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Abstract—General-purpose computing on an ever-broadening
array of parallel devices has led to an increasingly complex and
multi-dimensional landscape with respect to programmability
and performance optimization. The growing diversity of parallel
architectures presents many challenges to the domain scientist,
including device selection, programming model, and level of
investment in optimization. All of these choices influence the
balance between programmability and performance.

In this paper, we characterize the performance achievable
across a range of optimizations, along with their programma-
bility, for multi- and many-core platforms - specifically, an
Intel Sandy Bridge CPU, Intel Xeon Phi co-processor, and
NVIDIA Kepler K20 GPU - in the context of an n-body,
molecular-modeling application called GEM. Our systematic
approach to optimization delivers implementations with speed-
ups of 194.98x, 885.18x, and 1020.88x on the CPU, Xeon Phi,
and GPU, respectively, over the naive serial version. Beyond the
speed-ups, we characterize the incremental optimization of the
code from naive serial to fully hand-tuned on each platform
through four distinct phases of increasing complexity to expose
the strengths and weaknesses of the programming models offered
by each platform.

Keywords-performance, programmability, optimization, AVX,
GPU, Intel MIC, NVIDIA Kepler K20, Xeon Phi, CUDA, Ope-
nACC

I. INTRODUCTION

Many application areas, including finance, life sciences,
physics, and manufacturing, have begun to use computational
co-processors such as graphics processing units (GPUs), field
programmable gate arrays (FPGAs), digital signal processors
(DSPs), and even customized application-specific integrated
circuits (ASICs) to achieve substantial gains in performance
per watt and performance per dollar over traditional CPU
implementations. Each of these solutions require programmers
to adopt a different programming mindset than the typical, and
well-studied, multi-core programming paradigm. This shift
in mindset decreases the perceived programmability of these
devices, and in turn, increases the cost to optimize and main-
tain code. While many scientists and industrial programmers
possess a working knowledge of basic programming concepts,
they typically lack expertise in parallel programming. Pro-
grammability of a parallel platform is consequently a deciding
factor in its adoption by such audiences.

Each platform is attempting to bridge the gap between
performance and programmability in its own way. The Intel
Xeon Phi co-processor attempts to ease programmability by
offering a standard Linux environment on the device, which
can be programmed with standard multi-core programming

techniques. GPU and compiler vendors seek to increase the
programmability of GPUs via extensions to familiar CPU
interfaces, such as the development of the OpenACC direc-
tives to provide OpenMP-like functionality for fundamentally
non-CPU architectures. In each case, there are highly pro-
grammable but imprecise and, comparatively, low performance
interfaces as well as extremely difficult but high performance
interfaces. The push and pull between programmability and
performance comes down to a balance between cost and
benefit, that is how much performance you can get and for
how much effort.

In this paper, we characterize the programmability and per-
formance of multi- and many-core processors across a range
of optimization levels, starting from naive serial CPU code and
extending to fully optimized CPU, Xeon Phi, and GPU code.
Rather than skipping directly to the fully hand-tuned optimized
versions for each target platform, we realize multiple versions
of our molecular modeling code (i.e., GEM [1]) at different
levels of optimization, ranging from the most programmable
to the least and correspondingly from the worst performing to
the best. Our contributions are as follows:

e An analysis of the trade-off between performance and
programmability across various levels of optimization on
CPU, Xeon Phi, and GPU.

e A characterization of architecture-aware optimizations
and their portability across architectures.

o An evaluation of the effectiveness of directive-based par-
allelism along with compiler-assisted vectorization versus
hand-tuned alternatives.

In the next section, we provide background information on
our case-study application called GEM and on the multi- and
many-core platforms used in our study — Intel Sandy Bridge
CPU, Intel Xeon Phi and NVIDIA Kepler GPU. Section III
discusses the compiler-assisted parallelization approaches that
we evaluate and addresses programmability issues. In Sec-
tion IV, we describe the mapping and optimization process
onto the above multi- and many-core platforms. Section V
presents our experimental set-up and results, along with a
rigorous performance evaluation and comparison between our
CPU, Xeon Phi, and GPU implementations. Finally, we dis-
cuss related work in Section VI and conclude in Section VII.

II. BACKGROUND

In this section, we provide an overview of the molecular
modeling application that we use as a case study in this paper,
i.e., GEM [1]. Then, we provide background information on
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the Many Integrated Core (MIC) architecture that underlies
Intel Xeon Phi and on the NVIDIA GPU Kepler architecture.

A. GEM: Modeling the Electrostatic Surface Potential (ESP)
of Macromolecules

Molecular modeling refers to the mathematical models that
seek to describe the behavior and properties of biological
molecules and the corresponding computational techniques.
An important part of molecular modeling simulation in areas
like materials science, computational chemistry, and rational
drug design is the calculation of electrostatic surface potential
(ESP) in support of locating bonding sites and other features.

The computational pattern of GEM [1] is an all-to-all n-
body interaction between points near the molecular surface
and the atoms within the biomolecule. The overall result of
ESP calculation, i.e. the electrostatic map of a biomolecule,
provides useful information about its function. The long-range
nature of electrostatic interactions results in a computationally
intense workload of order O(nm) where n is the number
of atoms and m is the number of surface points. Many ap-
proximation methods have been proposed over the numerical
solutions of the Poisson-Boltzmann equation [2] that constitute
the core of traditional ESP calculation algorithms. One such
method is employed by GEM, the ESP application we study
in this paper.

In GEM, the biomolecule is divided in three distinct regions,
and separate functional forms of the electrostatic potential
¢; apply for each.! The electrostatic potential at each point
near the surface (vertex) is the sum of electrostatic potentials
contributed by each single point charge to that point. Similarly,
the sum of potentials at all surface points define the total elec-
trostatic potential of the system. The above computation and
communication pattern classifies GEM as an n-body dwarf [4]
with the subtle difference that it performs all-pair computations
between two sets (versus one). Thus, we expect many of our
conclusions regarding performance and programmability of
GEM to apply to most n-body applications.

B. Platforms

In the context of optimizing GEM, we evaluate three distinct
parallel platforms and their attendant programming models.
The baseline multi-core CPU is represented by Intel’s Sandy
Bridge x86-64 CPUs, specifically two Xeon model E5-2680s,
and uses the C language and the Intel compiler suite with
Intel OpenMP directives for parallelism. Our CPU platform
is indicative of a standard server node with cache-coherent,
moderate-latency NUMA memory; large well-tuned caches;
and all the niceties of traditional “fat” CPU cores.

Moving to the Intel Xeon Phi, much of the CPU architecture
is preserved. The instruction set is highly similar to that of the
x86-64 CPUs and can be natively programmed by the same
interfaces. In fact, our evaluations in this paper use the same
libraries and compilers at all phases for both the CPU and
Xeon Phi. Even so, the Xeon Phi differs substantially at the

! Details for each of the regions and the corresponding functional forms are
given in [3].

architectural level. The Xeon Phi uses multiple banks of high-
throughput but high-latency graphics memory and offers 512-
bit SIMD units and four thread contexts on each core, double
the width offered by AVX and double the thread contexts
on the Sandy Bridge CPUs. Thus, the Xeon Phi architecture
shifts the compute/memory ratio to favor throughput rather
than latency-centric computing. In the same vein, the cores
are comparatively simple in-order cores with only minimal
prefetching support.

Finally, the GPU, represented by an NVIDIA K20c, elim-
inates the cache-coherent memory offered by the other plat-
forms. Otherwise, the GPU is architecturally more similar to
the Xeon Phi. Both use graphics memory and wide SIMD units
to offer high throughput and many thread contexts to mitigate
the effects of latency. The difference is in the programming
model. Since GPUs are SIMD engines, GPU programming
models such as CUDA have no concept of running a single
thread with scalar mathematics. Instead, the programming
model assumes that many threads will execute every instruc-
tion in SIMD fashion. While in the other platforms, SIMD
support is either compiled in or added with intrinsics; in
CUDA/OpenCL, SIMD is the standard state of affairs, and
single-threading must be produced manually.

III. PROGRAMMABILITY

Here we provide insight on the programmability of the
platforms that we evaluate, both from a qualitative and quan-
titative standpoint. In order to provide a quantitative metric
for programmability, or more generally, code complexity, we
use the classical source lines of code (SLOC) metric. We
also include code examples and discussion to provide a more
qualitative “feel” for the programming models in terms of
portability, readability, and maintainability. As the level of
optimization increases, programmability decreases. To show
the benefit gained at each level, we discuss the percentage of
best performance achieved at each step.

A. Optimization Levels

Figure la provides a high-level overview of the optimiza-
tion levels that we evaluate, starting from the original serial
implementation and concluding with the manually hand-tuned
implementation for each of the three platforms. We describe
each method and evaluate its programmability aspects.

Directive-based parallelization: The first set of implemen-
tations uses OpenMP and exploits the compiler support for
the CPU and Xeon Phi to provide hinted multithreading as
well as OpenACC, a variant of OpenMP for the GPU, which
we will discuss in further detail below. Using OpenMP, the
programmer can exploit all cores in a compatible device with
the sole inclusion of the OpenMP library and the appropriate
OpenMP directive on each section that should execute in
parallel. This straightforward approach also facilitates code
portability. With the computational kernel of the application
unchanged, the same source can be compiled to serial code or
run on systems with any number of cores. While OpenACC
at first appears to provide an equivalent approach for GPUs,
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Fig. 1: (a) The progression and instantiation of each level of optimization on each architecture with the number of Source
Lines of Code (SLOC) used in each implementation. (b) The percentage of best achieved performance achieved with each

level of optimization.

it is inherently both multi-threaded and vectorized, hence its
spanning of both directive parallel and compiler vectorized.

Compiler-assisted vectorization: Modern compilers can
transform scalar arithmetic to vector arithmetic for regular
algorithms and loops. This set of implementations makes use
of this compiler feature available in the Intel compiler for
multi-core CPUs and Xeon Phi co-processor and in the PGI
compiler suite for GPUs via the native vectorization that comes
with compiling OpenACC for GPUs. The approach of the
latter bears many similarities with OpenMP and the Intel com-
piler’s offload model, combined with the newly released (and
unimplemented as of our testing) OpenMP SIMD directives.

As with the Intel compiler, various parameters/hints can be
used to tune OpenACC regions for better performance. For
example, OpenACC defines clauses to tune the division of
loop nests across parallel blocks and threads, (gang and vector
parameters) and control the independence, or lack thereof, of
iterations in a given loop. However, OpenACC initialization
routines and data movement directives require an additional
16 lines of code. In contrast, for the CPU or Xeon Phi, no
extra lines of code are needed; only the appropriate setting of
compiler flags is needed. In all cases the serial compute code
is retained entirely in its original form and can be compiled
to that serial version without alteration.

Manual vectorization: Explicit use of SIMD intrinsics
offers far greater control over the vectorization of any given
algorithm. Therefore, it can be worth abandoning automatic
cross-architecture compatibility and manually vectorizing the
code. This is the phase where the CPU and Xeon Phi codes
diverge. While they each employ similar vector intrinsics, they
have different vector widths, and thus must use different regis-
ters and different sets of intrinsics. For this phase, the CPU and
Xeon Phi require an additional 82 SLOC. For the GPU, the
corresponding approach uses the CUDA programming model
directly, which implicitly specifies all computations as vector
operations and requires significant setup and data-management
code to be added. These operations require 80 additional
SLOC, nearly the same number needed for transitioning be-

float sum2=(1.f/d_int—1.f/d_ext)/(one_plus_a_bxA);

(a)

__m512 sum2_vect=_mm512_div_ps (
_mm512_sub_ps (
_mm512_div_ps (ONE,D_INT),
_mm512_div_ps (ONE,D_EXT)

__m256 sum?2_vect=_mm256_div_ps (
_mm256_sub_ps (
_mm256_div_ps (ONE,D_INT),
_mm256_div_ps (ONE,D_EXT)

). ),
_mm512_mul_ps (ONE_PLUS_A_B,A) _mm256_mul_ps (ONE_PLUS_A_B,A)

) )

b) (©

Fig. 2: (a) Scalar/CUDA code. (b) Vector intrinsics code for
Xeon Phi. (c) Vector intrinsics code for Sandy Bridge CPU.

tween the corresponding optimization levels for the CPU and
Xeon Phi.

This level of optimization imposes extra intellectual bur-
den on the programmer, specifically “thinking in parallel is
required.” For the CPU and Xeon Phi, the process is quite
similar, as we see in Figures 2b and 2c. Each employ compiler
intrinsic functions to explicitly specify the vector operations
to use. To CPU optimization veterans, this may look familiar,
but otherwise it obscures the intent of the code significantly.
Alternatively, Figure 2a shows the line of code as it is in serial
C, OpenMP, OpenACC, or CUDA, the computation remains
visually the same. The CUDA version does the same thing
as the explicit vector instructions in Figures 2b and 2c, but
it preserves the readability of the original. The burden on the
GPU is mostly in the setup required to call GPU kernels, but it
leaves the computational kernel largely unchanged. The CPU
and Xeon Phi are the reverse at this level, requiring virtually no
setup but a great deal of changes in the computational kernel.

Manually optimized code: For the final set of implementa-
tions, we provide an extra level of optimizations for each of the
evaluation platforms by explicitly using blocking/tiling, shuf-
fling, and explicitly altering the specific hardware instructions
used to target faster execution, such as fused multiply-add
(FMA) and approximate reciprocal division/square root. More
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details about the best set of optimizations for each platform
and a detailed description are given in Section IV.

In CUDA, the applicable optimization techniques are quite
different than those used in typical x86 code. The optimization
search space itself is bigger as well, with minor changes in
the code severely affecting performance (e.g., data structures,
memory coalescing, and efficient use of the memory hier-
archy). In optimizing for the Intel MIC architecture, details
about the underlying architecture (e.g., memory hierarchy and
interconnect details) are essential, but Intel MIC’s resemblance
to traditional multi-core CPU architectures implies similarity
in the optimizations, most of which parallel programmers are
already familiar with.

B. Performance Impact

So far, we have discussed the programming effort required
for each optimization level and provided the number of
SLOC as a rough quantitative measure. In Figure 1b, we
show how close to the best achieved performance for each
platform we get with each optimization level. We observe that
different levels of optimization help reach best performance
at a different rate, depending on the platform. In the case of
the CPU, directive parallel and compiler-assisted vectorization
help attain over 90% of the best achieved CPU performance.
Auto SIMD, in particular, accounts for 71.05% of the achieved
performance. Considering the above, the programmer can rely
on the extensive and highly mature CPU compiler infrastruc-
ture along with OpenMP and still attain high performance.

On the other hand, manual optimizations are quite important
for both the GPU and Xeon Phi. OpenACC is a relatively new
standard and its correspondingly young compilers can only
take performance so far. Explicit use of CUDA or very care-
ful tuning is essential for achieving acceptable performance.
Manual optimizations are required to fill the last 35.9% of the
gap between the performance attained through use of naive
CUDA code and the best achieved performance.

Finally, in the Xeon Phi case, using CPU code directly
on the device in the first two levels delivers extraordinary
programmability, but also a very low percentage of the best
possible performance. Auto-vectorization makes a significant
difference, but even with that and manual vectorization, our
implementation only reached 35% of the best performance
that we achieved overall. Manual optimizations are the most
important (65.7% of overall performance) for Intel MIC, due
to its high sensitivity to caching behavior. We discuss these
optimizations and their effect on performance in detail in
Section IV and Section V.

We note that the above conclusions refer to the case
of n-body class problems or, more generally, data-parallel
workloads with an emphasis on floating-point arithmetic.
Different problem classes might benefit less from directive-
based multithreading or compiler-assisted vectorization due
to irregular data access patterns or complex dependencies. In
such cases, manual SIMD and more complex threading using
appropriate synchronization constructs (e.g., semaphores and
barriers) would be of paramount importance.

Instruction  Vector register Instruction  Vector register
LOAD vO vO vO VO LOAD vO vl v2 V3
LOAD a0 al a2 a3 LOAD a0 al a2 a3

[ )SHUFFLE [al a2 a3 a0
LOAD vy v3 v3 3 SHUFFLE [a2 a3 a0 al
LOAD a0 al a2 a3 SHUFFLE [a3 a0 al a2

Fig. 3: Transformation for shuffling optimization (example).

IV. MAPPING AND OPTIMIZATION

In this section we discuss the optimizations applied across
each platform. Most of the optimizations presented are ben-
eficial for all platforms under consideration. Removal of
conditional statements and flattening of data structures have
been applied to the serial CPU version we use as a baseline.
We explicitly mention when an optimization only applies on
a subset of the target platforms.

Vectorization and multithreading: Since GEM is a data-
parallel n-body code, each output potential can be calculated
independently of all others. This state is commonly referred
to as “embarrassingly parallel,” and makes the first and most
important optimization the use of parallelism to divide the
workload across as many compute resources as possible. On
the CPU and Xeon Phi, we use all thread contexts across
all cores, as well as all SIMD lanes wherever possible. We
use hand-tuned AVX/MIC vector code to pack and operate
on 8/16 atoms at a time for a given vertex. GPUs, featuring
an abundance of thread contexts, allow mapping the potential
calculation for each given vertex to a separate GPU thread.

Removal of conditional statements: Conditional branches
incur execution time overhead on all three platforms, despite
efficient branch prediction on the CPU. Since the conditionals
in the parallel portion of GEM are all pre-determined, rather
than diverging on a per-vertex basis, all of them can be
hoisted out to a single conditional nest used to choose a
final computational function with no conditionals in it. This
saves us both dynamic instructions as well as potential branch
mis-predictions on all devices at the cost of having several
replicated versions of the function expressing each necessary
code path.

Flattening of data structures: Laying out data as an
array of structures (AoS) can seriously impact vector code
performance. The AoS layout is a major cause of misaligned
(in CPUs) and non-coalesced (in GPUs) memory accesses.
More importantly, AoS complicates the mapping of data to
vector units. For example, given a structure of two ints A and
B, the AoS layout intersperses As with Bs, forcing at least
two vectorized gather loads to load a vector register. If, on
the other hand, the As are in one array and Bs in another,
only a single load is required. In GEM, we transform the
AoS used to store the coordinates and charge of surface points
(vertices) and atoms, into multiple arrays, each containing a
single component (e.g., charge) of the structure.

Approximate reciprocal instructions: Floating-point divi-
sion and square root are high-latency operations that stall the
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pipelines of the CPU and Xeon Phi devices as well as working
in a lower-width mode on the CPU. In order to avoid as many
of them as possible we replace them with their low-latency
approximate reciprocal counterparts. These instructions have
much lower latency and make use of look-up tables to calculate
the result. Their drawback is their reduced accuracy. On the
Sandy Bridge CPU they are accurate to the 12 most significant
bits of the mantissa. We tackle the reduced accuracy problem
by using an iteration of the Newton-Raphson (NR) method,
which increases accuracy to a minimum of 23 of 24 bits for
single precision numbers. More details about this method can
be found in [5]. On Xeon Phi, the corresponding reciprocal
instructions natively provide accuracy of 23 of 24 bits of the
mantissa. On K20, the corresponding __frsqrt_rn() intrinsic
we use is fully IEEE-compliant. For the two latter cases, we
do not need to apply Newton-Raphson, keeping the number of
instructions lower than in the CPU (Figure 4c). In any case, the
root mean squared error (RMSE) of calculated potential values
for all implementations against the original serial version’s
output does not exceed 0.000084.

Outer loop unrolling: Each of the m iterations of the outer
loop of an n-body problem entails computation against a set of
n bodies of the inner loop. In ESP calculation this corresponds
to surface points (vertices) and atoms, respectively. As a result,
each iteration of the outer loop requires n memory loads
(all atoms that contribute to the potential of a given vertex).
By “unrolling” the outer loop by a factor k (i.e, calculating
potential at k vertices at a time), we reduce the innermost
loop’s atom loads by the same factor.

Cache blocking and software prefetching: Converting
arrays of structures to multiple arrays enhances spatial locality
and cache use efficiency in all three platforms. Moreover, the
algorithm’s regular memory access patterns facilitate hardware
data prefetching in our multi-core platforms. However, the
large number of atoms in the innermost loop leads to eviction
of relevant atom data from the lower level caches, before they
are fully reused. To alleviate this problem we apply cache
blocking, where each thread loops over all its assigned surface
points and calculates potential contribution for blocks of atoms
at a time. Block size is theoretically calculated, based on the
data size accessed with each iteration and cache details, and
experimentally tuned and verified. Finally, the programmer can
assist the hardware prefetcher by emitting the prefetch intrinsic
with appropriate prefetch distance as a parameter.

Shuffling method: This optimization is not applicable to
all kinds of algorithms, but is especially useful in specific n-
body problems, as in our case. In this method (Figure 3), we
change the default computation pattern, where each (same)
vertex point is loaded at all positions of a vector register and
loops over all atoms. Instead, we load N distinct vertices at
a time in a vector register, load N atoms in another vector
register (where N is 8 for AVX) and then shuffle (i.e., rotate
in a wrap-around fashion) the data elements of the latter, using
the corresponding shuffle intrinsics. This way we can obtain all
the possible combinations of vertices and atoms, as defined by
the algorithm’s all-to-all computation pattern, with a reduced

number of vector loads. In addition to CPUs and Xeon Phi,
Kepler architecture has introduced a shuffle instruction that
achieves similar functionality in the context of a thread warp.

8-byte shared memory access (in Kepler): Kepler GPU
architecture features 32 shared memory banks, 8-bytes wide
each, with a corresponding bandwidth of 8 bytes/bank/clock
per streaming multiprocessor (SMX). Default mode defines
4-byte access to support backward compatibility and similar
bank-conflict behavior with Fermi, a behavior that leads to
sub-optimal bandwidth for certain access patterns. To exploit
the Kepler-supported 8-byte access mode, the programmer
needs to use the appropriate CUDA function and then, in the
case of GEM, transform floating point (FP) type variables to
float2 type variables in a suitable manner (e.g., six FP ones to
three float2).

V. RESULTS AND DISCUSSION

In this section we describe the experimental setup and
discuss the effects of the application of optimizations on
each platform in terms of performance. At the end of this
section, we discuss the best optimization methods set for
each platform and perform a cross-platform comparison of
the corresponding implementations. Finally, we discuss their
efficiency with respect to the theoretical peak throughput, as
experimentally derived by means of assembly code inspection
and taking into account each platform’s specifications.

A. Experimental Setup

We evaluate our GEM [1] implementations across various
optimization levels on three multi- and many-core platforms:
a Sandy Bridge CPU (SNB), Xeon Phi co-processor (XP), and
Kepler K20 GPU (K20), as noted in Figure 4b. Results for all
structures we experimented with, which comprised a different
number of vertices and atoms, show similar trends, which is
characteristic of n-body methods once the workloads are big
enough to saturate available computation units on each plat-
form. For brevity, we only present results for the tobacco ring
virus capsid (1A6C) biomolecular structure, which requires
ESP calculation between 593,615 surface points and 476,040
atoms. In all experimental runs, we use the full parallelization
available on the platform 32 threads on SNB, 240 threads
on XP (leaving one core for the system software) and 1024
threads per block on the GPU with enough blocks to cover the
workload (theoretically achieving 100% occupancy according
to the NVIDIA occupancy calculator). Our results are all
reported based on the runtime of the computational kernel,
setup and data transfer costs are not included. While these
costs are important, our focus in this paper is the effectiveness
of each level of optimization on each platform, which is
independent of the data transfer costs and unaffected by them.

B. Performance Progression by Architecture

In Figure 4a we present speed-up over the reference single
core implementation. Optimizations are cumulative as we
move to the right for each platform, unless otherwise noted
and the Manually vectorized results include the approximate
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Fig. 4: (a) Step by step optimizations. (b) Architectural parameters. (c) Achieved performance over theoretical peak.

reciprocal instructions. Below we conduct a quantitative anal-
ysis of the effect of each optimization series on each platform.

1) Sandy Bridge CPU (SNB): Looking at the performance
of directive-based parallelization and compiler-assisted vec-
torization, we observe that the compiler proves very efficient,
when compared to the manually vectorized implementation
that makes explicit use of vector intrinsics. This is the case
both when we use accurate and approximate versions of the
intrinsics and the corresponding compiler flags. On SNB we
observed, however, that when using the approximate reciprocal
intrinsics (included in Manually vectorized), we get even better
performance compared to using compiler flags for approximate
division and square root (Compiler vectorized). The reason
is apparent in assembly code level. Intel Compiler is not
able to perform the algebraic changes we manually make
to accommodate the fast reciprocal square root and division
intrinsics. As such, the optimized code only uses approximate
fast division and fast square root. Even in this case, we obtain
performance improvement against using the regular division
and square root. The main reason is that the execution unit
used for division and square root is still 128-bit and 256-bit
packed division/square root is broken down into two 128-
bit operations. Using the shuffle method, as described in
Section IV, we achieve an extra 4.7% improvement. This
optimization reduces the number of vertex loads by a factor
equal to the SIMD vector width divided by the size of the
data type we are using (e.g., 8 for AVX and float data type).
It also helps reducing the number of times atoms’ coordinates
are loaded, by the same factor. See Figure 3 for a visual
explanation. While the number of loads are reduced by a factor
of 16 the achieved speed-up is much less impressive, as the
loads occur at worst case in our SNB’s large (20MB) L3 cache,
which is fast by itself and even faster when combined with
efficient hardware prefetching to this and lower -and faster-
cache levels. Finally, using software prefetching does not offer
any significant performance benefits in the case of multi-
core CPUs. The reason behind this behavior is the advanced

hardware prefetching capabilities of modern multi-core CPUs.
For algorithms with regular memory accesses the hardware
prefetcher can efficiently move data between the main memory
and L2 or between L2 and L1 caches ahead of time based on
previous access patterns.

2) Xeon Phi (XP): In contrast to SNB, we observe that
using vector intrinsics on XP is slightly better than compiler
vectorized code (1.20x). As in SNB, use of fast reciprocal
math prevents bottlenecks in the corresponding units observed
in the exact division/square root cases. The performance gap
after multi-threading and vectorization have been applied has
to be filled by manual code optimizations. In the case of
architectures, such as Intel MIC, where there is a lack of large
L3 cache, techniques that make efficient use of the available
cache hierarchy are of great importance. One such technique,
whose effectiveness on that aspect is algorithm-specific, is
outer loop unrolling. In our case, where the outer loop’s
vertices loop over the same set of atoms, unrolling the outer
loop by a factor of two instantly reduces memory accesses by
a factor of two and increases performance by 1.79x.

Cache blocking techniques enhance cache usage and re-
sult in a 1.19x speed-up versus not using them. Software
prefetching instructions, when added on top of the earlier
optimizations, yield an additional 1.37x improvement. As
opposed to SNB, software prefetching is important in XP. One
reason is that in XP, the hardware prefetcher proactively loads
data between memory and L2 cache, but not from L2 to L1.
This gap can be filled by blocking for L1 cache or software
prefetching.

Last, we should mention that the shuffling method we used
for SNB is a technique worth trying on XP, as well. As a
matter of fact, shuffling by itself reduces atom coordinates’
loads by a factor of 16 (i.e., SIMD-width). However, using
shuffling with the optimizations we mentioned earlier results
in a slight slowdown, as it mainly contributes unnecessary
overhead, since outer loop unrolling, cache blocking and soft-
ware prefetching address the expensive main memory transfers
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in an efficient way.

3) Kepler K20 GPU (K20): For K20 the naive CUDA
version performs 4.08x faster than the one produced by using
OpenACC directives. This is as far as we can get by directive-
based programming or naive CUDA programming and com-
piler directives. To get anywhere beyond this performance we
need to resort to lower-level optimizations. Ensuring coalesced
global memory accesses is one of the first optimizations
one has to consider on the GPU but since ours already
are, optimization efforts should be geared towards utilizing
shared memory for data that are accessed by all threads in a
block, such as the atom coordinates and charge. We should
note that even when not using shared memory, the regular
memory access patterns facilitate caching. As a matter of
fact, our shared memory implementation boosts the number of
registers used and along with shared memory limitations leads
to reduced occupancy and performance, with respect to the
preceding implementation. Adding the shuffling method to a
shared memory implementation boosts performance to 724.4x
over the single core CPU implementation, 10% faster than the
preceding implementation. For K20 using one float2, instead
of 2 float variables, allows successive 8-byte words allocation
in successive banks and increased 8-byte wide shared memory
access. This results in a 1.054x speed-up. Blocking, which
proved to increase performance on SNB and XP, is beneficial
for K20 as well. In particular it accounts for an extra 1.16x.
Finally, we perform similar algebraic changes as the ones we
described for SNB and XP and make use of the fast reciprocal
square root and division CUDA intrinsics, together with fused
multiply and add instructions. An extra 6% performance gain
is achieved by this optimization, leading us to the fastest of
our K20 implementations at 1020.88x over the baseline.

C. Intrinsics and Approximation

Last, but not least, we leave the discussion of further opti-
mizing the code using special intrinsics for fast approximate
versions of instructions such as square root, division, fused
multiply-and-add. Compilers, such as Intel Compiler (icc) and
NVIDIA CUDA Compiler (nvce) provide flags for automatic
detection of the regular instructions (or combinations thereof-
such as multiplications followed by an addition). Indeed,
inspecting the assembly/PTX code respectively, we verify
that both icc and nvcc make use of the corresponding fast
instructions (given the algebraic changes mentioned in Section
IV). We should note that without performing these algebraic
changes none of the compilers were able to automatically
perform all the aforementioned optimizations, which is a field
of further research. It is also worth mentioning that nvcc
provided more efficient code with minimal use of manual
intrinsics and the —use_fast_math parameter than our
fully intrinsic based version. Given the nature of the problem,
there must be a manual set which would behave as well,
but the compiler does better than most. On the other hand,
manually adding the intrinsics under consideration on the XP
implementation drastically improved performance.

On the surface it might sound as though the NVIDIA

CUDA compiler is performing more advanced conversion of
instructions than those in the Intel compiler. The truth is
somewhat more complicated. Since the CUDA programming
model is implicitly vectorized, it does not require intrinsics to
specify the intended width of instructions. In practice it just
assumes all instructions are of width 32 and masks off the
extra. On the other hand, the standard programming model
used on the XP is serial and must be explicitly vectorized.
Once intrinsics are used to ensure the correct vector width,
it appears that they are not converted by the compiler even
though it would have the right given the supplied options.
Since intrinsics are meant to be a way to directly insert a
particular instruction, it makes sense that the compiler does
not change it, but it restricts the compiler from performing a
potentially important set of transformations on those instruc-
tions. Adding explicit vectorization to the programming model
without intrinsics, either through directives such as the simd
directive in OpenMP 4.0 or through a language extension like
CUDA, should solve this issue.

D. Performance Efficiency

While we discussed the effectiveness of optimizations in
terms of percentage of best achieved performance in Sec-
tion III-B, that only covers the percentage of the best per-
formance we managed to achieve, not the peak performance
possible from each device. By examining the assembly/PTX
code of the best performing implementations for each device,
we count the number of floating point (FP) instructions in the
algorithm’s critical region (innermost loop)— the larger number
of single precision floating point operations in the SNB version
is due to the accuracy correction approach applied with the
addition of reciprocal divisions and square roots. Taking into
account the potential overlapping of instructions on different
units along with their cycle time, we calculate the expected
number of cycles per iteration of that code region. From
these numbers we can infer the expected vector instructions
per cycle (IPC) and, given each platform’s clock frequency,
the maximum theoretical throughput in GFLOPS ignoring
memory load costs. Subsequently, we calculate the achieved
throughput and efficiency as the ratio of achieved to ideal
performance for the particular algorithm and instruction mix,
as shown in Figure 4c.

These results show a different side to the application perfor-
mance than is portrayed either by performance, as in Figure 4a,
or by the percentage of achieved, as in Figure 1b. Specifically,
while K20 is the best performing overall, and despite the
optimization effort expended on it, it remains at only 54.64%
of theoretical peak performance. In principle that means that
we should be able to get nearly double the performance we on
that architecture. In practice our application is running with
full occupancy and the most optimized instruction mix, shared
memory behavior and instruction mix we have found. On
the other hand, both the SNB and XP parts achieve greater
than 80% of peak performance. This trend in performance
efficiency has been noted before between CPUs and GPUs, but
we find it telling that the XP achieves not just good efficiency,
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but higher than SNB in this case.

VI. RELATED WORK

The need for faster ESP calculation execution, as part of
molecular dynamics applications, has led to the development
of multi- and many-core CPU and GPU implementations [6],
[7], [8], as well as implementations on other heterogeneous
computing platforms (IBM Cell [9]). Specialized hardware
implementations using application-specific integrated circuits
(ASIC), such as MD-GRAPE3 [10] have been deployed to
provide molecular dynamics acceleration, as well. In contrast
to these works, which optimize molecular dynamics on pre-
vious generations of parallel architectures, our paper is one
of the first to address optimization of a molecular modeling
application on the most recent NVIDIA GPU architecture (i.e.,
Kepler) and Intel Xeon Phi co-processor.

Various efforts in determining optimization techniques for
multi-core CPUs and GPUs have been reported. A detailed
study on optimization techniques for the CPU and GPU, along
with an architectural comparison with respect to performance
differences is presented in [11]. Satish et al. [12] research the
Ninja Gap, i.e., the programming effort required to close the
performance gap between mostly automated parallel imple-
mentations and hand-tuned code versions. The work in [11]
does not consider Xeon Phi. Moreover, our work comple-
ments [12] in that it explores a wider range of optimizations
(including the new shuffle feature of Kepler) and provides a
more detailed analysis of the optimizations and their impact
for the n-body class of problems. Finally, as part of directive-
based parallel implementations, we contribute an analysis
of compiler-hinted parallelization for GPUs using OpenACC
and provide direct comparisons between the corresponding
optimization levels across all three platforms, rather than
focusing on the speed-ups and performance gap within a single
platform.

VII. CONCLUSION

In this paper, we presented a characterization of the per-
formance and programmability of GEM across three multi-
and many-core architectures: Intel Sandy Bridge multi-core
CPU, Intel Xeon Phi (MIC) co-processor, and the NVIDIA
Kepler K20 GPU. With respect to performance, we presented
a systematic optimization approach via manual hand-tuning
that achieved overall speed-ups of 194.98, 885.18 and 1020.88
over the unoptimized serial CPU version for the Sandy Bridge
CPU, Xeon Phi MIC, and Kepler K20 GPU, respectively.

From a programmability perspective, the CPU programming
model is arguably the most programmable, mainly due to its
widespread adoption. Xeon Phi, which follows the same pro-
gramming paradigm, benefits from allowing programmers to
leverage their existing knowledge and expertise. On the other
hand, GPU programming for high performance demands the
use of native code, such as CUDA. This entails familiarizing
oneself with a different mindset of parallel programming, a
pertinent array of platform-specific optimization techniques, as
well as taking care of mundane details, such as data transfers

and kernel configuration, but while preserving more of the
original computational code in its original state. Which is
more programmable remains a matter of opinion, but the GPU
and Xeon Phi devices require higher levels of optimization to
reach their performance potential. New compilers and tools are
needed to bridge this gap, and bring high-performance acceler-
ated computing into the reach of the automatic optimizations.
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