table can be computed ahead of time and reused for CRC computations. The al-

gorithm we use exploits a multi-level look-up table structure that eliminates the existence of an

additional loop, thereby trading-off on-the-fly computation with the need for pre-computation and

additional storage. Figure 4.12 shows the parallel OpenCL mapping of CRC and provides a small,

yet illustrative example of how the algorithm is implemented in parallel in OpenCL: the input data

stream is split in byte-chunked sizes and each OpenCL work-item in a work-group is responsible

for performing computation on this particular byte. The final CRC value is computed on the host

once all partial results have been computed in the device. Figure 4.13 supplements Figure 4.12 by

illustrating how multi-level look-up tables used in the kernel work and their specific values for the

example at hand.

Figure 4.14 shows the CRC performance results. CRC, being a representative application of com-

binational logic algorithms is characterized by abundance of simple logic operations and data par-

allelism at the byte granularity. Such operations are fast in most architectures, and can be typically

implemented as minimal-latency instructions, in comparison to complex instructions (like floating

point division) that are split across multiple stages in modern superscalar architectures and intro-

duce a slew of complex dependencies. Given the computational pattern of the CRC algorithm at

hand, which is highly parallel, we are not surprized to observe high speed-ups for multi-threaded

execution, in all platforms. For instance, in the Opteron 6272 CPU case, we observe a 12.2-fold

speed-up over the single-threaded execution. Similarly, Xeon Phi execution for the OpenCL kernel

reaches maximum hardware thread utilization, according to our profiling results. The integrated

101

Host	 code:	
localWorkSize=getMaxWorkitemsPerWorkgroup();	
globalWorkSize=N_bytes/localWorkSize-‐N_bytes%localWorkSize;	
Kernel();	 	
for(i=0;	 i<N_bytes;i++){	

	 crc=crc^crc_loc[i];	 //crc_loc[]	 contains	 crc	 for	 byte	 i,	 	
	 	 	 	 //calculated	 on	 the	 device.	

}	

Kernel:	

Qd=getGlobalId();	
If(Qd<N_bytes){	

	 tmp=in_stream_byte[Qd];	
val=N_bytes-‐Qd;	
for(i=0;	 i<numTables;	 i++){ 	 	

	 if((val>>i)%2==1){	
	 tmp=table[i][tmp] 	 	

} 	 	
}	
crc_loc[Qd]=tmp;	

}	

Work-‐item	 0	
Qd=0	
tmp=00001011(=11)	
val=2-‐0=2	
i=0:	 (condiQon	 false)	
i=1:	 tmp=table[1][11]	
crc_loc[0]=tmp;	

Work-‐item	 1	
Qd=1	
tmp=00000011(=3)	
val=2-‐1=1	
i=0:	 tmp=table[0][3]	
i=1:	 (condiQon	 false)	
crc_loc[1]=tmp;	

S	 =	 0000101100000011	
in_stream_byte[]	 =	 	
{00001011,	 00000011}	

Example:	

Figure 4.12: Parallel OpenCL implementation of CRC and example

GPUs in our experiments, which belong to the same architecture family, exhibit performance that

is analogous to their number of cores and threads per core (as defined in Table 4.3). HD 7970, is

a representative GPU of the AMD GCN (Graphics Core Next) architecture and bears fundamental

differences to its predecessors, which may affect performance, as we see below.

With respect to the algorithm’s underlying communication patterns, memory accesses in CRC are

affine functions of a dynamically computed quantity (tmp). Specifically, as we see in Figure 4.12,

inner-loop, cross-iteration dependencies due to stored state in variable tmp, cause input data ad-

dresses to the multi-level look-up table to be runtime-dependent. Obviously, this implies lack of

cache locality, is detrimental to any prefetching hardware utilization and hence results to poor

102

In	 our	 example:	
table[1][11]	 =	 table[0][table[0][11]]	 	 =	 	

00000011	 0000	
^	 	 	 	 	 	 	 	 	 	 	 	 10	 011	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 1	 0110	
^	 	 	 	 	 	 	 	 	 	 	 	 	 	 1	 0011	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 0101	

00001110	 0000	
^	 	 	 	 	 	 	 1001	 1	
	 	 	 	 	 	 	 	 	 	 	 111	 1000	
^	 	 	 	 	 	 	 	 	 100	 11	
	 	 	 	 	 	 	 	 	 	 	 	 	 11	 0100	
^ 	 	 	 	 	 10	 011	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 1	 0010	
^ 	 	 	 	 	 	 	 1	 0011	

	 	 	 0001	

00001011	 0000	
^	 	 	 	 	 	 	 1001	 1	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 10	 1000	
^	 	 	 	 	 	 	 	 	 	 	 	 10	 011	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 1110	

table[0][3]	 =	 0101	

Look-‐up	 table	 seman4cs:	
•  table[0][i]	 contains	 the	 CRC	 value	 of	 i	 with	 a	 given	 n-‐bit	 polynomial	 P	

(here	 P	 =	 10011)	
•  table[j][i]	 =	 table[j-‐1][table[j-‐1][i]]	

table[0][14]	 =	 0001	
and:	

Pr
ec
om

pu
te
d	
CR

C	
va
lu
es
s	

(^:	 XOR	 operaHon)	

In	 value	 i	
we	 append	
n-‐1	 zero	 bits	

Figure 4.13: CRC look-up table semantics

overall cache behavior. The effect of such cache behavior is highlighted by our findings in profil-

ing runs across our test architectures. All three GPUs suffer from cache hit rates that range from

5.48% to 7.13%. Depending on the CRC size, such precomputed tables may be able to fit into

lower level caches. In such cases, more efficient data communication may be achieved, even in the

adverse, highly probable case of consecutive data accesses spanning multiple cache lines. CRC is

yet another dwarf that benefits from fast cache hierarchies.

Of course, in algorithms like this where operations take place on the byte-level the existence of

efficient methods for accessing such data sizes and operating on them is imperative, if one is to

fully utilize wider than 8-bit data-path, bus widths, etc. Such an example is SIMD architectures

that allow packed operations on collections of different data sizes/types (such as bytes, single

103

0	

1000	

2000	

3000	

4000	

5000	

6000	

7000	

8000	

O
pt
er
on

	6
27
2	

A8
-3
85
0	

A1
0-
58
00
K	

HD
	6
55
0D

	

HD
	7
97
0	

HD
	7
66
0D

	

Xe
on

	P
hi
	P
17
50
	

FP
GA

_A
(1
)	

FP
GA

_A
(2
0)
	

FP
GA

_A
(2
0)
_D

P	

Ex
ec
u&

on
	&
m
e	
(in

	m
se
c.
)	 crc_kernel	

Data	transfer	

Figure 4.14: CRC performance results

or double precision floating point elements). CPU and GPU architectures follow a semantically

similar approach.

Profiling for Xeon Phi corroborates a combination of the above claims. For instance, vector inten-

sity is 14.4 close to the ideal value (16). This metric portrays the ratio between the total number

of data elements processed by vector instructions and the total number of vector instructions. It

highlights the vectorizability opportunities of the CRC OpenCL kernel, and helps quantify the suc-

cess of the Intel OpenCL compiler’s vectorization module in producing efficient vector code for

the MIC architecture.

L1 compute to data access ratio is a mere 2.45. The ideal value would be close to the calculated

vector intensity (14.4). This metric portrays the average number of vector operations per L1 cache

access and its low value highlights the irregular, dynamic memory access pattern’s toll in caching.

104

In this case vector operations, even on high-width vector registers will not benefit performance

being bounded by the time needed to serve consecutive L1 cache misses.

On the FPGA, the SOpenCL implementation cannot disassociate the module that fetches data

(input streaming unit) from the module that performs computations (data path), hence, reducing

the opportunity for aggressive prefetching. A Processing Element (PE) is generated for the inner

for-loop (FPGA A(1)). This corresponds to a “single-threaded” FPGA implementation. If multiple

FPGA accelerators are instantiated and operate in parallel, the execution time is better than that of

the lower-end HD 6550D GPU. The number of accelerators that can “fit” in an FPGA is a direct

function of available resources. In our case, up to 20 accelerators can be instantiated in a Virtex-6

LX760 FPGA, each reading one byte per cycle from on-chip BRAM (FPGA A(20)). The area of

accelerator can be reduced after bitwidth optimization. Utilization of fully customized bitwidths

results to higher effective bandwidth between BRAM memory and the accelerators, which in turn

translates to performance similar to that of HD 7970, with a more favorable performance-per-power

ratio (FPGA A(20) DP).

Sparse Linear Algebra - Compressed Sparse Row Matrix-Vector Multiplication (CSR)

From an algorithmic standpoint, CSR in OpenDwarfs calculates the sum of each of a matrix’s

rows’ elements, after it is multiplied by a given vector. However, the difference of CSR to the

traditional matrix-vector multiplication lies on the fact that the matrix is not stored in its entirety,

but rather in a compressed form known as compressed row storage sparse matrix format. This

matrix representation is very efficient in terms of storage when the number of non-zero elements

105

is much smaller than the zero elements. Listing 4.6 presents the CSR algorithm that employs a

sparse structured. As can be seen the computation is row-wise with respect to the original matrix

represented via the sparse structure.

f o r i = 0 to num rows − 1

r o w s t a r t i n A x = Ap [i]

row end in Ax = Ap [i +1]

sum = 0

f o r j = r o w s t a r t i n A x to row end in Ax

sum += Ax [j] ∗ X[Aj [j]]

end f o r

Y[i] = sum

end f o r

Listing 4.6: CSR algorithm

Figure 4.15 provides an example of how a “regular” matrix corresponds to a sparse matrix repre-

sentation. Specifically, only non-zero values are stored in Ax (thus saving space from having to

store a large number of zero elements). Alongside, Aj[i] stores the column that corresponds to the

same position i of Ax. Ap is of size num rows+1 and each pair of positions i, i+1 denote the range

of values for j where Ax[j] belongs to that row. The pseudocode of CSR and a small, traceable

example is depicted in Figure 4.15 and Figure 4.16 shows the performance results for CSR.

As we see in Listing 4.6, sparse matrix-vector multiplication entails a reduction that is performed

across each row, in which the results of the multiplication of that row’s non-zero elements with the

corresponding vector’s elements are summed. Such operations’ combinations, which are typical in

many domains, such as digital signal processing, can benefit from specialized Fused multiply-add

(FMADD) instructions and hardware implementations thereof. This is yet another example where

106

2	 0	 1	 0	

0	 3	 6	 0	

8	 0	 0	 0	

0	 0	 10	 12	

2	 1	 3	 6	 8	 10	 12	

0	 2	 1	 2	 0	 2	 3	

0	 2	 4	 5	 7	

Ax	

Aj	

Ap	

Sparse	 format	 Regular	 matrix	 format	

è

2	 1	 3	 6	 10	 12	

4	 8	 3	 5	

4	 8	 3	 5	

8	

8	 3	 24	 18	 30	 60	 32	

11	 42	 32	 90	

X	

A	

Work-‐group	 0	 	 Work-‐group	 1	 	
Work-‐item	 0	 	 Work-‐item	 1	 	 Work-‐item	 0	 	 Work-‐item	 1	 	

Y	

Host	 code:	

Kernel:	

globalWorkSize=num_rows;	
localWorkSize=getMaxWorkitemsPerWorkgroup();	
Kernel();	 	

cur_row=getGlobalWorkitemId();	
if(cur_row<num_rows){	

	 sum=Y[cur_row];	
	 row_start_in_Ax=Ap[cur_row];	
	 row_end_in_Ax=Ap[cur_row+1];	
	 for(j=row_start_in_Ax;	 j<row_end_in_Ax;	 j++){	
	 	 sum+=Ax[j]*X[Aj[j]];	
	 }	
	 Y[cur_row]=sum;	

}	

Figure 4.15: Representation and parallel OpenCL implementation of CSR

a typical, recurring combination of operations in a domain is realized in a fast, efficient way in

architecture itself. FMADD instructions are available in CPUs, GPUs, and Intel Xeon Phi alike.

OpenDwarfs, based on the dwarfs concept that emphasizes such recurring patterns, seeks to aid

computer architects in this direction.

CSR is memory-latency limited and its speed-up by activating multiple threads on the two CPUs

is low (5-fold and 1.8-fold for 16 and 4 threads on the Opteron and Llano CPUs, respectively).

While performance in absolute terms is better in HD 7970 and Xeon Phi, its bad scalability is

obvious and speed-ups compared to the CPU multithreaded execution are mediocre. As we can

107

0	

100	

200	

300	

400	

500	

600	

O
pt
er
on

	6
27
2	

A8
-3
85
0	

A1
0-
58
00
K	

HD
	6
55
0D

	

HD
	7
97
0	

HD
	7
66
0D

	

Xe
on

	P
hi
	P
17
50
	

FP
GA

_A
(1
)	

FP
GA

_A
(1
)_
LU

	

Ex
ec
u&

on
	&
m
e	
(in

	m
se
c.
)	

csr_kernel	

Data	transfer	

Ke
rn
el
	e
xe
cu
Ko

n	
Km

e:
	

18
87
.4
	m

se
c.
	

Figure 4.16: CSR performance results

see in Figure 4.15, data parallelism in accessing vector x is based on indexed reads, which limits

memory-level parallelism. As with other dwarfs, such runtime-dependent data accesses limit the

efficiency of mechanisms like prefetching. Indeed, in contrast to dwarfs like n-body the number of

prefetch instructions emitted in all three CPUs, as well as in Xeon Phi are very low. Gather-scatter

mechanisms, on the other side, are an important architectural addition that alleviates the effects of

indirect addressing that are typical in sparse linear algebra. Especially in sparse linear algebra ap-

plications, the problem is aggravated from the large distance between consecutive elements within

a row’s operations (due to the high number of - conceptual - zero elements in the sparse matrix)

and elements across rows (depending on the parallelization level/approach, e.g., multithreading,

vectorization). In these cases, cache locality is barely existent and larger caches may only prove

of limited value. Overall cache misses are less in Opteron 6272 that employs a larger L2 cache

and an L3 cache, compared to the rest of the CPUs. On the GPU side, we have similar observa-

108

tions: HD 7970 13.27% cache hit rate, followed by 4.3% and 3.93% in HD 7660D and HD 6550D,

respectively. The memory unit is busy (MemUnitBusy and FetchUnitBusy counters for HD 7990

and HD 6550D/HD 7660D) for most of the kernel execution time (reaching 99% in all the GPU

cases). Any cache or memory effects are taken into account and the above indicates the algorithm

in GPUs is fetch-bound. VALUBusy and ALUBusy counters indicate a reciprocal trend of low ALU

utilization, ranging from 3-6%. Even during this time, ALU vector packing efficiency, especially n

Llano/Trinity is in the low 30%, which indicates ALU dependency chains prevent full utilization.

The case is not much different in Xeon Phi, where the ring interconnect traffic becomes a serious

bottleneck, as L1 and L2 caches are shared across the 61 cores.

In the FPGA implementation of sparse matrix-vector multiplication, cross-iteration dependence

due to y[row] causes tunnel buffers to be used to store y[row] values. Tunnels are generated

wherever a load instruction has a read-after-write dependency with another store instruction with

constant cross-iteration distance larger than or equal to one (FPGA A(1)). Allowing OpenCL to

fully unroll the inner loop dramatically improves FPGA performance by almost 23-fold because it

reduces iteration interval (II) from 8 down to 2 (FPGA A(1) LU).

109

4.2 On the Performance of Manually Optimized Dwarf-Based

Applications: GEM, an N-Body Dwarf

In Section 4.1 we presented the performance evaluation of a subset of dwarf applications across

heterogeneous platforms using a common programming language, i.e., OpenCL, and discussed

the interdependence of the underlying architectural characteristics and the computation and com-

munication patterns embodied by architecture-agnostic dwarf implementations. Our insights with

respect to the above may be of use to any of the three interest target groups we outline in the

beginning of this dissertation: computer architects, programmers, and compiler/tool writers.

In this section, we keep our focus on performance, but we approach and evaluate it from a differ-

ent standpoint. Specifically, we steer the discussion from architecture-agnostic implementations

to implementations that span the optimization search-space from the architecture-agnostic to the

architecture-aware in an attempt to obtain the best performance on each target platform. Achiev-

ing the best performance possible entails broadening the programming languages and paradigms

search-space. In the context of the above, our study includes C and CUDA, the OpenMP and

OpenACC programming extensions, as well as manual vectorization intrinsics (SIMD). In terms

of our case-study application, we select to use GEM [17], an instantiation of the n-body dwarf that

addresses the problem of molecular modeling via electrostatic surface potential.

We perform a characterization of architecture-aware optimizations across heterogeneous platforms,

and across languages and programming techniques. Our systematic approach to optimization de-

livers implementations with speed-ups of 194.98×, 885.18×, and 1020.88× on the CPU, Xeon

110

Phi, and GPU, respectively, over the naı̈ve serial version. Our study can provide useful insights

mainly to programmers who can identify the best platform and language combination for applica-

tions that fall under the n-body dwarf category. However, it can also benefit computer architects,

since our characterization of different optimization levels takes into account architectural features

(e.g., caches, hardware prefetching, special instructions) that can benefit performance. Similar in-

sights can benefit compiler/tool writers that can potentially incorporate specific optimizations into

compilers, tools, and run-time systems.

4.2.1 Molecular Modeling via Electrostatic Surface Potential (ESP)

Molecular modeling refers to the mathematical models that seek to describe the behavior and

properties of biological molecules and the corresponding computational techniques. An important

part of molecular modeling simulation in areas like materials science, computational chemistry,

and rational drug design is the calculation of electrostatic surface potential (ESP) in support of

locating bonding sites and other features.

The computational pattern of GEM [17] is an all-to-all n-body interaction between points near

the molecular surface and the atoms within the biomolecule. The overall result of ESP calcula-

tion, i.e. the electrostatic map of a biomolecule, provides useful information about its function.

The long-range nature of electrostatic interactions results in a computationally intense workload

of order O(nm) where n is the number of atoms and m is the number of surface points. Many ap-

proximation methods have been proposed over the numerical solutions of the Poisson-Boltzmann

111

equation [34] that constitute the core of traditional ESP calculation algorithms. One such method is

employed by GEM, the ESP application we study in this chapter. Figure 4.17 depicts a biomolecule

and the parameters that enter the equation that provides the electrostatic potential due to a point

charge at any point of the solvent near the molecular surface.

In GEM, the biomolecule is divided in three distinct regions, and separate functional forms of the

electrostatic potential φi apply for each.1 The electrostatic potential at each point near the sur-

face (vertex) is the sum of electrostatic potentials contributed by each single point charge to that

point. Similarly, the sum of potentials at all surface points define the total electrostatic potential

of the system. The above computation and communication pattern classifies GEM as an n-body

dwarf [28] with the subtle difference that it performs all-pair computations between two sets (ver-

sus one). Thus, we expect many of our conclusions regarding performance and programmability

of GEM to apply to most n-body applications.

4.2.2 Evaluated Platforms

In the context of optimizing GEM, we evaluate three distinct parallel platforms and their attendant

programming models. The baseline multi-core CPU is represented by Intel’s Sandy Bridge x86-64

CPUs, specifically two Xeon model E5-2680s, and uses the C language and the Intel compiler suite

with Intel OpenMP directives for parallelism. Our CPU platform is indicative of a standard server

node with cache-coherent, moderate-latency NUMA memory; large well-tuned caches; and all the

niceties of traditional “fat” CPU cores.
1Details for each of the regions and the corresponding functional forms are given in [116].

112

Region III

Region II

Region I
εin

εout

+
qk

φi

dik

q0 +
…

di0

!! !
!!
!!"#

!
!!! !!!!" !!"#!!

!! !
!!"

! !!!! !!!" !!"#!
!

!!!

!!!
!

Figure 4.17: Electrostatic potential interactions between a molecular surface point and atom
charges within the molecule

Moving to the Intel Xeon Phi, much of the CPU architecture is preserved. The instruction set is

highly similar to that of the x86-64 CPUs and can be natively programmed by the same interfaces.

In fact, our evaluations in this work use the same libraries and compilers at all phases for both

the CPU and Xeon Phi. Even so, the Xeon Phi differs substantially at the architectural level. The

Xeon Phi uses multiple banks of high-throughput but high-latency graphics memory and offers

512-bit SIMD units and four thread contexts on each core, double the width offered by AVX and

double the thread contexts on the Sandy Bridge CPUs. Thus, the Xeon Phi architecture shifts

the compute/memory ratio to favor throughput rather than latency-centric computing. In the same

vein, the cores are comparatively simple in-order cores with only minimal prefetching support.

Finally, the GPU, represented by an NVIDIA K20c, eliminates the cache-coherent memory offered

by the other platforms. Otherwise, the GPU is architecturally more similar to the Xeon Phi. Both

use graphics memory and wide SIMD units to offer high throughput and many thread contexts

113

to mitigate the effects of latency. The difference is in the programming model. Since GPUs are

SIMD engines, GPU programming models such as CUDA have no concept of running a single

thread with scalar mathematics. Instead, the programming model assumes that many threads will

execute every instruction in SIMD fashion. While in the other platforms, SIMD support is either

compiled in or added with intrinsics; in CUDA/OpenCL, SIMD is the standard state of affairs, and

single-threading must be produced manually.

4.2.3 Algorithm Mapping to Heterogeneous Platforms

Exploiting a parallel computing architecture starts with identifying the parts of the algorithm that

can execute in parallel. Some algorithms are amenable to parallelism, while others are character-

ized by complex dependencies that make parallelization an onerous task. Even though the calcu-

lation of electrostatic surface potential (ESP) in GEM belongs to the first category, its mapping

and optimization onto different parallel computing devices still presents a gamut of challenges of

varying difficulty, particularly with respect to programmability.

Figure 4.18a shows how we expose multi-level parallelism on the Sandy Bridge CPU (SNB) and

Xeon Phi co-processor (XP). We present these devices together because they share a similar archi-

tecture and programming model, and therefore, the same basic parallel algorithmic mapping and

optimization. Two sets of mapping and optimization effectively automate parallelization with min-

imal programming effort: (1) directive-hinted loop parallelization and (2) auto-vectorization. For

the first, all available threads in SNB and XP are assigned a portion of the total surface points (ver-

114

tices) on which ESP needs to be calculated. This can be trivially achieved by using the directive-

hinted loop parallelization of OpenMP. For brevity, we refer to this as auto-parallelization. For the

second, the ESP contributed by each atom to a given surface point is calculated in a data-parallel

manner (i.e., 8 or 16 atoms simultaneously) using vector arithmetic. This corresponds to 8- or

16-way single-precision, floating-point operations using the available 256- or 512-bit wide vector

registers and execution units on SNB and XP, respectively. This optimization can be achieved by

simply setting an appropriate compiler flag for auto-vectorization and can be quite efficient, as

presented in Section 4.2.5.

Figure 4.18b shows how we map GEM onto the K20 GPU (K20). Due to the abundant number

of threads that GPU architectures offer, we allocate one surface-point vertex per thread and have

each thread calculate the sum of all the contributions of atom charges. In this case, when the

programmer uses the CUDA programming model, (s)he needs to define the kernel configuration,

i.e., number of threads per block and number of blocks, and allocate memory space on the GPU

and transfer data between the host CPU and the GPU, as needed. With the arrival of OpenACC, a

variant of the aforementioned OpenMP, all of the above is automated via OpenACC directives. As

a related (but different) analog to auto-vectorization, the PGI compiler for OpenACC also allows

for automatic optimization by using the fast math compiler flag.

The above discussion addresses the high-level parallel mapping of the algorithm to the underlying

hardware and the (mostly) automated optimizations that provide an initial speed-up over the serial

implementation. To extract more significant performance gains from the hardware, we need to

115

apply a series of optimizations, some that are applicable to all three platforms and some that are

platform-specific. A detailed discussion of such optimizations is presented in Section 4.2.4.

4.2.4 Optimization

In this section we discuss the optimizations applied across each platform. Most of the optimizations

presented are beneficial for all platforms under consideration. Removal of conditional statements

and flattening of data structures have been applied to the serial CPU version we use as a baseline.

We explicitly mention when an optimization only applies on a subset of the target platforms.

Vectorization and multithreading: Since GEM is a data-parallel n-body code, each output po-

tential can be calculated independently of all others. This state is commonly referred to as “em-

barrassingly parallel,” and makes the first and most important optimization the use of parallelism

to divide the workload across as many compute resources as possible. On the CPU and Xeon Phi,

we use all thread contexts across all cores, as well as all SIMD lanes wherever possible. We use

hand-tuned AVX/MIC vector code to pack and operate on 8/16 atoms at a time for a given vertex.

GPUs, featuring an abundance of thread contexts, allow mapping the potential calculation for each

given vertex to a separate GPU thread.

Removal of conditional statements: Conditional branches incur execution time overhead on all

three platforms, despite efficient branch prediction on the CPU. Since the conditionals in the par-

allel portion of GEM are all pre-determined, rather than diverging on a per-vertex basis, all of

them can be hoisted out to a single conditional nest used to choose a final computational function

116

! " # ! $

!"

#"$%&'()""
%&'()*+,&-!&'$).+&

*"+,&'-.("/'&"$%&')"
#&'()*+,&/&'$).+&

0"12%-345"/%64+"
'7'8'4+("/'&"
9'$+%&"&'56(+'&:)"
%&'()*+,&"-&'$).+&

!"#$%&'&"()*$"&''
+,-'."&'#%&"/'

;-(6$"#-//645"%<"+,'"=75%&6+,8"+%"+,'">-4.?";&6.5'"@AB"1>*;:"C
#D@"@%E/&%$'((%&"10*@:)&

for(i=0; i<numOfVertices; i+=numOfCores*numThreadsPerCore){!
!Launch (in parallel) function on all threads at every core that
!calculates the electrostatic surface potential at
!verticesPerThread vertices!

}!

0123&4567891:531;&;557&

for(i=0; i<verticesPerThread; i++){!
for(j=0; j<numOfAtoms; j+=K){!

!Load K atoms (coordinates/charge) into vector register!
!Calculate potential contribution of K atoms in
!parallel using vector instructions!

}!
}!

<834:53&'=(>&41;48;1:53&?5@&012345%&"*601278&"9:*;"&5%&"<
01234!"&=#"*'AB@:4BC+&

@%&'"F"
DE@B1F&&

!&
DE@B1F&&

)&
G&

@%&'"#"
DE@B1F&&

!&
DE@B1F&&

)&
G&

(a) Sandy Bridge CPU and Xeon Phi co-processor

!"#$%&'"(($)*&+,&-./&01*+2$-.3&-+&-./&4567!
"#  "$$%&'()!*+,!-$%.'$!/)/%01!2%03!

4!5%%0678'()9!%2!9:02'&)!;)0<&)9!
4!5%%0678'()9!'86!&='0-)!%2!)'&=!'(%/!78!(=)!/%$)&:$)!

>#  5%?1!'.%;)!6'('!20%/!=%9(!@5+,A!(%!6);7&)!@*+,A!/)/%01!
5#  B('0(!/'78!&%/?:('<%8'$!$%%?!%8!=%9(!@9))!.)$%CA!
D#  5%?1!0)9:$(9!@&'$&:$'()6!?%()8<'$A!20%/!6);7&)!(%!=%9(!/)/%01!

BEF!G!

B='0)6!/)/%01!

HI!&'&=)!

8&

8&

J'&=!(=0)'6!&'$&:$'()9!
)$)&(0%9('<&!9:02'&)!
?%()8<'$!'(!%8)!;)0()K!

*+,!-$%.'$!/)/%01!

for(i=0; i<numOfVertices; i+=numOfBlocks*numThreadsPerBlock)
{!

!Launch GPU kernel on numOfBlocks blocks each consisting of
!numThreadsPerBlock (performed in parallel in all SMXs)!

}!

for(i=0; i<numOfAtoms; i++){!
!Calculate potential contribution of current atom and add it to the
!total electrostatic potential of current vertex!

}!

E'78!&%/?:('<%8'$!$%%?!@5+,A!

*+,!L)08)$3!/'78!&%/?:('<%8'$!$%%?!

BEF!IM!

B='0)6!/)/%01!

HI!&'&=)!

>$%&L!M!
N=0)'6!!

G!
N=0)'6!!

I!
N=0)'6!!

O!

P!

P!
>$%&L!I!

N=0)'6!!
G!

N=0)'6!!
I!

N=0)'6!!
O!

P!

P!
>$%&L!G!

N=0)'6!!
G!

N=0)'6!!
I!

N=0)'6!!
O!

P!

P!

(b) Kepler K20 GPU

Figure 4.18: Mapping of GEM algorithm

117

with no conditionals in it. This saves us both dynamic instructions as well as potential branch

mis-predictions on all devices at the cost of having several replicated versions of the function

expressing each necessary code path.

Flattening of data structures: Laying out data as an array of structures (AoS) can seriously

impact vector code performance. The AoS layout is a major cause of misaligned (in CPUs) and

non-coalesced (in GPUs) memory accesses. More importantly, AoS complicates the mapping of

data to vector units. For example, given a structure of two ints A and B, the AoS layout intersperses

As with Bs, forcing at least two vectorized gather loads to load a vector register. If, on the other

hand, the As are in one array and Bs in another, only a single load is required. In GEM, we

transform the AoS used to store the coordinates and charge of surface points (vertices) and atoms,

into multiple arrays, each containing a single component (e.g., charge) of the structure.

Approximate reciprocal instructions: Floating-point division and square root are high-latency

operations that stall the pipelines of the CPU and Xeon Phi devices as well as working in a lower-

width mode on the CPU. In order to avoid as many of them as possible we replace them with their

low-latency approximate reciprocal counterparts. These instructions have much lower latency and

make use of look-up tables to calculate the result. Their drawback is their reduced accuracy. On

the Sandy Bridge CPU they are accurate to the 12 most significant bits of the mantissa. We tackle

the reduced accuracy problem by using an iteration of the Newton-Raphson (NR) method, which

increases accuracy to a minimum of 23 of 24 bits for single precision numbers. More details about

this method can be found in [152]. On Xeon Phi, the corresponding reciprocal instructions natively

provide accuracy of 23 of 24 bits of the mantissa. On K20, the corresponding frsqrt rn() intrinsic

118

we use is fully IEEE-compliant. For the two latter cases, we do not need to apply Newton-Raphson,

keeping the number of instructions lower than in the CPU (Table 4.6). In any case, the root mean

squared error (RMSE) of calculated potential values for all implementations against the original

serial version’s output does not exceed 0.000084.

Outer loop unrolling: Each of the m iterations of the outer loop of an n-body problem entails

computation against a set of n bodies of the inner loop. In ESP calculation this corresponds to sur-

face points (vertices) and atoms, respectively. As a result, each iteration of the outer loop requires

n memory loads (all atoms that contribute to the potential of a given vertex). By “unrolling” the

outer loop by a factor k (i.e, calculating potential at k vertices at a time), we reduce the innermost

loop’s atom loads by the same factor.

Cache blocking and software prefetching: Converting arrays of structures to multiple arrays

enhances spatial locality and cache use efficiency in all three platforms. Moreover, the algorithm’s

regular memory access patterns facilitate hardware data prefetching in our multi-core platforms.

However, the large number of atoms in the innermost loop leads to eviction of relevant atom data

from the lower level caches, before they are fully reused. To alleviate this problem we apply cache

blocking, where each thread loops over all its assigned surface points and calculates potential

contribution for blocks of atoms at a time. Block size is theoretically calculated, based on the

data size accessed with each iteration and cache details, and experimentally tuned and verified.

Finally, the programmer can assist the hardware prefetcher by emitting the prefetch intrinsic with

appropriate prefetch distance as a parameter.

119

Shuffling method: This optimization is not applicable to all kinds of algorithms, but is especially

useful in specific n-body problems, as in our case. In this method (Figure 4.19), we change the

default computation pattern, where each (same) vertex point is loaded at all positions of a vector

register and loops over all atoms. Instead, we load N distinct vertices at a time in a vector register,

load N atoms in another vector register (where N is 8 for AVX) and then shuffle (i.e., rotate in

a wrap-around fashion) the data elements of the latter, using the corresponding shuffle intrinsics.

This way we can obtain all the possible combinations of vertices and atoms, as defined by the

algorithm’s all-to-all computation pattern, with a reduced number of vector loads. In addition to

CPUs and Xeon Phi, Kepler architecture has introduced a shuffle instruction that achieves similar

functionality in the context of a thread warp.

8-byte shared memory access (in Kepler): Kepler GPU architecture features 32 shared memory

banks, 8-bytes wide each, with a corresponding bandwidth of 8 bytes/bank/clock per streaming

multiprocessor (SMX). Default mode defines 4-byte access to support backward compatibility

and similar bank-conflict behavior with Fermi, a behavior that leads to sub-optimal bandwidth

for certain access patterns. To exploit the Kepler-supported 8-byte access mode, the programmer

needs to use the appropriate CUDA function and then, in the case of GEM, transform floating point

(FP) type variables to float2 type variables in a suitable manner (e.g., six FP ones to three float2).

120

LOAD% v0% v1% v2% v3%

LOAD% a0% a1% a2% a3%

SHUFFLE% a1% a2% a3% a0%

SHUFFLE% a2% a3% a0% a1%

SHUFFLE% a3% a0% a1% a2%

LOAD% v0% v0% v0% v0%

LOAD% a0% a1% a2% a3%

…% …% …% …% …%

LOAD% v3% v3% v3% v3%

LOAD% a0% a1% a2% a3%

Vector register Vector register Instruction Instruction

Figure 4.19: Shuffling optimization

4.2.5 Results and Discussion

In this section we describe the experimental setup and discuss the effects of the application of

optimizations on each platform in terms of performance. At the end of this section, we discuss the

best optimization methods set for each platform and perform a cross-platform comparison of the

corresponding implementations. Finally, we discuss their efficiency with respect to the theoretical

peak throughput, as experimentally derived by means of assembly code inspection and taking into

account each platform’s specifications.

Experimental Setup

We evaluate our GEM [17] implementations across various optimization levels on three multi-

and many-core platforms: a Sandy Bridge CPU (SNB), Xeon Phi co-processor (XP), and Kepler

K20 GPU (K20), as noted in Table 4.5. Results for all structures we experimented with, which

comprised a different number of vertices and atoms, show similar trends, which is characteristic of

n-body methods once the workloads are big enough to saturate available computation units on each

platform. For brevity, we only present results for the tobacco ring virus capsid (1A6C) biomolec-

ular structure, which requires ESP calculation between 593,615 surface points and 476,040 atoms.

121

Table 4.5: Architectural parameters

Model Intel E5-2680 Intel Xeon Phi P1750 NVIDIA K20c
(Architecture) (Sandy Bridge) (MIC) (Kepler)
Frequency 2.7 GHz 1.09 GHz 706 MHz
Cores 16 (8/socket) 61 13 SMXs
Threads/core 2 4 16 (blocks/SMX)
SIMD (SP) 8-way 16-way 192-way
GFLOPS (SP) 691.2 2092.8 3524.35
Mem. BW 102.4 GB/s 320 GB/s 208 GB/s
L1/L2/L3 cache (KB) 32/256/20480 32/512/- 48(max)/1280/-

(L1,L2 per core) (L1,L2 per core) (L1 per block)
Power 260W 300W 225W
Compiler ICC 13.0 ICC 13.0 NVCC 5.0

In all experimental runs, we use the full parallelization available on the platform 32 threads on

SNB, 240 threads on XP (leaving one core for the system software) and 1024 threads per block

on the GPU with enough blocks to cover the workload (theoretically achieving 100% occupancy

according to the NVIDIA occupancy calculator). Our results are all reported based on the runtime

of the computational kernel, setup and data transfer costs are not included. While these costs are

important, our focus in this work is the effectiveness of each level of optimization on each platform,

which is independent of the data transfer costs and unaffected by them.

Performance Progression by Architecture

In Figure 4.20 we present speed-up over the reference single core implementation. Optimizations

are cumulative as we move to the right for each platform, unless otherwise noted and the Manually

vectorized results include the approximate reciprocal instructions. Below we conduct a quantitative

analysis of the effect of each optimization series on each platform.

122

19.55	

175.04	186.3	
194.98	193.13	

12	

251.88	
304.05	

545.11	
648.21	

885.18	

757.08	

160.02	

653.91	

522.67	

724.4	763.24	

883.02	
963.4	

1020.88	

0	

200	

400	

600	

800	

1000	

1200	

Di
re
c2
ve
	p
ar
al
le
l	

Co
m
pi
le
r	v

ec
to
riz
ed

	

M
an
ua
lly
	v
ec
to
riz
ed

	

Sh
uffl

in
g	
m
et
ho

d	

So
Ew

ar
e	
pr
ef
et
ch
in
g	

Di
re
c2
ve
	p
ar
al
le
l	

Co
m
pi
le
r	v

ec
to
riz
ed

	

M
an
ua
lly
	v
ec
to
riz
ed

	

O
ut
er
	lo
op

	u
nr
ol
lin
g	

Ca
ch
e	
bl
oc
ki
ng
	

So
Ew

ar
e	
pr
ef
et
ch
in
g	

Sh
uffl

in
g	
m
et
ho

d	

Di
re
ct
.	p
ar
.	&

	c
om

pi
le
r	

ve
ct
.	

M
an
ua
lly
	v
ec
to
riz
ed

	

Sh
ar
ed

	m
em

or
y	

Sh
uffl

in
g	
m
et
ho

d	

8B
	sh

ar
ed

	m
em

.	a
cc
es
s	

Ca
ch
e	
bl
oc
ki
ng
	

O
ut
er
	lo
op

	u
nr
ol
lin
g	

Fa
st
	m

at
h	
in
tr
in
sic

s	

Sp
ee
d-
up

	o
ve
r	b

as
el
in
e	
se
ria

l	C
PU

	im
pl
em

.	

Manually	vectorized	
Manually	op2mized	

Intel	Sandy	Bridge	CPU	
(SNB)	

NVIDIA	Kepler	GPU	
(K20)	

Intel	Xeon	Phi	Co-processor	
(XP)	

Direc2ve	parallel	
Compiler	vectorized	

Figure 4.20: Step by step optimizations

Sandy Bridge CPU (SNB): Looking at the performance of directive-based parallelization and

compiler-assisted vectorization, we observe that the compiler proves very efficient, when com-

pared to the manually vectorized implementation that makes explicit use of vector intrinsics. This

is the case both when we use accurate and approximate versions of the intrinsics and the corre-

sponding compiler flags. On SNB we observed, however, that when using the approximate recip-

rocal intrinsics (included in Manually vectorized), we get even better performance compared to

using compiler flags for approximate division and square root (Compiler vectorized). The reason

is apparent in assembly code level. Intel Compiler is not able to perform the algebraic changes we

manually make to accommodate the fast reciprocal square root and division intrinsics. As such,

the optimized code only uses approximate fast division and fast square root. Even in this case,

we obtain performance improvement against using the regular division and square root. The main

123

reason is that the execution unit used for division and square root is still 128-bit and 256-bit packed

division/square root is broken down into two 128-bit operations. Using the shuffle method, as de-

scribed in Section 4.2.4, we achieve an extra 4.7% improvement. This optimization reduces the

number of vertex loads by a factor equal to the SIMD vector width divided by the size of the data

type we are using (e.g., 8 for AVX and float data type). It also helps reducing the number of times

atoms’ coordinates are loaded, by the same factor. See Figure 4.19 for a visual explanation. While

the number of loads are reduced by a factor of 16 the achieved speed-up is much less impressive,

as the loads occur at worst case in our SNB’s large (20MB) L3 cache, which is fast by itself and

even faster when combined with efficient hardware prefetching to this and lower -and faster- cache

levels. Finally, using software prefetching does not offer any significant performance benefits in

the case of multi-core CPUs. The reason behind this behavior is the advanced hardware prefetch-

ing capabilities of modern multi-core CPUs. For algorithms with regular memory accesses the

hardware prefetcher can efficiently move data between the main memory and L2 or between L2

and L1 caches ahead of time based on previous access patterns.

Xeon Phi (XP): In contrast to SNB, we observe that using vector intrinsics on XP is slightly better

than compiler vectorized code (1.20x). As in SNB, use of fast reciprocal math prevents bottlenecks

in the corresponding units observed in the exact division/square root cases. The performance gap

after multi-threading and vectorization have been applied has to be filled by manual code opti-

mizations. In the case of architectures, such as Intel MIC, where there is a lack of large L3 cache,

techniques that make efficient use of the available cache hierarchy are of great importance. One

such technique, whose effectiveness on that aspect is algorithm-specific, is outer loop unrolling. In

124

our case, where the outer loop’s vertices loop over the same set of atoms, unrolling the outer loop

by a factor of two instantly reduces memory accesses by a factor of two and increases performance

by 1.79x.

Cache blocking techniques enhance cache usage and result in a 1.19x speed-up versus not using

them. Software prefetching instructions, when added on top of the earlier optimizations, yield an

additional 1.37x improvement. As opposed to SNB, software prefetching is important in XP. One

reason is that in XP, the hardware prefetcher proactively loads data between memory and L2 cache,

but not from L2 to L1. This gap can be filled by blocking for L1 cache or software prefetching.

Last, we should mention that the shuffling method we used for SNB is a technique worth trying

on XP, as well. As a matter of fact, shuffling by itself reduces atom coordinates’ loads by a

factor of 16 (i.e., SIMD-width). However, using shuffling with the optimizations we mentioned

earlier results in a slight slowdown, as it mainly contributes unnecessary overhead, since outer loop

unrolling, cache blocking and software prefetching address the expensive main memory transfers

in an efficient way.

Kepler K20 GPU (K20): For K20 the naı̈ve CUDA version performs 4.08x faster than the one pro-

duced by using OpenACC directives. This is as far as we can get by directive-based programming

or naı̈ve CUDA programming and compiler directives. To get anywhere beyond this performance

we need to resort to lower-level optimizations. Ensuring coalesced global memory accesses is one

of the first optimizations one has to consider on the GPU but since ours already are, optimization

efforts should be geared towards utilizing shared memory for data that are accessed by all threads in

a block, such as the atom coordinates and charge. We should note that even when not using shared

125

memory, the regular memory access patterns facilitate caching. As a matter of fact, our shared

memory implementation boosts the number of registers used and along with shared memory limi-

tations leads to reduced occupancy and performance, with respect to the preceding implementation.

Adding the shuffling method to a shared memory implementation boosts performance to 724.4x

over the single core CPU implementation, 10% faster than the preceding implementation. For K20

using one float2, instead of 2 float variables, allows successive 8-byte words allocation in succes-

sive banks and increased 8-byte wide shared memory access. This results in a 1.054x speed-up.

Blocking, which proved to increase performance on SNB and XP, is beneficial for K20 as well. In

particular it accounts for an extra 1.16x. Finally, we perform similar algebraic changes as the ones

we described for SNB and XP and make use of the fast reciprocal square root and division CUDA

intrinsics, together with fused multiply and add instructions. An extra 6% performance gain is

achieved by this optimization, leading us to the fastest of our K20 implementations at 1020.88x

over the baseline.

Intrinsics and Approximation

Last, but not least, we leave the discussion of further optimizing the code using special intrinsics

for fast approximate versions of instructions such as square root, division, fused multiply-and-add.

Compilers, such as Intel Compiler (icc) and NVIDIA CUDA Compiler (nvcc) provide flags for

automatic detection of the regular instructions (or combinations thereof- such as multiplications

followed by an addition). Indeed, inspecting the assembly/PTX code respectively, we verify that

both icc and nvcc make use of the corresponding fast instructions (given the algebraic changes

126

mentioned in Section 4.2.4). We should note that without performing these algebraic changes

none of the compilers were able to automatically perform all the aforementioned optimizations,

which is a field of further research. It is also worth mentioning that nvcc provided more efficient

code with minimal use of manual intrinsics and the -use_fast_math parameter than our fully

intrinsic based version. Given the nature of the problem, there must be a manual set which would

behave as well, but the compiler does better than most. On the other hand, manually adding the

intrinsics under consideration on the XP implementation drastically improved performance.

On the surface it might sound as though the NVIDIA CUDA compiler is performing more ad-

vanced conversion of instructions than those in the Intel compiler. The truth is somewhat more

complicated. Since the CUDA programming model is implicitly vectorized, it does not require

intrinsics to specify the intended width of instructions. In practice it just assumes all instructions

are of width 32 and masks off the extra. On the other hand, the standard programming model

used on the XP is serial and must be explicitly vectorized. Once intrinsics are used to ensure the

correct vector width, it appears that they are not converted by the compiler even though it would

have the right given the supplied options. Since intrinsics are meant to be a way to directly insert a

particular instruction, it makes sense that the compiler does not change it, but it restricts the com-

piler from performing a potentially important set of transformations on those instructions. Adding

explicit vectorization to the programming model without intrinsics, either through directives such

as the simd directive in OpenMP 4.0 or through a language extension like CUDA, should solve

this issue.

127

Performance Efficiency

By examining the assembly/PTX code of the best performing implementations for each device, we

count the number of floating point (FP) instructions in the algorithm’s critical region (innermost

loop)– the larger number of single precision floating point operations in the SNB version is due to

the accuracy correction approach applied with the addition of reciprocal divisions and square roots.

Taking into account the potential overlapping of instructions on different units along with their

cycle time, we calculate the expected number of cycles per iteration of that code region. From these

numbers we can infer the expected vector instructions per cycle (IPC) and, given each platform’s

clock frequency, the maximum theoretical throughput in GFLOPS ignoring memory load costs.

Subsequently, we calculate the achieved throughput and efficiency as the ratio of achieved to ideal

performance for the particular algorithm and instruction mix, as shown in Table 4.6.

These results show a different side to the application performance than is portrayed either by per-

formance, as in Figure 4.20 (or by the percentage of achieved performance as we would see in

Figure 5.5 in the next chapter). Specifically, while K20 is the best performing overall, and despite

the optimization effort expended on it, it remains at only 54.34% of theoretical peak performance.

In principle that means that we should be able to get nearly double the performance we on that

architecture. In practice our application is running with full occupancy and the most optimized

instruction mix, shared memory behavior and instruction mix we have found. On the other hand,

both the SNB and XP parts achieve greater than 80% of peak performance. This trend in perfor-

128

Table 4.6: Achieved performance over theoretical peak

SNB XP K20
SP FP vector ops 52 35 32
Cycles/iteration 36 25 23
Ideal vector IPC 1.444 1.4 1.391
Theoretical peak throughput (GFLOPS) 499.2 1465 2451.7
Achieved throughput (GFLOPS) 413.8 1265.1 1332.3
Achieved efficiency 82.89% 86.35% 54.34%

mance efficiency has been noted before between CPUs and GPUs, but we find it telling that the

XP achieves not just good efficiency, but higher than SNB in this case.

4.3 On the Performance of OpenCL as a Programming Method

for FPGAs: a Preliminary Study with Altera OpenCL

Programming FPGAs in a way to extract the high performance reconfigurable computing has the

potential to offer over fixed architectures has been an intrinsically arduous task that requires ex-

tensive knowledge of hardware design languages (HDLs), such as Verilog or VHDL, and excru-

ciatingly low-level hardware details. In an attempt to render FPGAs more accessible, Altera and

Xilinx extended the typical hardware design language (HDL) programming model by introducing

a design process, based on OpenCL-based toolchains, that resembles the traditional CPU software

development workflow. This OpenCL-based model (which we discuss in detail in Section 2.2.2)

facilitates design, prototyping and implementation by moving towards a much higher level of ab-

straction, when compared to the intrinsically low-level nature of HDLs and obviating the require-

129

ment of HDL knowledge and other parts of FPGA design. However, while an OpenCL program

written for another target platform (e.g., GPU) may run in a fairly straightforward way on an FPGA

(functional portability), the acquired performance will be sub-par (lack of performance portabil-

ity). We discuss the programmability and portability aspects of FPGA programming in more detail

as part of our work towards enhancing them, in Chapter 5. Here, we focus on the peculiarities

of OpenCL programming for Altera FPGA targets. While the level of low-level details needed

for HDL programming is drastically minimized, the programmer still has to keep in mind certain

unique characteristics of the underlying hardware (e.g., certain boards may lack hard-IP for float-

ing point arithmetic). More importantly, one should be aware of how the Altera Offline Compiler

(AOC) for OpenCL translates the OpenCL code to efficient hardware circuitry, and how certain

programming choices affect FPGA resource utilization. Given the novelty of OpenCL program-

ming for FPGAs, this is one of the first studies to address the above issues.

In this work, we conduct a preliminary evaluation of OpenCL as a language for programming re-

configurable target architectures, i.e., FPGAs. Similar to our study of an n-body code across a

CPU, GPU, and Intel Xeon Phi in Section 4.2, we explore the limits of programming an FPGA

using Altera OpenCL in the context of the same n-body application, thus concluding a thourough

performance evaluation for this dwarf across all major heterogeneous architectures using man-

ual optimizations. We experiment with kernel vectorization, compute-unit replication, evaluation

of the efficacy of Altera OpenCL compiler optimizations, as well as algorithmic refactoring for

FPGAs.

130

4.3.1 Experimental Setup

Hardware/Software: For the experiments in this chapter we use the Bittware S5-PCIe-HQ board

(S5PHQ-D8) shipped in the form of a PCIe card (Figure 4.21). At its core lies a high-performance

Altera Stratix V GS FPGA and 16 GB DDR3 SDRAM. The FPGA card is installed in a Linux-

based (Debian, kernel v3.2.46) machine with an Intel E5-2697 (Ivybridge) CPU and 64 GB RAM.

We use the Altera OpenCL SDK (v14.2) to compile the device-side code (OpenCL kernels), and

gcc v4.8.2 for the host-side code.

QSFP+	

Ext.	power	

USB	

DDR3	
DRAM	
(8	GB)	

FPGA	Stra<x	V	GS	

U<lity	
Header	

GPS/Time	
Stamp	

DDR3	
DRAM	
(8	GB)	

LEDs	 FLASH	
Baseboard	
Mgmt.	

Controller	

QDR-II+	
SRAM	

(4x18MB)	

QSFP+	

QSFP: Quad Small Form-Factor
Pluggable Interface 8x

 P
C

Ie
xp

re
ss

4x

4x

64

64

8x18
(2 per
direction)

Figure 4.21: Bittware S5-PCIe-HQ architectural diagram

Benchmark: To study OpenCL as a programming method for FPGAs we use GEM, the same

application we use to study the performance across the parallel architectures in Section 4.2, and

131

the same input dataset. GEM is an algorithm that describes the all-to-all n-body interactions in a

biomolecule as they occur between points near the molecular surface and atoms within. We discuss

molecular modeling via electrostatic surface potential and GEM in detail in Section 4.2.1.

4.3.2 FPGA Optimizations: Results and Insights

To improve the performance of OpenCL kernels on FPGAs, we can exploit different parallelism

levels: task, data (SIMD vectorization) and pipeline parallelism. We can minimize memory ac-

cesses by controlling data movement across the memory hierarchy levels, and coalescing memory

accesses. Since FPGAs have limited hardware resources and memory bandwidth, it is impera-

tive that we analyze different combinations of these optimization techniques to identify the best

and generate the most efficient (performance, resource utilization) hardware design for all dwarfs.

In the context of this work, we start exploring the large FPGA-oriented optimization space and

attempt to provide some preliminary insights. Table 4.7 shows the options we implement and

evaluate in the context of this study.

Use of Restrict/Const Keywords and Kernel Vectorization

An optimization strongly suggested by Altera [25] is use of the restrict keyword for kernel argu-

ments that are guaranteed to not alias (i.e., point to the same memory location). Using restrict

allows more efficient designs in terms of performance by eliminating unecessary assumed memory

dependencies. Although a side effect of such an optimization could be lower resource utilization,

132

we find that this is not the case in our application. Cases IMP2 and IMP4 (Figure 4.22) highlight

the difference (1.31 times higher utilization with restrict) across two otherwise identical imple-

mentations. Performance-wise, IMP4 is 3.94 times faster and this stems from the vast majority

of memory accesses resulting in cache hits. Conversely, IMP2 is characterized by sub-optimal

memory accesses that result in cache misses and pipeline stalls (about 80% of the time). While

their base performance (no kernel vectorization or compute unit replication) favors the restrict im-

plementation, there are certain trade-offs that need to be considered for applications where kernel

vectorization or compute unit replication is beneficial (e.g., highly parallel, regular, compute-bound

applications). In such cases, being able to fit a design with higher vectorization or more compute

units might surpass the benefits from using restrict for more efficient memory accesses (e.g., when

resource utilization without restrict is enough to fit kernel vectorization of width 16, where the

corresponding with restrict can only fit 8). As far as const keyword is concerned we observe no

difference neither in resource utilization, nor in execution time. One reason may be that the com-

piler successfully identifies the constant parameters as such (no write on these memory locations

and no aliasing is ensured).

Compiler Resource-Driven Optimizations

In compilation with resource-driven optimization the compiler applies a set of heuristics and es-

timates resource utilization and throughput given a number of kernel attributes, like loop unroll

factor, kernel vectorization, number of compute units. This process should not be always expected

133

Table 4.7: Features of GEM kernel implementations

Implem. Refact. Restrict Constant SIMD CU Unroll
IMP1 1 1 1
IMP2 ! 1 1 1
IMP3 ! ! 1 1 1
IMP4 ! ! 1 1 1
IMP5 ! 1 1 4
IMP6 ! 8 1 1
IMP7 ! ! 16 1 1
IMP8 ! ! 8 1 1

Figure 4.22: Optimized GEM kernel implementations

134

to provide the best implementation. In our example application, we identify at least one case where

manual choice of kernel vectorization width surpasses (by 3.33x) the compiler-selected attributes

(pragma unroll 4) (IMP6, IMP5 in Figure 4.22). Profiling the kernel, we find that IMP6 benefits

from coalesced memory accesses, while memory accesses in IMP5 result in costly pipeline stalls.

Also, bandwidth efficiency is higher (more than double) in IMP6 (i.e., more of the data acquired

from the global memory system is actually used by the kernel). Altera discusses the inherent limi-

tations of static resource-driven optimizations in their optimization guide [25]. Developers should

consider the aforementioned limitations when compiling using the resource-driven optimization

option.

Algorithmic Refactoring

A given algorithm implementation may solve an actual problem, but this does not mean that a set

implementation is appropriate for every platform (e.g., CPU, GPU, FPGA). A different implemen-

tation for solving the same problem, i.e., produce the same output given the same input, may be

necessary. While this may not be intuitive, or even applicable for all cases, certain algorithmic

restructuring can prove very beneficial. To illustrate the above, we apply basic algorithmic refac-

toring in our example application. Specifically, we remove the complex conditional statements for

different cases encapsulated in a single kernel, and tailor the kernel to the problem at hand. This

provides a two-fold benefit, as shown going from IMP2 to IMP3: (a) better resource utilization

(in our examples the refactored algorithm requires about 10% less FPGA resources, and (b) better

performance (i.e., 5% faster). More importantly, better resource utilization may allow wider SIMD

135

or more compute units to fit in a given board. For example, in refactoring from IMP6 to IMP7,

the reduced resource utilization of the refactored algorithm allows a SIMD length of 16, whereas

the original algorithm only accomodated up to 8 (logical elements being the limiting factor). This

translates to a 1.22-fold faster execution of the refactored over the original.

Resource Utilization Estimation

We find that the resource utilization estimation (when compiling with -c flag) is very accurate and

can be safely trusted by developers. The benefit of being able to trust AOCs resource utilization es-

timation is that it can be performed without building hardware, and as such one can avoid spending

hours compiling a design only to find that it cannot fit on a given board’s resources. Specifically, for

our example application and all the compiled implementations, the estimate captured the resource

utilization to the closest round number.

4.4 Enhancing Performance via Heterogeneous Architectures:

an Architectural Approach

Moore’s Law has fueled processor advances for half a century now. As per Dennard’s law [90],

transistor scaling has reduced transistor dimensions by 30% with every generation and area shrink-

age by 50%. This doubling of transistor density has allowed microarchitectural innovations that

provide further performance increases (roughly 40%, as per Pollack’s Rule [234]) and the de-

136

sign of multi-level cache hierarchies to address the increasing gap between processor and memory

speeds. While these trends have held true of single-core designs for decades; limitations in transis-

tor scaling, prohibitive heat dissipation levels, and power/energy-related constraints have mandated

a switch to multicore in the mid-2000s. Looking ahead, large-scale parallelism with heterogeneous

cores now appears to be on the path to exascale computing.

The trend of heterogeneity is not new; it is a recurring pattern observed in chip design. Hetero-

geneity was first introduced in the form of discrete devices that were later unified on-chip in a

subsequent technology iteration. For instance, specialized floating-point or other co-processors

(e.g., encryption or signal processing), which complemented early single-core CPUs, eventually

relocated onto the CPU die itself. By the mid-2000s, the multi-core CPU era effectively telescoped

the homogeneous compute cluster from a machine room to a homogeneous cluster on a chip. By

the late 2000s, this same telescoping trend saw discrete GPUs that were out on the PCIe interface

move onto the CPU die to create a fused CPU+GPU die called an accelerated processing unit

(APU). Discrete FPGAs have also been used as co-processors to CPUs. With Intel’s recent acqui-

sition of Altera, a key FPGA vendor, Intel will telescope previous “discrete CPU+FPGA” offerings

into a fused on-package integration with the Purley platform and then a fused on-die integration

with the Tinsley platform.

Currently, a typical supercomputer node may exploit the synergistic (parallel) performance gains of

architectures that are heterogeneous in nature, such as multi-core CPUs, GPUs, Intel MICs (Xeon

Phi), or even FPGAs. These constituent elements are interconnected via PCIe at the intra-node

level and over high-speed interconnects (e.g., Infiniband) at the inter-node level. Following the

137

above examples on the recurring, a la déjà vu, trend of architectural unification that has defined

the chip evolution, we project that it may only be a matter of years before the notion of telescop-

ing architectures that led from a “homogeneous cluster in a machine room” to a “homogeneous,

multicore-CPU cluster on a chip” is extended to create a heterogeneous cluster on a chip (CoC).

In light of this trend and given the variety of homogeneous architectures (i.e., CPU, GPU, Intel

MIC, FPGA), the research questions that arise are as follows:

1. What is the ideal mixture of compute engines (CEs) and number of such CEs that will fuel

telescoping architectures and enable the transformation of a heterogeneous cluster in a ma-

chine room to a heterogeneous CoC?

2. What methodology should we use to answer the above question in a systematic and general-

izable way?

To address these questions, we study heterogeneous CoC and discuss the roadblocks that need to

be addressed before such a concept is materialized at the intra-node level. Such a preliminary study

is imperative before it can be expanded to the inter-node level, where new sets of challenges arise.

We summarize our contributions below:

• A systematic and generalizable methodology towards identifying future trends and catalyz-

ing exploration into the heterogeneous architecture space via real hardware and the use of

dwarf-based (or motif-based) benchmarking.

138

• Application of the above methodology to quantify the performance benefits of different in-

stantiations of a cluster on a chip (CoC), each employing single or multiple instances of

CPUs, GPUs, Intel MICs, and FPGAs.

4.4.1 Architectural Unification in the History of Computing

In this work we examine the trends towards architectural unification as we move from a heteroge-

neous cluster in a machine room to a heterogeneous cluster on a chip. To put this trend in perspec-

tive it is useful to examine how the unification trend has manifested throughout computing history.

Moore’s law has allowed doubling the transistor density in a chip, thus facilitating heterogeneity

at various levels and at the same time on-chip replication of homogeneous resources.

As far as heterogeneous coupling is concerned, there are various notable examples. At the early

days of computing, floating-point arithmetic was implemented in software (e.g., on Intel 8086).

The Intel 8087 was the first math co-processor for the 8086 line that allowed fast, hardware imple-

mentation of floating-point instructions. Nowadays, all modern processors include an (integrated)

floating-point unit (FPU) and dedicated floating-point registers on-chip.

Graphics processing units (GPUs), in a similar fashion, originated as separate devices (graphics co-

processors) with dedicated graphics memory. While still widely available in a discrete form factor,

integrated graphics processors (IGPs) are the norm in many cases, especially in the laptop market.

For example, Intel HD Graphics [114] in Ivy Bridge and Intel Iris Graphics [127] in Haswell CPUs

are IGPs on the same package or die as the CPU and utilize a portion of the computer system RAM.

139

Similarly, in 2011, AMD introduced Llano [47], the first generation of accelerated processing units

(APUs), which combined a CPU and GPU on the same die.

FPGAs have also been used to accelerate computations in many domains (e.g., bioinformatics [261],

finance [213]). FPGAs connect to a host platform typically via the PCIe interface or Ethernet.

However, there are system-on-chip (SoC) implementations, where a CPU is embedded in an FPGA

board (e.g., big.LITTLE by ARM [120], Cyclone V SoC with ARM Cortex-A9 [7]). To this end,

Intel is also introducing their Xeon and FPGA accelerator platform that incorporates an FPGA

module attached to the processor via a Quick Path Interconnect (QPI), After Altera’s acquisition

by Intel, it is expected that in the next year, we will see a FPGA fabric as part of the package or

die.

As far as replication of homogeneous resources is concerned, the CPU and GPU cases are in-

dicative examples. In the former case, single-core CPUs initially got connected over a network

to form compute clusters. When manufacturing technology allowed, multiple cores (dual-, quad-,

octa-cores, etc.) fitted on the same chip. Later, with Intel Many Integrated Core (MIC) [74] ar-

chitecture, tens of (simpler) cores (60 or 61) became a reality. The next generation of Intel MIC

(code-named Knight’s Hill) will be bootable, obviating the need for a host processor needed in

current generation’s MICs. Similarly, GPUs include an ever-increasing number of compute units

(or CUDA cores in NVIDIA terminology) and more advanced architectural features.

Both above trends, in isolation and, more so, combined, hint towards the concept of supercomput-

ing on a chip.

140

4.4.2 Methodology

In this section, we present our methodology in addressing the research questions set forth at the

start of Section 4.4. We start with identifying the search space for candidate Cluster on a Chip

(CoC) platforms. Then (Sections 4.4.2 and 4.4.2) we describe in detail how we evaluate the per-

formance of each CoC candidate. Section 4.4.2 discusses assumptions we make in the process.

Cluster on a Chip (CoC)

By Cluster on a Chip (CoC) we refer to the combination of discrete types and numbers of compute

engines (CEs). This conglomerate of CEs constitutes the expected result of the unification trend

that we describe in Section 4.4.1. Such a hypothetical platform may not be feasible under current

technology and manufacturing constraints. We discuss our assumptions in Section 4.4.2. CEs

under consideration include a general-purpose CPU, a high-performance discrete GPU, an Intel

Xeon Phi (MIC) co-processor, and an FPGA. Table 4.8 shows the detailed characteristics of each

platform.

Given these CEs we construct hypothetical CoCs by creating combinations thereof (also allowing

multiple CE instances). In order to restrict the CoC search space, we enforce an (arbitrary) chip

area constraint. Table 4.9 shows how we define a chip area base unit (BU), based on the number of

transistors of each device and the process technology used in each to approximate the chip area size

of each CE, assuming that transistors for all four types of CEs are laid out in the two-dimensional

space. A BU measures the relative chip area using the calculated CPU chip area as a baseline.

141

Table 4.8: Configuration of the target fixed architectures

Model AMD Opteron AMD Radeon Intel Xeon Phi
6272 (CPU) HD 7970 (GPU) P1750 (MIC)

Type CPU Discrete GPU Co-processor
Frequency 2.1 GHz 925 MHz 1.09 GHz
Cores 16 32† 61
Threads/core 1 4 4
L1/L2/L3 16/2048/ 16/768/- 32/512/-
Cache (KB) 8192‡ (L1 per CU) (per core)
SIMD (SP) 4-way 16-way 16-way
Process 32nm 32nm 22nm
TDP 115W 210W 300W
GFLOPS (SP) 134.4 3790 2092.8

† Compute Units (CU) ‡ L1: 16KBx16 data shared, L2: 2MBx8 shared, L3: 8MBx2 shared

Table 4.9: Defining Base Unit (BU) for chip area size

Type Model Transis- Process Base
tors (bil.) (nm) Units

CPU AMD Opteron 6272 2.4 32 1
GPU AMD Radeon HD 7970 4.3 28 1.372
MIC Intel Xeon Phi P1750 5 22 0.985
FPGA Xilinx Virtex-6 LX760 5.8 40 3.778

For example, given the values for number of transistors and process technology in Table 4.9 for

CPU and GPU, the BUs of a GPU are (28
32
)2 ∗ 4.3

2.4
= 1.372. Following the above, the restriction we

enforce is that all CoCs we consider have a chip size area that is equal or less than the aggregate

area of one CPU, plus one GPU, plus one Intel Xeon Phi, plus one FPGA. Based on Table 4.9

(Base Units column) this adds up to 7.135 BUs. According to this constraint there are 100 possible

CoCs.

142

Performance Evaluation

For evaluating the CoC candidates (Section 4.4.2) we use the OpenDwarfs benchmark suite (Sec-

tion 4.1.1. Specifically, we employ a subset of the dwarf instantiations: GEM, NW (Needleman-

Wunsch), SRAD (Speckle-Reducing Anisotropic Diffusion), BFS (Breadth-first Search), CRC

(Cyclic Redundancy Check), and CSR (Compressed Sparse-Row Matrix-Vector Multiplication).

The dwarf categories are shown in Table 4.10 together with the dwarf instantiations listed above

and their input parameters/datasets. Using these dwarfs we create a large number of synthetic

benchmarks. These synthetic benchmarks contain all possible combinations of four, five, and six

dwarfs. This allows for the creation of benchmarks that cover a sufficiently large number of po-

tential real-world applications. This stems from the fact that dwarfs, by definition, represent com-

putation and communication patterns and real-world applications are largely composed of such

patterns (dwarfs) that can be temporally or spatially distributed across a set of CEs (examples

of dwarf composition of five ParLab applications and seven general application areas are given

in [29]). Along these lines, in each synthetic benchmark we assume the latter (spatial) distribution

of constituent parts, i.e., dwarfs within an application are independent and can run in parallel in a

form of request-level parallelism (similar assumptions are used in similar works, e.g., [75]). Each

dwarf runs in parallel by itself on the specific CE it is scheduled on. The way each dwarf of a

benchmark is scheduled to each part of a CoC is described in Section 4.4.2. The above methodol-

ogy allows us to draw broader conclusions that are better representative of real-world workloads.

143

Table 4.10: OpenDwarfs benchmark test parameters/inputs

Dwarf Algor. Problem Size
N-body methods GEM Input file: nucleosome
Dynamic programming NW Two 4096-letter protein sequences
Structured grids SRAD 2048x2048 FP, 128 iterations
Graph traversal BFS 248,730 nodes, 893,003 edges
Combinational logic CRC Input data-stream: 100MB
Sparse linear algebra CSR 20482 x 20482 sparse matrix

Table 4.11: Execution time (in msec) of dwarf benchmarks

GEM NW SRAD BFS CRC CSR
CPU 21592 112 5093 331 672 22
GPU 401 672 232 96 19 4
MIC 11871 222 2298 278 881 5
FPGA 25345 35 17651 105 24 83

For our results we use the kernel execution times shown in Table 4.11, which were obtained in [175]

by executing the OpenCL-based OpenDwarfs on the hardware shown in Table 4.8. Implementation

details and performance evaluation of each dwarf separately on each of the different architectures

(CPU, GPU, Intel MIC, FPGA) is also done in [175] and beyond the scope of this work. In this

work we focus on the overall performance benefits of using CoCs. For this reason, the results of

synthetic benchmarks that contain all possible combinations of four, five, and six dwarfs (among

the total six used) are averaged (4-mers, 5-mers, 6-mers). This ensures that no specific dwarf

can disproportionally distort the high-level insights. As we would see in Section 4.4.3 the trends

observed in the results are similar, irrespective of the number of constituent dwarfs, which is in-

dicative of the generality of our methodology.

144

Scheduling

In Section 4.4.2 we describe the performance evaluation methodology with respect to the work-

loads. In this section, we discuss the details of scheduling each constituent part of our synthetic

benchmarks on the disparate parts of CoC architectures. Our scheduling methods assume oracle

prediction (as, e.g., in [199] or [75]), i.e., we assume a priori perfect knowledge of execution times

of each dwarf on each type of CE within a CoC. Note that this work is not focused on scheduling,

but in providing an early evaluation of the upper performance bound of CoC architectures, hence

the oracle assumption.

Specifically, in our schedule we execute each dwarf on the best available CE (i.e., not necessarily

on the fastest one, which would correspond to the local minimum). This schedule is feasible given

use of an off-line scheduling algorithm, where we know the execution time of each dwarf, or a

performance prediction model. Such schedules may allow late start for a given dwarf, if such a

schedule leads to a globally optimal solution. We explore cases with multiple instances of CEs

(given space constraints as described in Section 4.4.2), and we allow multiple CEs to be active

simultaneously.

Assumptions

We start our study with a simplified model that incorporates certain assumptions. Our goal is to

provide an initial systematic and broad study of the CoC concept based on existing hardware and to

rationalize the benefits of a conceptual architecture like it. While a CoC may be unfeasible given

145

the current state of the practice, we envision it can materialize in the (near) future, once further

advances in chip manufacturing and other areas are made. Even in the presence of the stated

assumptions, like negligible inter-CE interference, our study projects a conservative upper bound

on performance (a la the Roofline model [285], for example) and provides useful insights about the

future of heterogeneous computing. Similar approaches with respect to assumptions are made in

related work, like [181, 75, 199]. We discuss such relevant required technology and system-level

advances in Section 4.4.4.

Data transfers: The architectures, as discrete devices, that comprise a CoC would require data

transfers between a CPU host and the corresponding accelerator in a real OpenCL execution sce-

nario. Such data transfers could in fact be potential bottlenecks also limiting maximum paral-

lelism [79]. In the context of this work we deem them negligible, expecting a broader adoption of

the unified memory trend (a la CPU and GPU in the context of an APU system).

Prediction/scheduling: In Section 4.4.2 we discuss scheduling. When multiple CEs, and espe-

cially CEs of different types, are available, it is essential that scheduling of workloads be done in

an efficient manner, taking advantage of the specific characteristics of each CE type. This would

require a form of pattern/application signature recognition. Such scheduling is non-trivial and adds

an extra overhead on top of the actual execution time of a given workload. Within the confines of

our study, we assume perfect prediction, given off-line scheduling and zero scheduling overhead.

Power: One of the main premises of CoCs, besides performance scaling, is power efficiency

and energy savings by assigning workloads to the most appropriate CE type (as opposed to a

generic fat core). The actual power budget of an architecture that consists of one (or more) of

146

each of a CPU, MIC, GPU and FPGA could be prohibitive without employing advanced power

management techniques. Our study focuses on the performance aspect of the CoC concept and

indirectly addresses the thermal power density aspect by only allowing sufficient heterogeneous

computing elements to fit within a constrained die area. Ensuring that CoCs are power-efficient

and a detailed study of power is an important future research avenue beyond the scope of this work.

Parallelism within applications: Our synthetic benchmarks consist of applications that fall under

the dwarfs classification, for reasons we discuss in Section 4.4.2. For the purposes of our work,

we assume that workloads are composed of independently parallelizable parts (i.e., the constituent

dwarfs of each synthetic benchmark) following a request-level parallelism paradigm.

4.4.3 Results

In this section we present the findings of our experiments that are based on the methodology

outlined in Section 4.4.2. The main variables in our experiments include:

1. Synthetic benchmarks (i.e., benchmarks comprising different combinations of dwarf N-

mers).

2. Cluster on a Chip (CoC) instantiations (i.e., different combinations of types and numbers

of CEs under consideration).

147

Despite the magnitude of the potential options search space, we attempt to provide relevant exper-

iments and group the results we obtain in such ways so as to allow us to identify certain trends in

a clear way and draw useful insights with respect to the following research questions:

1. For a widely-varying set of dwarf combinations forming synthetic benchmarks what are the

best combinations of CEs to form a CoC across the potential CoC spectrum?

2. What are the trade-offs between the CoCs’ chip area and performance? What are the most

efficient CoCs based on a performance per chip area metric?

3. What is the expected benefit of fusing an FPGA in three specific CoC instantiations and

what are the CE usage trends with different combinations of dwarfs in smaller synthetic

benchmarks?

Answering the above questions enables us to draw useful conclusions related to the main research

question of what is the best combination and number of CEs within a CoC for a varied set of

algorithmic patterns (as classified by the dwarfs concept).

Performance of CoC Instantiations

Figure 4.23 presents the results for all possible CoC instantiations and for the average performance

across all three categories of synthetic benchmarks built and scheduled as described in detail in

Section 4.4.2. Performance (execution time) is presented as the speed-up over a CoC that contains

a single GPU. In this case, separate dwarfs within a synthetic benchmark are executed one after

148

the other on the single GPU, but each dwarf itself is executed in parallel within the GPU. Each

CoC is identified by the number of its constituent CEs (number of CPUs, GPUs, MICs, FPGAs).

For example, 1210 corresponds to a CoC that includes one CPU, two GPUs, one Intel MIC and

zero FPGAs. Note that in the OpenCL paradigm a host (CPU) is required alongside the device

(accelerator). A “traditional” CPU, a soft- or hard-core CPU within a FPGA or a MIC core can

serve as both an OpenCL host and device. While for now a discrete GPU cannot serve as a host,

this may not be the case in the future.

First, on a high-level we observe that for the majority of CoCs the achieved performance is irre-

spective of the number of dwarfs contained in a synthetic benchmark (4-mers, 5-mers, 6-mers).

The cases where the observed performance is higher for the 4-mers case than in 5- or 6-mers are

generally these where the number of CEs in a CoC is less than four. In these cases, one or two

dwarfs in the 5- or 6-mer synthetic benchmarks need to run sequentially (with respect to the other

dwarfs) on one of the available CEs, thereby increasing the overall execution time. The fact that

the general performance trends remain the same, irrespective of the number of dwarfs in our syn-

thetic benchmarks, indicates the suitability of our benchmarking methodology (Section 4.4.2) for

our purpose of evaluating next-generation heterogeneous architectures, in the form of CoCs.

Without loss of generality, we focus on the 6-mer case and provide a more detailed analysis of the

observed results. Without a GPU, relative performance (i.e., speed-up over common baseline) is

limited in the 0.033 to 0.12 range. A GPU is indeed an indispensable CE in any CoC. Note that a

CoC with two GPUs (0200 in graph) provides a 1.952-fold speed-up over a CoC with one GPU.

This may seem counter-intuitive at first (expecting a 2-fold speed-up), but one needs to remember

149

0	

0.5	

1	

1.5	

2	

2.5	

3	

3.5	

4	
00
01
	

00
10
	

00
11
	

00
20
	

00
21
	

00
30
	

00
31
	

00
40
	

00
50
	

00
60
	

00
70
	

01
00
	

01
01
	

01
10
	

01
11
	

01
20
	

01
21
	

01
30
	

01
40
	

01
50
	

02
00
	

02
01
	

02
10
	

02
20
	

02
30
	

02
40
	

03
00
	

03
10
	

03
20
	

03
30
	

04
00
	

04
10
	

05
00
	Sp

ee
d-
up

	(o
ve
r	s
in
gl
e	
G
PU

	b
as
el
in
e)
	

CoC	(#CPUs,	#GPUs,	#MICs,	#FPGAs)	

4-mers	

5-mers	

6-mers	

(a) Combinations 1-33

0	

0.5	

1	

1.5	

2	

2.5	

3	

3.5	

4	

10
00
	

10
01
	

10
10
	

10
11
	

10
20
	

10
21
	

10
30
	

10
40
	

10
50
	

10
60
	

11
00
	

11
01
	

11
10
	

11
20
	

11
30
	

11
40
	

12
00
	

12
10
	

12
20
	

12
30
	

13
00
	

13
10
	

13
20
	

14
00
	

20
00
	

20
01
	

20
10
	

20
11
	

20
20
	

20
30
	

20
40
	

20
50
	

21
00
	Sp

ee
d-
up

	(o
ve
r	s
in
gl
e	
G
PU

	b
as
el
in
e)
	

CoC	(#CPUs,	#GPUs,	#MICs,	#FPGAs)	

4-mers	

5-mers	

6-mers	

(b) Combinations 34-66

0	

0.5	

1	

1.5	

2	

2.5	

3	

3.5	

4	

21
10
	

21
20
	

21
30
	

22
00
	

22
10
	

22
20
	

23
00
	

23
10
	

30
00
	

30
01
	

30
10
	

30
20
	

30
30
	

30
40
	

31
00
	

31
10
	

31
20
	

32
20
	

32
10
	

33
00
	

40
00
	

40
10
	

40
20
	

40
30
	

41
00
	

41
10
	

42
00
	

50
00
	

50
10
	

50
20
	

51
00
	

60
00
	

60
10
	

70
00
	Sp

ee
d-
up

	(o
ve
r	s
in
gl
e	
G
PU

	b
as
el
in
e)
	

CoC	(#CPUs,	#GPUs,	#MICs,	#FPGAs)	

4-mers	

5-mers	

6-mers	

(c) Combinations 67-100

Figure 4.23: Performance of Clusters on a Chip (CoC): Speed-up over single-GPU baseline for
all possible combinations (100) restricted by the maximum number of Base Units (BUs), for three
classes of synthetic benchmarks

150

that the execution time of different dwarfs within a synthetic benchmark vary and the way they can

be scheduled onto the two GPUs (i.e., as a whole) may lead to such schedules. For similar rea-

sons, CoCs with three, four or five GPUs only (0300, 0400, 0500) exhibit the same performance

(2.123-fold speed-up). Maximum performance is capped by the longest-running dwarf within the

synthetic benchmarks. So if chip area (and consequently power) is a concern, a CoC with three

GPUs is better than one with four or five. Or one may deem the 8.7% performance increase be-

tween using two and three (or four or five) GPUs negligible and elect a CoC with two GPUs only.

Similar observations can be gleaned from Figure 4.23 for CoCs entailing other CEs, like MIC (e.g.,

cases 1210, 1220, 1230). The best performance (3.555) can be obtained using different combina-

tions of CEs within a CoC. Again, these combinations exhibit varying chip area requirements. The

above observations provide useful insights with respect to the performance per area ratio that we

discuss further in Section 4.4.3.

Performance vs. Area Trade-offs

In this Section we attempt to provide another view of our experimental results focusing on the

performance versus area trade-offs. Figure 4.24 presents the speed-up over a single GPU baseline

with respect to the chip area required for 300 points (100 CoCs times three different set of exper-

iments to include all possible 4-, 5-, and 6-mers). While the 300 points are not annotated, due to

their large number, our purpose is to provide a high-level view of the trade-offs entailed, and which

we only briefly discuss in Section 4.4.3. Specifically, one can observe three large clusters for each

of the three experiments. The higher the number of dwarfs in each of the three experiments, the

151

0	

1	

2	

3	

4	

5	

6	

7	

8	

0	 0.5	 1	 1.5	 2	 2.5	 3	 3.5	 4	

Ch
ip
	A
re
a	
(B
as
e	
U
ni
ts
)	

Speed-up	(over	single	GPU	baseline)	

4-mers	

5-mers	

6-mers	

Figure 4.24: Performance vs. area results

more concentrated the clusters are along the horizontal axis. For example, in the 6-mer synthetic

benchmark experiments, most points fall on or near the 0.12, 2.18, 3.56 mark (x-axis). Focusing on

the 3.56-fold speed-up case, there are 26 CoCs with varying chip area requirements (a lot of them

overlapping in Figure 4.24). The best performance (3.56) with the least area (3.73 BUs) within this

performance point is achieved on a CoC with two GPUs and one MIC. The same performance with

the second best area is a CoC with two GPUs and one CPU (chip area of 3.74 BUs). The following

best one (chip area of 4.7 BUs) comprises two GPUs and two MICs. The above observations are

indicative of two cases: a) different combinations of CEs in CoCs can achieve the same perfor-

mance, and b) more CEs are not always beneficial. In the former case, the choice of one CoC over

the other may make more sense for non-technical reasons, too. For example, a 1-CPU + 2-GPUs

CoC is a cheaper choice over a 1-MIC + 2-GPUs CoC (assuming the cost of a combination of CEs

152

0	
0.1	
0.2	
0.3	
0.4	
0.5	
0.6	
0.7	
0.8	
0.9	
1	

02
10
	

12
00
	

01
10
	

11
00
	

02
20
	

12
10
	

22
00
	

01
00
	

02
00
	

03
10
	

13
00
	

01
20
	

11
10
	

21
00
	

02
30
	

12
20
	

22
10
	

32
00
	

03
20
	

13
10
	

23
00
	

04
10
	

14
00
	

02
01
	

02
40
	

12
30
	

22
20
	

32
10
	

42
00
	

03
00
	

01
30
	

11
20
	

03
30
	

13
20
	

21
10
	

23
10
	

33
00
	

31
00
	

01
01
	

01
40
	

11
30
	

21
20
	

31
10
	

41
00
	

04
00
	

01
11
	

11
01
	

01
50
	

11
40
	

21
30
	

31
20
	

41
10
	

51
00
	

01
21
	

05
00
	

Pe
rf
or
m
an

ce
	p
er
	A
re
a	

CoC	(#CPUs,	#GPUs,	#MICs,	#FPGAs)	

Figure 4.25: Performance per area results

within a CoC is the same as the CE separately). Also, there are power implications depending on

the CE selection (e.g., MIC TDP is generally higher than CPU TDP). In the latter case the higher

number of CEs (especially of the same type, as discussed above) does not provide any benefit.

Minimizing chip area while keeping performance steady is important, due to manufacturing costs,

cooling requirements, power, etc. As such, it is important to evaluate CoCs’ performance with

respect to occupied chip area. To do so we introduce a performance per area metric. We present

the results in Figure 4.25 in descending order (the higher the better). This provides insight with

respect to what combinations of CEs within a CoC provide the best performance per chip real

estate. As in Section 4.4.3, we focus on the 6-mer synthetic benchmarks experiments. We show

the CoCs that achieve a value of performance per area over 0.3 (all the rest CoCs score less than

0.06 and are not shown). As can be seen in Figure 4.25 the two best CoCs with respect to the

performance per area metric are the ones we discussed in the previous paragraph (0210, 1200).

The next best ones with a performance per area value over 0.9 (and still close to the maximum)

153

incorporate one GPU and one MIC (0110), and one CPU and one GPU (1100), respectively. Notice

that while these two CoCs are efficient with respect to our target metric, they are not optimal in

terms of performance alone. This accentuates the trade-offs entailed and the fact that the choice of

a CoC depends on the design goals. The most efficient CoCs, both from a performance per area

perspective (Figure 4.25) and performance alone (Figure 4.23), contain at least one GPU. Intel MIC

is also sufficiently present across the top performance per area CoCs, but always in combination

with GPU(s).

Case Study: FPGAs in CoCs

In Section 4.4.1 we discuss practical examples of telescoping architectures, such as fusing CPUs

and GPUs in the form of an Accelerated Processor Unit (APU). Also, we hint towards the uni-

fication of reconfigurable fabric (i.e., FPGA) with CPU on-chip, in future implementations. The

latter is projected to be of particular importance in datacenter computing (e.g., search-engines),

because of the FPGA’s high-performance for certain algorithms, and its high energy efficiency.

This Section discusses the performance benefits of CoCs that include an FPGA CE. In contrast to

Section 4.4.3, here we focus on simpler CoCs that may be more viable in the shorter term. As such,

we focus on three sample cases, that is CoCs that include: a) one CPU and one FPGA, b) one CPU,

one GPU and one FPGA, c) one CPU, one GPU, one MIC and one FPGA. As far as workloads

are concerned, we use synthetic benchmarks that comprise dwarf kernels from the OpenDwarfs

subset discussed in Section 4.4.2 minus GEM (to keep number of combinations tractable). How-

ever, in these experiments we focus on synthetic benchmarks that are composed of three dwarfs

154

(i.e., 3-mers); specifically all combinations of three dwarfs possible out of the five dwarfs: NW,

SRAD, BFS, CRC, CSR. Table 4.12 shows the results of the above experiments. For each of the

three sample cases, we list the number of times dwarfs from each synthetic benchmark are run

on the CPU, GPU, MIC or FPGA. Also, we indicate the speed-up obtained with the CoC at hand

compared to the same configuration of CEs without the FPGA. For instance, in the 1-CPU + 1-

FPGA case, and for the NW/SRAD/BFS synthetic benchmark, the CPU is used for one of the three

constituent dwarfs of that benchmark and the FPGA for two. Also, the indicated speed-up is the

performance obtained using this CoC compared to a CPU-only equipped CoC. Although we do not

show the details of where dwarfs of each synthetic benchmark are scheduled, we provide details

where necessary below.

In the first case (Table 4.12a), we examine the case where we incorporate an FPGA with a CPU

on a chip. This would be conceptually similar to Intel’s announced Xeon CPU + FPGA chip.

Apparently, the FPGA is utilized on average twice as much as the CPU in the CoC (1.1 vs. 1.9).

The performance obtained compared to a CPU-only CoC (practically a typical CPU) ranges from

a meager 1.09- to a considerable 13.51-fold increase. In the average case, we observe a 4.01-fold

speed-up. Specifically, as expected, all ten cases exhibit performance improvement. However,

speed-up in six out of ten lies below 1.20x. These are the cases where the SRAD dwarf is present

in the synthetic benchmark. Even for the best schedule, where the CPU is chosen for SRAD (3.47x

than the FPGA), and the FPGA is used for the (faster) execution of the remaining two dwarfs in

each case, the actual execution time of SRAD compared to the other two dwarfs dominates total

execution time. While not shown in Table 4.12, a CPU + GPU CoC exceeds a CPU + FPGA CoC

155

Table 4.12: CoCs with FPGA: CE utilization and speed-up vs. corresponding CoC without FPGA

1 CPU + 1 FPGA
Synthetic Dwarf #CPU #FPGA Speed-up

w/o FPGA
NW / SRAD / BFS 1 2 1.09
NW / SRAD / CRC 1 2 1.15
NW / SRAD / CSR 1 2 1.03
NW / BFS / CRC 1 2 8.59
NW / BFS / CSR 2 1 3.46
NW / CRC / CSR 1 2 13.51

SRAD / BFS / CRC 1 2 1.2
SRAD / BFS / CSR 1 2 1.07
SRAD / CRC / CSR 1 2 1.14
BFS / CRC / CSR 1 2 7.9

Average: 1.1 1.9 4.01
(a)

1 CPU + 1 GPU + 1 FPGA
Synthetic Dwarf #CPU #GPU #FPGA Speed-up

w/o FPGA
NW / SRAD / BFS 1 1 1 1.41
NW / SRAD / CRC 1 1 1 1.08
NW / SRAD / CSR 2 1 0 1
NW / BFS / CRC 0 1 2 1.2
NW / BFS / CSR 1 1 1 1.16
NW / CRC / CSR 1 1 1 3.2

SRAD / BFS / CRC 0 1 2 1.43
SRAD / BFS / CSR 1 1 1 1.42
SRAD / CRC / CSR 1 1 1 1.08
BFS / CRC / CSR 1 1 1 1.2

Average: 0.9 1 1.1 1.42
(b)

1 CPU + 1 GPU + 1 MIC + 1 FPGA
Synthetic Dwarf #CPU #GPU #MIC #FPGA Speed-up

w/o FPGA
NW / SRAD / BFS 1 1 0 1 1.2
NW / SRAD / CRC 1 1 0 1 1.08
NW / SRAD / CSR 2 1 0 0 1
NW / BFS / CRC 0 1 0 2 1.2
NW / BFS / CSR 1 1 0 1 1.16
NW / CRC / CSR 1 1 0 1 3.2

SRAD / BFS / CRC 0 1 0 2 1.2
SRAD / BFS / CSR 1 1 0 1 1.2
SRAD / CRC / CSR 1 1 0 1 1.08
BFS / CRC / CSR 1 1 0 1 1.2

Average: 0.9 1 0 1.1 1.35
(c)

156

performance for the workloads under consideration, for nine out of ten cases. Specifically, all six

synthetic benchmarks that contain SRAD are considerably slower on the CPU + FPGA CoC. Of

the four remaining ones the CPU + GPU CoC is faster in three out of four cases (by 1.12-1.20x),

whereas in one case (NW/CRC/CSR) the CPU + FPGA CoC is faster by 1.88x. In that case, NW

runs 3.2x faster on the FPGA, CRC runs 27.35x faster on the FPGA, and CSR runs 3.77x faster

on the CPU. Since all three dwarfs can run in parallel and we have one CPU and one FPGA in the

CoC, NW and CRC run one after the other on the FPGA while CSR runs on the CPU. The above

shows how important heterogeneity (or hardware customization) is to cover special cases that may

appear and completely nullify any expected performance gains.

The second case (Table 4.12b) studies a CoC that contains an FPGA on a chip together with CPU

and GPU CEs. That would correspond to an APU chip, as available today, with the addition of an

FPGA on that same chip package. As we observe despite the presence of a GPU, the FPGA is still

utilized at least once in nine out of ten cases. That makes it obvious that the addition of an FPGA

on chip would be beneficial for performance, if added alongside a CPU or a CPU and GPU. Even

though the benefits of adding an FPGA to an APU chip are not as high as doing so on a CPU-

only, they still provide an average of 1.42-fold performance increase. In our example synthetic

benchmarks, the major benefit comes from scheduling SRAD on the GPU. As we mentioned the

actual execution time for SRAD (even on the GPU) is comparably bigger than the rest of the

dwarfs. This may mean that the scheduler picks the second fastest CE for a dwarf, as long as

SRAD is assigned to the GPU. For example, in the NW/SRAD/BFS case, NW is assigned to the

CPU and BFS to the FPGA, although these CEs are the second best for these dwarfs. As one can

157

see in the CPU + FPGA and CPU + GPU + FPGA cases, adding an extra CE is always better. Even

in the case a CE may not be the most suitable (i.e., fastest) for a given dwarf, it provides more

scheduling possibilities that can lead to a better overall performance. While this may be worse

with respect to power, clever power-saving techniques could counter such effects (e.g., switching

off CEs when not used, etc.)

In the third case (Table 4.12c), we consider the case of placing an FPGA together with a CPU,

GPU, and MIC CEs. This experiment provides useful insights, that also tie back to Section 4.4.3.

Specifically, it is an example of a case where an extra CE, which also occupies useful chip real

estate, does not contribute any performance benefit. As we see, the MIC is not used at all across

the synthetic benchmarks search space. In fact, the statistics reduce to the previous case (CPU +

GPU + FPGA CoC). While the number of constituent workloads within our synthetic benchmarks

(three) is less than the available CEs (four), it is still interesting to see that MIC is not used over

one of the other CEs in any of the synthetic benchmarks. Similarly, comparing the CPU + GPU +

MIC + FPGA CoC to the corresponding one without the FPGA, we identify only three cases where

adding the FPGA benefits performance (the rest remains the same). These are the cases where the

BFS dwarf is present and now scheduled on the FPGA, instead of MIC.

4.4.4 Discussion

Telescoping architectures in the form of CoCs bears many similarities with similar works and can

provide performance and power benefits. In this work, we focus on a first-order approach on the

158

performance aspect of CoCs, identifying an upper bound on attainable performance, under certain

assumptions. Telescoping architectures in the context of heterogeneous computing (i.e., CoCs) is

a non-trivial effort. In order for CoCs to find practical implementation a number of issues needs to

be addressed, some of which warrant a whole research area by themselves. The proposed method-

ology, based on dwarf-based synthetic benchmarks, can be used in such future studies that focus on

issues like scheduling, power/energy-aware optimizations, memory hierarchies, network-on-chip.

Also, it can serve as a starting point for refined approaches for performance modeling/prediction.

Borkar and Chien discuss challenges regarding the future of microprocessors, many of which are

relevant to a CoC, in more detail in [46]. Here, we provide a high-level overview of three issues

related to our assumptions in Section 4.4.2.

Programming CoCs

One of the obstacles in democratizing heterogeneous computing has been learning a disparate set

of programming languages and optimization techniques. Eventually, key hardware vendors intro-

duced the OpenCL standard that allows programming CPUs, GPUs, Intel MICs and even FPGAs.

The “write once, run anywhere” concept of OpenCL renders it ideal for a heterogeneous cluster on

a chip. While OpenCL, as is, covers the functional portability aspect (i.e., correct results across ar-

chitectures), there yet remains the issue of performance portability (i.e., equally fast performance

across architectures, given the same code). It is expected that compiler technology advances, in

tandem with auto-tuners, and optimized/customized libraries will assist towards bridging the per-

formance portability gap across heterogeneous architectures.

159

Identifying Patterns/Signatures and Scheduling

Scheduling dwarfs within an application to the CEs of a CoC in an efficient way requires iden-

tifying the dwarfs within that application. Research efforts include using performance coun-

ters to dynamically identify the best program phase to core matching [37, 181, 121, 125] or

signature-driven approaches [252, 259, 55] and other scheduling techniques/run-time systems for

workloads with various levels of parallelism (e.g., task-based, loop-based) on heterogeneous re-

sources [173, 246, 264]. Efficient recognition of dwarfs as constituent parts of real applications

is challenging because applications may be composed of multiple dwarfs in a non-trivial way.

Related work could be expanded to leverage CoC architectures and dwarf-based workloads.

Hardware-Related Issues: Chip Integration, Data Transfers and Memory Unification, Power

For CoCs to materialize there is a need for major advances on the hardware level, specifically in

the area of System on Chip (SoC) or System in Package (SiP) [194]. The latter is on the focus

of ITRS [10], where complex, 3D SiP architectures are proposed on the road to heterogeneous

integration. In both cases assembly, packaging, and most importantly interconnect of separate parts

of a die (or chips in a SiP) will play a very important role in the fruition of CoC architectures. Issues

like energy efficiency and energy proportionality are also of paramount importance. An interesting

discussion on interconnects of future multi-processors, as well as power-related concerns, is given

in [46]. We expect that the trend towards unifying the memory space and collocating heterogeneous

160

cores on the same die (e.g., in the APU case) will continue allowing more and different instances

of compute engines to perform synergistically within the same chip or package.

4.5 Conclusion

In this chapter we examined the performance aspect of heterogeneous architectures. Specifically,

we introduced dwarf-based benchmarking for heterogeneous computing via OpenDwarfs, a col-

lection of dwarf implementations in OpenCL. We verified functional portability of dwarfs across a

multitude of parallel architectures and characterized a subset’s performance with respect to specific

architectural features. Computation and communication patterns of these dwarfs led to diversified

execution behaviors, thus corroborating the suitability of the dwarf concept as a means to char-

acterize computer architectures. Based on dwarfs’ underlying patterns and profiling we provided

insights tying specific architectural features of different parallel architectures to such patterns ex-

posed by the dwarfs.

Focusing our efforts on one of the dwarfs (n-body), we extended our performance-oriented study

into multiple dimensions to include multiple optimizations, in different languages, and varying tar-

get architectures. We specifically attempted to shed light on the impact of optimizations that find

application across heterogeneous platforms and evaluated their effect with respect to the underly-

ing architectures. Of particular importance is our work on using OpenCL for FPGA programming.

OpenCL support for FPGAs is fairly nascent and thus detailed performance studies on a variety

of applications are needed. We presented a preliminary exploration of the FPGA OpenCL opti-

161

mization search space (to include kernel vectorization, kernel refactoring, loop unrolling, etc.) and

assessed the resulting performance. Our study accentuated the need of manual optimizations that

are tightly coupled with the platform used, as well as the algorithmic patterns found in a specific

application. This holds true in more “traditional” architectures (such as CPU, GPU, Intel MIC),

and even more so in the case of reconfigurable architectures (i.e., FPGA). While we focused on

a single dwarf, similar studies like the above can provide insights on the rest of the dwarfs. Ulti-

mately, such insights as those obtained from our study can be a useful aid in a programmer’s search

for the best combination of language, optimizations, and compute platform for their application.

While our study so far focuses on performance, in Chapter 5 we discuss the aspects of programma-

bility and portability, and ways to bridge the gaps between performance, programmability and

portability via use of tools.

We concluded this chapter, by proposing a means of identifying trends regarding the future of

heterogeneous architectures based on the dwarfs concept. Using our proposed methodology we

were able to conduct a broad, yet rapid exploration of the heterogeneous architecture space via

real hardware and extending the notion of telescoping architectures. This notion of telescoping

allows us to envision, in a form of déjà vu, that similar advances that led from a commodity

(heterogeneous) cluster in a machine room to a commodity cluster on a chip, will be repeated, now

in the context of heterogeneity. To this end, we experimented with heterogeneous architectures that

comprise multiple types and instances of CPUs, GPUs, Intel MICs, and FPGAs and attempted to

provide an early study on the performance benefits of such heterogeneous clusters on a chip (CoC).

We found that CoCs exhibit not only performance benefits overall, as expected, but also interesting

162

characteristics with respect to their performance and constituent compute engines (CEs), as well

as with respect to specific workloads.

Chapter 5

On the Programmability and Portability of

Heterogeneous Platforms

General-purpose computing on an ever-broadening array of parallel devices has led to an increas-

ingly complex and multi-dimensional landscape with respect to programmability and performance

optimization, as well as portability. The growing diversity of parallel architectures presents many

challenges to an audience that spans expert programmers through domain scientists with minimal

programming knowledge. Such challenges entail, among others, device selection, programming

languages, and level of investment in optimization. All of these choices influence the balance be-

tween programmability and performance. At the same time, portability, i.e., the ability to run a

program across different computing platforms remains an important issue.

163

164

In this chapter, we first seek to identify the gap between programmability and portability in hetero-

geneous platforms. To this end we employ GEM, the n-body, molecular-modeling application we

use in our performance-oriented study in Section 4.2.1. We characterize programmability achiev-

able across a range of architecture-specific optimizations for multi- and many-core platforms –

specifically, an Intel Sandy Bridge CPU, Intel Xeon Phi co-processor, and NVIDIA Kepler K20

GPU. Additionally, we characterize the incremental optimization of the code from naı̈ve serial to

fully hand-tuned on each platform through four distinct phases of increasing complexity and ex-

pose the strengths and weaknesses of the main programming models offered on each platform. Our

findings reveal that the widespread adoption of parallel platforms, languages, as well as optimiza-

tion methods tailored for each combination of platform and language makes it a non-trivial task to

come up with an efficient - and easy to program - algorithmic implementation.

To address the above performance, programmability and portability issues we propose realizing

a programming abstraction and implementing it within an integrated development framework.

Specifically, we present GLAF — a grid-based language and auto-parallelizing, auto-tuning frame-

work. Its key elements are its intuitive visual programming interface, which attempts to render

expressing and validating an algorithm easier for domain experts, and its ability to automatically

generate efficient serial and parallel Fortran and C code, as well as OpenCL, including potentially

beneficial code modifications (e.g., with respect to data layout). We find that the above features as-

sist novice programmers to avoid common programming pitfalls and provide fast implementations.

At the basis of GLAF design, development, and testing decisions lie dwarfs from the OpenDwarfs

benchmark suite, among other applications. Dwarfs have been used throughout the development,

165

testing and debugging, and most importantly in identifying appropriate optimizations of general-

ized applicability in GLAF’s auto-tuning back-end. Last, a broader study of GLAF’s functionalities

and effectiveness as a tool for domain scientists is conducted in the context of an application of

interest to NASA.

5.1 A High-Level Discussion on Programmability and Porta-

bility

By the term programmability we refer to the perceived level of difficulty for a programmer to

“translate” an algorithm of interest into a computer program. Portability, on the other hand, refers

to the ability to run a given program across multiple types of devices and can be divided to func-

tional and performance portability. The former holds true for programs that generate the same

output, given the same input, across platforms, while the latter implies that the same program

maintains equal performance levels across platforms (taking into account the intrinsic performance

capabilities of the underlying hardware).

As we mention in Chapter 1, programmability is interrelated to the concept of performance (i.e.,

the performance vs. programmability gap), as well as portability. All three Ps [106], in fact, entail

intrinsic trade-offs. For example, higher levels of programmability typically correspond to higher

levels of portability, but lower levels of performance. On the contrary, lower programmability

typically implies higher performance and lower portability. Of course, there may be exceptions as

166

compiler technology, tools and run-time systems advance. OpenCL, for instance, is considered a

difficult programming language, yet comes with the intrinsic advantage of functional, and – to a

certain degree – performance portability.

Figure 5.1 shows an example on programmability for a simple matrix multiplication algorithm

across four programming languages, three of which (OpenACC, CUDA, OpenCL) can be used

to program heterogeneous devices, like the GPU. The CUDA and OpenCL cases are intention-

ally shrunk to give a perspective on the number of lines of code and difficulty of programming in

them, even for a simple program, as in our example. As we move from the left to the right, pro-

grammability decreases. While OpenACC requires a single directive (#pragma acc line), CUDA

and OpenCL mandate much more programming effort. Specifically, both CUDA and OpenCL re-

quire the user to manually expose parallel computation and handle data decomposition, allocation,

and transfers across a host CPU and the GPU. OpenCL further requires initialization of OpenCL

objects (platform, program, command queues etc.) that require a large number of lines of code.

We use the above simple example above to provide a first-order feel on the aspect of programma-

bility. As we saw in Chapter 4, programming heterogeneous targets and obtaining acceptable

performance requires parallel programming knowledge, as well as familiarity with the details of

the underlying architecture. In Section 5.2 we provide a detailed study on programmability and

portability based on our experiments with a larger-scale program. This perceived lack of pro-

grammability of heterogeneous platforms is one of the reasons that hinder wider adoption of high-

performance computing. Indicative of this fact is Figure 5.2, derived from a study by the Council

on Competitiveness and the University of Southern California. It portrays the fact that a high num-

167

__global__
void MatMul(float* d_M,
 float* d_N,
 float* d_P,
 int W) {
 int row = threadIdx.y;
 int col = threadIdx.x;
 float P_val = 0;
 for (int k = 0; k < W; ++k) {
 float M = d_M[row * W+ k];
 float N = d_N[k * W+ col];
 P_val += M*N;
 }
 d_p[row*W+col] = P_val;
}

void MatMul(float* M, float* N,
 float* P, int W) {

 for (int i=0; i<W; ++i)
 for (int j=0; j<W; ++j) {
 for (int k=0; k<W; ++k) {
 P[i*W+j] += M[i*W+k]*
 N[k*W+j];
 }
 }
}

void MatMul(float * restrict M,
 float * restrict N,
 float* restrict P, int W) {
 int i, j, k ;
 #pragma acc kernels
 copyout(P[0:(W*W)]),
 copyin(M[0: (W*W)],N[0:(W*W)])
 for (i=0; i<W; i++){
 for (j=0; j<W; j++) {
 for (k=0; k<W; k++)
 P[i*W+j]+=M[i*W+k]*
 N[k*W+j] ;
 }
 }

}

__kernel
void MatMul(global float∗ M,
 global float∗ N,
 global float∗ P,
 int W) {
 int tx=get_global_id(0);
 int ty=get_global_id(1);
 for(int k=0; k<W; ++k) {
 value+=A[ty∗W+k]∗B[k∗W+tx];
 }
 C[ty∗W+tx]=value;
}

C OpenACC CUDA OpenCL

Most Programmable Least Programmable

float *d_M, *d_N, *d_P;
int matrix_size=Width*Width*sizeof(float);
cudaMalloc(&d_M, matrix_size);
cudaMemcpy(d_M, M, matrix_size,
 cudaMemcpyHostToDevice);
cudaMalloc(&d_N, matrix_size);
cudaMemcpy(d_N, N, matrix_size,
 cudaMemcpyHostToDevice);
cudaMalloc(&d_P, matrix_size);
dim3 dimGrid(1,1);
dim3 dimBlock(Width,Width);
MatMul<<<dimGrid, dimBlock>>>(d_M, d_
N, d_P, Width);
cudaMemcpy(P,d_P,matrix_size,
 cudaMemcpyDeviceToHost);
cudaFree(d_P);
cudaFree(d_M);
cudaFree(d_N);

/*Code contains parts adapted from code originally written by Tim Mattson
and obtained from: https://github.com/HandsOnOpenCL/Exercises-Solutions/blob/master/Solutions/Exercise08/
*/
char * kernelsource;
cl_int err;
cl_device_id device;
cl_context context;
cl_command_queue commands;
cl_program program;
cl_kernel kernel;
size = W*W;
h_A = (float *)malloc(size*sizeof(float));
h_B = (float *)malloc(size*sizeof(float));
h_C = (float *)malloc(size*sizeof(float));
cl_uint deviceIndex = 0;
parseArguments(argc, argv, &deviceIndex);
cl_device_id devices[MAX_DEVICES];
unsigned numDevices = getDeviceList(devices);
if (deviceIndex >= numDevices)
{
 printf("Invalid device index\n");
 return EXIT_FAILURE;
}
device = devices[deviceIndex];
char name[MAX_INFO_STRING];
getDeviceName(device, name);
printf("\nUsing OpenCL device: %s\n", name);
context = clCreateContext(0, 1, &device, NULL, NULL, &err);
checkError(err, "Creating context");
commands = clCreateCommandQueue(context, device, 0, &err);
checkError(err, "Creating command queue");
d_a = clCreateBuffer(context, CL_MEM_READ_ONLY | CL_MEM_COPY_HOST_PTR,
 sizeof(float) * size, h_A, &err);
checkError(err, "Creating buffer d_a");
d_b = clCreateBuffer(context, CL_MEM_READ_ONLY | CL_MEM_COPY_HOST_PTR,
 sizeof(float) * size, h_B, &err);
checkError(err, "Creating buffer d_b");
d_c = clCreateBuffer(context, CL_MEM_WRITE_ONLY,
 sizeof(float) * size, NULL, &err);
checkError(err, "Creating buffer d_c");
kernelsource = getKernelSource(“matmul.cl");
program = clCreateProgramWithSource(context, 1, (const char **) &kernelsource, NULL, &err);
checkError(err, "Creating program with matmul.cl");
free(kernelsource);
err = clBuildProgram(program, 0, NULL, NULL, NULL, NULL);
if (err != CL_SUCCESS)
{
 size_t len;
 char buffer[2048];
 printf("Error: Failed to build program executable!\n%s\n", err_code(err));
 clGetProgramBuildInfo(program, device, CL_PROGRAM_BUILD_LOG, sizeof(buffer), buffer, &len);
 printf("%s\n", buffer);
 return EXIT_FAILURE;
}
kernel = clCreateKernel(program, “MatMul”, &err);
checkError(err, "Creating kernel with matmul.cl");

err = clSetKernelArg(kernel, 0, sizeof(cl_mem), &d_a);
 err |= clSetKernelArg(kernel, 1, sizeof(cl_mem), &d_b);
 err |= clSetKernelArg(kernel, 2, sizeof(cl_mem), &d_c);
 err |= clSetKernelArg(kernel, 3, sizeof(int), &W);

checkError(err, "Setting kernel args");
const size_t global[2] = {W, W};
err = clEnqueueNDRangeKernel(
 commands,
 kernel,
 2, NULL,
 global, NULL,
 0, NULL, NULL);
checkError(err, "Enqueueing kernel");
err = clFinish(commands);
checkError(err, "Waiting for kernel to finish");
err = clEnqueueReadBuffer(
 commands, d_c, CL_TRUE, 0,
 sizeof(float) * size, h_C,
 0, NULL, NULL);
checkError(err, "Reading back d_c");

Figure 5.1: Programmability example: Matrix multiplication

ber of users use computing devices with a small number of processors and memory size, and utilize

them to carry out simple jobs. As we move further along the horizontal axis of processor count,

memory size, and job complexity, the number of users declines dramatically. This discrepancy

in utilization of high-performance computing, termed “the missing middle”, identifies a national

productivity opportunity. Addressing this missing middle (that includes among others small and

middle companies and institutions) remains a grand challenge. In Chapter 5.3 we propose one way

towards addressing the needs of the missing middle by introducing a high-level abstraction and

programming framework to automate performance, programmability and portability.

168

World Class/Leadership
Computing

High-End HPC Users

Leading-Edge
HPC Users

Desktop
Only

Users Entry-Level
HPC Users

National Productivity
Opportunity

Adapted from OSC
Graphics

N
U

M
B

E
R

 O
F

U
S

E
R

S
, A

P
P

LI
C

A
T

IO
N

S

© 2007 by the Council on Competitiveness and the University of Southern California

NUMBER OF PROCESSORS, MEMORY SIZE, JOB COMPLEXITY

“Missing Middle”

Figure 5.2: The “missing middle” in high-performance computing [119]

5.2 On the Programmability and Portability: A Case-Study

with GEM

Many application areas, including finance, life sciences, physics, and manufacturing, have begun

to use computational co-processors such as graphics processing units (GPUs), field programmable

gate arrays (FPGAs), digital signal processors (DSPs), and even customized application-specific

integrated circuits (ASICs) to achieve substantial gains in performance per watt and performance

per dollar over traditional CPU implementations. Each of these solutions require programmers

to adopt a different programming mindset than the typical, and well-studied, multi-core program-

ming paradigm. This shift in mindset decreases the perceived programmability of these devices,

and in turn, increases the cost to optimize and maintain code. While many scientists and indus-

trial programmers possess a working knowledge of basic programming concepts, they typically

169

lack expertise in parallel programming. Programmability of a parallel platform is consequently a

deciding factor in its adoption by such audiences.

Each platform is attempting to bridge the gap between performance and programmability in its

own way. The Intel Xeon Phi co-processor attempts to ease programmability by offering a stan-

dard Linux environment on the device, which can be programmed with standard multi-core pro-

gramming techniques. GPU and compiler vendors seek to increase the programmability of GPUs

via extensions to familiar CPU interfaces, such as the development of the OpenACC directives to

provide OpenMP-like functionality for fundamentally non-CPU architectures. In each case, there

are highly programmable but imprecise and, comparatively, low performance interfaces as well as

extremely difficult but high performance interfaces. The push and pull between programmability

and performance comes down to a balance between cost and benefit, that is how much performance

you can get and for how much effort.

In this chapter, we characterize the programmability and performance of multi- and many-core

processors across a range of optimization levels, starting from naı̈ve serial CPU code and extend-

ing to fully optimized CPU, Xeon Phi, and GPU code. Rather than skipping directly to the fully

hand-tuned optimized versions for each target platform, we realize multiple versions of our molec-

ular modeling code (i.e., GEM [17]) at different levels of optimization, ranging from the most

programmable to the least and correspondingly from the worst performing to the best. We seek to

address programmability both from a qualitative and quantitative standpoint. In order to provide a

quantitative metric for programmability, or more generally, code complexity, we use the classical

source lines of code (SLOC) metric, as well as cyclomatic complexity (CC). We also include code

170

examples and discussion to provide a more qualitative “feel” for the programming models in terms

of portability, readability, and maintainability. Our contributions are as follows:

• An analysis of the trade-off between performance and programmability across various levels

of optimization on CPU, Xeon Phi, and GPU.

• A characterization of the portability of architecture-aware optimizations across architectures.

• An evaluation of the effectiveness of directive-based parallelism along with compiler-assisted

vectorization versus hand-tuned alternatives.

5.2.1 Measuring Code Complexity

Measures of code complexity can provide useful insights for the programmability of a program

(written in a certain language for a certain architecture and with a number of potential code opti-

mizations). Below, we discuss two of the more commonly used code complexity measures: source

lines of code and cyclomatic complexity.

Source Lines of Code (SLOC)

One fairly straightforward and “easy” to calculate metric of programmability is the number of

source lines of code (SLOC). Intuitively, one expects that more lines of code correspond to higher

program complexity and, accordingly, decreased programmability. SLOC can prove to be a useful

first-order approach for measuring programmability. However, it may fall short on providing qual-

171

itative insights on how complex it may be for a programmer to write each line (i.e., “not all lines

were created equal”). Similarly, one may condense more code within a single line or lay it out in a

more spaced-out manner (e.g., brackets of an if/else statement in separate lines versus in the same

line with the if/else keywords). The last problem is largely addressed when comparing code that

follows the same programming conventions (as we do in our case). Also, blank lines and comment

lines should not be counted, as this could unfairly skew results.

Cyclomatic Complexity (CC)

Cyclomatic complexity [207] (commonly referred to as McCabes cyclomatic complexity from T.

McCabe who introduced it) is one of the metrics that can implicitly help quantify the programma-

bility of an algorithm. Cyclomatic complexity indicates the number of linearly independent paths

in a certain program. Formally, this can be inferred by referring to the control flow graph of the

program into consideration; a control flow graph is a directed graph where groups of instructions,

represented as a node, can be independently executed and nodes connected via an edge represent

the control flow of the program. For a given program (formulation is similar for a single function

in a program) cyclomatic complexity is defined as:

M = E −N + 2,

where E = number of edges, and N = number of nodes in the graph.

172

From a practical standpoint, McCabe has showed that cyclomatic complexity can be calculated as:

M = K + L+ 1,

where K = number of binary conditional statements, and L = number of conditional loop statements

in a program (or function of a program).

We need to stress that cyclomatic complexity is a graph-based metric that is characteristic of the

structural properties of a program. As such, the programming language used (e.g., C versus For-

tran), or many optimizations do not necessarily affect this metric by themselves, unless they lead

to modification of the algorithm and its ensuing control flow. An example of the latter would be

loop unrolling; in this case L would decrease. It is important to note that the cyclomatic complex-

ity and SLOC metrics are not necessarily correlated. For instance, in the loop unrolling example

cyclomatic complexity would decrease by reducing the number of loops, but at the expense of

code size (source lines of code) that increases by the unroll factor. Intuitively, though, conditional

statements and loops introduce multiple code paths and arguably contribute to code complexity

more than simple instructions do.

5.2.2 Experimental Setup

Our experimental setup for evaluating programmability and portability of heterogeneous archi-

tectures is identical to the setup in Section 4.2, where focus was on performance. Accordingly,

173

Table 5.1: Architectural parameters

Model Intel E5-2680 Intel Xeon Phi P1750 NVIDIA K20c
(Architecture) (Sandy Bridge) (MIC) (Kepler)
Frequency 2.7 GHz 1.09 GHz 706 MHz
Cores 16 (8/socket) 61 13 SMXs
Threads/core 2 4 16 (blocks/SMX)
SIMD (SP) 8-way 16-way 192-way
GFLOPS (SP) 691.2 2092.8 3524.35
Mem. BW 102.4 GB/s 320 GB/s 208 GB/s
L1/L2/L3 cache (KB) 32/256/20480 32/512/- 48(max)/1280/-

(L1,L2 per core) (L1,L2 per core) (L1 per block)
Power 260W 300W 225W
Compiler ICC 13.0 ICC 13.0 NVCC 5.0

we evaluate the same GEM [17] implementations across various optimization levels on the same

three multi- and many-core platforms: a Sandy Bridge CPU (SNB), Xeon Phi co-processor (XP),

and Kepler K20 GPU (K20), as noted in Table 5.1 (replicated from Section 4.2.2 for the reader’s

convenience). Results presented in Section 5.2.4 correspond to the tobacco ring virus capsid

(1A6C) biomolecular structure, which entails calculating the electrostatic surface potential between

593,615 surface points and 476,040 atoms.

5.2.3 Optimization Levels and Programmability

Figure 5.3 provides a high-level overview of the optimization levels that we evaluate, starting from

the original serial implementation and concluding with the manually hand-tuned implementation

for each of the three platforms. We describe each method and evaluate its programmability aspects

via the metrics discussed in Section 5.2.1. At the same time, we provide a qualitative perspective

of programmability thereof.

174

Directive
Parallel

OpenMP
+2 SLOC
153 total

CC: 9

Serial C
151 SLOC

CC: 9

Legend: GPUCPU & Xeon Phi Xeon Phi onlyCPU only

Compiler
Vectorized

ICC SIMD
+0 SLOC
153 total

CC: 9

Manually
Optimized

Optimized
intrinsics

+29 SLOC
263 total
CC: 16

CUDA
+50 SLOC
297 total

CC: 15 (4)
Optimized
intrinsics

+33 SLOC
268 total
CC: 13

Manually
Vectorized

Intrinsics
+81 SLOC
234 total
CC: 11

CUDA
+80 SLOC
247 total

CC: 12 (3)
Intrinsics

+82 SLOC
235 total
CC: 11

OpenACC
+16 SLOC
167 total
CC: 11

Figure 5.3: The progression and instantiation of each level of optimization on each architecture
with the number of Source Lines of Code (SLOC) and Cyclomatic Complexity (CC) used in each
implementation

Directive-based parallelization: The first set of implementations uses OpenMP and exploits the

compiler support for the CPU and Xeon Phi to provide hinted multithreading as well as Ope-

nACC, a variant of OpenMP for the GPU, which we will discuss in further detail below. Using

OpenMP, the programmer can exploit all cores in a compatible device with the sole inclusion of

the OpenMP library and the appropriate OpenMP directive on each section that should execute

in parallel (hence the addition of two extra lines of code compared to the Serial implementation).

This straightforward approach also facilitates code portability. With the computational kernel of

the application unchanged, the same source can be compiled to serial code or run on systems with

any number of cores. While OpenACC at first appears to provide an equivalent approach for GPUs,

it is inherently both multi-threaded and vectorized, hence its spanning of both directive parallel

and compiler vectorized. As shown in Figure 5.3, the OpenMP code retains the original cyclomatic

175

complexity value, since no changes take place in the code beyond placing the appropriate OpenMP

directive.

Compiler-assisted vectorization: Modern compilers can transform scalar arithmetic to vector

arithmetic for regular algorithms and loops. This set of implementations makes use of this compiler

feature available in the Intel compiler for multi-core CPUs and Xeon Phi co-processor and in the

PGI compiler suite for GPUs via the native vectorization that comes with compiling OpenACC for

GPUs. The approach of the latter bears many similarities with OpenMP and the Intel compiler’s

offload model, combined with the newly released OpenMP SIMD directives.

As with the Intel compiler, various parameters/hints can be used to tune OpenACC regions for

better performance. For example, OpenACC defines clauses to tune the division of loop nests

across parallel blocks and threads, (gang and vector parameters) and control the independence,

or lack thereof, of iterations in a given loop. However, OpenACC initialization routines and data

movement directives require an additional 16 lines of code and increase the cyclomatic complexity

from 9 to 11. In contrast, for the CPU or Xeon Phi, no extra lines of code are needed and hence

cyclomatic complexity remains the same; only the appropriate setting of compiler flags is needed.

In all cases the serial compute code is retained entirely in its original form and can be compiled to

that serial version without alteration.

Manual vectorization: Explicit use of SIMD intrinsics offers far greater control over the vector-

ization of any given algorithm. Therefore, it can be worth abandoning automatic cross-architecture

compatibility and manually vectorizing the code. This is the phase where the CPU and Xeon Phi

codes diverge. While they each employ similar vector intrinsics, they have different vector widths,

176

and thus must use different registers and different sets of intrinsics. For this phase, the CPU and

Xeon Phi require an additional 82 and 81 SLOC, respectively. Despite the code differentiation in

terms of intrinsics used, the general algorithm remains the same (especially the number of loops

and conditional statements), so the cyclomatic complexity stays constant among the two. This

is not the case compared to the previous optimization level, from which we observe an increase

of 2 units in cyclomatic complexity. For the GPU, the corresponding approach uses the CUDA

programming model directly, which implicitly specifies all computations as vector operations and

requires significant setup and data-management code to be added. These operations require 80

additional SLOC, nearly the same number needed for transitioning between the corresponding op-

timization levels for the CPU and Xeon Phi. While the cyclomatic complexity only increases by

one unit with respect to the host code, the CUDA kernel function introduces another level of com-

plexity, albeit small by itself (3). It should be noted, however, that the SIMT paradigm of GPU

computing with CUDA eliminates the need for explicit loops and “artificially” hides cyclomatic

complexity. Therefore, in evaluating cyclomatic complexity of the host side code one should take

into account that the host side code starts with two less loops (the ones “translated” to the CUDA

kernel).

This level of optimization imposes extra intellectual burden on the programmer, specifically “think-

ing in parallel is required.” For the CPU and Xeon Phi, the process is quite similar, as we see in

Figures 5.4b and 5.4c. Each employ compiler intrinsic functions to explicitly specify the vector

operations to use. To CPU optimization veterans, this may look familiar, but otherwise it obscures

the intent of the code significantly. Alternatively, Figure 5.4a shows the line of code as it is in serial

177

float sum2=(1.f/d int−1.f/d ext)/(one plus a b∗A);

(a)

m512 sum2 vect= mm512 div ps (
mm512 sub ps (

mm512 div ps (ONE,D INT),
mm512 div ps (ONE,D EXT)

),
mm512 mul ps (ONE PLUS A B,A)

);

(b)

m256 sum2 vect= mm256 div ps (
mm256 sub ps (

mm256 div ps (ONE,D INT),
mm256 div ps (ONE,D EXT)

),
mm256 mul ps (ONE PLUS A B,A)

);

(c)

Figure 5.4: (a) Scalar/CUDA code (b) Vector intrinsics code for Xeon Phi (c) Vector intrinsics
code for Sandy Bridge CPU

C, OpenMP, OpenACC, or CUDA, the computation remains visually the same. The CUDA version

does the same thing as the explicit vector instructions in Figures 5.4b and 5.4c, but it preserves the

readability of the original. The burden on the GPU is mostly in the setup required to call GPU

kernels, but it leaves the computational kernel largely unchanged. The CPU and Xeon Phi are the

reverse at this level, requiring virtually no setup but a great deal of changes in the computational

kernel.

Manually optimized code: For the final set of implementations, we provide an extra level of

optimizations for each of the evaluation platforms by explicitly using blocking/tiling, shuffling,

and explicitly altering the specific hardware instructions used to target faster execution, such as

fused multiply-add (FMA) and approximate reciprocal division/square root. More details about

the best set of optimizations for each platform and a detailed description are given in Section 4.2.4.

In CUDA, the applicable optimization techniques are quite different than those used in typical

x86 code. The optimization search space itself is bigger as well, with minor changes in the code

178

severely affecting performance (e.g., data structures, memory coalescing, and efficient use of the

memory hierarchy). The required programming effort is hence not realistically reflected by com-

plexity measures, since deciding on the right combination of optimizations is a strenuous process

by itself. The measures of complexity, still partially reflect the programmability challenges, with

a 20% SLOC increase, and an associated increase in cyclomatic complexity in both the host and

device code. In optimizing for the Intel MIC architecture, details about the underlying architec-

ture (e.g., memory hierarchy and interconnect details) are essential, but Intel MIC’s resemblance

to traditional multi-core CPU architectures implies similarity in the optimizations, most of which

parallel programmers are already familiar with. As a result of the above the number of SLOC

among the manually optimized implementations in CPU and Xeon Phi remain almost the same.

However, the cyclomatic complexity increases considerably more in Xeon Phi versus the CPU and

with respect to the manually vectorized implementation (e.g., addition of extra loops related to the

L2 blocking optimization in both CPU and Xeon Phi, and L1 blocking required in the case of Xeon

Phi only).

5.2.4 Performance Impact

So far, we have discussed the programming effort required for each optimization level and provided

the number of SLOC and CC as a rough quantitative measure. In Figure 5.5, we show how close to

the best achieved performance for each platform we get with each optimization level. We observe

that different levels of optimization help reach best performance at a different rate, depending on

the platform. In the case of the CPU, directive parallel and compiler-assisted vectorization help

179

0%	

10%	

20%	

30%	

40%	

50%	

60%	

70%	

80%	

90%	

100%	

CPU	 (Intel	
E5-‐2680)	

Intel	 Xeon	 Phi	
(P1750)	

GPU	 (NVIDIA	
K20c)	

Manually	
OpJmized	

Manually	
Vectorized	

Compiler	
Vectorized	

DirecJve	
Parallel	

Figure 5.5: The percentage of best achieved performance achieved with each level of optimization

attain over 90% of the best achieved CPU performance. Auto SIMD, in particular, accounts for

71.05% of the achieved performance. Considering the above, the programmer can rely on the

extensive and highly mature CPU compiler infrastructure along with OpenMP and still attain high

performance.

On the other hand, manual optimizations are quite important for both the GPU and Xeon Phi.

OpenACC is a relatively new standard and its correspondingly young compilers can only take

performance so far. Explicit use of CUDA or very careful tuning is essential for achieving accept-

able performance. Manual optimizations are required to fill the last 35.9% of the gap between the

performance attained through use of naı̈ve CUDA code and the best achieved performance.

Finally, in the Xeon Phi case, using CPU code directly on the device in the first two levels delivers

extraordinary programmability, but also a very low percentage of the best possible performance.

Auto-vectorization makes a significant difference, but even with that and manual vectorization,

our implementation only reached 35% of the best performance that we achieved overall. Manual

180

optimizations are the most important (65.7% of overall performance) for Intel MIC, due to its high

sensitivity to caching behavior. We discuss these optimizations and their effect on performance in

detail in Sections 4.2.4 and 4.2.5.

We note that the above conclusions refer to the case of n-body class problems or, more generally,

data-parallel workloads with an emphasis on floating-point arithmetic. Different problem classes

might benefit less from directive-based multithreading or compiler-assisted vectorization due to

irregular data access patterns or complex dependencies. In such cases, manual SIMD and more

complex threading using appropriate synchronization constructs (e.g., semaphores and barriers)

would be of paramount importance.

5.3 On Bridging the Performance, Programmability and Porta-

bility Gap of Heterogeneous Platforms

The ongoing parallel revolution has democratized parallel computing by making unprecedented

amounts of computational power accessible to an ever increasing part of the scientific community.

In contrast to what used to be the norm, more scientists, engineers, researchers (herein collectively

referred to as domain experts) have access to at least commodity multi-core CPUs or single-node

accelerator-based heterogeneous systems.

While powerful hardware is readily available, the ability to exploit it at its fullest and ignite sci-

entific breakthrough at a proportionate level remains on the ground. One prime reason is that

181

programming itself remains a prerogative of the few. Many domain experts possess rudimentary

knowledge of at least one programming or scripting language that allows them to verify functional

correctness of their algorithms, but the vast majority practically ignores parallel programming, an

issue exacerbated by the number of parallel programming abstractions and languages. As such,

domain experts typically have to resort to programming experts in order to have their algorithms

coded, or optimized for performance. This process introduces communication overhead, errors

and barriers, including the need for the programmer to obtain domain-specific knowledge and vice

versa.

The question we attempt to address in this chapter is: “Can we realize a programming abstraction

and implement a development framework for domain experts that adresses the aforementioned is-

sues, i.e., an approach that provides a balance between performance/programmability, and renders

this audience active participants of the parallelism era?”

We claim that such an abstraction should ideally be: (a) automatically parallelizable, optimizable

and tunable to desired target hardware, yet platform agnostic, (b) intuitive, familiar, with min-

imalistic syntax, yet general, scalable and powerful enough to express real-world problems, (c)

data-visual and interactive, in that code, data structures and data itself are visible simultaneously,

thus facilitating algorithmic expression, understanding, and debugging, (d) able to (implicitly) in-

tegrate with existing legacy code (code used today in many sciences dates back to the early 70s).

In this work, we propose GLAF, a visual code generation and auto-tuning framework for single-

node parallel computing systems, which aspires to steer programming by domain experts with

minimal or basic programming knowledge towards the general directions discussed above.

182

5.3.1 GLAF Framework

Graphical User Interface (GUI)

Programming using GLAF differs from programming using a typical programming language (e.g.,

C or Java). In the latter users write code in a free textual format using the keyboard and express the

algorithm using the appropriate language constructs. In GLAF, typing is kept at a minimum (e.g.,

naming grid variables) and programming is based on an intuitive point-and-click visual interface.

GLAF’s GUI is implemented in the form of a web page (Figure 5.6) that is written in a combi-

nation of HTML5 and JavaScript. This code drives the web interface (buttons, forms, images,

menus, etc.) that facilitates GLAF code development and is responsible for populating appropriate

environment variables (or internal objects, modeled after JavaScript functions). Modeling of such

objects (Section 5.3.1) lies at the basis of code generation and parallelism analysis algorithms.

Figure 5.6: GLAF user interface: a GLAF step (code boxes are automatically filled through a
point-and-click interface)

183

GLAF as a Programming Language

Data Structures

GLAF variables are based upon the concept of grids. Grids are simple, yet powerful data structures

that can be used to represent a variety of real-world problems. A scalar variable is a 0D grid with

one element and a 1D array is a 1D grid with multiple elements. Similarly, we can generalize

for higher-dimensional data structures. Grids of this type may contain a single data type and be

indexed by corresponding index variables. Allowing dimension(s) to have titles we can represent

tables, in which case we may use a combination of titles and indices to address a specific grid cell.

More complex structures can be described using the grid abstraction, by use of multiple data types

across one of the dimensions with titles. Such grids can represent what would be a struct in C.

Examples of grid declaration in GLAF are shown in Figure 5.7.

The grid abstraction has been used as the basis of programming languages or language extensions

in the past [154, 278] due to certain advantages over using multiple, distinct data structures. In

practical terms, the grid abstraction is general and scalable enough to model many real-world

problems. A mathematical relation (a mapping from a domain to a range) that is discrete and

finite can be represented with a grid (e.g., trees, graphs, databases). For example, a graph can

be represented by using an adjacency matrix, a tree data structure can be substituted by matrices

indicating the parent-child relationships and a sparse matrix can be represented in the compressed

sparse row format (CSR). More importantly, the regularity of the grid abstraction allows for a

uniform internal representation (Section 5.3.1) that in turn renders code generation and many types

184

(a) Declaration of a struct. (b) Declaration of an
RGB image.

(c) Declaration of a simple database.

Figure 5.7: Examples of grid declaration in GLAF

of transformations and optimizations, including parallelism analysis, more straightforward. In

terms of programming, coding an algorithm using the grid abstraction urges programmers to think

in terms of relationships as opposed to exact data layout. For instance, representing a tree requires

considering the higher-level relationships within the data (e.g., parent of, child of), instead of the

exact tree structure and how it is coded on the lower language-level , e.g., using pointers in C

and how to follow them. All things considered, the grid is a familiar abstraction (e.g., images,

matrices, spreadsheets) to programmers and non-programmers, alike, makes visualizing certain

data structures easy and inspecting results more intuitive. In some cases, however, and despite the

aforementioned advantages, visualization-wise the original data structures may be more intuitive.

Visualization-related issues are further discussed in Section 5.3.2, along with the rest of GLAF’s

capabilities.

185

Programming Constructs

In Figure 5.6 we see an instance of a GLAF step. A step is the basic building block of a GLAF pro-

gram and represents a step of computation, whereby data from input grid(s) flows after undergoing

computation to an output grid. It may include a loop over zero, one or more dimensions. Such

loops can be typical foreach loops (in the start:end:step format), or forever loops. Furthermore, a

step may include conditional statements. Appropriate buttons insert the corresponding conditional

keyword when a condition box is clicked on, and boxes are indented accordingly to make the order

(and potential nesting) of conditionals clear. A formula statement can include grid cells, arith-

metic/logical operations on them, as well as user-defined or library function calls (i.e., predefined

sets of useful functions, like typical Math or I/O library functions). A GLAF program may include

multiple steps, which belong into one (main) or more (user defined) functions. Functions, finally,

can be grouped into GLAF modules.

Internal Representation

All constituent GLAF elements have a corresponding internal representation in JavaScript. As the

user develops an algorithm using GUI buttons and keyboard, event listeners activate appropriate

JavaScript functions to populate JavaScript objects modeled after constructor functions (in support

of an object-oriented programming JavaScript). These are used in creating and navigating the GUI

screens, in code generation, parallelism analysis, etc. They can also provide a preliminary error

checking substrate (e.g., disallows declaring the same grid name twice) before code is generated,

186

thus minimizing multiple compiler errors at the last development stage. A representative selection

of the most important internal objects is outlined below:

(a) Expression Type object: defines the type of an expression object (e.g., grid, function call,

string, number, conditional statement), (b) Function object: models a function and contains in-

formation about grids declared in a function, its arguments, its return value, etc. A function object

encapsulates an array of step objects containing information about its steps, (c) Step object: mod-

els a step and contains information about all grids used in it, as well as information about the code

in this step contained in arrays of box expression objects, (d) Expression object: models a line of

code, can represent a formula, a loop, or a conditional statement and be a single object or comprise

more expression objects in a tree-like structure, (e) Grid object: models a grid object according to

the guidelines set in Section 5.3.1 (name, number of dimensions and their sizes, etc.) A simplified

example of a grid object and parts of its internal representation is shown in Figure 5.9.

For parallelism analysis the above objects are used in a single pass to formulate an additional

collection of objects that store information about scalar and non-scalar grids (Figure 5.8). Finally,

for non-parallelizable steps, detailed information is stored in appropriate objects that may be used

in a feedback functionality. Such objects collect information about the name of grid, its type

(scalar/non-scalar), error type (e.g., RAW dependency), and the name of function(s), steps and box

numbers (“line of code”).

187

IndVarsWrittenInStep[M][F][S]: 3D structure, elements correspond to a step
(in a given module/function) containing info on the index variables iterated
over on this step’s loop.
FuncsFromCaller[M][F][S]: 3D structure, elements correspond to a step (in a
given module/function) containing info (like name, ID, arguments per each
call within step) about each function called from within this step.
NonScalarGridsInFunc[M][F]: 2D structure, elements correspond to a
function (in a given module) containing info (like name, written/read, indices
written/read for each dimension) about non-scalar grid arguments of function.
NonScalarGridInstances[M][F][S]: 3D structure, elements correspond to a
step (in a given module/function) containing info (like name, written/read,
indices written/read per dimension) on non-scalar grids written/read in step.
ScalarGridInstances[M][F][S]: 3D structure, elements correspond to a step
(in a given module/function) containing info on scalar grids written/read in
this step.
!

Figure 5.8: Internal representation objects for parallelism analysis back-end

caption = “surface_pts” num_dims = 2

dimTitles[RowDim] =
{q, x, y, z}

comment =
“Represents a surface point
of a biomolecule”

dataTypes[RowDim] =
{T_REAL,T_REAL,T_REAL,T_REAL}

Figure 5.9: Example (simplified) of grid object internal representation

188

5.3.2 Capabilities

Code Generation

To support GLAF data visualization within the GUI, JavaScript code generation is de-facto sup-

ported. However, to broaden GLAF’s utility we have implemented support of code generation for

Fortran, C, and OpenCL, languages that have been extensively used in technical/scientific com-

puting. Users need not write a single line of Fortran-, C-, or OpenCL-specific code, since GLAF

follows a paradigm of writing an algorithm in one language (GLAF) and getting source code in

many. Much of the complexity and peculiarities of languages are concealed from the user, thus

facilitating code development for domain experts.

Code generated for a target language by GLAF falls under two broad categories, i.e., serial and par-

allel. The former is a one-on-one mapping of the GLAF programming constructs, as represented

internally, to the target language’s constructs (Figure 5.11), while the latter can follow one of two

different approaches: (a) for Fortran and C parallel versions, parallelizable regions are decoreted

with appropriate OpenMP directives so that code can run on any device supporting OpenMP (e.g.,

multi-core CPUs, Intel Xeon Phi), (b) for OpenCL, appropriate OpenCL kernels are generated

(parallel by design) along with the corresponding host-side code. Detecting parallelism is a task

undertaken by the GLAF parallelization analysis back-end (Section 5.3.2).

C and Fortran code generation: Figure 5.12 shows the algorithm for generating C/Fortran code

via GLAF, and Figure 5.10 shows generated C code for the parallel implementation of a GLAF

step (Figure 5.6) (Fortran look is similar). One can notice the readability of the automatically-

189

Figure 5.10: Example of automatically generated C code

190

Module(s)

Function(s)

Step(s)

Statement(s)

Internal representation to C/Fortran
language constructs

au
to

 c
od

e
ge

ne
ra

tio
n

Output:
C/Fortran/OpenCL code

pa
rs

in
g

in
te

rn
al

 re
pr

.
Input:

GLAF program

num_dims = 2
dataTypes[RowDim] = {T_INT}
dataTypes[ColDim] = {T_INT}
size[RowDim] = 4
size[ColDim] = 4
caption = “img_src”
comment = “Image before filtering”

// Image before filtering
int *img_src;
…
img_src = (int *)malloc(4*4*sizeof(int));

Internal representation of grid object

Auto-generated C source code (excerpt)

Figure 5.11: Overview of the automatic code generation process

generated code: code is indented and contains appropriate comments, as inserted by the user using

the GUI. Depending on the user, the above features may vary on the importance scale: a non-

programmer domain expert may never need to see the actual code. On the other hand, users that

know programming (although not necessarily parallel), may want to inspect the code, apply further

optimizations, or write a GLAF module, auto-tune taking into account legacy code’s requirements

(e.g., data types and layout of a function’s arguments) and use the resulting parallel generated code

as part of that larger unoptimized or serial legacy code (as we showcase in Section 5.4).

OpenCL code generation: Starting from the same high-level GLAF program, OpenCL code

generation enables executing code on targets that support OpenCL. While C and Fortran code

(with OpenMP directives) can already address the multi-core CPU and Intel MIC cases, OpenCL

provides yet another opportunity. More importantly though, OpenCL now enables users to exploit

the power of GPU and FPGA computing. Following, we illustrate some of the main concepts of

191

START	 Gen.	code	for	a	FUNCTION		
-Func'on	header	(type,	name,	arguments)	

More	
func'ons	

Gen.	code	for	grids	declared	in	a	STEP	

Gen.	code	for	PROGRAM		
Concatenate:		
-Derived	types	for	complex	grids	(if	used)	
-Library	func'ons	code	(if	used)	
-Code	for	all	func'ons	
-Call	to	main()	rou'ne	

END	

Gen.	code	for	LOOP	in	a	STEP	
-Declara'on	of	loop’s	start/end	variable	
-Assignment	of	start/end	values	
-Create	DO	constructs	
-Generate	corresponding	loop	end	code	

Parse	box	

Condi?onal	

More	
boxes	

Gen.	code	for	STEP:	
	Index	Range	code	+	Formula(s)	code	+	Loop	end	code	

Gen.	condi?onal	
statement	code		

Gen.	formula	code	
(opera'ons/func'on	calls)	

Gen.	code	for	FUNCTION:	
Concatenate:	
-Func'on	header	
-All	declara'ons	and	ini'aliza'ons	
-All	steps’	code	
-Return	value	assignment	
-Func'on	closing	

More	steps	
in	func'on	

Yes	 No	

No	
Yes	

No	

No	Yes	

Yes	

Figure 5.12: Algorithm for automatic code generation

192

GLAF
Program

CPU/Xeon Phi
C/Fortran & OpenMP

GPU/FPGA

Host code
(C & .h files)

Device code
(OpenCL

Kernel file)

automatically generate

G
LA

F

OpenCL

Figure 5.13: GLAF OpenCL code generation

OpenCL code generation by showing how a simple example developed in GLAF (Figure 5.14) is

translated automatically to OpenCL (Figure 5.15). Overall, the automatic OpenCL code generation

process results in three files (Figure 5.13): a host code (.c) file, a file (.cl) that contains all the device

code (kernels) and a header file (.h) that contains the OpenCL boilerplate initialization/finalization

code and auxiliary functions.

(a) Main host and device code generation: For OpenCL code generation purposes, parallelism

is exposed at the GLAF step level. Each step that contains a loop undergoes loop-level paral-

lelism analysis, is identified as non-parallel or parallel, and serial or parallel code (OpenMP

or OpenCL) is generated, accordingly. Specifically, a check-box at each step (bottom of Fig-

ure 5.14) allows the user to select OpenCL over OpenMP. The reason for this choice is that a

GLAF step can range from simple to more complex (with function calls, multiple statements,

conditionals). Therefore, it may be faster for a simple parallel step (e.g., few lines of code,

small array initialization) to run in the host (CPU) with OpenMP than in the device (GPU or

193

Figure 5.14: Example GLAF program for explaining OpenCL code generation

194

GLAF step code (as filled automatically using the GUI)
(parallelism identified at the granularity of a GLAF step)

a	

b	

a	 Generation of OpenCL kernel code for GLAF steps that
are identified to be parallelizable.

b	
Generation of appropriate OpenCL host code for
parallelizable step (transformation of loop into an OpenCL
kernel call to the kernel generated for the step).

.c	file	

.cl	file	

1 *
2
3
4

5
6
7

8

9

1

3
4
5
6
7
8
9

2

10

12

13

14
15

11

16
17
18
19
20

21

*

*

*

*

Figure 5.15: GLAF OpenCL auto-generated code

195

FPGA) with OpenCL (e.g., if the OpenCL kernel call overheads cannot be amortized over a

large computation).

For exposing parallelism via OpenCL (for steps identified as loop-independent) the step’s body

is converted to an OpenCL kernel (kernel code generation is discussed later). A special func-

tion in the code generation back-end is responsible for parsing the loop’s internal representa-

tion and converting the loop to the kernel’s NDRange. An NDRange represents the global work

size partitioning across each of a maximum of three dimensions (OpenCL standard’s limita-

tion). This happens as follows (Figure 5.15): each loop index (e.g., row, col, ind2) represents

a global dimension in the NDRange. The value of each global dimension corresponds to the

number of loop’s iterations across this dimension, taking into account the loop’s boundaries

and step. The generated NDRange in our example is shown in Figure 5.15, line 6 of .c file.

The parallel step’s body is replaced with a kernel call (clEnqueueNDRangeKernel()) to the

appropriately named and automatically generated OpenCL kernel in the separate .cl file (e.g.,

Figure 5.15, line 20 of .c file). The kernel call is preceded by a series of calls (clSetKernelArg()

- Figure 5.15, lines 15-18 of .c file) for setting the appropriate kernel arguments (OpenCL

cl mem buffers or scalar variables). The above functionality is achieved by another special-

ized code generation function, whose role is to parse the GLAF internal representation of input

and output grids present in the current step and construct the calls with the appropriate argu-

ments (kernel name, argument number, size, variable name). The kernel call is followed by

a clFinish() call (including automatic error-checking) that also functions as a synchronization

point that enforces coherence between the memory contents of the host and device.

196

As far as device code is concerned (all included in the generated .cl file), there are two types of

functions generated: a) the kernel functions that correspond to the parallel steps of a GLAF pro-

gram, and b) the device functions that are functions called from within a kernel function. The

parameters to these functions are in the form of global pointers (in the case of dynamically

allocated memory) or normal scalar variables. Data parallelism in kernel functions (according

to the OpenCL SPMD paradigm) is achieved by accessing different memory locations based

on the combination of work-group/work-item IDs (Figure 5.15, lines 5-7 of .cl file). Obtaining

the index for each dimension takes into account the start and step values for each index vari-

able of the original loop that is being encapsulated in the OpenCL kernel (star-annotated lines

in Figure 5.15).

(b) Host/device memory considerations: In OpenCL, when a host and device (e.g., CPU and

FPGA) have separate memory address spaces, memory needs to be allocated in both. GLAF

OpenCL code generation back-end parses a step’s grid objects internal representation (which

includes name, size, data type, etc.) and automatically generates appropriate code for declaring

and allocating space for cl mem device-side buffers that correspond to the host-side ones and

passes them as needed to the kernel code.

As execution alternates between host and device data is transferred between the two. GLAF

OpenCL code generation back-end generates the code (in the form of wrapper functions - e.g.,

h2d tran(), Figure 5.15, lines 12-13 of .c file) that is responsible for host-to-device and device-

to-host data transfers, ensuring data coherence across host and device memory spaces, and

elimination of redundant data transfers. For instance, if a device-side buffer is written in the

197

device, but not used in host code that follows until the next kernel execution, then the buffer’s

contents are neither transferred to the host (redundant), nor subsequently transferred from the

host to device (coherence violation). The above scheme is implemented by tracking alloca-

tion and read/write accesses to the non-scalar grids in host and device code and performing

appropriate checks at run-time before each GLAF step.

(c) Data linearization: Disjoint memory spaces in an OpenCL execution scenario (e.g., CPU

host/GPU or FPGA device) impose inherent limitations to passing structs that include pointer

elements to a kernel. Such structs cannot be passed as such, since a CPU address space address

is unusable in an FPGA context. This kind of structs needs to undergo linearization/marshal-

ing. This effectively means that a struct declaration needs to be expanded as multiple declara-

tions of arrays/pointers of the respective type on the host-side and corresponding declarations

need to take place for the device-side (cl mem buffers). As in the general case, initialization of

the latter may be needed. GLAF extends the existing data layout transformations (structures of

arrays to/from arrays of structures) to include breaking down a struct to multiple (stand-alone)

arrays. All the above procedures, as well as parameter passing and struct element accesses are

automatically handled by GLAF.

(d) Boilerplate OpenCL code: Every OpenCL program requires an initialization procedure that

selects the OpenCL platform and a specific OpenCL device of that platform, and that initializes

various OpenCL objects (program, command queue(s), etc.) This procedure, while standard,

requires many lines of code, including appropriate error handling, and is non-intuitive for

novice programmers. Similarly, at the end certain actions need to take place (like releasing

198

program objects, command queues, etc.) GLAF obviates the need for programmers to famil-

iarize themselves with the aforementioned procedure and OpenCL objects, as a corresponding

function in code generation back-end automatically generates the boilerplate code, including

the necessary OpenCL objects that are then used in the appropriate places within the rest of

the code, as needed. Last, GLAF provides wrapper functions for memory allocation enforcing

the alignment requirements of Altera OpenCL, as well as data transfers.

Auto-Parallelization

An important part of GLAF is its parallelism analysis back-end. Parallelism is analyzed at the

granularity of a GLAF step and the result of this analysis is two-fold: (a) information about the loop

index variables whose loops are parallelizable, (b) information about the reasons parallelization

is not possible. Our analysis and resulting code transformations act in a complementary manner to

a compiler providing code more favorable to compiler optimizations and do not claim to surpass its

well-established capabilities. However, despite the comparatively simpler nature of our analysis,

there are certain reasons for performing it on this level (Section 5.3.6).

For (a), a form of cross-iteration loop dependence analysis is carried out in a pre-code-generation

pass to identify dependencies within a GLAF step. High-level pseudocode is given in Figure 5.16.

This analysis includes: non-scalar grid variables (includes grids passed in functions called from

within a step), and scalar grid variables (for which we build a control flow graph that is sub-

sequently used to identify dependencies). Information collected in this stage are given in Sec-

tion 5.3.1. Relevant parallelism information is used in parallel code generation and displayed

199

Function findParallelismInProgram()
For each module M
 For each function F of M
 For each non-scalar grid argument G
 Record name of G in NonScalarGridsInFunc[M][F]
 Call recordGridsAndIndicesOfStepBoxes(M, F)
Call findParallelismInFunction(MainModule, MainFunc)

Function findParallelismInFunction(M: <module ID>, F: <function ID>)
For each step S of F of M
 Parse Index Range box,record index variables in IndVarsWrittenInStep[M][F][S]
 Call buildCFG() to build control flow graph used in scalar grid dep. analysis
 For each box B after the Index Range box
 If B is of type Mask Statement (if/elseif)
 Add non-scalar/scalar grids in Mask to NonScalarGridInstances[M][F][S]
 Else if B is a Formula of the form G = RHS_expr
 Call addGrid(G) and parseRightHandSide(RHS_expr)
 Else if B is a formula of the form LET N = RHS_expr,
 Call parseRightHandSide(RHS_expr)
 Else if B is a stand-alone function call of the form func(args)
 Add func(arg) info to FuncsFromCaller[M][F][S]
 // Do cross-iteration dependency analysis among non-scalar grids, in two steps:
 // (i) For each function in FuncsFromCaller[M][F][S], detect and record iteration
 // dependencies among its arguments
 Call doDependAnalForNonScalarGridsPassedToAllFuncs(M, F, S)
 // (ii) For each grid in this step, find iteration dependencies ignoring any function
 // calls (since they were processed in (i))
 Call doDependAnalForNonScalarGrids(M, F, S)
 Call analyzeConstantIndices(M, F, S)
 Call doScalarDependAnalysis(CFG)
 Call estimateOverallParallelization(M, F, S)

Function addGrid(G: <grid to be added>)
If G scalar and entry for G does not exist in ScalarGridInstances[M][F][S], add entry E
for G to ScalarGridInstances[M][F][S] or if G non-scalar do so for
NonScalarGridInstances[M][F][S]
Initialize/update E to indicate whether G is read/written and record attributes of G (e.g.,
box id, box type where G is found if scalar, or dimension read/written and the specific
index (location) from/to which each dimension is read/written if non-scalar)

Function addNonScalarForFunc(NS: <non-scalar grid to be added>, M: <module ID>,
F: <function ID>)
If NS is in NonScalarGridsInFunc[M][F], update information of corresponding element
E named after NS as read/written in NonScalarGridsInFunc[M][F] and store current
instance (i.e., index) for each of the dimensions

Function doDependAnalForNonScalarGrids (M: <module ID>, F: <function ID>,
S: <step ID>)
gridsInstances = NonScalarGridInstances or NonScalarGridsInFunc (depending if
called from MainFunc or not)
For all elements E of gridsInstances[M][F][S] whose grid G is written
 For each dimension D of E
 For all combinations of write instances I1,I2 in D
 If I1,I2 write locations are different and contain index variable I from
 IndVarsWrittenInStep[M][F][S], mark I as non-parallelizable in G
 For each combination of write & read instances I1, I2
 If I1,I2 write, read locations are different contain index variable I from
 IndVarsWrittenInStep[M][F][S], mark I as non-parallelizable in G

Function parseRightHandSide(RHS_expr: <expression appearing as right-hand side of
assignment)
For each element E in RHS_expr, call addGrid(G) if E is a grid G or add F call’s
information to FuncsFromCaller[M][F][S], if E is a function call

(a)

Figure 5.16: Parallelism back-end pseudocode (related internal objects used are described in Fig-
ure 5.8)

200

Function doDependAnalForNonScalarGrids (M: <module ID>, F: <function ID>,
S: <step ID>)
gridsInstances = NonScalarGridInstances or NonScalarGridsInFunc (depending if
called from MainFunc or not)
For all elements E of gridsInstances[M][F][S] whose grid G is written
 For each dimension D of E
 For all combinations of write instances I1,I2 in D
 If I1,I2 write locations are different and contain index variable I from
 IndVarsWrittenInStep[M][F][S], mark I as non-parallelizable in G
 For each combination of write & read instances I1, I2
 If I1,I2 write, read locations are different contain index variable I from
 IndVarsWrittenInStep[M][F][S], mark I as non-parallelizable in G

Function parseRightHandSide(RHS_expr: <expression appearing as right-hand side of
assignment)
For each element E in RHS_expr, call addGrid(G) if E is a grid G or add F call’s
information to FuncsFromCaller[M][F][S], if E is a function call

Function recordGridsAndIndicesOfStepBoxes(M: <module ID>, F: <function ID>)
For each step S in function F, record (in NonScalarGridsInFunc[M][F]) each grid G
that appears in boxes of S, if G is an incoming argument to F. For each function-call
foo(args) in S that passes G as an argument, record foo and its relevant info in
FuncsFromCaller[M][f], and call this method recursively.

Function doDependAnalForNonScalarGridsPassedToAllFuncs(M: <module ID>,
F: <function ID>, S: <step ID>)
For each function-call FC in FuncsFromCaller[M][F][S] and for each non-scalar
grid G passed as an argument in FC’s call
 Find corresponding name G of FC’s argument GC in F’s argument list
 If G present and read-only in S
 If GC read-only in FC, do nothing
 Else if GC is written or both read and written in FC
 Analyze all valid pairs of indices across all dimensions D that G is read in
 F and GC written (or written and read) in FC and if indices differ and
 contain index variable I from IndVarsWritenInStep[M][F][S], stop checking
 for I and mark I on G as non-parallelizable
 Else if G present and written (or written and read) in S and written or read (or
 written and read) in FC
 Analyze all valid pairs of indices across all dimensions D that G is written (or
 written and read) in FC and written (or written and read) in FC and if indices
 differ and contain index variable I from IndVarsWrittenInStep[M][F][S], stop
 checking for I and mark I on G as non-parallelizable
 Else if G not present in current step of F
 Call nonScalarGridDependencyAnalysis(MC, FC, SC)
 Call analyzeConstantIndices(MC, FC, SC) for all steps SC of FC of MC

(b)

Figure 5.16: Parallelism back-end pseudocode (related internal objects used are described in Fig-
ure 5.8) (cont.)

201

Function recordGridsAndIndicesOfStepBoxes(M: <module ID>, F: <function ID>)
For each step S in function F, record (in NonScalarGridsInFunc[M][F]) each grid G
that appears in boxes of S, if G is an incoming argument to F. For each function-call
foo(args) in S that passes G as an argument, record foo and its relevant info in
FuncsFromCaller[M][f], and call this method recursively.

Function doDependAnalForNonScalarGridsPassedToAllFuncs(M: <module ID>,
F: <function ID>, S: <step ID>)
For each function-call FC in FuncsFromCaller[M][F][S] and for each non-scalar
grid G passed as an argument in FC’s call
 Find corresponding name G of FC’s argument GC in F’s argument list
 If G present and read-only in S
 If GC read-only in FC, do nothing
 Else if GC is written or both read and written in FC
 Analyze all valid pairs of indices across all dimensions D that G is read in
 F and GC written (or written and read) in FC and if indices differ and
 contain index variable I from IndVarsWritenInStep[M][F][S], stop checking
 for I and mark I on G as non-parallelizable
 Else if G present and written (or written and read) in S and written or read (or
 written and read) in FC
 Analyze all valid pairs of indices across all dimensions D that G is written (or
 written and read) in FC and written (or written and read) in FC and if indices
 differ and contain index variable I from IndVarsWrittenInStep[M][F][S], stop
 checking for I and mark I on G as non-parallelizable
 Else if G not present in current step of F
 Call nonScalarGridDependencyAnalysis(MC, FC, SC)
 Call analyzeConstantIndices(MC, FC, SC) for all steps SC of FC of MC

Function estimateOverallParallelization (M: <module ID>, F: <function ID>,
S: <step ID>)
Check and mark if parallelism is broken for each index variable I in
IndVarsWrittenInStep[M][F][S], because of:

! start/end/ step scalar variable for I being written in S
! a scalar grid (using info from scalar grid dependency analysis)
! a non-scalar grid (using info from non-scalar grid dependency analysis)

For each function called from S of F of M, call findParallelismInFunction(M, F)

Function analyzeConstantIndices(M: <module ID>, F: <function ID>, S: <step ID>)
gridsInstances = NonScalarGridInstances or NonScalarGridsInFunc (depending if
called from MainFunc or not)
For each G in gridsInstances[M][F][S] that is written
 Check the indices of the instances where G is written and identify the cases where
 a dimension’s index is always a constant as non-parallelizable

Function doScalarDependAnalysis(CFG: <control flow graph for a step>)
For each scalar grid occurrence X that is written at least once
 Push CFG root node in stack
 While stack not empty
 N = pop last element from stack
 If X is written in current node N
 If there is a read of X in N
 Identify write after read condition, reduction, break
 Else do nothing, break
 Else if X is not written in N
 If there is a read of X in N
 Identify write after read condition, reduction, break
 Else push each child of N to stack
 If reduction found, mark as a reduction clause

(c)

Figure 5.16: Parallelism back-end pseudocode (related internal objects used are described in Fig-
ure 5.8) (cont.)

202

in a parallelism meter on each step’s header indicating the index variable name and number of

parallelizable iterations. For (b), each dependency is recorded and GLAF can provide feedback

about module name(s), function name(s), step(s) and line(s), as well as a description of the reason

parallelization fails.

Auto-Tuning

Figure 5.17 shows the auto-tuning menu screen. It includes options regarding source code, bi-

naries, compilation and execution scripts generation, as well as execution times presentation for

the resulting implementations. At the first level the user selects the target platform. This option

identifies the appropriate compilation flags to be passed to the generated platform-specific auto-

tuning script. In the future, this option will allow platform-specific optimizations. The second

level of auto-tuning concerns the target language (Fortran, C, or OpenCL). The third level offers

three different potential basic implementations within a selected language and platform: (a) serial:

serial code (C and Fortran only) as automatically generated by GLAF, (b) GLAF-parallelized: par-

allel implementation of the code in OpenCL, or in C/Fortran with appropriate OpenMP directives

that precede parallelizable code sections, as identified by the auto-parallelization back-end, (c)

compiler-parallelized: with this option serial code in (a) is to be compiled with the auto-parallel

compiler flag (-parallel) - this flag is not used in (b) where the code includes explicit OpenMP

pragmas and is compiled with the -openmp flag. The fourth level expands our choices in code

generation. Options at this level can be combined. The first option showcases the flexibility in

expressing data structures, and creates implementations where grids are expressed as either Struc-

203

tures of Arrays (SoA) or Arrays of Structures (AoS), if applicable (i.e., in the form of Figure 5.7a).

Figure 5.18 shows code automatically generated in C for declaring, initializing and using such data

structures. The second option, tunes the level of loop collapsing for nested parallelizable loops and

the third concerns loop interchange, when applicable (do not apply in OpenCL code generation).

Particular options from this category are more suitable for specific algorithmic patterns and their

effect is reflected in the execution time of an application written in a specific way. We discuss such

concerns in more detail in Section 5.3.4, where we present results forrepresentative cases. Users

who are familiar with the options’ meaning and implications may select to prune the auto-tuning

space by deselecting certain options. Non-programmers may simply let GLAF generate code us-

ing all applicable permutations and present the best combination via experimental evaluation (and

corresponding code). Figure 5.19 depicts the“write once - run anywhere” concept embedded in

GLAF.

On selecting OpenCL for FPGA as a target language, an extra set of FPGA-specific optimizations

are at the disposal of the user. Due to their importance, we describe them in more detail separately.

Generation of Optimized Code for Altera FPGAs

GLAF OpenCL code generation back-end performs certain FPGA-specific code optimizations and

renders code amenable for further optimizations by the Altera Offline Compiler (AOC). Here,

we describe such optimizations, while in the Section 5.3.5 we provide examples and discussthe

effect of the most important ones. As with OpenCL code generation itself, generating code for the

204

Figure 5.17: Auto-tuning options page

(a) Code for AoS

(b) Code for SoA

Figure 5.18: Generated code for declaration and accessing different data layouts

205

C Fortran OpenCL

Serial GLAF-Parallel Compiler-Parallel

GLAF
program

Data-layout
transforms

Loop collapse
transforms

Loop interchange
transforms

…

Figure 5.19: High-level overview of the “write once - run anywhere” concept in GLAF

optimizations described below is achieved by translating the appropriate information in the GLAF

internal representation to the appropriate OpenCL language constructs and code.

Single Work-Item Kernels: In Section 5.3.2, we describe how GLAF generates OpenCL device

code in the form of NDRange kernel (i.e., multiple work-groups and work-items). NDRange ker-

nels represent an appropriate way of programming (data) parallel code regions in OpenCL for

exploiting the multi/many-core capabilities of devices like CPUs and GPUs. In FPGAs, how-

ever, constructing a kernel as a single work-item kernel (equivalent to an OpenCL task) may be

a more appropriate paradigm and yield better performance in some cases. Instead of assigning

loop iterations to separate work-items, this method utilizes loop pipelining. Single work-item ker-

nels are specially suited for task-parallel algorithms, or algorithms with data dependencies and

synchronization, where NDRange is not applicable or sub-optimal. However, as we observe in

206

Section 5.3.5, they can also benefit highly parallelalgorithms, also by enabling further optimiza-

tions that are not applicable (or beneficial) otherwise. GLAF is able to automatically generate

OpenCL code in the single work-item kernel paradigm if the user has selected the corresponding

option in the optimizations menu. In this case, as opposed to the NDRange case (Figure 5.15),

the generated host code defines a single-dimension, single-item globalWorkSize[] array. On the

device code the kernel contains the loop itself (i.e., the parallel loop that was previously converted

to NDRange) and the get global id() calls are not generated. On compilation of code generated in

the above format with AOC, the compiler (AOC) identifies the kernel as a single work-item kernel

and attempts to infer a loop pipeline.

Initiation Interval Reduction: Single work-item kernel compilation with AOC yields an opti-

mization report that informs whether pipelined execution was inferred, what the initiation interval

(II) between successive loop iterations is and, if possible, the reason. In GLAF OpenCL generated

code single work-item execution for parallelizable loops leads to successful pipeline inference. In

certain cases, however, II may be high. While, the range of such cases is too broad to conclusively

address, we show how GLAF can automate loop relaxation [25]. These optimizations can drasti-

cally reduce or eliminate II for reduction operations within a single work-item kernel. An example

is shown in Figure 5.20. GLAF parallelism analysis back-end identifies reductions and stores the

reduction variable and operation in its internal representation. After compiling code, parsing the

optimization report reveals the II value and whether it is reduction-induced. In this case, GLAF

can automatically generate M copies of the reduction variable (line 1, Figure 5.20b) by generating

the declaration (by appending the copies[M] to the reduction variable name). Subsequently, it

207

generates code (lines 2-4) for initialization of this variable according to the reduction operation

(e.g., zero for addition). The main computational loop now is transformed to a temporary variable

in which we store the reduction operation on the last reduction variable copy (line 6), a loop that

shifts all copies by one position (lines 7-10), and code for storing the temporary variable to the first

copy (line 11). Finally, code for reduction on the reduction variable copies is generated outside

the reduction loop (lines 13-16) and the result is assigned to the original reduction variable (line

17). This method relaxes the dependencies and reduces II. In general, it can be observed from the

example in Figure 5.20 that the code that is auto-generated follows a specific template. The key

change according to a specific problem lies on substituting A[i] with the corresponding computa-

tion of the reduction at hand. For example, in one of our examples (time-domain FIR filtering) A[i]

is substituted with the convolution between input elements and the filter. The number of copies M

is the important factor in reducing II. Different values can be attempted manually (by changing a

simple #define) – the whole process has the potential to be trivially automated through a script in a

feedback loop with AOC compilation and optimization report parsing.

Shift Register Inference: Sliding window computation [21] is a common pattern (e.g., filters)

that can benefit from a single work-item kernel design. This pattern includes a loop that accesses a

fixed number of contiguous locations in an array shifted by one position per iteration. Such sliding-

window memory access patterns can benefit from using shift registers. For the AOC to infer a

shift register implementation code has to be written in a certain, counter-intuitive from a software

development standpoint, way. The resulting implementation is very similar to the method used for

enhancing II in single work-item kernels: declaration and initialization of the shift register to a zero

208

1
2
3
4
5

float sum = 0;
for (i = 0; i < N; i++) {
 sum += A[i];
}
result[idx] = sum;

(a) Original Code.

2
3
4

5

6

7
8
9

10

11

12

13
14
15
16

17

1 float sum_copies[M];

for (i = 0; i < M; i++) {
 sum_copies[i] = 0;
}

for (i = 0; i < N; i++) {

 float cur = sum_copies[M-1] + A[i];

 #pragma unroll M-1
 for (j = M-1; j > 0; j--) {
 sum_copies[j] = sum_copies[j-1];
 }

 sum_copies[0] = cur;

}

#pragma unroll M
for (i = 0; i < M; i++) {
 sum += sum_copies[i];
}

result[idx] = sum;

(b) Code after II Reduction.

Figure 5.20: Initiation Interval (II) optimization

209

value, a fully unrolled shifting loop that includes shifting contents across neighboring elements

except to the first (or last) that gets its value from the original input array. Last step entails replacing

the original input array accesses with shift register accesses. Since sliding-window algorithms

have a fixed number of iterations (usually small) the above optimization is coupled with full loop

unrolling. What is challenging, and currently limiting its practical implementation within GLAF,

is automatically identifying sliding-window patterns in applications. We see two examples in more

detail in Section 5.3.5.

Kernel Vectorization (SIMD) / Multiple Compute Units (CU): Kernel vectorization enables

work-items (in NDRange kernels) to execute in a SIMD-like fashion, thus increasing through-

put. A desirable potential side effect of kernel vectorization is static memory coalescing auto-

matically performed by AOC. Compute Unit replication helps achieving higher throughput by

generating multiple copies of a CU for a kernel, but increases global memory traffic. Gener-

ally, between the two, kernel vectorization is more efficient resource-usage-wise but the trade-

offs may not always be straightforward. GLAF OpenCL code generation back-end can generate

multiple code implementations to be compiled and evaluated. Specifically, the GLAF OpenCL

code generation back-end generates code that annotates a kernel with the corresponding attributes

(attribute): num simd work items(N) for kernel vectorization with vectors of length N, and

num compute units(N) for N compute units. One limitation of kernel vectorization is that N must

evenly divide the available work (or work-group size).

Restrict Clause: Visual programming via GLAF entirely hides the concept of pointers from users

and aliasing issues are de facto not applicable. As such, all pointers in auto-generated code are fur-

210

ther annotated with the restrict keyword in the function header (see kernel header in Figure 5.15).

This eliminates unnecessary assumed memory dependencies and leads to more efficient designs,

in terms of area and performance.

Constant cache memory: Declaring kernel pointers for data that are read-only throughout kernel

execution as constant enables loading into an on-chip cache optimized for hit performance. Con-

stant memory is particularly useful for high-bandwidth table look-ups. In GLAF OpenCL we can

keep track of read-only grids in a kernel (by conservatively analyzing the read/write locations in

the code, using the GLAF internal representation of the code - information already obtained during

parallelism analysis). If data can fit in cache (detectable for static grid sizes by inspecting the data

type and dimension sizes elements of the grid object) the generated code for the corresponding

kernel pointers is annotated as constant. This method has the inherent limitation that grids with

dynamic sizes (i.e., unknown at compile time) cannot take advantage of this optimization.

Memory Alignment: Aligned memory allocation of the host-side buffers enables direct memory

access (DMA) transfers that can be considerably faster than data transfers between the host CPU

and FPGA from/to unaligned memory. GLAF OpenCL auto-generated code ensures that all mem-

ory allocations follow the board-specific alignment requirements. Specifically, instead of the de-

fault malloc() call in GLAF, GLAF generates alignedMalloc() calls in the host code and the imple-

mentation of this function in the header file (.h) that is effectively a wrapper of posix memalign().

211

Visualization

Data visualization facilitates understanding the algorithms being developed, as well as revealing

bugs, in an intuitive, visual way. Currently, GLAF supports two ways of visualizing data. By se-

lecting the “Show Data” menu item in a step, data for each grid cell are calculated up to that step by

evaluating automatically generated JavaScript code on-the-fly and using the internal representation

of data structures, which is by design in JavaScript (Section 5.3.1). The user can navigate in multi-

dimensional grids by clicking on the appropriate dimension. For grids whose dimensions are larger

than the screen space, appropriate arrows enable navigating within grid contents. The “Colorize”

menu option paints each grid cell on the greyscale color spectrum according to the magnitude of

the corresponding cell value, together with its value. Finally, the “Image Map” option, a straight-

forwad extension of the previous two, contains only color (i.e., no data values). Techniques based

on color make it easy to spot outlier values or specific patterns in relative problems, especially

in the presence of huge amounts of data, thus facilitating result observation and interpretation.

They are especially useful in the image processing field, as well. Figure 5.21 shows three simple

examples of data visualization functionalities. In the future, more complex visualization schemes

can be built upon the unified and regular internal representation of the grid abstraction by use of

specialized visualization libraries for frequently-used data structures. For example, sparse matri-

ces in CSR format could be visualized automatically as single (sparse) matrices, rather than the

collection of the helping 1D arrays that represent such matrices in CSR format. Similarly, graphs

could be visualized as such, while internally represented via adjacency matrices.

212

(a) Values only. (b) Values and colorization. (c) Image map.

Figure 5.21: Examples of data visualization methods in GLAF

5.3.3 Example Applications

To illustrate the features of GLAF (code generation, parallelism analysis, auto-tuning) and assess

its utility as a high-level programming environment in diverse situations, we present our experi-

ences and results for a set of example applications that span four different scientific domains (imag-

ing, physics, bioinformatics, signal processing) that exhibit various types of parallelism, computa-

tion and memory access patterns. Using some of the above example applications we illustrate how

easy it is for novice programmers using typical programming languages to fall into coding pitfalls,

their effect in performance, and how GLAF addresses these problems in an automated way thus

providing a fair trade-off between performance and programmability, while ensuring portability,

too. Similarly, some of the applications are specifically chosen to showcase certain features of the

GLAF Altera FPGA OpenCL-specific optimization opportunities and their effect in performance.

213

3D Finite Difference Calculation (3DFD)

Finite difference calculation represents structured grids algorithms, where computation proceeds

as a series of grid update steps. In the 3D case data is arranged in a regular 3D grid. For each

step iteration each point is updated as a function of its neighboring points’ values across each of

the 3 dimensions. In our example each point for step n + 1 is the value at step n plus the sum

of 8 neighboring points across each dimension (Listing 5.1). We define a source and destination

grid, which are used interchangeably at each computation iteration. In 3DFD, we have ample

parallelism within a step iteration: within each dimension summation of all 8 neighboring values

for each point can be seen as a reduction and on the outer level (3 nested for loops) each grid cell

update can be calculated independently.

for number of steps/iterations S

for each point[i, j, k]

(incl. vertical boundary condition)

sum[i, j, k]+ = 8pt stencil across horizontal dim

for each point[i, j, k]

(incl. horizontal boundary condition)

sum[i, j, k]+ = 8pt stencil across vertical dim

for each point[i, j, k]

(incl. 3rd dim. boundary condition)

sum[i, j, k]+ = 8pt stencil across 3rd dim

Listing 5.1: 3DFD pseudocode

214

Electrostatic Surface Potential Calculation (NB)

In NB we calculate the electrostatic potential at a collection of points on the surface of a biomolecule.

The potential at each point is the sum of charges contributed by its interaction with all atoms within

the biomolecule (Listing 5.2). Each surface point and atom is represented as a structure containing

information about its electric charge and its coordinates in the 3D space (Figure 5.7a). In NB we

have two levels of parallelization opportunities for the two nested loops described above (the latter

being a reduction). Computations are independent for each surface point/surface point-atom pair.

for all surface points sp[i]

for all atoms at[j]

sq dist = (x[i]− x[j])2 + (y[i]− y[j])2 + (z[i]− z[j])2

sum esp[i]+ = Ke ∗ (q[i] ∗ q[j])/sq dist

Listing 5.2: NB pseudocode

Sequence Search (SS)

Sequence search is a fundamental process in bioinformatics and computational biology. Infor-

mally, it can be defined as finding similarities between a query sequence (i.e., an unknown string

of DNA bases or aminoacids) and a subject sequence (i.e., a sequence in the database that may have

known origin and functionality). Identifying similarities between DNA or protein sequences serves

as a proxy for detecting similarities in function and structure between sequences, thus providing

clues on the evolutionary history and origin of unknown sequences, for example. Other uses in-

clude phylogenetic profiling and identifying members of gene families. In SS we have parallelism

available at two levels; (a) every n-mer (where n is the number of elements in the search sequence)

215

of the reference sequence can be compared in parallel with the search sequence, (b) within each

reference sequence n-mer and search sequence, element-level pair-wise scoring can take place in

parallel.

for each position i of reference sequence ref seq

for each j position fo search sequence search seq

pair score[i] + = scoring matrix[search seq[j], ref seq[i+ j]]

Listing 5.3: SS pseudocode

Time-Domain Finite Impulse Response (FIR) Filter (FF)

The FIR filter is the basic building block in many larger algorithms in the area of signal processing

(video, communications, etc.) Time-domain FIR filter represents a sliding-window type of algo-

rithm that, as its name denotes, implements a set of M FIR filters, each with K filter coefficients.

A filters output is calculated as the convolution of its coefficients (complex number that consists

of a real and an imaginary part) and the input vector. In terms of parallelism available, there are

two opportunities, that correspond to each of the for loops. The outermost loop is parallelizable, as

there are no cross-loop iteration dependencies. Within the second loop there are two sum reduction

operations.

for each element i of (combined) input (inp real[] and inp img[])

for each element j of filter (flt real[] and flt img[])

out real[i]+ = inp real[i− j + flt length− 1] ∗ flt real[j]− inp img[i− j + flt length− 1] ∗ flt img[j]

out img[i]+ = inp real[i− j + flt length− 1] ∗ flt img[j]− inp img[i− j + flt length− 1] ∗ flt real[j]

Listing 5.4: FF pseudocode

216

5.3.4 Evaluation: Fixed Target Architectures

In this section, we evaluate code automatically generated by GLAF for fixed target architectures,

that is the CPU Intel Xeon Phi and GPU. Specifically, our experiments are run on: (a) a dual-

socket Intel Xeon E5-2697 CPU (each with 12 cores at 2.6GHz, 256KB of L2 and 30MB of L3

cache) , (b) an Intel Xeon Phi (XP) 7120 co-processor (61 cores at 1.238GHz, 30.5MB cache),

and (c) an NVIDIA K20c GPU (13 Streaming Multiprocessors at 706MHz). We used the Intel

set of compilers (ifort for Fortran, icc for C, in Intel Composer XE 2015 v.15.0.1), Intel Vtune

Performance Analyzer and compiler optimization/parallelization reports to identify performance

issues. For the OpenCL code we use the NVIDIA SDK’s OpenCL 1.2 CUDA 8.0.46.

In our example applications, we generate serial, compiler-parallelized and GLAF-parallelized,

implementations (see Chapter 5.3.2 for details) for both Fortran and C, with appropriate opti-

mizations applied by the auto-tuning back-end. OpenCL is de facto parallel, so we only provide

GLAF-parallelized implementations (serial and compiler-parallelized implementations are not ap-

plicable). For explicit performance comparisons graphs (Figure 5.22) for our experiments show

speed-up (y-axis) over a single baseline implementation (Fortran CPU serial) for the most relevant

implementations (x-axis) as created by the auto-tuning framework. The serial baseline code highly

resembles code that a novice programmer would write (e.g., Figure 5.10).

217

0	

0.5	

1	

1.5	

2	

2.5	

3	

3.5	

4	

4.5	

5	

serial	 compiler-parallelized	 GLAF-parallelized(col(3))	 GLAF-parallelized(col(1))	

Sp
ee
d-
up

	o
ve
r	s
er
ia
l	f
or
tr
an

_C
PU

	

Implementa8on	

fortran_CPU	

C_CPU_norestr	

C_CPU_restr	

fortran_XP	

C_XP_norestr	

C_XP_restr	

OpenCL_GPU	

(a) 3DFD results

0	

5	

10	

15	

20	

25	

serial	SoA	 serial	AoS	 compiler-parallelized	SoA	compiler-parallelized	AoS	 GLAF-parallelized	SoA	 GLAF-parallelized	AoS	

Sp
ee
d-
up

	o
ve
r	s
er
ia
l	S
oA

	fo
rt
ra
n_

CP
U
	

Implementa9on	
fortran_CPU	 fortran_CPU_tmp	 C_CPU_norestr	 C_CPU_restr_tmp	
C_CPU_restr_tmp_powf	 fortran_XP	 fortran_XP_tmp	 C_XP_norestr	
C_XP_restr_tmp	 C_XP_restr_tmp_powf	 OpenCL_GPU	

0	

0.1	

0.2	

0.3	

0.4	

0.5	

0.6	

0.7	

0	

0.2	

0.4	

0.6	

0.8	

1	

1.2	

1.4	

(b) NB results

Figure 5.22: Performance results for the example applications developed, auto-tuned by the GLAF
framework

218

3D Finite Difference Calculation (3DFD)

For the 3DFD experiment we run the algorithm for 20 steps and a 512x512x512 input grid. There

are no data layout concerns (i.e., SoA, AoS) in 3DFD, however, loop collapsing and loop inter-

change auto-tuning options are applicable in C and Fortran, but not in OpenCL. For the former, we

present results for collapse(1) (i.e., no collapsing), and collapse(3). For the latter, we auto-generate

the fastest loop ordering, according to the target language’s way of arranging multi-dimensional

arrays in memory (row-major for C, column-major for Fortran).

The best performance is obtained using the C CPU restr GLAF-parallelized(col(1)) implementa-

tion (4.7x), followed by the corresponding implementation in Fortran (4.17x). Despite this perfor-

mance difference across languages, within each language and platform, C achieves better speed-up

(over serial) than Fortran (e.g., 38.37x for compiler-parallelized C XP restr versus 24.64x For-

tran XP). Moreover, a non-negligible 1.49x performance gain (on XP, compiler-parallelized im-

plementation) can be obtained by switching from Fortran to C. GLAF renders this trivial by its

ability to automatically generate code in both languages. OpenCL auto-generated code for GPU

only provides a mediocre speed-up of 1.26x. The reason for the above lies in two factors. First, the

nature of the algorithm requires cross-step synchronization. Due to the lack of explicit device-wide

synchronization in the GPU, multiple kernel launches are required. This introduces a significant

overhead in the GPU, which is aggravated by the fact that the computation is carried out in three

separate kernels (one for each of the three dimensions). Second, the unique memory hierarchy of

the GPUs that lacks large hardware-controlled caches, combined with the specific memory access

219

patterns of two of the three kernels (i.e., beyond the kernel that computes along the horizontal

dimension) proves non-ideal (accesses are served by global memory and cannot be coalesced or

efficiently cached). In this case, use of the GPU shared memory would be an important manual

optimization (or part of an optimizing GPU back-end in a future version of GLAF).

In Figure 5.22a, we observe that C CPU restr and C XP restr perform overall better than their

norestr counterparts in all implementations. Norestr corresponds to an earlier stage of C code gen-

eration in GLAF. In the case of C norestr implementations, we observe that compiler-parallelized

code fails to provide any speed-up versus the corresponding serial. C enforces strict aliasing rules,

and as such the compiler acts conservatively by not parallelizing the three nested loops (List-

ing 5.1) and assuming the existence of dependence between the pointer variables for each grid in

a function call. To indicate no aliasing a C programmer would need to use the restrict keyword

and -restrict compiler flag. In Fortran, grids (i.e., Fortran arrays) are always passed by reference

and are assumed to not alias by default. Strict aliasing rules, when unnecessarily enforced, do

not only affect auto-parallelization, but vectorization, too. Namely, it seriously hinders serial C

performance, as well. Note the huge difference (restr vs. norestr) in XP (16.04x), as opposed to

3.07x in CPU, owing to the wider vector units in XP compared to the CPU. In the case of OpenCL,

the compiler-parallelized case where the restr and norestr cases are important is not applicable,

as OpenCL explicitly exposes parallelism. Novice programmers are typically not aware of issues

like aliasing and related solutions. This is another point in favor of automatic code generation by

GLAF, doing so in multiple languages, as well as GLAF’s simplicity in not allowing aliasing by

220

default. As such, the above remedies can be taken care of by the framework at code generation and

compilation script creation time.

In some cases with C and Fortran, where nested loops are parallelizable, it may make sense to

collapse them. A novice programmer with rudimentary OpenMP knowledge and lack of architec-

ture knowledge could have coded these nested loops with nested OpenMP pragmas, spawning an

increasing number of threads with the associated overheads, or with a collapse(3) OpenMP clause.

Using collapse(1) (i.e., parallelizing only across one dimension) allows the compiler to generate

vector code for the remaining two (parallelizable with unit stride) loops. This increases perfor-

mance as a function of the vector unit’s width. As such the relevant performance gain between

those two options is higher (16.8x) in the case of Xeon Phi (512-bit wide vector units), than in the

lower (3.7x) CPU case (256-bit AVX) in both Fortran and C implementations.

Electrostatic Surface Potential Calculation (NB)

For NB we use a problem size of 128000 surface points and 256000 atoms. NB illustrates the utility

of GLAF’s data layout transformations. Structure-of-arrays and array-of-structures implementa-

tions can be automatically generated by GLAF for the surface point and atom grids (Figure 5.18).

The best overall performance for NB is obtained using the OpenCL GPU implementation, which is

about 25% faster than the second best. NB, as an n-body dwarf, provides abundant parallelism in

a regular form that is amenable for parallelization using the GPU (as we also see in Section 4.2.5).

For the x86-based cases of CPU and Xeon Phi, the fast performance is obtained by the Fortran

221

GLAF-parallelized SoA implementation in the CPU, followed by the corresponding C CPU im-

plementation. The fact that the language and platform of choice (OpenCL and GPU) for NB is

different than that of 3DFD emphasizes the utility of automatic code generation in multiple target

languages/platforms. In many instances Xeon Phi execution proves slower than the corresponding

CPU C and Fortran implementations. We expect to be able to achieve better speed-ups for the Xeon

Phi case, and even better for the GPU, once GLAF provides MIC and GPU architecture-aware op-

timizations, as well as specific hints to the compiler (e.g., alignment attributes that facilitate more

efficient vectorization, aligned loads, cache miss reduction in Xeon Phi).

As in the case of 3DFD we observe compiler-parallelized C implementations (norestr) to initially

exhibit subpar performance, equal to the serial. According to the compiler parallelization report

the reason for failing to parallelize the outer loop was “insufficient work”. This was an erroneous

assessment by the compiler, given the available amount of work. In fact, the 2013 (v.13.1.3) version

of icc did parallelize the same loop when the number of loop iterations was larger than the number

of (logical) processors. The latest compiler was eventually able to automatically parallelize this

loop once we performed (via GLAF) another optimization that the compiler was not performing

itself. In particular (restr tmp), we introduce a temporary variable in the nested loop of Listing 5.2

in place of the sum [i] array, which further allows the loop to be identified as a reduction (C does

not otherwise allow reductions on dynamically allocated arrays). GLAF applies the same code

transformation for Fortran.

NB is an illustrative case for the utility of data layout transformations. Results highlight how a

bad choice for structs declaration (AoS here) account for twice worse performance. SoA layouts

222

are amenable to efficient vectorization and offer the possibility for unmasked unit stride loads, as

opposed to more expensive strided loads, and gather operations employed with AoS. Profiling data

across our implementations validate AoS detrimental effect, especially on cache, as CPU and XP

speed-ups denote. Especially for the serial fast implementations performance degradation ranges

between 1.52 to 2x (C, Fortran in CPU) and 2.89 to 3.15x (C, Fortran in XP). In SoA cases, all

vector loads in Fortran are aligned, whereas in C the majority is unaligned, resulting in higher load

latencies. In both SoA and AoS CPU cases C is better in its compiler-parallelized and worse in

the GLAF-parallelized implementations, while in XP it far surpasses the corresponding Fortran

compiler-parallelized implementations and performs similarly for the GLAF-parallelized. In the

case of GPU execution, OpenCL code generation back-end automatically converts code in the SoA

format (more specifically it generates multiple arrays, as discussed in Section 5.3.2). While GLAF

provides the answer to what the best implementation is, we can imagine the pitfalls a novice user

would fall into if he were to write a serial version in the “wrong” language and/or in the “wrong”

struct format (i.e., failure of compiler auto-parallelization).

Finally, C implementations with powf suffix (Figure 5.22b) highlight how a simple oversight can

affect performance. In particular, our code generation back-end initially produced a pow() function

call for the corresponding function in GLAF. While in Fortran the exponentiation intrinsic func-

tion (**) is overloaded with the appropriate version according to the arguments, in C pow() emits

the double version. Ignoring calling appropriate versions of a function in C is common among

non-programmers. Use of powf() instead of pow() increased C serial CPU performance by 1.94x

for the SoA and 1.61x for the AoS case. Argument type detection is inherent within the frame-

223

work (Section 5.3.1) and detection of such cases of potential unwanted performance degradation

is important in steering users away from such pitfalls.

5.3.5 Evaluation: Reconfigurable Target Architectures

For the FPGA implementations we use a Bittware S5-PCIe-HQ board (S5PHQ-D8) that comes in

the form of a half-length PCIe x8 card. It is based around a high-performance Altera Stratix V GS

FPGA and contains 16 GB of DDR3 SDRAM arranged in two 64-bit banks. The OpenCL kernel

codes were compiled using the Altera OpenCL SDK v14.2 tool-chain. For the CPU reference

base-line implementations we use a Intel E5-2697 (Ivybridge) with 12 cores (24 threads), clocked

at 2.7GHz, AVX support and 30MB of L3 cache. The CPU (parallel) implementations (in C with

OpenMP directives), as well as the host-side code of the OpenCL implementations, were compiled

using gcc v.4.8.2 and run on a Debian host (kernel 3.2.46) with 64GB RAM.

Figures 5.23a-5.23c show the execution time of OpenCL kernel implementations normalized to

the corresponding execution time of the OpenMP-parallel CPU implementation. Both the CPU and

FPGA implementations are generated by GLAF to ensure a certain level of fairness of comparisons.

We also show the FPGA resource utilization to obtain insights on the effect of various optimiza-

tions on it and trade-offs between resource utilization and performance. The characteristics of

alternative implementations for each example application are outlined in Table 5.2. Some imple-

mentations are shown for the purpose of quantifying the effect of certain optimizations, while most

are implementations automatically generated by GLAF. Our experiments focus on the FPGA and

224

Table 5.2: Kernel implementations

Implem. Type CUs SIMD Const. Kernel
mem. Freq.

NB0 NDR 1 1 N 268.95
NB1 SWI 1 1 N 280.58
NB2 NDR 1 8 N 244.91
NB3 NDR 1 16 N 223.01
NB4 NDR 2 16 N 190.73
NB5 NDR 3 16 N 193.19
NB6† NDR 1 1 N 215.33
SS0 NDR 4 8 N 183.95
SS1 NDR 2 16 N 184.16
SS2 NDR 1 1 Y 144.3
SS3 NDR 6 16 Y 153.04
SS4? NDR 1 8 N 186.7
SS5* SWI 1 1 Y 118.35
FF0 NDR 4 16 Y 183.89
FF1 SWI 1 1 Y 262.61
FF2 SWI 10 1 Y 195.65
FF3‡ SWI 1 1 Y 191.97
FF4‡ SWI 10 1 Y 170.12
FF5* SWI 1 1 Y 188.46
† Resource-driven optimized ‡ Initiation interval reduction

* Shift register inference ? Inner loop unrolling
NDR: NDRange SWI: Single work-item

performance improvements as achieved through optimizations automatically applied by GLAF.

Normalization of performance with respect to multi-core CPU OpenMP performance is used as a

reference, but further cross-language analysis (e.g., HDL on FPGA) is beyond the scope of this

work.

Electrostatic Surface Potential Calculation (NB)

NB is a highly parallel application and provides insight about the optimizations of kernel vector-

ization (SIMD), compute unit (CU) replication, NDRange (NDR) versus single work-item (SWI),

and the effectiveness or resource-driven optimizations by the Altera Offline Compiler (AOC).

225

15.46	 14.79	

2.11	 1.16	 0.69	 0.51	 0.61	
0	

20	

40	

60	

80	

100	

0	

5	

10	

15	

20	

NB0	 NB1	 NB2	 NB3	 NB4	 NB5	 NB6	

FPG
A	 resource	 u,liza,on	 (%

)	
N
or
m
al
iz
ed

	 k
er
ne

l	 e
xe
cu
,o

n	
,m

e	
	 (v
s.
	 O
pe

nM
P	
CP

U
	 p
ar
al
le
l)	

Kernel	 implementa,on	

Normalized	 kernel	 execu=on	 =me	 FPGA	 resource	 u=liza=on	

(a) Electrostatic Surface Potential Calculation (NB).

2.36	 2.25	
5.52	

3.54	

19.35	

0.44	
0	

20	

40	

60	

80	

100	

0	

5	

10	

15	

20	

25	

SS0	 SS1	 SS2	 SS3	 SS4	 SS5	

FPG
A	 resource	 u,liza,on	 (%

)	
N
or
m
al
iz
ed

	 k
er
ne

l	 e
xe
cu
,o

n	
,m

e	
(v
s.
	 O
pe

nM
P	
CP

U
	 p
ar
al
le
l)	

Kernel	 implementa,on	

Normalized	 kernel	 execu<on	 <me	 FPGA	 resource	 u<liza<on	

(b) Sequence Search (SS).

4.31	

18.44	

24.76	 25.13	
28.35	

0.21	
0	

20	

40	

60	

80	

100	

120	

0	

5	

10	

15	

20	

25	

30	

FF0	 FF1	 FF2	 FF3	 FF4	 FF5	

FPG
A	 resource	 u,liza,on	 (%

)	
N
or
m
al
iz
ed

	 k
er
ne

l	 e
xe
cu
,o

n	
,m

e	
(v
s.
	 O
pe

nM
P	
CP

U
	 p
ar
al
le
l)	

Kernel	 implementa,on	

Normalized	 kernel	 execu<on	 <me	 FPGA	 resource	 u<liza<on	

(c) TDFIR (FF).

Figure 5.23: Results: Execution time and FPGA resource utilization (lower is better)

226

As seen in Figure 5.23a, increasing SIMD lanes from 1 to 8 (NB0, NB2) and doubling SIMD from

8 to 16 (NB2, NB3) yields a 7.32- and 1.81-fold speed-up, respectively. With each doubling in

SIMD vector length resource utilization increases by about 1.35x. Memory access patterns of NB

make it amenable for kernel vectorization, as observed in the profiling data: memory accesses are

coalesced and result to cache hits in over 99% of the time minimizing memory-related pipeline

stalls below 4%. Increased SIMD length only leads to increase of the datapath of a CU (all SIMD

lanes share control logic). CU replication case differs, as seen in NB3, NB4, NB5 (SIMD length

kept constant): performance increases by a 1.68x when increasing the number of CUs from one

to two, while tripling the number of CUs yields a 2.27x increase in performance. Increasing the

number of CUs comes at the expense of increased global memory bandwidth across CUs and each

doubling of CUs leads to resource utilization almost doubling, too.

Comparing NDRange and single work-item kernel, we observe (NB0, NB1) that performance and

resource utilization are almost similar. This is expected, since both NDR and SWI kernels have

no kernel vectorization or CU replication and are expressed via pipeline parallelism in FPGA

hardware. In fact, the execution time ratio (tNB0/tNB1) equals the inverse kernel frequencies ratio

(fNB1/fNB0). As we see in other example applications (SS, FF), SWI can be beneficial over NDR

after applying further optimizations that are not applicable in the NDR paradigm.

Last, NB5 and NB6 provide insight on the effectiveness of resource-driven optimization by AOC.

Specifically, in NB6 we use this feature: AOC compiles a kernel with attributes (SIMD length,

number of CUs, loop unrolling) based on estimated throughput derived using heuristics. In NB6,

AOC identifies loop unrolling (by a factor of 32) to be the most beneficial optimization. Our (brute-

227

force) choice (SIMD 16, CU 3), which provides a 1.2x speed-up over resource-driven optimization,

indicates certain limitations of the latter.

Sequence Search (SS)

SS serves as an example of the trade-offs in combinations of SIMD length, number of CUs and

loop unrolling, use of constant memory, as well as shift register inference in single work-item

implementations.

With respect to SIMD, CU and loop unrolling, we compare versions SS0, SS1, SS4 (Figure 5.23b)

that yield an overall 32-way parallelism (e.g., SIMD 16 with 2 CUs, or SIMD 8 with 4 CUs). Using

wider SIMD (SS1) requires less hardware resources than SS0 and SS4 and provides speed-up over

SS0, as expected for similar reasons with NB (e.g., more efficient hardware, coalescing). In SS4,

enforcing 4-way loop unrolling together with SIMD only illustrates that careless combination of

SIMD and loop unrolling without taking memory access paterns into account can be detrimental

for performance (high cache misses and lengthy pipeline stalls).

For small search sequences, when applicable (as in our case), use of constant cache memory may

present a considerable advantage for an FPGA design, that is better resource utilization that may

allow wider SIMD or more CUs to fit in an FPGA (e.g., SS0 and SS1 versus SS3, Table 5.2). In SS,

due to the parallelization scheme and memory access pattern (i.e., each thread accesses contiguous

parts of the reference sequence array shifted by one position) we may have an unfavorable parti-

tioning of the problem to CUs. While the details of scheduling are transparent to the programmer,

228

bandwidth efficiency (i.e., percentage of data acquired from global memory system that the kernel

actually uses) is indicative of such an unfavorable partitioning (about 84% in SS3, 95% in SS0 and

99% in SS1). Notice that the bandwidth efficiency increases as the number of CUs decreases.

SS5 illustrates the SWI optimization, which pertains to the sliding-window access pattern of the

reference sequence array. This access pattern is ideal for the shift register inference optimization,

in which the OpenCL code follows the guidelines (static size, full unrolling) that allow AOC to

generate a shift register structure that is placed into block RAM and is considerably faster than

global memory accesses. It is worth noting that without the constant memory optimization the

FPGA hardware resources would not suffice for full loop unrolling (and hence successful shift

register inference). Also, a search sequence longer than 128 bases would lead to insufficient hard-

ware resources. The fact that the search sequence needs to be small and statically determined to

allow the shift register optimization is an inherent limitation of programming hardware. Finally,

we observe that the clock frequency of the single work-item implementation is the lowest in this

set, but in no way affects the end performance.

Time-domain FIR filter (FF)

Some of the optimizations discussed in Section 5.3.2 and found in NB and SS are also relevant

for FF. For example, all shown FF implementations utilize constant cache memory for the filter

coefficients. Notably, FF serves as an example where observed results can be counter-intuitive.

229

Here, the fastest SWI implementation, with shift register inference and loop unrolling (FF5) is 20.5

times faster than the fastest NDR one we were able to compile. FF highlights yet again the impor-

tance of the above optimizations in sliding-window type of algorithms. Notice that FF5, barely fits

the FPGA for our 128-tap filter example. Without use of constant memory – and its lighter resource

consumption, FF5 would not be possible. It is also worth noting that without the shift register in-

ference optimization full loop unrolling cannot be applied at all, due to resource restrictions. The

above observations highlight the importance of applying FPGA-specific optimizations in concert,

rather in isolation only. GLAF is useful in this respect, in that it automates code generation with

multiple combinations of optimizations that the user can evaluate.

Conversely, optimizations that may be beneficial for a specific computation pattern can be detri-

mental for another. While in NB we observe the positive effect of wider SIMD and more CUs, in

FF this is not the case (FF1 is 1.34x faster than FF2, despite having 1/10 of the CUs). Accordingly,

higher resource utilization does not necessarily imply better performance. Last, the initiation in-

terval (II) reduction optimization in FF3 (reduces II from 8 cycles to 1) yields worse performance

than FF1. Despite the reduction in the number of cycles between iterations in this particular case

the resulting clock frequency for the design is 1.36 times slower than FF1 (as is the speed-up of

FF1 over FF3).

230

5.3.6 Discussion

In this discussion section we address some of the potential questions and concerns the reader may

have.

“A good programmer would definitely be able to get better performance.” While we achieve

good speed-ups and our auto-tuning choices include typical optimizations (and will include more

in the future), we do not expect to obtain ninja-programmer results at this stage. A hand-tuned

implementation by an experienced programmer can likely beat GLAF (in fact any similar tool),

because it has the inherent limitation (or feature, depending on one’s perspective) of requiring

certain generality of applicability. Moreover, GLAF generates code and attempts to optimize the

specific algorithm the user develops (using the GUI). While an experienced user is able to perform

algorithmic refactoring for a certain platform, this is something that tools cannot currently do

(machine learning approaches aspire to do so in the future). The gap between “ninja” performance

and “good” performance is relatively small compared to the effort it requires [245]. Reaching

such performance levels would require knowledge of the algorithm, which in turn would require

complex manual hints on the part of the user, which we try to avoid. Our focus is on hitting a

balance between performance and programmability. GLAF’s ability to generate code in more than

one languages (C, Fortran, OpenCL) is a very useful feature, nonetheless. A language’s features

and/or available compilers may be more suitable/perform better for a given algorithm “out of the

box” or using our auto-tuning back-end, than a “ninja-optimized” implementation in a language

that is not suitable. In most cases, “ninjas” are typically such in a certain language and GLAF-

231

generated code in their language of expertise can constitute a starting point saving them precious

development time to the end solution.

“Compilers can auto-parallelize and optimize code. Why perform parallelism analysis and

transformations within the tool?” It is important to stress that GLAF is not a compiler per se.

It performs parallelism analysis and compiler-like optimization at code generation level, but at the

end all the above implementations are still compiled using an actual compiler. The way code is

developed with GLAF and the way code is automatically generated render it more favorable to

compiler optimizations. In fact, as we see in Section 5.3.4,a compiler would fail to auto-parallelize

certain implementations that a novice programmer, like most domain experts, could have written.

Parallelism analysis at the language level provides a substrate of information that makes it easier to

provide better feedback - and potentially advice - when auto-parallelization fails. While compiler

parallelization reports may provide such information, it is not always clear to non-programmers,

or may not be useful if it refers to parallelization attempts to code that has already undergone

optimizations and does not correspond to what the user originally wrote. Finally, most widely-

used programming languages were not written with auto-parallelization in mind.

“If for an application the compiler auto-parallel implementation is faster, then GLAF is use-

less.” One should not view GLAF as an optimizing compiler and evaluate it as such. We don’t see

compiler auto-parallelization as an opponent that we try to beat. Achieving decent speed-up is un-

doubtedly one of GLAF’s main purposes. This is why we need to further develop the auto-tuning

part of the framework. But, ultimately GLAF is an all-encompassing development framework and

should be evaluated as such. The compiler auto-parallel implementation may not always be the

232

fastest, as seen in our results, but, in any case, the serial code that constitutes the input to the

compiler to be auto-parallelized is still produced by GLAF. And it is the way even serial code is

generated that makes it more amenable to parallelization, by taking into account common pitfalls,

as discussed in the Results section, in which code manually written by domain experts could have

failed to be efficiently parallelized/vectorized.

“It seems that GLAF does a lot of things but is best at none.” GLAF is not intended to be,

and cannot be, the best in all aspects it tries to address. It is a general-purpose framework that

introduces a different development approach for domain experts and provides a solid foundation

with its basic building blocks that can be further developed. We make some clear, conscious

design choices, given our target audience, and as such programmability for this audience is one of

the top concerns. We intend to keep the language as simple as possible and parallelism-agnostic,

to the degree we feel novice or non-programmer domain experts are comfortable with. Further

specialization, however, can be incrementally added by use of libraries, as is the case with other

languages and frameworks.

5.4 A GLAF Case Study with NASA

As we have mentioned before, the current and – even more so – future parallel computing land-

scape is destined to be heterogeneous in nature if we are to expect further performance increases

within a practical power envelope. Beyond traditional multi-core CPUs, accelerator/co-processor

architectures like the GPGPU, Intel MIC, or even the FPGA, have made their way into compute

233

nodes exposing huge potential for parallel execution. In order to democratize parallel, hetero-

geneous computing to audiences with minimal or no programming experience (especially paral-

lel), like domain scientists, we have introduced GLAF (Section 5.3.1), a grid-based language and

auto-tuning framework that seeks to narrow the gaps among performance, programmability and

portability.

The main use-case of GLAF that we have showcased so far entails developing a program from

scratch, i.e., the main function, user functions, and associated libraries used by said program are

all developed using GLAF itself. Developing a program wholly within GLAF enables the user

to take advantage of all features GLAF has to offer. However, the above approach disregards an

important use-case, namely one where one or more functions of a larger program are desired to be

implemented in GLAF (e.g., to take advantage of auto-parallelization and cross-platform code gen-

eration), but not the whole program. In fact, this is a typical case in high-performance/accelerator-

based computing; parallel, computationally heavy code segments are offloaded to the accelerator

(e.g., GPU), while the rest code is executed serially on the CPU. Interoperability, in a plug and play

fashion, of GLAF-generated code with existing code was not originally accommodated by GLAF,

but has been listed since the onset as one of the desirable features of our programming framework.

On a different note, the design, development and evaluation of GLAF have revolved around smaller-

scale benchmark applications that exhibit diverse behaviors with respect to their computation and

communication pattern, as well as types and levels of available parallelism. While the above has

served as a reasonable and diversified test infrastructure for various functionalities and the grid

234

abstraction at the core of GLAF programming, we have not had the opportunity to evaluate GLAF

in its entirety with a larger-scale application.

In light of the above, in this chapter we present our work with a real-world application of inter-

est to NASA, called Synoptic SARB. Synoptic SARB is one of eight subsystems in the software

ecosystem that supports the NASA CERES program. We describe both the CERES program, and

Synoptic SARB in more detail in Section 5.4.1.

With this case study, we seek to extend the GLAF graphical user interface front-end, as well

as the code generation back-end, to facilitate expressing existing data structures found in real-

world applications and enable code generation whose output can seamlessly integrate with pre-

existing code. Then, we evaluate GLAF in its entirety by stressing its back-ends (including the

novel additions for ease of integration) via a larger-scale, real-world case-study that spans beyond

previous small benchmark size and scope. We prove that the grid abstraction can represent all the

data needed in the context of our case-study application, and that the resulting code is syntactically

correct and functionally equivalent with the original. With respect to performance, the GLAF

parallel auto-generated version performs up to 1.41x faster than the original serial implementation.

235

5.4.1 Background

The NASA Cloud and Earth’s Radiant Energy System (CERES) Program and Associated

Data Collection

The National Aeronautics and Space Administration (NASA) is a pioneer in the exploration of

space, spearheading an array of far-reaching programs with global impact. One such umbrella-

program is the Earth Observing System (EOS) [14]. In the context of this work we focus on the

Cloud and the Earth’s Radiant Energy System (CERES) [13], a key subprogram of EOS, specifi-

cally responsible for providing a better understanding of the complex interdependencies between

the clouds and the energy cycle, as well as their effect in the global climate change. As part of EOS,

CERES is conducive to enhancing our knowledge about the Earth’s climate system and associated

climate prediction models.

Satellites are an integral part of many NASA’s missions, like the above. They fly in orbit around the

Earth gathering (and relaying) invaluable information about the atmosphere, oceans, land surface,

etc. Specifically, satellites that are part of the EOS, like EOS-Terra and EOS-Aqua, fly over the

earth at a height of about 5000 miles and in a sinusoidal track. Terra, Aqua – and all satellites for

that matter – are equipped with various instruments used in carrying out measurements of diverse

kinds. A key instrument in the CERES program of EOS is the same-named (CERES) instrument.

The CERES instrument is capable of measuring the energy levels at the top of the atmosphere,

and providing estimates about the energy levels in the atmosphere and surface of the Earth. In

practice, the CERES instrument is largely a radiometer, i.e., a device that measures the radiant flux

236

of electromagnetic radiation. It has three channels: a shortwave channel, a total channel, and an

infrared window channel. Except for the above, it collects cloud and other atmospheric data that

are relevant to its purposes.

Surface and Atmospheric Radiation Budget (SARB) Software System: Making Sense of

CERES Data

The key software system that supports the CERES program is called SARB, which stands for

Surface and Atmospheric Radiation Budget, and includes a number of subsystems. Each subsystem

ingests certain inputs and provides outputs that may be archived “as is” or used as inputs in a

subsequent subsystem. In the context of this work, our focus is on Subsystem 7.2: Synoptic SARB.

Synoptic SARB computes the longwave, shortwave, and window channel vertical flux profiles that

span from the surface of the Earth to the top of the atmosphere. Put simply, it calculates the energy

exchange between the Sun, the Earth’s atmosphere, clouds and surface, and the space (what “goes

in” versus what “goes out”).

In the context of Synoptic SARB the Earth is split into a number of zones, parallel to the equator.

Computation for each zone can take place independently from each other, but within each zone

processing is serialized according to the time (synoptic hour) for which the data being processed

was acquired via the CERES and other measurement collection instruments. Still, within a synoptic

hour various computations can run in parallel in a finer-grained resolution. The time it takes for

each zone to complete is proportionate to its size (zones closer to the equator are naturally larger

than zones near the poles). Inter-zone parallelism is the current way Synoptic SARB exploits

237

multiple CPU cores using MPI in the context of Sun Grid Engine (SGE). Intra-zone parallelism

is not exploited, at all; any opportunities for parallel execution of loops, via multithreading or

vectorization are left unexploited and available compute resources can thus be underutilized.

5.4.2 Extensions to GLAF

In Section 5.3 we refer to enabling GLAF auto-generated code interoperability with existing code

as one of our goals towards addressing the needs of domain scientists. Given the large amounts of

legacy code, much of which has been incrementally written over a span of decades, it is imperative

that we provide a method for domain scientists to re-write parts of such code in a way to accom-

modate parallel, heterogeneous computing. Our proposed approach entails exploiting GLAF for

automatic code generation and transparent integration of such auto-generated code segments with

existing code.

Below, we provide an overview of the extensions the code generation back-end requires to ac-

commodate the code integratability requirement. The enhancements and changes described below

target the FORTRAN graphical user interface changes and code generation part, but some can be

straightforward or trivially ported to C code generation, as needed.

Enabling Use of Existing Variables from Imported Modules

Real-world codes include variables that may be defined in external included files (modules in

Fortran). To access such variables in GLAF and use them in various GLAF steps, as needed,

238

we have to create the corresponding grid in the GLAF Global Scope and mark them as belonging

to an existing module. For grids that belong to an existing module the user needs to provide the

name of the module the grid belongs to. This information is subsequently used in code generation.

Specifically, variables that belong to the above category do not need to be re-defined in the body of

the function where they are used. However, the code generation back-end needs to generate code

for using the appropriate Fortran module.

Enabling Use of Variables in COMMON Named Blocks

Common blocks are a Fortran 77 language construct that defines a block of memory that can be

shared among different program units (e.g., functions, subroutines). While this eliminates the need

for passing variables that belong in common blocks as arguments, it can create more complex and

less maintainable code. Despite the fact that common blocks are considered a bad programming

practice, maintaining backwards compatibility and enabling integration of GLAF-generated code

with a larger existing code is essential. The way variables that belong to common blocks are

defined in GLAF is similar to variables that belong to existing imported modules. That is, the grid

that corresponds to such a variable is created in the GLAF Global Space and selected as belonging

to a common block, in which case the user is prompted to enter the name of the common block.

In code generation, the appropriate language structure reflects the common block; the variables

identified as belonging to the same common block are grouped and defined (i.e., grid type and grid

name), and the appropriate “COMMON < name > var1, var2, ...” code is generated afterwards.

239

Enabling Use of Subroutines

The original GLAF version models all Fortran subprograms as functions and generates code ac-

cordingly. To support the case the user desires code generation of subprograms in FORTRAN as

subroutines (i.e., subprograms that do not return a value, as opposed to functions), we provide

the corresponding functionality. While the same functionality can be achieved using functions,

enabling code generation for subroutines is imperative for supporting interoperability/integration

with existing code. On selecting a return value of void data type at the header of a GLAF function

(i.e., effectively no return value), code for subroutine is auto-generated together with a “CALL”

subroutine call at the caller site/step.

Enabling Use of Existing Elements of TYPE Variables

Support for existing elements of TYPE variables (i.e., the analogous to elements of a C struct in

Fortran) is a subcase of using existing variables from imported modules. As for any existing grid,

the user needs to declare it as such in the grid definition GUI screen in the Global Scope, and

provide the name of the module in which it belongs. Furthermore, he needs to specify that it is

part of an existing TYPE variable, in which case he is prompted for the TYPE variable name.

On the code generation side, any use of the above element of a TYPE variable, is appropriately

generated with the TYPE variable name prefix (e.g., an element charge that belongs to a TYPE

variable named atom would be generated as atom%charge).

240

Enabling Additional Library Functions

GLAF supports a number of libraries and associated library functions. Such functions correspond

to frequently used operations (e.g., GLAF supports a large number of the C/Fortran math library).

Using a library function (via the GUI), leads to code generation in the supported languages. Li-

braries are an extensible part of GLAF, which can be adapted to domain-specific needs. In the

case of this project, we extended support for the ABS(), ALOG(), and SUM() functions, used in

FORTRAN.

5.4.3 Results

In this section, we present: a) the details of implementing Synoptic SARB using GLAF and our

findings with respect to the functional correctness of the code, and, b) the performance results of

the automatically generated parallel code and associated insights.

Implementing Synoptic SARB Using GLAF

The subroutines of interest are part of the fulib library, a library that provides an implementation

of the Fu-Liou Radiative Transfer Model [109], the model used in Synoptic SARB to model the

energy transfer (in the form of electromagnetic radiation) between and across the earth and the top

of the atmosphere. The Fu-Liou model takes into account absorption, emission and scattering of

the radiation. Energy can be lost due to absorption, gained by emission, while redistribution can

occur by scattering. Specifically, the algorithmic implementation of Fu-Liou in Synoptic SARB ad-

241

dresses the two sub-cases of radiation in the longwave and shortwave spectrum (as can be gleaned

from the names of the corresponding subroutines in Table 5.3).

The identified subroutines of interest originally span about 700 source lines of code (break-down

per subroutine presented in Table 5.3). This number does not account for lines of code that corre-

spond to data types and variables from imported modules (mainly related to the Fu-Liou radiative

transfer model’s input and output variables and custom data types whose part some of them are).

Due to the nature of the computations, and the fact that these subroutines are part of a much

larger code-base with lots of dependencies, we are able to exercise multiple aspects of GLAF auto-

parallelization and code generation, including aspects of code integration not accommodated or

tested before.

For evaluating correctness of the code, we generate a wrapper function that calls the GLAF auto-

generated subroutines and provides sample values for the required inputs. The imported modules,

from which the auto-generated code uses existing variables and custom data types, are used “as is”.

We then conduct a step-by-step unit testing of the code, and a code-wide side-by-side comparison

of the results from the execution using the GLAF auto-generated subroutines, against the results

from executing the original code. We repeat this process for both the serial and parallel versions

Table 5.3: Subroutines implemented using GLAF

Subroutine name SLOC
lw spectral integration 75
longwave entropy model 422
sw spectral integration 50
shortwave entropy model 13
entropy interface 46
adjust2 38

242

of the auto-generated code and conclude that the auto-generated code is functionally equivalent to

the original code. For the parallel version of the auto-generated code, as an additional inspection

step, we manually verify the correctness of the OpenMP directives and associated clauses used.

Our experiment with implementing the computationally intensive parts of Synoptic SARB shows

that: (a) the grid abstraction on which GLAF is built is generic enough to accommodate real-world

applications, and, (b) GLAF is now more robust and can successfully generate correct serial and

parallel code that is interoperable with existing code.

Performance Evaluation

In this section we present and discuss the performance of the parallel code for Synoptic SARB,

as automatically generated by GLAF in Fortran (the original code-base that the GLAF-generated

code needs to be integrated with is in Fortran, too). The code (implemented as described in Sec-

tion 5.4.3) was compiled with gfortran (v.4.9.2) at the -O3 optimization level and run on a Linux-

based machine (Debian Linux 8.6, kernel v.3.16) with an Intel Core i5-2400 CPU (four cores

clocked at 3.10 GHz).

Figure 5.24 shows the results of performance evaluation across different implementations of Syn-

optic SARB. Specifically, it shows the speed-up of the GLAF serial implementation (GLAF serial)

and incrementally optimized GLAF parallel (four threads) implementations (GLAF-parallel v0-

v3) versus the original serial Synoptic SARB implementation (original serial). The details of each

implementation are given in Table 5.4.

243

Table 5.4: Synoptic SARB implementations

Implementation Description
original serial Original serial implementation
GLAF serial Serial implementation generated by GLAF
GLAF-parallel v0 Parallel implementation generated by GLAF with OMP directives

in all applicable loops
GLAF-parallel v1 GLAF-parallel v0 with removed OMP directives from initializations

to zero or with single value assignments (loads)
GLAF-parallel v2 GLAF-parallel v1 with removed OMP directives from simple single

loops
GLAF-parallel v3 GLAF-parallel v2 with removed OMP directives from simple double

loops

1.00	 0.89	

0.48	
0.66	

1.11	

1.41	

0	

0.2	

0.4	

0.6	

0.8	

1	

1.2	

1.4	

1.6	

original	serial	 GLAF	serial	 GLAF-parallel	
v0	

GLAF-parallel	
v1	

GLAF-parallel	
v2	

GLAF-parallel	
v3	

Sp
ee
du

p	
vs
.	o

rig
in
al
	se

ria
l	

im
pl
em

en
ta
3o

n	

Figure 5.24: Performance results: Speed-up of GLAF-generated versions versus the original serial
implementation of Synoptic SARB

244

First, we observe that the GLAF generated code in its serial implementation (GLAF serial) per-

forms slightly worse than the original serial implementation (original serial). In our experience

with GLAF we have observed cases like this, as well as cases where the GLAF auto-generated

serial implementation outperforms the original serial. The GLAF GUI programming enforces an

implicit structure in a program, whereby any loops within a step except at the outermost level

(e.g., within an if statement) need to be implemented as a new function. If the functions are not

inlined, there is a certain calling overhead that depending on the algorithm trace may negatively

affect execution time. Also, certain compiler optimizations may be difficult/impossible when code

spans multiple functions. In the opposite case, smaller functions can be automatically inlined by

the compiler, and the implicitly enforced structure can help with certain function-level compiler

optimizations. In any case, the potential for such (small) performance deterioration is expected to

be outweighted by the parallelism benefits of GLAF auto-generated code.

GLAF-parallel v0 in Figure 5.24 corresponds to the implementation that contains the parallel code

generated by GLAF. As we describe in Table 5.4, this includes OpenMP directives that surround all

loops that the parallelism detection back-end has identified as parallelizable. This implementation

performs about 50% slower than the original serial implementation, highlighting the disadvantage

of a “one-size fits all” approach when it comes to applying OpenMP directives to eligible loops.

Currently, GLAF does not contain a means of evaluating whether a loop is better off without

OpenMP directives. As future work, we suggest the incorporation of a performance prediction/-

modeling back-end that will guide the auto-code generation in a more intelligent way (e.g., select-

ing SIMD directives, instead of OpenMP, or neither). We discuss this issue further in Section 6.2.

245

In the cases GLAF-parallel v0 to GLAF-parallel v3 we incrementally remove OpenMP directives

from three distinct cases of loops and provide insights on performance, thereby highlighting po-

tential automation of such removal in future work.

GLAF-parallel v1 is based on GLAF-parallel v0 with the difference that we have manually re-

moved OpenMP parallelization directives from two types of loops: a) initialization of arrays (grids)

to zero, and, b) initialization of arrays with a single value loaded from another array. These two are

typical cases where the compiler can apply optimizations that outperform thread-level parallelism

(and its associated overheads). For instance, initializing an array to zero can be done via memset

emitted by the compiler, as an optimization, for eligible loops. Alternatively, SIMD operations

can be used for loading and assigning values from an input array. This can be observed in the

performance results: speed-up increases from 0.48 (GLAF-parallel v0) to 0.66 (GLAF-parallel

v1).

In GLAF-parallel v2 we proceed with removal of further OpenMP directives from otherwise par-

allelizable parts of the code. Specifically, we remove OpenMP directives from all remaining single

loops of the code. This contains loops with one-line assignments that contain mathematical op-

erations, few lines (two to four) of similar assignments, as well as loops that contain reductions

(and that have been identified as such by GLAF auto-parallelization back-end). In these cases, we

identified (as above, via inspection of the compiler optimization reports and/or generated assembly

code) that the compiler emits SIMD instructions or proceeds with loop unrolling (when the num-

ber of loop iterations is low). As with the previous cases, the overhead of thread-level parallelism

is not justified over data-level parallelism (SIMD) or instruction-level parallelism (ILP). Hence,

246

removing the OpenMP directives from the corresponding loops and allowing the compiler to apply

its own optimizations increases the speed-up over the original serial implementation to 1.11-fold.

Last, in GLAF-parallel v3 we remove OpenMP directives from double-nested loops that contain

one or a few statements without including any control structure (if/else statements). Again, ob-

servation of the compiler optimization reports reveals that the compiler can identify the loops as

parallel and applies SIMD optimizations or loop unrolling. Effectively, this leaves the GLAF auto-

generated parallel code with OpenMP directives in two large loops in the longwave entropy model

subroutine. The compiler fails to identify these loops as parallel, hence the performance of the

GLAF code that includes the appropriate OpenMP directives (“OMP PARALLEL FOR” with the

necessary “PRIVATE” clause) outperforms the original serial implementation by 1.41x.

As we mention at the start of Section 5.4.3, the parallel implementations shown correspond to ex-

ecution with four threads. Experimentation with varying number of threads (up to the maximum

of 8 threads for our test CPU) showed that four threads provides the optimal performance. Fig-

ure 5.25 shows the performance of the fastest implementation (GLAF-parallel v3) as the speed-up

over the GLAF-serial implementation. The parallel version that uses one thread presents a minor

slow-down (0.92-fold over GLAF-serial) due to the OpenMP run-time associated overhead (which

is present, despite using a single thread). Two and four threads yield speed-ups of 1.24- and 1.59-

fold, respectively, while adding more threads (e.g., 8) yields diminishing returns (0.7-fold). For

the latter, one should consider the fact that our test CPU has a maximum of four physical cores

(up to 8 logical cores with hyper-threading). Also, the double-nested loops that are decorated with

OpenMP directives by GLAF consist of a total of 2 x 60 = 120 iterations (since GLAF gener-

247

1.00	 0.92	

1.24	

1.59	

0.70	

0	
0.2	
0.4	
0.6	
0.8	
1	

1.2	
1.4	
1.6	
1.8	

GLAF-serial	 GLAF-parallel	
(1T)	

GLAF-parallel	
(2T)	

GLAF-parallel	
(4T)	

GLAF-parallel	
(8T)	

Sp
ee
du

p	
vs
.	G

LA
F	
se
ria

l	
im

pl
em

en
ta
5o

n	

Figure 5.25: Parallel scalability: Speed-up of fastest GLAF-generated version (GLAF-parallel v3)
with varying number of threads (T) versus GLAF serial implementation of Synoptic SARB

ates a “COLLAPSE(2)” clause). This is a small number (also considering the complexity of the

loop code), hence more threads entail overhead (OpenMP run-time, memory coherence, etc.) that

cannot be amortized.

Overall, we find that GLAF auto-generated parallel code (with appropriate selection of which par-

allelized loops to keep) performs 1.41 times faster than the original serial implementation. While

this may appear underwhelming for a multi-threaded execution with four threads, it does not reflect

on the capabilities of GLAF itself. Rather, performance owing to parallelization is limited by the

workload itself (in the original algorithm) as described above (i.e., small number of iterations in

parallel loops). Also, serial parts of the algorithm, between the parallel section can limit the max-

imum parallelism (Amdahl’s Law). As far as other opportunities for parallelism are concerned,

most loops prove to be amenable to automatic optimizations by the compiler (mainly in the form

of SIMD or loop unrolling optimizations). The amount of optimizations the compiler can perform

depend on the algorithm itself (in other examples in this Chapter we see GLAF parallel code to far

248

outperform the compiler’s optimizations). In any case, as we mention in Section 5.3.2, GLAF does

not seek to compete against the compiler, but rather to complement it in an attempt to provide the

best achievable performance for domain scientists.

5.5 Conclusion

In this chapter we addressed the issues of programmability and portability. First, we presented

a discussion on the programmability of GEM across three multi- and many-core architectures:

Intel Sandy Bridge multi-core CPU, Intel Xeon Phi (MIC) co-processor, and the NVIDIA Kepler

K20 GPU. From a programmability perspective, the CPU programming model is arguably the

most programmable, mainly due to its widespread adoption. Xeon Phi, which follows the same

programming paradigm, benefits from allowing programmers to leverage their existing knowledge

and expertise. On the other hand, GPU programming for high performance demands the use of

native code, such as CUDA. This entails familiarizing oneself with a different mindset of parallel

programming, a pertinent array of platform-specific optimization techniques, as well as taking care

of mundane details, such as data transfers and kernel configuration, but while preserving more of

the original computational code in its original state. Which is more programmable remains a

matter of opinion, but the GPU and Xeon Phi devices require higher levels of optimization to reach

their performance potential. New compilers and tools are needed to bridge this gap, and bring

high-performance acceler- ated computing into the reach of the automatic optimizations.

249

To this end, we proposed GLAF, an all-encompassing code development environment for non-

programmers or novice programmers, like the majority of domain experts. Its key elements are

its intuitive visual programming interface that aspires to make it easy for them to express and

validate their algorithms and its ability to automatically generate efficient serial and parallel C

and Fortran, as well as OpenCL code. We showed illustrative example applications and presented

results that corroborate that GLAF and its associated “easily develop-once and run-everywhere”

programming paradigm can help alleviate the performance, programmability, and portability gaps.

With a high-level programming framework like GLAF, domain scientists can not only exploit

traditional multi-core CPU architectures, but also accelerators, like Intel MICs, GPUs, and even

FPGAs. GPU computing is of paramount importance and, as such, so is further facilitating entry

of access via GLAF OpenCL support. FPGAs are predicted to be necessary on the path to exascale

computing, but adding reconfigurable computing to the existing mix of CPUs, GPUs and Intel

MICs further perplexes the current status quo. Hence, providing support for FPGA computing via

Altera FPGAs and a novel FPGA-targeted back-end that supports FPGA-specific optimizations

has a great potential to further democratize FPGA computing and position FPGAs as a competitive

solution in the heterogeneous landscape.

We showed how automatically generating multiple versions of code (derived from the same GLAF

code) in different languages and using different data layouts and optimizations can facilitate obtain-

ing the best performing code. This systematic code generation and auto-tuning approach extends

beyond standard optimizations and tuning that typically target a single language and is especially

useful for novice programmers, where certain mistakes in a language may result in code that the

250

compiler fails to auto-parallelize. Our findings reveal that the traditional coding paradigm, where

a single implementation is written, can be sub-optimal for novice (or even average) programmers.

Rather, GLAF allows multiple starting points (analogous to different seeds in a state-space search

algorithm) for different optimizations, which lead to overall better performance (analogous to the

global as opposed to local minimum). We concluded this chapter with a case study that puts

GLAF into practice in the context a large application of interest to NASA. Our overall experience

indicated that the grid high-level abstraction at the core of GLAF and GLAF as a programming

framework are capable of handling real-world, larger-scale, practical scenarios.

Chapter 6

Summary and Future Work

This chapter summarizes the work presented in this dissertation and concludes with related future

research directions.

6.1 Summary

This dissertation seeks to provide a better understanding of the intertwined aspects of performance,

programmability, and portability in the increasingly important, fast-progressing, and research-

challenging area of heterogeneous computing.

To this end we conduct a multi-faceted study towards providing answers to three main research

questions, under the assumption of heterogeneity:

251

252

(1) What are the performance implications of architectural characteristics of modern heteroge-

neous architectures and how can we systematically study them? How can we extend such a

methodology to delineate trends that may shape the future of heterogeneous computing?

(2) What are the trade-offs between performance, programmability, and portability in light of

a perplexed ecosystem of programming languages, compilers, tools, and optimization tech-

niques?

(3) How and to what degree can we secure acceptable performance at a much increased pro-

grammability, as well as functional and performance portability via the use of tools and frame-

works?

In answering the first question, we build upon prior work with the OpenDwarfs benchmark suite.

The contributed enhancements in the suite itself allow us to use this new version of OpenDwarfs to

draw conclusions regarding performance across a wider range of target platforms, now to include

Intel Xeon Phi and FPGAs. Additionally, our work towards ensuring a uniform level of optimiza-

tion in the benchmarks facilitates fairness in cross-platform performance comparisons. Dwarf-

based benchmarking, i.e., based on computation and communication patterns, can be a more rep-

resentative way of characterizing heterogeneous platforms, as opposed to largely arbitrarily chosen

applications. Using an n-body dwarf we present a multi-dimensional performance study that spans

architectures, languages, and optimization levels. This work is among the very first to evaluate

the Intel MIC architecture (Knights Corner), the NVIDIA Kepler architecture (K20), and OpenCL

with associated optimizations as a programming language for the FPGA. Extending the concept

253

of dwarf-based benchmarking, we introduce the notion of telescoping architectures and propose a

state-of-the-practice methodology for evaluating conceptual heterogeneous architectures.

With respect to the second question, we extend our performance study using an n-body dwarf

to include programmability and portability. The scope of this study encompasses representative

platforms (including a multi-core CPU, Intel MIC, and a GPU), different programming languages

(including C with OpenMP, OpenACC, CUDA, and CPU SIMD intrinsics), and varying optimiza-

tion levels (stretching from compiler optimizations to manual code optimizations). From a pro-

grammability perspective, we find that programming in the CPU is the most programmable, not

least because of the maturity of the programming tools (e.g., GNU tool-chain). The similarity

of the programming model for Intel MIC to that of traditional multi-core programming facilitates

leveraging existing knowledge and expertise transfer. However, the programming tools available

are not yet as mature as in the case of the CPU domain, hence automated methods for paralleliza-

tion, vectorization, and other compiler optimizations fall short. Last, the GPU proves to be the

least programmable platform, as it mandates use of CUDA to extract the best performance, requir-

ing the programmer to adopt a wholly parallel mindset, which is fundamentally different from the

traditional CPU (sequential) programmind model.

Last, with regards to the third question, and based on our insights from answering the first two,

we propose a high-level programming abstraction based on grids that can automatically generate

parallel code, optimized for certain platforms, in multiple target languages. We incorporate this

grid abstraction as the cornerstone of GLAF, an all-encompassing visual code development envi-

ronment for domain experts with minimal or no parallel programming knowledge. GLAF seeks to

254

offer a means of enhancing programmability and portability of parallel, heterogeneous computing,

while ensuring sufficient performance. We show the generality of the proposed abstraction and

validate the features of GLAF via a number of benchmark applications, as well as a larger-scale

NASA application. Our findings reveal that the traditional programming paradigm, where a single

implementation is developed, can be sub-optimal for novice programmers. GLAF allows multi-

ple starting points for different optimizations (analogous to different seeds in a state-space search

algorithm) that can lead to overall better performance (analogous to the global versus the local

minimum).

6.2 Future Work

In this dissertation we attempted to provide a holistic view and thorough coverage of performance,

programmability, and portability aspects of heterogeneous computing, given their combined over-

all importance for the future of computing. Given the intrinsic breadth of each of the above areas,

there inevitably exist further challenges and ensuing areas of future research interest. We present a

brief overview of such future work in the sections below.

6.2.1 OpenDwarfs

OpenDwarfs is an open-source project [16] and, combined with its robust build system, extensible

API and ease of use, aims at being utilized and further extended by the research community. Future

work includes:

255

• Extending the OpenDwarfs benchmark suite: OpenDwarfs can benefit by incorporating

features such as: (a) input dataset generation for dwarfs that enables exercising multiple

code paths and stressing different subsystems, (b) automated result verification functional-

ity. More importantly (and accordingly challenging), OpenDwarfs is in need of a means of

genericizing each of the dwarfs, i.e., an attempt to abstract them on a higher level (it has

been argued that some dwarf implementations may be considered too application-specific,

thus defying the very purpose of use as “patterns”).

• Extending breadth of evaluated architectures: Given the ongoing introduction of novel

architectures (e.g., automata processor), older architectures that only recently started offi-

cially supporting OpenCL (e.g., Altera, Xilinx FPGAs), or new devices within an platform

family (e.g., different generations of GPUs within and across vendors, or new generations of

Intel MICs), there is an accompanying need for characterizing the performance thereof. Fur-

ther options for more thorough evaluation include considering different vendors’ OpenCL

runtimes, experimenting with varying size and/or shape of input datasets, and considering

the power consumption profiles with respect to dwarf execution.

• Architecture-aware optimizations: Based on the breadth of available architectures, as dis-

cussed above, there is a corresponding breadth of optimizations for each dwarf that tailor

performance to each target architecture (e.g., shared memory optimizations for GPU, data-

transfer optimizations in the case of APUs, or unique FPGA-specific OpenCL optimiza-

tions).

256

6.2.2 Telescoping Architectures

With our work on Telescoping Architectures we seek to provide a systematic and generalizable

methodology for identifying future trends in heterogeneous computing via the use of dwarf-based

benchmarking. Moreover, we show how to apply the proposed methodology in the context of what

we term Cluster on a Chip (CoC) that may contain a combination of CPU, GPU, Intel MIC and

FPGA compute engines (CEs).

Our study intentionally focuses on breadth, i.e., a broader design space exploration, as far as CoCs

are concerned. We also attempt to shed light on cases of CoCs that contain FPGAs, since unify-

ing CPUs and FPGAs on package – and later on-die – is an upcoming trend. As such, there is

plenty of space for refinements, and further studies in the heterogeneous domain (e.g., scheduling,

power/energy-aware optimizations, memory hierarchies, network-on-chip, and so on for highly

heterogeneous architectures). Notably, the proposed methodology is characterized by two impor-

tant features that facilite this:

• Portability and practicality: It is based on an open-source benchmark suite (OpenDwarfs),

so the methodology can be easily replicated. Also, since the reference benchmark suite is

developed in OpenCL, it can seamlessly run across a wide range of target platforms.

• Extensibility: It can be further extended, by design, to include more dwarfs or more target

platforms under consideration in the future.

257

In Section 4.4.2 we discuss the assumptions we make in our proposed methodology and discuss

limitations of our approach. Relaxing some or most of these assumptions and addressing certain

limitations is a key aspect of future work. Our approach provides a first-order study on the problem,

and cycle-accurate simulation of specific prospective CoCs falls in the other end of the spectrum;

a middle-ground approach could give better insights and help approximate the future realities of

heterogeneous computing. Below, we propose further opportunities for future work:

• Analytical model for “Telescoping Architectures”: Despite the advantages of the real-

world, experimental approach we present in our work, it is important to conduct further

research on relaxing some of the working assumptions and provide a more realistic analyti-

cal model. Such a model will not only focus on performance (around which our current work

is centered), but also in power and energy. The former should capture issues like inter-CE

interference and data transfers among CEs (which in turn touches on considerations such as

NoC, off-chip memory bandwidth, efficient intra node and inter node data sharing). The lat-

ter should more thoroughly cover power/energy aspects of CoCs and associated constraints

(e.g., integrating multiple CEs on-chip can substantially increase the system’s power density,

potentially leading thermal issues).

• Extending the “Telescoping Architectures” evaluation methodology: A first step to-

wards extending our methodology entails: (a) including a broader set of workloads (i.e.,

more dwarfs for building synthetic benchmarks), (b) more distinct architectures and repre-

sentative devices from each architecture, and (c) more scheduling techniques for allocating

work across compute engines in a CoC. The latter may include exploiting parallelism on

258

the dwarf-level across CEs within a CoC (in this work we schedule whole dwarfs from a

synthetic benchmark in separate CEs). To harness the full potential of CoCs, it is important

to study the performance benefits when optimized implementations for dwarfs in a syn-

thetic benchmark are available for each CE, along with appropriate performance modeling

and auto-selection techniques. Last, from a software perspective, all the above functionali-

ties should be incorporated into a CoC evaluation framework, in which the user can select

among a set of options (e.g., target platforms, synthetic benchmarks composition) and ex-

ecute/evaluate CoCs – based on available hardware and an analytical model that takes into

account issues discussed above (e.g., modeling data transfers) – in real-time.

• Extending Pollack’s Rule to heterogeneous computing: A thorough statistical analysis on

the relationship between die area and performance can potentially identify trends or rela-

tionships in the heterogeneous domain, in a similar way that Pollack’s Rule [234] does for

homogeneous multi-core computing.

6.2.3 GLAF

Our GLAF prototype incorporates core functionalities that form the substrate for an extensible set

of capabilities. Given the breadth of the problem that GLAF seeks to address (as outlined and

motivated in Section 5.3) there are various limitations in the original prototype, which accordingly

serve as potential branches worth pursuing further as future work. We provide an outline below:

259

• Intra-node enhancements: Currently, GLAF provides a set of alternative code-generation

options, beyond the selection of the output language. This includes among others data lay-

out arrangements that can be beneficial, especially in the cases of CPU and Intel Xeon Phi,

and certain optimizations in auto-generated OpenCL code when targeting Altera FPGAs.

There is a broad set of back-end optimizations that can be beneficial for GPU targets, as

well as the latest Intel MIC generation (Knight’s Landing). Further refinement of the FPGA-

specific OpenCL optimizations with GLAF will help to cover a broader set of applications

in the general case. Identifying whether certain optimizations can/need to be applied can

follow approaches similar to those of auto-tuning frameworks, domain-specific languages,

and compiler frameworks. Alternatively, frequently used libraries can be built-in in GLAF.

The user can easily use them via a high-level API and back-end code generation can provide

optimized (pre-designed) platform-specific implementations. Last, extending the supported

target languages (e.g., OpenACC/OpenMP 4.0 for accelerators) can provide broader cover-

age and more starting points in searching for the optimal combination of language, target

platform, and platform-specific optimizations.

• Inter-node enhancements: GLAF currently only provides intra-node functionality. That

is, all generated code targets a single architecture/platform – CPU, GPU, MIC, or FPGA

– within a compute node. While this is of great value in and by itself, being able to offer

enhanced programmability for cluster computing would provide added value to the tool. To

this end, the code generation back-end could be extended to accomodate automatic code

generation for splitting computation and appropriate MPI calls (send, receive, gather, etc.)

260

While this is not a trivial endeavor – and a “one size fits all” approach may not be feasible –

certain cases could be accommodated.

• Smart auto-tuning: Currently GLAF is capable of generating multiple code versions, as

selected by the user at the code generation menu (e.g., language, data layout optimizations,

target platform). Then the user has to run the automatically generated script to execute and

time all the generated versions to find out which one performs the best for the problem

at hand (algorithm, input data-set/parameters). Along the same lines, but within a single

program instance’s scope, auto-parallelization of a step takes place irrespective of whether

a given step benefits from running in parallel or not. In certain cases (e.g., parallelizing

small loops with OpenMP or as OpenCL kernels) the performance difference may range

from minimal to very high. In a more complex scenario, certain loops may benefit from

OpenMP parallelization, whereas others may benefit from running as an OpenCL kernel on

an accelerator. Taking the above concept even further, execution of certain parallel steps may

be split across platforms for better resource utilization. Given the number of combinations

of possible code generation choices the implementation search space can be intractable for

practical purposes, and especially in the case of FPGA programming where compilation is

slow (in the order of hours). Combining the existing back-ends of GLAF with a performance

modeling back-end could help prune the implementation search-space. Such pruning can be

beneficial in all three aforementioned levels; estimating the best mix of assigning step loops

to target architectures and/or executing the parallel or serial versions.

261

• User interface/interaction enhancements: GLAF seeks to provide a friendly and easy-

to-use programming environment. As such, the user interface can be further enhanced to

facilitate GLAF program development. While we have had GLAF tested and empirically

evaluated by a number of people (among which students in an “Accessible Parallel Program-

ming” graduate-level class at Virginia Tech), further formal studies with a large number of

participants need to be conducted. With respect to the provided visualization methods, we

have received feedback arguing that certain data structures cannot be easily understood as

grids (e.g., graphs). To this end, appropriate libraries can be developed to visualize graphs

as such (based on the internal GLAF grid-based representation) and vice-versa. One last,

important enhancement, is the introduction of an interactive hint system. Currently, GLAF

provides a visual cue to the user as to whether each step is parallelizable or not (based on

the analysis performed by the auto-parallelization back-end). Internally, GLAF retains in-

formation about the reason parallelism in a loop is “broken”. Such information could be

relayed to the user along with hints on potentially manually resolving any dependencies (if

the process cannot be automated). The aforementioned parallelization hint system could be

appropriately designed to be of use in parallel computing education.

• Beyond the GUI: From its inception, GLAF was proposed as a visual programming alter-

native to text-based programming languages. The reasoning behind this has been the fact

that collocating the data together with the code would make programming easier and more

intuitive for non-programmers, like many domain scientists. Additionally, it was designed

to be a click-based graphical interface for the very same reasons. Some programming en-

262

vironments targeted at younger ages, and mainly focused on teaching programming to kids,

like Scratch [239], SNAP [111], Parallel SNAP [105], follow a picture-based programming

approach. An interesting endeavor would entail combining the front-end and associated

features of such environments with the back-ends and associated features of GLAF. On a

different path, it has been proposed that certain groups of people, not originally targeted by

GLAF, such as seasoned programmers, may indeed prefer a text-based language as an in-

put over a graphical interface, while retaining all the benefits of the GLAF back-ends. To

this end a GLAF language may formally be defined, and accompanied by an appropriate

parser that can generate the GLAF internal representation that the back-ends expect as input.

Extending the above notion of a GLAF text-based input, it has been requested that a source-

to-source translator from commonly used languages (e.g., Fortran) to the GLAF internal

representation be implemented. From that point onward (i.e., once we have the GLAF inter-

nal representation available) we can exploit the rest functionalities of GLAF. Both the above

approaches pose certain challenges (design and implementation choices, or even generality

and feasibility).

Bibliography

[1] clFFT. http://clmathlibraries.github.io/clFFT/.

[2] Codesign at Lawrence Livermore National Laboratory. https://codesign.llnl.
gov/proxy-apps.php.

[3] cuBLAS: NVIDIA Developer. https://developer.nvidia.com/cublas.

[4] CUDA Math Library. https://developer.nvidia.com/
cuda-math-library.

[5] cuFFT: NVIDIA Developer. https://developer.nvidia.com/cufft.

[6] CUSP, NVIDIA Developer. https://developer.nvidia.com/cusp.

[7] Cyclone-V SoC. https://www.altera.com/products/soc/portfolio/
cyclone-v-soc/overview.html.

[8] Intel Integrated Performance Primitives. https://software.intel.com/en-us/
intel-ipp.

[9] Intel Math Kernel Library. https://software.intel.com/en-us/intel-mkl.

[10] ITRS Public Website. http://www.itrs2.net/.

[11] LANL Proxy Applications. http://www.lanl.gov/projects/codesign/
proxy-apps/lanl/index.php.

[12] Mantevo. https://mantevo.org/packages/.

[13] NASA CERES: Clouds and the Earth’s Radiant Energy System Information and Data.
https://ceres.larc.nasa.gov.

[14] NASA’s Earth Observing System. https://eospso.nasa.gov.

[15] NVIDIA Performance Primitives. https://developer.nvidia.com/npp.

[16] OpenDwarfs Benchmark Suite. https://github.com/vtsynergy/OpenDwarfs.

263

http://clmathlibraries.github.io/clFFT/
https://codesign.llnl.gov/proxy-apps.php
https://codesign.llnl.gov/proxy-apps.php
https://developer.nvidia.com/cublas
https://developer.nvidia.com/cuda-math-library
https://developer.nvidia.com/cuda-math-library
https://developer.nvidia.com/cufft
https://developer.nvidia.com/cusp
https://www.altera.com/products/soc/portfolio/cyclone-v-soc/overview.html
https://www.altera.com/products/soc/portfolio/cyclone-v-soc/overview.html
https://software.intel.com/en-us/intel-ipp
https://software.intel.com/en-us/intel-ipp
https://software.intel.com/en-us/intel-mkl
http://www.itrs2.net/
http://www.lanl.gov/projects/codesign/proxy-apps/lanl/index.php
http://www.lanl.gov/projects/codesign/proxy-apps/lanl/index.php
https://mantevo.org/packages/
https://ceres.larc.nasa.gov
https://eospso.nasa.gov
https://developer.nvidia.com/npp
https://github.com/vtsynergy/OpenDwarfs

264

[17] Software: Dr. Alexey Onufriev. http://people.cs.vt.edu/ onufriev/software.php.

[18] Thrust: Parallel Algorithms Library. https://thrust.github.io.

[19] A. Munshi, Editor. The OpenCL Specification. Version: 1.0. Khronos OpenCL Working
Group, 2009.

[20] V. Adhinarayanan and W. Feng. An Automated Framework for Characterizing and Sub-
setting GPGPU Workloads. In IEEE International Symposium on Performance Analysis of
Systems and Software (ISPASS), 2016.

[21] C. C. Aggarwal. Data Streams: Models and Algorithms, volume 31. Springer Science &
Business Media, 2007.

[22] M. Ahmad, F. Hijaz, Q. Shi, and O. Khan. CRONO: A Benchmark Suite for Multithreaded
Graph Algorithms Executing on Futuristic Multicores. In IEEE International Symposium
on Workload Characterization (IISWC), 2015.

[23] A. M. Aji, J. Dinan, D. Buntinas, P. Balaji, W. Feng, K. R. Bisset, and R. Thakur. MPI-ACC:
An Integrated and Extensible Approach to Data Movement in Accelerator-Based Systems.
In International Conference on High Performance Computing and Communication Interna-
tional Conference on Embedded Software and Systems (HPCC-ICESS), 2012.

[24] Altera Corporation. Implementing FPGA Design with the OpenCL Standard, 2.0 edition,
2012.

[25] Altera Corporation. Altera SDK for OpenCL: Programming Guide, 2013.

[26] P. An, A. Jula, S. Rus, S. Saunders, T. Smith, G. Tanase, N. Thomas, N. Amato, and
L. Rauchwerger. STAPL: An Adaptive, Generic Parallel C++ Library, pages 193–208.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2003.

[27] J. Ansel, C. Chan, Y. L. Wong, M. Olszewski, Q. Zhao, A. Edelman, and S. Amarasinghe.
PetaBricks: A Language and Compiler for Algorithmic Choice. In ACM SIGPLAN Confer-
ence on Programming Language Design and Implementation (PLDI), 2009.

[28] K. Asanovic, R. Bodik, J. Demmel, T. Keaveny, K. Keutzer, J. Kubiatowicz, N. Morgan,
D. Patterson, K. Sen, J. Wawrzynek, D. Wessel, and K. Yelick. The Landscape of Parallel
Computing Research: A View from Berkeley. Technical Report UCB/EECS-2006-183,
Department of Electrical Engineering and Computer Sciences, University of California at
Berkeley, 2006.

[29] K. Asanovic, R. Bodik, J. Demmel, T. Keaveny, K. Keutzer, J. Kubiatowicz, N. Morgan,
D. Patterson, K. Sen, J. Wawrzynek, D. Wessel, and K. Yelick. A View of the Parallel
Computing Landscape. Commun. ACM, 52(10):56–67, October 2009.

https://thrust.github.io

265

[30] D. F. Bacon, R. Rabbah, and S. Shukla. FPGA Programming for the Masses. Communin-
cations ACM, 56(4):56–63, Apr. 2013.

[31] D. A. Bader, V. Kanade, and K. Madduri. SWARM: A Parallel Programming Framework
for Multicore Processors. In IEEE International Symposium on Parallel and Distributed
Processing (IPDPS), 2007.

[32] S. S. Baghsorkhi, N. Vasudevan, and Y. Wu. FlexVec: Auto-Vectorization for Irregular
Loops. In ACM SIGPLAN Conference on Programming Language Design and Implemen-
tation (PLDI), 2016.

[33] D. H. Bailey, E. Barszcz, J. T. Barton, D. S. Browning, R. L. Carter, L. Dagum, R. A.
Fatoohi, P. O. Frederickson, T. A. Lasinski, R. S. Schreiber, et al. The NAS Parallel Bench-
marks. International Journal of High Performance Computing Applications, 5(3):63–73,
1991.

[34] N. A. Baker. Poisson-Boltzmann Methods for Biomolecular Electrostatics. Methods in
Enzymology, 383:94–118, 2004.

[35] M. M. Baskaran, U. Bondhugula, S. Krishnamoorthy, J. Ramanujam, A. Rountev, and P. Sa-
dayappan. A Compiler Framework for Optimization of Affine Loop Nests for GPGPUs. In
International Conference on Supercomputing (ICS), 2008.

[36] S. Beamer, K. Asanović, and D. Patterson. Direction-Optimizing Breadth-First Search.
In International Conference on High Performance Computing, Networking, Storage and
Analysis (SC), 2012.

[37] M. Becchi and P. Crowley. Dynamic Thread Assignment on Heterogeneous Multiprocessor
Architectures. In ACM International Conference on Computing Frontiers (CF), 2006.

[38] N. Bell and M. Garland. Implementing Sparse Matrix-Vector Multiplication on Throughput-
Oriented Processors. In ACM/IEEE International Conference for High Performance Com-
puting, Networking, Storage and Analysis (SC), 2009.

[39] N. Bell and J. Hoberock. Thrust: A productivity-oriented library for CUDA. GPU comput-
ing gems Jade edition, 2:359–371, 2011.

[40] P. Bellens, J. M. Perez, R. M. Badia, and J. Labarta. CellSs: A Programming Model for
the Cell BE Architecture. In ACM/IEEE International Conference on High Performance
Computing, Networking, Storage and Analysis (SC), 2006.

[41] C. Bienia, S. Kumar, and K. Li. PARSEC vs. SPLASH-2: A Quantitative Comparison
of Two Multithreaded Benchmark Suites on Chip-Multiprocessors. In IEEE International
Symposium on Workload Characterization (IISWC), 2008.

266

[42] C. Bienia, S. Kumar, J. P. Singh, and K. Li. The PARSEC Benchmark Suite: Characteriza-
tion and Architectural Implications. In International Conference on Parallel Architectures
and Compilation Techniques (PACT), 2008.

[43] N. Birkbeck, J. Levesque, and J. N. Amaral. A Dimension Abstraction Approach to Vector-
ization in Matlab. In IEEE/ACM International Symposium on Code Generation and Opti-
mization (CGO), 2007.

[44] F. Bodin and S. Bihan. Heterogeneous Multicore Parallel Programming for Graphics Pro-
cessing Units. Sci. Program., 17(4):325–336, Dec. 2009.

[45] S. Borkar. Thousand Core Chips: A Technology Perspective. In Design Automation Con-
ference (DAC), 2007.

[46] S. Borkar and A. A. Chien. The Future of Microprocessors. Commun. ACM, 54(5):67–77,
May 2011.

[47] A. Branover, D. Foley, and M. Steinman. AMD Fusion APU: Llano. IEEE Micro, 32(2):28–
37, March 2012.

[48] K. J. Brown, H. Lee, T. Rompf, A. K. Sujeeth, C. De Sa, C. Aberger, and K. Olukotun. Have
Abstraction and Eat Performance, Too: Optimized Heterogeneous Computing with Parallel
Patterns. In IEEE/ACM International Symposium on Code Generation and Optimization
(CGO), 2016.

[49] I. Buck, T. Foley, D. Horn, J. Sugerman, K. Fatahalian, M. Houston, and P. Hanrahan. Brook
for GPUs: Stream Computing on Graphics Hardware. In ACM SIGGRAPH 2004 Papers,
2004.

[50] J. Bueno, J. Planas, A. Duran, R. M. Badia, X. Martorell, E. Ayguad, and J. Labarta. Pro-
ductive Programming of GPU Clusters with OmpSs. In IEEE International Symposium on
Parallel and Distributed Processing (IPDPS), 2012.

[51] S. Burckhardt, M. Fahndrich, P. de Halleux, S. McDirmid, M. Moskal, N. Tillmann, and
J. Kato. It’s Alive! Continuous Feedback in UI Programming. SIGPLAN Not., 48(6):95–
104, June 2013.

[52] D. Buttlar and J. Farrell. Pthreads Programming: A POSIX Standard for Better Multipro-
cessing. O’Reilly Media, 1996.

[53] F. Cantonnet, Y. Yao, M. Zahran, and T. El-Ghazawi. Productivity analysis of the UPC lan-
guage. In IEEE International Symposium on Parallel and Distributed Processing (IPDPS),
2004.

[54] Z. Cao, H. Tang, Q. Li, B. Li, F. Chen, K. Wang, X. An, and N. Sun. Design of HPC Node
with Heterogeneous Processors. In IEEE International Conference on Cluster Computing
(CLUSTER), 2011.

267

[55] L. Carrington, M. M. Tikir, C. Olschanowsky, M. Laurenzano, J. Peraza, A. Snavely, and
S. Poole. An Idiom-finding Tool for Increasing Productivity of Accelerators. In ACM
International Conference on Supercomputing (ICS), 2011.

[56] V. Cavé, J. Zhao, J. Shirako, and V. Sarkar. Habanero-Java: The New Adventures of Old
X10. In International Conference on Principles and Practice of Programming in Java
(PPPJ), 2011.

[57] H. Chafi, A. K. Sujeeth, K. J. Brown, H. Lee, A. R. Atreya, and K. Olukotun. A Domain-
Specific Approach to Heterogeneous Parallelism. In ACM SIGPLAN Symposium on Princi-
ples and Practice of Parallel Programming (PPoPP), 2011.

[58] B. Chamberlain, D. Callahan, and H. Zima. Parallel Programmability and the Chapel Lan-
guage. Int. Journal of High Performance Computing Applications, 21(3):291–312, 2007.

[59] A. Chandramowlishwaran, S. Williams, L. Oliker, I. Lashuk, G. Biros, and R. Vuduc. Opti-
mizing and Tuning the Fast Multipole Method for State-of-the-Art Multicore Architectures.
In IEEE International Symposium on Parallel Distributed Processing (IPDPS), 2010.

[60] L.-W. Chang, I. El Hajj, H.-S. Kim, J. Gómez-Luna, A. Dakkak, and W.-m. Hwu. A Pro-
gramming System for Future Proofing Performance Critical Libraries. In ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming (PPoPP), 2016.

[61] P. Charles, C. Grothoff, V. Saraswat, C. Donawa, A. Kielstra, K. Ebcioglu, C. von Praun,
and V. Sarkar. X10: An Object-Oriented Approach to Non-Uniform Cluster Computing.
In ACM SIGPLAN Conference on Object-oriented Programming, Systems, Languages, and
Applications (OOPSLA), 2005.

[62] S. Che, B. M. Beckmann, S. K. Reinhardt, and K. Skadron. Pannotia: Understanding Irreg-
ular GPGPU Graph Applications. In IEEE International Symposium on Workload Charac-
terization (IISWC), 2013.

[63] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S. H. Lee, and K. Skadron. Rodinia:
A Benchmark Suite for Heterogeneous Computing. In IEEE International Symposium on
Workload Characterization (IISWC), 2009.

[64] S. Che, J. W. Sheaffer, M. Boyer, L. G. Szafaryn, L. Wang, and K. Skadron. A Characteriza-
tion of the Rodinia Benchmark Suite with Comparison to Contemporary CMP Workloads.
In IEEE International Symposium onWorkload Characterization (IISWC), 2010.

[65] D. Chen and D. Singh. Invited paper: Using OpenCL to Evaluate the Efficiency of CPUs,
GPUs and FPGAs for Information Filtering. In International Conference on Field Pro-
grammable Logic and Applications (FPL), 2012.

[66] L. Chen, L. Liu, S. Tang, L. Huang, Z. Jing, S. Xu, D. Zhang, and B. Shou. Unified Parallel
C for GPU Clusters: Language Extensions and Compiler Implementation, pages 151–165.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2011.

268

[67] R. Cheveresan, M. Ramsay, C. Feucht, and I. Sharapov. Characteristics of Workloads Used
in High Performance and Technical Computing. In ACM International Conference on Su-
percomputing (ICS), 2007.

[68] A. A. Chien, A. Snavely, and M. Gahagan. 10x10: A General-purpose Architectural Ap-
proach to Heterogeneity and Energy Efficiency. Procedia Computer Science, 4:1987 – 1996,
2011.

[69] A. A. Chien, T. Thanh-Hoang, D. Vasudevan, Y. Fang, and A. Shambayati. 10x10: A Case
Study in Highly-Programmable and Energy-Efficient Heterogeneous Federated Architec-
ture. SIGARCH Comput. Archit. News, 43(3):2–9, December 2015.

[70] C. Chiw, G. Kindlmann, J. Reppy, L. Samuels, and N. Seltzer. Diderot: A Parallel DSL for
Image Analysis and Visualization. SIGPLAN Not., 47(6):111–120, June 2012.

[71] J. W. Choi, A. Singh, and R. W. Vuduc. Model-Driven Autotuning of Sparse Matrix-Vector
Multiply on GPUs. In ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming (PPoPP), 2010.

[72] I. Christadler, G. Erbacci, and A. D. Simpson. Facing the Multicore - Challenge II: As-
pects of New Paradigms and Technologies in Parallel Computing, chapter Performance and
Productivity of New Programming Languages, pages 24–35. Springer Berlin Heidelberg,
Berlin, Heidelberg, 2012.

[73] M. Christen, O. Schenk, and H. Burkhart. PATUS: A Code Generation and Autotuning
Framework for Parallel Iterative Stencil Computations on Modern Microarchitectures. In
IEEE International Symposium on Parallel Distributed Processing (IPDPS), 2011.

[74] G. Chrysos. Intel Xeon Phi Coprocessor (Codename Knights Corner). In Hot Chips Sym-
posium, 2012.

[75] E. S. Chung, P. A. Milder, J. C. Hoe, and K. Mai. Single-Chip Heterogeneous Computing:
Does the Future Include Custom Logic, FPGAs, and GPGPUs? In IEEE/ACM International
Symposium on Microarchitecture (MICRO), 2010.

[76] R. Clint Whaley, A. Petitet, and J. J. Dongarra. Automated Empirical Optimizations of
Software and the ATLAS Project. Parallel Computing, 27(1):3–35, 2001.

[77] U. Consortium. UPC language specifications v1.2. Lawrence Berkeley National Laboratory,
2005.

[78] D. Cunningham, R. Bordawekar, and V. Saraswat. GPU Programming in a High Level
Language: Compiling X10 to CUDA. In ACM SIGPLAN X10 Workshop (X10), pages 8:1–
8:10, 2011.

269

[79] M. Daga, A. M. Aji, and W. Feng. On the Efficacy of a Fused CPU+GPU Processor
(or APU) for Parallel Computing. In Symposium on Application Accelerators in High-
Performance Computing (SAAHPC), 2011.

[80] M. Daga and W. Feng. Multi-Dimensional Characterization of Electrostatic Surface Poten-
tial Computation on Graphics Processors. BMC Bioinformatics, 13:1–12, 2012.

[81] M. Daga, Z. S. Tschirhart, and C. Freitag. Exploring Parallel Programming Models for
Heterogeneous Computing Systems. In IEEE International Symposium on Workload Char-
acterization (IISWC), 2015.

[82] L. Dagum and R. Menon. OpenMP: an Industry Standard API for Shared-Memory Pro-
gramming. IEEE Computational Science Engineering, 5(1):46–55, 1998.

[83] S. Dalton, S. Baxter, D. Merrill, L. Olson, and M. Garland. Optimizing Sparse Matrix
Operations on GPUs Using Merge Path. In IEEE International Symposium on Parallel and
Distributed Processing (IPDPS), 2015.

[84] A. Danalis, G. Marin, C. McCurdy, J. S. Meredith, P. C. Roth, K. Spafford, V. Tipparaju, and
J. S. Vetter. The Scalable Heterogeneous Computing (SHOC) Benchmark Suite. In Work-
shop on General-Purpose Computation on Graphics Processing Units (GPGPU), 2010.

[85] K. Datta, M. Murphy, V. Volkov, S. Williams, J. Carter, L. Oliker, D. Patterson, J. Shalf,
and K. Yelick. Stencil Computation Optimization and Auto-Tuning on State-of-the-aAt
Multicore Architectures. In ACM/IEEE International Conference on Supercomputing (SC),
2008.

[86] A. Davidson and J. Owens. Toward Techniques for Auto-tuning GPU Algorithms. In Ap-
plied Parallel and Scientific Computing, volume 7134 of Lecture Notes in Computer Sci-
ence, pages 110–119. Springer Berlin Heidelberg, 2012.

[87] J. Davison de St.Germain, J. McCorquodale, S. Parker, and C. Johnson. Uintah: a Massively
Parallel Problem Solving Environment. In International Symposium on High-Performance
Distributed Computing (HPDC), 2000.

[88] P. de Oliveira Castro, Y. Kashnikov, C. Akel, M. Popov, and W. Jalby. Fine-Grained Bench-
mark Subsetting for System Selection. In IEEE/ACM International Symposium on Code
Generation and Optimization (CGO), 2014.

[89] C. del Mundo and W. Feng. Towards a Performance-portable FFT Library for Heteroge-
neous Computing. In ACM International Conference on Computing Frontiers (CF), 2014.

[90] R. H. Dennard, F. H. Gaensslen, V. L. Rideout, E. Bassous, and A. R. LeBlanc. Design of
Ion-Implanted MOSFET’s with Very Small Physical Dimensions. IEEE Journal of Solid-
State Circuits, 9(5):256–268, October 1974.

270

[91] Z. DeVito, N. Joubert, F. Palacios, S. Oakley, M. Medina, M. Barrientos, E. Elsen, F. Ham,
A. Aiken, K. Duraisamy, E. Darve, J. Alonso, and P. Hanrahan. Liszt: A Domain Specific
Language for Building Portable Mesh-based PDE Solvers. In International Conference for
High Performance Computing, Networking, Storage and Analysis (SC), 2011.

[92] G. F. Diamos, A. R. Kerr, S. Yalamanchili, and N. Clark. Ocelot: A Dynamic Optimization
Framework for Bulk-synchronous Applications in Heterogeneous Systems. In International
Conference on Parallel Architectures and Compilation Techniques (PACT), 2010.

[93] J. Dinan, P. Balaji, E. Lusk, P. Sadayappan, and R. Thakur. Hybrid Parallel Programming
with MPI and Unified Parallel C. In ACM International Conference on Computing Frontiers
(CF), 2010.

[94] P. Du, R. Weber, P. Luszczek, S. Tomov, G. Peterson, and J. Dongarra. From CUDA to
OpenCL: Towards a Performance-Portable Solution for Multi-Platform GPU Programming.
Parallel Comput., 38(8):391–407, Aug. 2012.

[95] J. Duato, A. J. Pea, F. Silla, R. Mayo, and E. S. Quintana-Ort. rCUDA: Reducing the Num-
ber of GPU-Based Accelerators in High Performance Clusters. In International Conference
on High Performance Computing and Simulation (HPCS), 2010.

[96] C. Dubach, P. Cheng, R. Rabbah, D. F. Bacon, and S. J. Fink. Compiling a High-level Lan-
guage for GPUs: (via Language Support for Architectures and Compilers). In ACM SIG-
PLAN Conference on Programming Language Design and Implementation (PLDI), 2012.

[97] C. Dubach, P. Cheng, R. Rabbah, D. F. Bacon, and S. J. Fink. Compiling a High-level Lan-
guage for GPUs: (via Language Support for Architectures and Compilers). In ACM SIG-
PLAN Conference on Programming Language Design and Implementation (PLDI), 2012.

[98] A. Dubey, K. Antypas, M. K. Ganapathy, L. B. Reid, K. Riley, D. Sheeler, A. Siegel, and
K. Weide. Extensible Component-Based Architecture for FLASH, a Massively Parallel,
Multiphysics Simulation Code. Parallel Computing, 35(10):512–522, 2009.

[99] A. Duran, E. Ayugade, R. M. Badia, J. Labarta, L. Matrinell, X. Martorell, and J. Planas.
OmpSs: A Proposal for Programming Heterogeneous Multi-Core Architectures. Parallel
Processing Letters, 21(02):173–193, 2011.

[100] H. C. Edwards, C. R. Trott, and D. Sunderland. Kokkos: Enabling manycore performance
portability through polymorphic memory access patterns. Journal of Parallel and Dis-
tributed Computing, 74(12):3202 – 3216, 2014. Domain-Specific Languages and High-
Level Frameworks for High-Performance Computing.

[101] EEMBC Benchmarks Collection. http://www.eembc.org/benchmark/products.php.

271

[102] V. K. Elangovan, R. M. Badia, and E. A. Parra. Languages and Compilers for Parallel Com-
puting: 25th International Workshop, LCPC 2012, Tokyo, Japan, September 11-13, 2012,
Revised Selected Papers, chapter OmpSs-OpenCL Programming Model for Heterogeneous
Systems, pages 96–111. Springer Berlin Heidelberg, Berlin, Heidelberg, 2013.

[103] J. Enmyren and C. W. Kessler. SkePU: A Multi-backend Skeleton Programming Library for
multi-GPU Systems. In International Workshop on High-level Parallel Programming and
Applications (HLPP), 2010.

[104] J. Fang, A. L. Varbanescu, and H. Sips. A Comprehensive Performance Comparison of
CUDA and OpenCL. In International Conference on Parallel Processing (ICPP), 2011.

[105] A. Feng and W. Feng. Parallel Programming with Pictures in a Snap! In IEEE International
Parallel and Distributed Processing Symposium Workshops (IPDPSW), 2016.

[106] W. Feng, W. Dally, M. Houston, T. Mattson, F. Petrini, and S. Wallach. Panel: On the
Three P’s of Heterogeneous Computing: Performance, Power and Programmability. In
ACM/IEEE International Conference on High-Performance Computing, Networking, Stor-
age, and Analysis (SC), 2010.

[107] W. Feng, H. Lin, T. Scogland, and J. Zhang. OpenCL and the 13 Dwarfs: A Work in
Progress. In ACM/SPEC International Conference on Performance Engineering (ICPE),
2012.

[108] M. Frigo and S. Johnson. The Design and Implementation of FFTW3. Proceedings of the
IEEE, 93(2):216–231, 2005.

[109] Q. Fu and K. N. Liou. Parameterization of the Radiative Properties of Cirrus Clouds. Journal
of the Atmospheric Sciences, 50(13):2008–2025, 1993.

[110] S. Gao and J. Chritz. Characterization of OpenCL on a Scalable FPGA Architecture. In
International Conference on ReConFigurable Computing and FPGAs (ReConFig), 2014.

[111] D. Garcia, L. Segars, and J. Paley. Snap! (Build Your Own Blocks): Tutorial Presentation.
J. Comput. Sci. Coll., 27(4):120–121, Apr. 2012.

[112] M. Gardner, P. Sathre, W. Feng, and G. Martinez. Characterizing the Challenges and Eval-
uating the Efficacy of a CUDA-to-OpenCL Translator. Parallel Computing, October 2013.

[113] M. Gebhart, S. W. Keckler, B. Khailany, R. Krashinsky, and W. J. Dally. Unifying Primary
Cache, Scratch, and Register File Memories in a Throughput Processor. In IEEE/ACM
International Symposium on Microarchitecture (MICRO), 2012.

[114] V. George, T. Piazza, and H. Jiang. Technology Insight: Intel R© Next Generation Microar-
chitecture Codename Ivy Bridge. In Intel Developer Forum, 2011.

272

[115] T. Goodale, G. Allen, G. Lanfermann, J. Masso, T. Radke, E. Seidel, and J. Shalf. The
Cactus Framework and Toolkit: Design and Applications. In High Performance Computing
for Computational Science - VECPAR 2002, volume 2565 of Lecture Notes in Computer
Science, pages 197–227. Springer Berlin Heidelberg, 2003.

[116] J. C. Gordon, A. T. Fenley, and A. Onufriev. An Analytical Approach to Computing
Biomolecular Electrostatic Potential. II. Validation and Applications. The Journal of Chem-
ical Physics, 129(7), Aug. 2008.

[117] N. Goswami, R. Shankar, M. Joshi, and T. Li. Exploring GPGPU Workloads: Charac-
terization Methodology, Analysis and Microarchitecture Evaluation Implications. In IEEE
International Symposium on Workload Characterization (IISWC), 2010.

[118] I. Grasso, S. Pellegrini, B. Cosenza, and T. Fahringer. LibWater: Heterogeneous Distributed
Computing Made Easy. In ACM International Conference on Supercomputing (ICS), 2013.

[119] R. Graybill. Relevance of Computing Beyond Desktop in Today’s Challenging Economic
Times, October 2008. USC Information Sciences Institute and Council on Competitiveness.

[120] P. Greenhalgh. Big.little Processing with ARM Cortex-A15 & Cortex-A7. ARM White
Paper, pages 1–8, 2011.

[121] T. Grosser and T. Hoefler. Polly-ACC Transparent Compilation to Heterogeneous Hardware.
In ACM International Conference on Supercomputing (ICS), 2016.

[122] A. Guha, Y. Zhang, R. ur Rasool, and A. A. Chien. Systematic Evaluation of Workload
Clustering for Extremely Energy-efficient Architectures. SIGARCH Comput. Archit. News,
41(2):22–29, May 2013.

[123] J. Gummaraju, L. Morichetti, M. Houston, B. Sander, B. R. Gaster, and B. Zheng. Twin
Peaks: A Software Platform for Heterogeneous Computing on General-purpose and Graph-
ics Processors. In International Conference on Parallel Architectures and Compilation Tech-
niques (PACT), 2010.

[124] J. Guo, G. Bikshandi, B. B. Fraguela, M. J. Garzaran, and D. Padua. Programming with
Tiles. In ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming
(PPoPP), 2008.

[125] A. Gupta, L. V. Kalé, D. S. Milojicic, P. Faraboschi, R. Kaufmann, V. March, F. Gioachin,
C. H. Suen, and B.-S. Lee. Exploring the Performance and Mapping of HPC Applications
to Platforms in the Cloud. In International Symposium on High-Performance Parallel and
Distributed Computing (HPDC), 2012.

[126] A. Haidar, J. Dongarra, K. Kabir, M. Gates, P. Luszczek, S. Tomov, and Y. Jia. HPC Pro-
gramming on Intel Many-Integrated-Core Hardware with MAGMA Port to Xeon Phi. Sci-
entific Programming, 23, 01-2015 2015.

273

[127] P. Hammarlund, A. J. Martinez, A. A. Bajwa, D. L. Hill, E. Hallnor, H. Jiang, M. Dixon,
M. Derr, M. Hunsaker, R. Kumar, R. B. Osborne, R. Rajwar, R. Singhal, R. D’Sa, R. Chap-
pell, S. Kaushik, S. Chennupaty, S. Jourdan, S. Gunther, T. Piazza, and T. Burton. Haswell:
The Fourth-Generation Intel Core Processor. IEEE Micro, 34(2):6–20, March 2014.

[128] T. D. Han and T. S. Abdelrahman. hiCUDA: A High-level Directive-based Language for
GPU Programming. In ACM International Workshop on General Purpose Processing on
Graphics Processing Units (GPGPU), 2009.

[129] J. E. Hannay, C. MacLeod, J. Singer, H. P. Langtangen, D. Pfahl, and G. Wilson. How Do
Scientists Develop and Use Scientific Software? In ICSE Workshop on Software Engineer-
ing for Computational Science and Engineering (SECSE), 2009.

[130] J. He, A. E. Snavely, R. F. V. d. Wijngaart, and M. A. Frumkin. Automatic Recognition
of Performance Idioms in Scientific Applications. In IEEE International Symposium on
Parallel Distributed Processing (IPDPS), 2011.

[131] A. E. Helal, P. Sathre, and W. Feng. MetaMorph: A Library Framework for Interoperable
Kernels on Multi- and Many-core Clusters. In IEEE/ACM International Conference for
High Performance Computing, Networking, Storage and Analysis (SC), 2016.

[132] J. L. Henning. SPEC CPU2006 Benchmark Descriptions. SIGARCH Computer Architecture
News, 34(4), 2006.

[133] O. Hernandez, W. Ding, B. Chapman, C. Kartsaklis, R. Sankaran, and R. Graham. Expe-
riences with High-Level Programming Directives for Porting Applications to GPUs, pages
96–107. Springer Berlin Heidelberg, Berlin, Heidelberg, 2012.

[134] M. A. Heroux, R. A. Bartlett, V. E. Howle, R. J. Hoekstra, J. J. Hu, T. G. Kolda, R. B.
Lehoucq, K. R. Long, R. P. Pawlowski, E. T. Phipps, A. G. Salinger, H. K. Thornquist, R. S.
Tuminaro, J. M. Willenbring, A. Williams, and K. S. Stanley. An Overview of the Trilinos
Project. ACM Trans. Math. Softw., 31(3):397–423, Sept. 2005.

[135] M. A. Heroux, D. W. Doerfler, P. S. Crozier, J. M. Willenbring, H. C. Edwards, A. Williams,
M. Rajan, E. R. Keiter, H. K. Thornquist, and R. W. Numrich. Improving Performance
via Mini-Applications. Technical Report SAND2009-5574, Sandia National Laboratories,
2009.

[136] J. Hestness, S. W. Keckler, and D. A. Wood. GPU Computing Pipeline Inefficiencies and
Optimization Opportunities in Heterogeneous CPU-GPU Processors. In IEEE International
Symposium on Workload Characterization (IISWC), 2015.

[137] P. Hijma, C. J. H. Jacobs, R. V. v. Nieuwpoort, and H. E. Bal. Cashmere: Heterogeneous
Many-Core Computing. In IEEE International Symposium on Parallel and Distributed Pro-
cessing (IPDPS), 2015.

274

[138] P. Hijma, R. V. van Nieuwpoort, C. J. H. Jacobs, and H. E. Bal. Stepwise-Refinement for
Performance: a Methodology for Many-Core Programming. Concurrency and Computa-
tion: Practice and Experience, 27(17):4515–4554, 2015. cpe.3416.

[139] M. D. Hill and M. R. Marty. Amdahl’s Law in the Multicore Era. Computer, 41(7):33–38,
July 2008.

[140] L. Hochstein, J. Carver, F. Shull, S. Asgari, V. Basili, J. K. Hollingsworth, and M. V.
Zelkowitz. Parallel Programmer Productivity: A Case Study of Novice Parallel Program-
mers. In ACM/IEEE International Conference on High Performance Computing, Network-
ing, Storage and Analysis (SC), 2005.

[141] T. Hoefler and R. Belli. Scientific Benchmarking of Parallel Computing Systems: Twelve
Ways to Tell the Masses when Reporting Performance Results. In ACM/IEEE Interna-
tional Conference on High Performance Computing, Networking, Storage and Analysis
(SC), 2015.

[142] J. Holewinski, L.-N. Pouchet, and P. Sadayappan. High-Performance Code Generation for
Stencil Computations on GPU Architectures. In ACM International Conference on Super-
computing (ICS), 2012.

[143] C. Hong, D. Chen, W. Chen, W. Zheng, and H. Lin. MapCG: Writing Parallel Program
Portable Between CPU and GPU. In International Conference on Parallel Architectures
and Compilation Techniques (PACT), 2010.

[144] S. Hong, H. Chafi, E. Sedlar, and K. Olukotun. Green-Marl: A DSL for Easy and Efficient
Graph Analysis. In International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), 2012.

[145] R. Hornung and J. Keasler. The RAJA Portability Layer: Overview and Status. Technical
report, Lawrence Livermore National Laboratory (LLNL), Livermore, CA, 2014.

[146] K. Hou, H. Wang, and W. Feng. ASPaS: A Framework for Automatic SIMDization of
Parallel Sorting on x86-based Many-core Processors. In ACM International Conference on
Supercomputing (ICS), 2015.

[147] CUDALink. https://reference.wolfram.com/language/CUDALink/guide/CUDALink.html.

[148] OpenCLLink. https://reference.wolfram.com/language/OpenCLLink/guide/OpenCLLink.html.

[149] Parallel Computing Toolbox. https://www.mathworks.com/products/parallel-computing/.

[150] S. Huang, A. Hormati, D. Bacon, and R. Rabbah. Liquid Metal: Object-Oriented Program-
ming Across the Hardware/Software Boundary. In ECOOP 2008 - Object-Oriented Pro-
gramming, volume 5142 of Lecture Notes in Computer Science, pages 76–103. Springer,
2008.

275

[151] N. Instruments. LabVIEW FPGA Module. http:http://www.ni.com/labview/
fpga/.

[152] Intel. AP-803: Increasing the Accuracy of the Results from the Reciprocal and Reciprocal
Square Root Instructions using the Newton-Raphson Method. 1999.

[153] E. Ipek, M. Kirman, N. Kirman, and J. F. Martinez. Core Fusion: Accommodating Software
Diversity in Chip Multiprocessors. SIGARCH Comput. Archit. News, 35(2):186–197, June
2007.

[154] K. E. Iverson. A Programming Language. In ACM Spring Joint Computer Conference,
1962.

[155] N. Jain, A. Bhatele, J. S. Yeom, M. F. Adams, F. Miniati, C. Mei, and L. V. Kale. Charm++
and MPI: Combining the Best of Both Worlds. In IEEE International Symposium on Parallel
and Distributed Processing (IPDPS), 2015.

[156] W. Jia, K. A. Shaw, and M. Martonosi. Characterizing and Improving the Use of Demand-
fetched Caches in GPUs. In ACM International Conference on Supercomputing (ICS), 2012.

[157] W. Jia, K. A. Shaw, and M. Martonosi. Starchart: Hardware and Software Optimization
Using Recursive Partitioning Regression Trees. In International Conference on Parallel
Architectures and Compilation Techniques (PACT), 2013.

[158] X. Jiao, M. T. Campbell, and M. T. Heath. Roccom: An Object-Oriented, Data-Centric
Software Integration Framework for Multiphysics Simulations. In ACM International Con-
ference on Supercomputing (ICS), 2003.

[159] D. A. Joiner, P. Gray, T. Murphy, and C. Peck. Teaching Parallel Computing to Science
Faculty: Best Practices and Common Pitfalls. In ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming (PPoPP), 2006.

[160] A. Joshi, A. Phansalkar, L. Eeckhout, and L. K. John. Measuring Benchmark Similarity
Using Inherent Program Characteristics. IEEE Trans. Comput., 55(6):769–782, June 2006.

[161] G. Juckeland, W. Brantley, S. Chandrasekaran, B. Chapman, S. Che, M. Colgrove, H. Feng,
A. Grund, R. Henschel, W.-M. W. Hwu, H. Li, M. S. Müller, W. E. Nagel, M. Permi-
nov, P. Shelepugin, K. Skadron, J. Stratton, A. Titov, K. Wang, M. Waveren, B. Whitney,
S. Wienke, R. Xu, and K. Kumaran. High Performance Computing Systems. Performance
Modeling, Benchmarking, and Simulation: 5th International Workshop, PMBS 2014, New
Orleans, LA, USA, November 16, 2014. Revised Selected Papers, chapter SPEC ACCEL: A
Standard Application Suite for Measuring Hardware Accelerator Performance, pages 46–
67. Springer International Publishing, Cham, 2015.

[162] J. A. Kahle, M. N. Day, H. P. Hofstee, C. R. Johns, T. R. Maeurer, and D. Shippy. Introduc-
tion to the Cell Multiprocessor. IBM J. Res. Dev., 49(4/5):589–604, July 2005.

http:http://www.ni.com/labview/fpga/
http:http://www.ni.com/labview/fpga/

276

[163] L. Kalé, R. Skeel, M. Bh, R. Brunner, A. Gursoy, N. Krawetz, J. Phillips, A. Shinozaki,
K. Varadarajan, and K. Schulten. NAMD2: Greater Scalability for Parallel Molecular Dy-
namics. Journal of Computational Physics, 151:283–312, 1999.

[164] L. V. Kale and S. Krishnan. CHARM++: a Portable Concurrent Object-Oriented System
Based on C++, volume 28. ACM, 1993.

[165] N. Kapre and S. Bayliss. Survey of Domain-Specific Languages for FPGA Computing. In
International Conference on Field Programmable Logic and Applications (FPL), 2016.

[166] K. Keutzer, B. L. Massingill, T. G. Mattson, and B. A. Sanders. A Design Pattern Language
for Engineering (Parallel) Software: Merging the PLPP and OPL Projects. In International
Workshop on Parallel Programming Patterns (ParaPLoP), 2010.

[167] Keysight. SystemVue. http://www.keysight.com/en/pc-1297131/
systemvue-electronic-system-level-esl-design-software.

[168] J. Kim, T. T. Dao, J. Jung, J. Joo, and J. Lee. Bridging OpenCL and CUDA: A Comparative
Analysis and Translation. In ACM/IEEE International Conference for High Performance
Computing, Networking, Storage and Analysis (SC), 2015.

[169] J. Kim, S. Lee, and J. S. Vetter. IMPACC: A Tightly Integrated MPI+OpenACC Frame-
work Exploiting Shared Memory Parallelism. In ACM International Symposium on High-
Performance Parallel and Distributed Computing (HPDC), 2016.

[170] J. Kim, S. Seo, J. Lee, J. Nah, G. Jo, and J. Lee. SnuCL: An OpenCL Framework for
Heterogeneous CPU/GPU Clusters. In ACM International Conference on Supercomputing
(ICS), 2012.

[171] P. M. Kogge and T. J. Dysart. Using the TOP500 to Trace and Project Technology and Archi-
tecture Trends. In ACM/IEEE International Conference for High Performance Computing,
Networking, Storage and Analysis (SC), 2011.

[172] M. Kong, R. Veras, K. Stock, F. Franchetti, L.-N. Pouchet, and P. Sadayappan. When
Polyhedral Transformations Meet SIMD Code Generation. SIGPLAN Not., 48(6):127–138,
June 2013.

[173] D. Koufaty, D. Reddy, and S. Hahn. Bias Scheduling in Heterogeneous Multi-core Archi-
tectures. In European Conference on Computer Systems (EuroSys), 2010.

[174] K. Krommydas and W. Feng. Telescoping Architectures: Evaluating Next-Generation Het-
erogeneous Computing. In IEEE International Conference on High Performance Comput-
ing, Data, and Analytics (HiPC), 2016.

[175] K. Krommydas, W. Feng, C. D. Antonopoulos, and N. Bellas. Opendwarfs: Characteriza-
tion of dwarf-based benchmarks on fixed and reconfigurable architectures. Journal of Signal
Processing Systems, pages 1–20, 2015.

http://www.keysight.com/en/pc-1297131/systemvue-electronic-system-level-esl-design-software
http://www.keysight.com/en/pc-1297131/systemvue-electronic-system-level-esl-design-software

277

[176] K. Krommydas, W. Feng, M. Owaida, C. Antonopoulos, and N. Bellas. On the Character-
ization of OpenCL Dwarfs on Fixed and Reconfigurable Platforms. In IEEE International
Conference on Application-specific Systems, Architectures and Processors (ASAP), pages
153–160, 2014.

[177] K. Krommydas, A. E. Helal, A. Verma, and W. Feng. Bridging the Performance-
Programmability Gap for FPGAs via OpenCL: A Case Study with OpenDwarfs. In IEEE
International Symposium on Field-Programmable Custom Computing Machines (FCCM),
2016.

[178] K. Krommydas, R. Sasanka, and W. Feng. GLAF: A Visual Programming and Auto-tuning
Framework for Parallel Computing. In International Conference on Parallel Processing
(ICPP), 2015.

[179] K. Krommydas, R. Sasanka, and W. Feng. Bridging the FPGA Programmability-Portability
Gap via Automatic OpenCL Code Generation and Tuning. In IEEE International Confer-
ence on Application-specific Systems, Architectures and Processors (ASAP), 2016.

[180] K. Krommydas, T. Scogland, and W. Feng. On the Programmability and Performance of
Heterogeneous Platforms. In IEEE International Conference on Parallel and Distributed
Systems (ICPADS), 2013.

[181] R. Kumar, D. M. Tullsen, P. Ranganathan, N. P. Jouppi, and K. I. Farkas. Single-ISA
Heterogeneous Multi-Core Architectures for Multithreaded Workload Performance. In In-
ternational Symposium on Computer Architecture (ISCA), 2004.

[182] D. M. Kunzman and L. V. Kalé. Towards a Framework for Abstracting Accelerators in
Parallel Applications: Experience with Cell. In ACM/IEEE International Conference on
High Performance Computing Networking, Storage and Analysis (SC), 2009.

[183] C. Lattner and V. Adve. LLVM: A Compilation Framework for Lifelong Program Analysis
Transformation. In IEEE/ACM International Symposium on Code Generation and Opti-
mization (CGO), 2004.

[184] K. Lee, H. Lin, and W. Feng. Performance Characterization of Data-intensive Kernels on
AMD Fusion Architectures. Computer Science - Research and Development, 28(2-3), 2013.

[185] M. Lee, S. Song, J. Moon, J. Kim, W. Seo, Y. Cho, and S. Ryu. Improving GPGPU Resource
Utilization through Alternative Thread Block Scheduling. In IEEE International Symposium
on High Performance Computer Architecture (HPCA), 2014.

[186] S. Lee and R. Eigenmann. OpenMPC: Extended OpenMP Programming and Tuning for
GPUs. In ACM/IEEE International Conference for High Performance Computing, Net-
working, Storage and Analysis (SC), 2010.

278

[187] S. Lee, J. Kim, and J. S. Vetter. OpenACC to FPGA: A Framework for Directive-Based
High-Performance Reconfigurable Computing. In IEEE International Symposium on Par-
allel and Distributed Processing (IPDPS), 2016.

[188] S. Lee, S.-J. Min, and R. Eigenmann. OpenMP to GPGPU: A Compiler Framework for
Automatic Translation and Optimization. In ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming (PPoPP), 2009.

[189] S. Lee and J. S. Vetter. Early Evaluation of Directive-based GPU Programming Models for
Productive Exascale Computing. In ACM/IEEE International Conference on High Perfor-
mance Computing, Networking, Storage and Analysis (SC), 2012.

[190] S. Lee and J. S. Vetter. OpenARC: Open Accelerator Research Compiler for Directive-
Based, Efficient Heterogeneous Computing. In International Symposium on High-
performance Parallel and Distributed Computing (HPDC), 2014.

[191] V. W. Lee, C. Kim, J. Chhugani, M. Deisher, D. Kim, A. D. Nguyen, N. Satish, M. Smelyan-
skiy, S. Chennupaty, P. Hammarlund, R. Singhal, and P. Dubey. Debunking the 100X GPU
vs. CPU Myth: an Evaluation of Throughput Computing on CPU and GPU. In International
Symposium on Computer Architecture (ISCA), 2010.

[192] M.-L. Li, R. Sasanka, S. V. Adve, Y.-K. Chen, and E. Debes. The ALPBench Benchmark
Suite for Complex Multimedia Applications. In IEEE International Symposium on Work-
load Characterization (IISWC), 2005.

[193] Y. Li, Y. Zhang, H. Jia, G. Long, and K. Wang. Automatic FFT Performance Tuning on
OpenCL GPUs. In IEEE International Conference on Parallel and Distributed Systems
(ICPADS), 2011.

[194] S. K. Lim. Physical design for 3D system on package. IEEE Design Test of Computers,
22(6):532–539, November 2005.

[195] M. D. Linderman, J. D. Collins, H. Wang, and T. H. Meng. Merge: A Programming Model
for Heterogeneous Multi-Core Systems. In International Conference on Architectural Sup-
port for Programming Languages and Operating Systems (ASPLOS), 2008.

[196] H. Liu and H. H. Huang. Enterprise: Breadth-First Graph Traversal on GPUs. In ACM/IEEE
International Conference for High Performance Computing, Networking, Storage and Anal-
ysis (SC), 2015.

[197] J. Llosa, A. Gonzalez, E. Ayguade, and M. Valero. Swing Modulo Scheduling: A Lifetime-
Sensitive Approach. In International Conference on Parallel Architectures and Compilation
Techniques (PACT), 2006.

279

[198] M. G. Lopez, J. Young, J. S. Meredith, P. C. Roth, M. Horton, and J. S. Vetter. Examining
Recent Many-core Architectures and Programming Models Using SHOC. In International
Workshop on Performance Modeling, Benchmarking, and Simulation of High Performance
Computing Systems (PMBS), 2015.

[199] A. Lukefahr, S. Padmanabha, R. Das, F. M. Sleiman, R. Dreslinski, T. F. Wenisch, and
S. Mahlke. Composite Cores: Pushing Heterogeneity Into a Core. In IEEE/ACM Interna-
tional Symposium on Microarchitecture (MICRO), 2012.

[200] Y. Luo, G. Tan, Z. Mo, and N. Sun. FAST: A Fast Stencil Autotuning Framework Based On
An Optimal-Solution Space Model. In ACM International Conference on Supercomputing
(ICS), 2015.

[201] D. Majeti and V. Sarkar. Heterogeneous Habanero-C (H2C): A Portable Programming
Model for Heterogeneous Processors. In IEEE International Parallel and Distributed Pro-
cessing Symposium Workshop (IPDPSW), 2015.

[202] J. Makino and H. Daisaka. GRAPE-8: An Accelerator for Gravitational N-Body Simula-
tion with 20.5Gflops/W Performance. In ACM/IEEEE International Conference on High
Performance Computing, Networking, Storage and Analysis (SC), 2012.

[203] A. Mametjanov, D. Lowell, C. C. Ma, and B. Norris. Autotuning Stencil-Based Compu-
tations on GPUs. In IEEE International Conference on Cluster Computing (CLUSTER),
2012.

[204] M. Martineau, S. McIntosh-Smith, M. Boulton, and W. Gaudin. An Evaluation of Emerging
Many-Core Parallel Programming Models. In International Workshop on Programming
Models and Applications for Multicores and Manycores (PMAM), 2016.

[205] G. Martinez, M. Gardner, and W. Feng. CU2CL: A CUDA-to-OpenCL Translator for
Multi- and Many-Core Architectures. In IEEE International Conference on Parallel and
Distributed Systems (ICPADS), 2011.

[206] MathWorks. Matlab HDL Coder. http://www.mathworks.com/products/
hdl-coder/.

[207] T. J. McCabe. A Complexity Measure. IEEE Transactions on software Engineering,
(4):308–320, 1976.

[208] W. Meeus, K. Van Beeck, T. Goedem, J. Meel, and D. Stroobandt. An Overview of Today’s
High-Level Synthesis Tools. Design Automation for Embedded Systems, 16(3):31–51, 2012.

[209] M. R. Meswani, S. Blagodurov, D. Roberts, J. Slice, M. Ignatowski, and G. H. Loh. Het-
erogeneous Memory Architectures: A HW/SW Approach for Mixing Die-Stacked and Off-
Package Memories. In IEEE International Symposium on High Performance Computer
Architecture (HPCA), 2015.

http://www.mathworks.com/products/hdl-coder/
http://www.mathworks.com/products/hdl-coder/

280

[210] J. Milthorpe, V. Ganesh, A. P. Rendell, and D. Grove. X10 as a Parallel Language for
Scientific Computation: Practice and Experience. In IEEE International Symposium on
Parallel Distributed Processing (IPDPS), 2011.

[211] Mirabilis. VisualSim. http://mirabilisdesign.com/new/visualsim/.

[212] G. Misra, N. Kurkure, A. Das, M. Valmiki, S. Das, and A. Gupta. Evaluation of Rodinia
Codes on Intel Xeon Phi. In International Conference on Intelligent Systems, Modelling
and Simulation, 2013.

[213] V. M. Morales, P.-H. Horrein, A. Baghdadi, E. Hochapfel, and S. Vaton. Energy-Efficient
FPGA Implementation for Binomial Option Pricing Using OpenCL. In Conference on De-
sign, Automation & Test in Europe (DATE), 2014.

[214] P. Mougin and S. Ducasse. OOPAL: Integrating Array Programming in Object-oriented
Programming. In ACM SIGPLAN Conference on Object-oriented Programing, Systems,
Languages, and Applications (OOPSLA), 2003.

[215] D. Mustafa and R. Eigenmann. Portable Section-Level Tuning of Compiler Parallelized
Applications. In ACM/IEEE International Conference on High Performance Computing,
Networking, Storage and Analysis (SC), 2012.

[216] M. Nakao, J. Lee, T. Boku, and M. Sato. Productivity and Performance of Global-View
Programming with XcalableMP PGAS Language. In IEEE/ACM International Symposium
on Cluster, Cloud and Grid Computing (CCGrid), 2012.

[217] T. Narumi, K. Yasuoka, M. Taiji, F. Zerbetto, and S. Höfinger. Fast Calculation of Electro-
static Potentials on the GPU or the ASIC MD-GRAPE-3. The Computer Journal, 54(7).

[218] NAS Parallel Benchmarks. http://www.nas.nasa.gov/publications/npb.html.

[219] R. Nath, S. Tomov, T. T. Dong, and J. Dongarra. Optimizing Symmetric Dense Matrix-
Vector Multiplication on GPUs. In ACM/IEEE International Conference for High Perfor-
mance Computing, Networking, Storage and Analysis (SC), 2011.

[220] G. Ndu, J. Navaridas, and M. Luján. CHO: Towards a Benchmark Suite for OpenCL FPGA
Accelerators. In International Workshop on OpenCL (IWOCL), 2015.

[221] R. Nikhil. Bluespec System Verilog: Efficient, Correct RTL from High Level Specifications.
In ACM/IEEE International Conference on Formal Methods and Models for Co-Design
(MEMOCODE), 2004.

[222] A. Nukada, K. Sato, and S. Matsuoka. Scalable Multi-GPU 3-D FFT for TSUBAME 2.0
Supercomputer. In ACM/IEEE International Conference on High Performance Computing,
Networking, Storage and Analysis (SC), 2012.

http://mirabilisdesign.com/new/visualsim/

281

[223] K. Oka, W. Jia, M. Martonosi, and K. Inoue. Characterization and Cross-Platform Anal-
ysis of High-Throughput Accelerators. In IEEE International Symposium on Performance
Analysis of Systems and Software (ISPASS), 2015.

[224] S. Olivier, J. Prins, J. Derby, and K. Vu. Porting the GROMACS Molecular Dynamics
Code to the Cell Processor. In IEEE International Symposium on Parallel and Distributed
Processing (IPDPS), 2007.

[225] M. Owaida, N. Bellas, K. Daloukas, and C. D. Antonopoulos. Synthesis of Platform Ar-
chitectures from OpenCL Programs. In IEEE Symposium on Field-Programmable Custom
Computing Machines (FCCM), 2011.

[226] S. Pai, R. Govindarajan, and M. J. Thazhuthaveetil. Fast and Efficient Automatic Memory
Management for GPUs Using Compiler-assisted Runtime Coherence Scheme. In Interna-
tional Conference on Parallel Architectures and Compilation Techniques (PACT), 2012.

[227] A. Papakonstantinou, K. Gururaj, J. Stratton, D. Chen, J. Cong, and W.-M. Hwu. FCUDA:
Enabling Efficient Compilation of CUDA Kernels onto FPGAs. In IEEE Symposium on
Application Specific Processors (SASP), 2009.

[228] M. Paredes, G. Riley, and M. Luján. Breadth-First Search Vectorization on the Intel Xeon
Phi. In ACM International Conference on Computing Frontiers (CF), 2016.

[229] S. J. Pennycook, C. J. Hughes, M. Smelyanskiy, and S. A. Jarvis. Exploring SIMD for
Molecular Dynamics, Using Intel Xeon Processors and Intel Xeon Phi Coprocessors. In
IEEE International Symposium on Parallel Distributed Processing (IPDPS), 2013.

[230] A. Phansalkar, A. Joshi, and L. K. John. Analysis of Redundancy and Application Bal-
ance in the SPEC CPU2006 Benchmark Suite. In International Symposium on Computer
Architecture (ISCA), 2007.

[231] C. Pheatt. Intel Threading Building Blocks. Journal of Computing Sciences in Colleges,
23(4):298–298, 2008.

[232] P. M. Phothilimthana, J. Ansel, J. Ragan-Kelley, and S. Amarasinghe. Portable Performance
on Heterogeneous Architectures. In International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS), 2013.

[233] J. Planas, R. M. Badia, E. Ayguadé, and J. Labarta. Hierarchical Task-Based Program-
ming With StarSs. International Journal on High Performance Computing Applications,
23(3):284–299, Aug. 2009.

[234] F. J. Pollack. New Microarchitecture Challenges in the Coming Generations of CMOS
Process Technologies (Keynote Address). In ACM/IEEE International Symposium on Mi-
croarchitecture (MICRO), 1999.

282

[235] P. Prabhu, T. B. Jablin, A. Raman, Y. Zhang, J. Huang, H. Kim, N. P. Johnson, F. Liu,
S. Ghosh, S. Beard, T. Oh, M. Zoufaly, D. Walker, and D. I. August. A Survey of the
Practice of Computational Science. In State of the Practice Reports - ACM/IEEE Inter-
national Conference on High Performance Computing, Networking, Storage and Analysis
(SC), 2011.

[236] A. Prasad, J. Anantpur, and R. Govindarajan. Automatic Compilation of MATLAB Pro-
grams for Synergistic Execution on Heterogeneous Processors. SIGPLAN Not., 46(6):152–
163, June 2011.

[237] A. Putnam, A. Caulfield, E. Chung, D. Chiou, K. Constantinides, J. Demme, H. Es-
maeilzadeh, J. Fowers, G. Gopal, J. Gray, M. Haselman, S. Hauck, S. Heil, A. Hormati, J.-Y.
Kim, S. Lanka, J. Larus, E. Peterson, S. Pope, A. Smith, J. Thong, P. Xiao, and D. Burger.
A Reconfigurable Fabric for Accelerating Large-Scale Datacenter Services. In ACM/IEEE
International Symposium on Computer Architecture (ISCA), 2014.

[238] N. Ravi, Y. Yang, T. Bao, and S. Chakradhar. Apricot: An Optimizing Compiler and Produc-
tivity Tool for x86-compatible Many-Core Coprocessors. In ACM International Conference
on Supercomputing (ICS), 2012.

[239] M. Resnick, J. Maloney, A. Monroy-Hernández, N. Rusk, E. Eastmond, K. Brennan,
A. Millner, E. Rosenbaum, J. Silver, B. Silverman, and Y. Kafai. Scratch: Programming
for All. Commun. ACM, 52(11):60–67, Nov. 2009.

[240] J. V. Reynders, P. J. Hinker, J. C. Cummings, S. R. Atlas, S. Banerjee, W. F. Humphrey,
S. R. Karmesin, K. Keahey, M. Srikant, M. D. Tholburn, et al. POOMA: A Framework
for Scientific Simulations on Parallel Architectures. Parallel Programming in C+, pages
547–588, 1996.

[241] A. D. Robison. Composable Parallel Patterns with Intel Cilk Plus. Computing in Science
and Engineering, 15(2):66–71, 2013.

[242] C. Rodrigues, T. Jablin, A. Dakkak, and W.-M. Hwu. Triolet: A Programming System That
Unifies Algorithmic Skeleton Interfaces for High-Performance Cluster Computing. SIG-
PLAN Not., 49(8):247–258, Feb. 2014.

[243] C. I. Rodrigues, D. J. Hardy, J. E. Stone, K. Schulten, and W.-M. W. Hwu. GPU Accelera-
tion of Cutoff Pair Potentials for Molecular Modeling Applications. In ACM International
Conference on Computing Frontiers (CF), 2008.

[244] S. Ryoo, C. I. Rodrigues, S. S. Baghsorkhi, S. S. Stone, D. B. Kirk, and W.-m. W. Hwu.
Optimization Principles and Application Performance Evaluation of a Multithreaded GPU
Using CUDA. In ACM SIGPLAN Symposium on Principles and Practice of Parallel Pro-
gramming (PPoPP), 2008.

283

[245] N. Satish, C. Kim, J. Chhugani, H. Saito, R. Krishnaiyer, M. Smelyanskiy, M. Girkar, and
P. Dubey. Can Traditional Programming Bridge the Ninja Performance Gap for Parallel
Computing Applications? In International Symposium on Computer Architecture (ISCA).
IEEE Computer Society, 2012.

[246] T. Scogland, W. Feng, B. Rountree, and B. de Supinski. CoreTSAR: Core Task-Size Adapt-
ing Runtime. IEEE Transactions on Parallel and Distributed Systems, PP(99):1–1, 2014.

[247] T. R. W. Scogland and W. Feng. Runtime Adaptation for Autonomic Heterogeneous Com-
puting. In IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing
(CCGrid), 2014.

[248] S. Seo, G. Jo, and J. Lee. Performance Characterization of the NAS Parallel Benchmarks in
OpenCL. In IEEE International Symposium on Workload Characterization (IISWC), 2011.

[249] S. O. Settle. High-Performance Dynamic Programming on FPGAs with OpenCL. In IEEE
High Performance Extreme Computing Conference (HPEC), 2013.

[250] D. E. Shaw, J. P. Grossman, J. A. Bank, B. Batson, J. A. Butts, J. C. Chao, M. M. Deneroff,
R. O. Dror, A. Even, C. H. Fenton, A. Forte, J. Gagliardo, G. Gill, B. Greskamp, C. R. Ho,
D. J. Ierardi, L. Iserovich, J. S. Kuskin, R. H. Larson, T. Layman, L.-S. Lee, A. K. Lerer,
C. Li, D. Killebrew, K. M. Mackenzie, S. Y.-H. Mok, M. A. Moraes, R. Mueller, L. J. No-
ciolo, J. L. Peticolas, T. Quan, D. Ramot, J. K. Salmon, D. P. Scarpazza, U. Ben Schafer,
N. Siddique, C. W. Snyder, J. Spengler, P. T. P. Tang, M. Theobald, H. Toma, B. Towles,
B. Vitale, S. C. Wang, and C. Young. Anton 2: Raising the Bar for Performance and
Programmability in a Special-Purpose Molecular Dynamics Supercomputer. In ACM/IEEE
International Conference for High Performance Computing, Networking, Storage and Anal-
ysis (SC), 2014.

[251] C.-Y. Shei, P. Ratnalikar, and A. Chauhan. Automating GPU Computing in MATLAB. In
ACM International Conference on Supercomputing (ICS), 2011.

[252] D. Shelepov, J. C. Saez Alcaide, S. Jeffery, A. Fedorova, N. Perez, Z. F. Huang, S. Blago-
durov, and V. Kumar. HASS: A Scheduler for Heterogeneous Multicore Systems. SIGOPS
Oper. Syst. Rev., 43(2):66–75, Apr. 2009.

[253] J. Shen, J. Fang, H. Sips, and A. L. Varbanescu. Performance Gaps between OpenMP
and OpenCL for Multi-core CPUs. In International Conference on Parallel Processing
Workshops (ICPPW), 2012.

[254] G. Shi and V. Kindratenko. Implementation of NAMD Molecular Dynamics Non-Bonded
Force-Field on the Cell Broadband Engine Processor. In IEEE International Parallel and
Distributed Processing Symposium, pages 1–8, April 2008.

284

[255] A. Sidelnik, S. Maleki, B. L. Chamberlain, M. J. Garzar’n, and D. Padua. Performance
Portability with the Chapel Language. In IEEE International Symposium on Parallel Dis-
tributed Processing (IPDPS), 2012.

[256] S. E. Sim, S. Easterbrook, and R. C. Holt. Using Benchmarking to Advance Research: a
Challenge to Software Engineering. In International Conference on Software Engineering
(ICSE ’03), 2003.

[257] D. P. Singh, T. S. Czajkowski, and A. Ling. Harnessing the Power of FPGAs Using Altera’s
OpenCL Compiler. In ACM/SIGDA International Symposium on Field Programmable Gate
Arrays (FPGA), 2013.

[258] E. Slaughter, W. Lee, S. Treichler, M. Bauer, and A. Aiken. Regent: A High-productivity
Programming Language for HPC with Logical Regions. In ACM/IEEE International Con-
ference for High Performance Computing, Networking, Storage and Analysis (SC), 2015.

[259] A. Snavely, L. Carrington, N. Wolter, J. Labarta, R. Badia, and A. Purkayastha. A Frame-
work for Performance Modeling and Prediction. In ACM/IEEE International Conference
for High Performance Computing, Networking, Storage and Analysis (SC), 2002.

[260] M. Snir. Programming Models for High-Performance Computing. In IEEE/ACM Interna-
tional Symposium on Cluster, Cloud and Grid Computing (CCGrid), 2013.

[261] E. Sotiriades and A. Dollas. A General Reconfigurable Architecture for the BLAST Al-
gorithm. The Journal of VLSI Signal Processing Systems for Signal, Image, and Video
Technology, 48(3):189–208, September 2007.

[262] K. L. Spafford, J. S. Meredith, S. Lee, D. Li, P. C. Roth, and J. S. Vetter. The Tradeoffs of
Fused Memory Hierarchies in Heterogeneous Computing Architectures. In ACM Interna-
tional Conference on Computing Frontiers (CF), 2012.

[263] SPEC Benchmarks Collection. https://www.spec.org/benchmarks.html.

[264] S. Sridharan, G. Gupta, and G. S. Sohi. Adaptive, Efficient, Parallel Execution of Parallel
Programs. In ACM SIGPLAN Conference on Programming Language Design and Imple-
mentation (PLDI), 2014.

[265] M. Steuwer, P. Kegel, and S. Gorlatch. SkelCL - A Portable Skeleton Library for High-
Level GPU Programming. In IEEE International Symposium on Parallel and Distributed
Processing Workshops and Phd Forum (IPDPSW), 2011.

[266] J. E. Stone, D. J. Hardy, I. S. Ufimtsev, and K. Schulten. GPU-Accelerated Molecular
Modeling Coming of Age. Journal of Molecular Graphics & Modelling, 29(2):116–125,
Sept. 2010.

285

[267] J. A. Stratton, N. Anssari, C. Rodrigues, I. J. Sung, N. Obeid, L. Chang, G. D. Liu, and
W. m. Hwu. Optimization and Architecture Effects on GPU Computing Workload Perfor-
mance. In Innovative Parallel Computing Conference (InPar), 2012.

[268] J. A. Stratton, H.-S. Kim, T. B. Jablin, and W.-M. W. Hwu. Performance Portability in
Accelerated Parallel Kernels. Technical Report IMPACT-13-01, University of Illinois at
Urbana-Champaign, Urbana, May 2013.

[269] J. A. Stratton, C. Rodrigues, I.-J. Sung, N. Obeid, L.-W. Chang, N. Anssari, G. D. Liu,
and W.-m. W. Hwu. Parboil: A Revised Benchmark Suite for Scientific and Commercial
Throughput Computing. Technical Report IMPACT-12-01, University of Illinois at Urbana-
Champaign, 2012.

[270] J. A. Stratton, S. S. Stone, and W.-m. W. Hwu. MCUDA: An Efficient Implementation of
CUDA Kernels for Multi-core CPUs, pages 16–30. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2008.

[271] A. Stromme, R. Carlson, and T. Newhall. Chestnut: A GPU Programming Language for
Non-Experts. In International Workshop on Programming Models and Applications for
Multicores and Manycores (PMAM), 2012.

[272] B.-Y. Su and K. Keutzer. clSpMV: A Cross-Platform OpenCL SpMV Framework on GPUs.
In ACM International Conference on Supercomputing (ICS), 2012.

[273] W. T. Tang, R. Zhao, M. Lu, Y. Liang, H. P. Huynh, X. Li, and R. S. M. Goh. Optimizing
and Auto-Tuning Scale-Free Sparse Matrix-Vector Multiplication on Intel Xeon Phi. In
IEEE/ACM International Symposium on Code Generation and Optimization (CGO), 2015.

[274] N. Thomas, G. Tanase, O. Tkachyshyn, J. Perdue, N. M. Amato, and L. Rauchwerger. A
Framework for Adaptive Algorithm Selection in STAPL. In ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming (PPoPP), 2005.

[275] S. Tomov, R. Nath, H. Ltaief, and J. Dongarra. Dense Linear Algebra Solvers for Multicore
with GPU Accelerators. In IEEE International Symposium on Distributed and Parallel
Processing (IPDPS), Atlanta, GA, 2010.

[276] Top 500 Supercomputer Sites. http://www.top500.org.

[277] D. Unat, X. Cai, and S. B. Baden. Mint: Realizing CUDA Performance in 3D Stencil
Methods with Annotated C. In ACM International Conference on Supercomputing (ICS),
2011.

[278] S. van der Walt, S. Colbert, and G. Varoquaux. The NumPy Array: A Structure for Efficient
Numerical Computation. Computing in Science Engineering, 13(2):22–30, 2011.

286

[279] R. V. Van Nieuwpoort, G. Wrzesińska, C. J. H. Jacobs, and H. E. Bal. Satin: A High-level
and Efficient Grid Programming Model. ACM Trans. Program. Lang. Syst., 32(3):9:1–9:39,
Mar. 2010.

[280] C. Wang, S. Chandrasekaran, and B. Chapman. cusFFT: A High-Performance Sparse Fast
Fourier Transform Algorithm on GPUs. In IEEE International Symposium on Parallel and
Distributed Processing (IPDPS), 2016.

[281] M. Wang and M. Parashar. Object-Oriented Stream Programming using Aspects. In IEEE
International Symposium on Parallel Distributed Processing (IPDPS), 2010.

[282] S. Wienke, P. Springer, C. Terboven, and D. an Mey. OpenACC: First Experiences with
Real-World Applications. In Euro-Par 2012 Parallel Processing, volume 7484 of Lecture
Notes in Computer Science. Springer Berlin Heidelberg, 2012.

[283] S. Wienke, C. Terboven, J. C. Beyer, and M. S. Müller. International Conference Euro-Par
2014 Parallel Processing, chapter A Pattern-Based Comparison of OpenACC and OpenMP
for Accelerator Computing. 2014.

[284] S. Williams, L. Oliker, R. Vuduc, J. Shalf, K. Yelick, and J. Demmel. Optimization of
Sparse Matrix-Vector Multiplication on Emerging Multicore Platforms. In ACM/IEEE Inter-
national Conference for High Performance Computing, Networking, Storage and Analysis
(SC), 2007.

[285] S. Williams, A. Waterman, and D. Patterson. Roofline: An Insightful Visual Performance
Model for Multicore Architectures. Commun. ACM, 52(4):65–76, Apr. 2009.

[286] M. Wolfe. Implementing the PGI Accelerator Model. In International Workshop on
General-Purpose Computation on Graphics Processing Units (GPGPU), 2010.

[287] Y. Wu, Y. Wang, Y. Pan, C. Yang, and J. D. Owens. Performance Characterization of High-
Level Programming Models for GPU Graph Analytics. In IEEE International Symposium
on Workload Characterization (IISWC), 2015.

[288] S. Yan, C. Li, Y. Zhang, and H. Zhou. yaSpMV: Yet Another SpMV Framework on GPUs. In
ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming (PPoPP),
2014.

[289] Y. Yan, P.-H. Lin, C. Liao, B. R. de Supinski, and D. J. Quinlan. Supporting Multiple Ac-
celerators in High-level Programming Models. In International Workshop on Programming
Models and Applications for Multicores and Manycores (PMAM), 2015.

[290] Y. Yan, J. Zhao, Y. Guo, and V. Sarkar. Hierarchical Place Trees: A Portable Abstraction
for Task Parallelism and Data Movement. In International Conference on Languages and
Compilers for Parallel Computing (LCPC), 2010.

287

[291] Y. Yang, P. Xiang, J. Kong, and H. Zhou. A GPGPU Compiler for Memory Optimization
and Parallelism Management. SIGPLAN Not., 45(6):86–97, June 2010.

[292] Y. Zhang and F. Mueller. Auto-generation and Auto-tuning of 3D Stencil Codes on GPU
Clusters. In IEEE/ACM International Symposium on Code Generation and Optimization
(CGO), 2012.

[293] Y. Zhang, M. Sinclair, and A. A. Chien. International Supercomputing Conference (ISC),
chapter Improving Performance Portability in OpenCL Programs. 2013.

	Introduction
	Motivation
	Research Questions
	Contributions
	Outline

	Background
	Heterogeneous Architectures
	General-Purpose Graphics Processing Unit (GPGPU)
	Intel Many Integrated Cores Architecture (MIC)
	Field-Programmable Gate Array (FPGA)

	Programming Languages for Heterogeneous Architectures
	OpenCL
	Altera OpenCL (AOCL)
	Silicon OpenCL (SOpenCL)

	Related Work
	On Performance
	Performance Evaluation and Benchmarking
	Optimizing Performance: Software Approaches
	Optimizing Performance: Hardware Approaches

	On Programmability and Portability
	Programmability
	Portability

	On the Performance of Heterogeneous Platforms
	On the Performance of Architecture-Agnostic Dwarf-Based Applications
	OpenDwarfs Benchmark Suite
	Experimental Setup
	Results

	On the Performance of Manually Optimized Dwarf-Based Applications: GEM, an N-Body Dwarf
	Molecular Modeling via Electrostatic Surface Potential (ESP)
	Evaluated Platforms
	Algorithm Mapping to Heterogeneous Platforms
	Optimization
	Results and Discussion

	On the Performance of OpenCL as a Programming Method for FPGAs: a Preliminary Study with Altera OpenCL
	Experimental Setup
	FPGA Optimizations: Results and Insights

	Enhancing Performance via Heterogeneous Architectures: an Architectural Approach
	Architectural Unification in the History of Computing
	Methodology
	Results
	Discussion

	Conclusion

	On the Programmability and Portability of Heterogeneous Platforms
	A High-Level Discussion on Programmability and Portability
	On the Programmability and Portability: A Case-Study with GEM
	Measuring Code Complexity
	Experimental Setup
	Optimization Levels and Programmability
	Performance Impact

	On Bridging the Performance, Programmability and Portability Gap of Heterogeneous Platforms
	GLAF Framework
	Capabilities
	Example Applications
	Evaluation: Fixed Target Architectures
	Evaluation: Reconfigurable Target Architectures
	Discussion

	A GLAF Case Study with NASA
	Background
	Extensions to GLAF
	Results

	Conclusion

	Summary and Future Work
	Summary
	Future Work
	OpenDwarfs
	Telescoping Architectures
	GLAF

	Bibliography

