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Abstract The proliferation of heterogeneous comput-

ing platforms presents the parallel computing commu-

nity with new challenges. One such challenge entails

evaluating the efficacy of such parallel architectures and

identifying the architectural innovations that ultimately

benefit applications. To address this challenge, we need

benchmarks that capture the execution patterns (i.e.,

dwarfs or motifs) of applications, both present and fu-

ture, in order to guide future hardware design. Further-

more, we desire a common programming model for the

benchmarks that facilitates code portability across a

wide variety of different processors (e.g., CPU, APU,

GPU, FPGA, DSP) and computing environments (e.g.,

embedded, mobile, desktop, server).

As such, we present the latest release of OpenDwarfs,

a benchmark suite that currently realizes the Berke-

ley dwarfs in OpenCL, a vendor-agnostic and open-

standard computing language for parallel computing.

Using OpenDwarfs, we characterize a diverse set of mod-

ern fixed and reconfigurable parallel platforms: multi-

core CPUs, discrete and integrated GPUs, Intel Xeon

Phi co-processor, as well as a FPGA. We describe the

computation and communication patterns exposed by

a representative set of dwarfs, obtain relevant profiling

data and execution information, and draw conclusions

that highlight the complex interplay between dwarfs’

patterns and the underlying hardware architecture of

modern parallel platforms.
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1 Introduction

Over the span of the last decade, the computing world

has borne witness to a parallel computing revolution,

which delivered parallel computing to the masses while

doing so at low cost. The programmer has been pre-

sented with a myriad of new computing platforms promi-

sing ever-increasing performance. Programming these

platforms entails familiarizing oneself with a wide gamut

of programming environments, along with optimization

strategies strongly tied to the underlying architecture.

The aforementioned realizations present the parallel com-

puting community with two challenging problems:

(a) The need of a common means of programming, and

(b) The need of a common means of evaluating this

diverse set of parallel architectures.

The former problem was effectively solved through

a concerted industry effort that led to a new parallel

programming model, i.e., OpenCL. Other efforts, like

SOpenCL [16] and Altera OpenCL [1] enable transform-

ing OpenCL kernels to equivalent synthesizable har-

dware descriptions, thus facilitating exploitation of FP-

GAs as hardware accelerators, while obviating the over-

head of additional development cost and expertise.

The latter problem cannot be sufficiently addressed

by the existing benchmark suites. Such benchmarks

suites (e.g., SPEC CPU [10], PARSEC [4]) are often

written in a language tied to a particular architecture

and porting the benchmarks to another platform would

typically mandate re-writing them using the program-

ming model suited for the platform under considera-

tion. The additional caveat in simply re-casting these
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benchmarks as OpenCL implementations is that exist-

ing benchmark suites represent collections of overly spe-

cific applications that do not address the question of

what the best way of expressing a parallel computa-

tion is. This impedes innovations in hardware design,

which will come as a quid pro quo, only when soft-

ware idiosyncrasies are taken into account at design and

evaluation stages. This is not going to happen unless

software requirements are abstracted in a higher level

and represented by a set of more meaningful bench-

marks. To address all these issues, we proposed Open-

Dwarfs [9], a benchmark suite for heterogeneous com-

puting in OpenCL, in which applications are selected

based on the computation and communication patterns

defined by Berkeley’s Dwarfs [3].

Our contributions in this paper are two-fold:

(a) We present the latest OpenDwarfs release, in which

we attempt to rectify prior release’s shortcomings.

We propose and implement all necessary changes

towards a comprehensive benchmark suite that ad-

heres both to the dwarfs’ concept and established

benchmark creation guidelines.

(b) We verify functional portability and characterize

OpenDwarfs’ performance on multi-core CPUs, dis-

crete and integrated GPUs, the Intel Xeon Phi co-

processor and even FPGAs, and relate our observa-

tions to the underlying computation and communi-

cation pattern of each dwarf.

The rest of the paper is organized as follows: in Sec-

tion 2 we discuss related work and how our work differs

and/or builds upon it. In Section 3 we provide a brief

overview of OpenCL and the FPGA technology. Sec-

tion 4 presents our latest contributions to the Open-

Dwarfs project and the rationale behind some of our

design choices. Following this, in Section 5, we intro-

duce SOpenCL, the tool we use for automatically con-

verting OpenCL kernels to synthesizable Verilog for the

FPGA. Section 6 outlines our experimental setup, fol-

lowed by results and a detailed discussion for each one

of the dwarfs under consideration in Section 7. Section 8

concludes the paper and discusses future work.

2 Related Work

HPC engineering and research have highlighted the im-

portance of developing benchmarks that capture high-

level computation and communication patterns. In [17]

the authors emphasize the need for benchmarks to be

related to scientific paradigms, where a paradigm de-

fines what the important problems in a scientific do-

main are and what the set of accepted solutions is.

This notion of paradigm parallels that of the compu-

tational dwarf. A dwarf is an algorithmic method that

encapsulates a specific computation and communica-

tion pattern. The seven original dwarfs, attributed to

P. Colella’s unpublished work, became known as Berke-

ley’s dwarfs, after Asanovic et al. [3] formalized the

dwarf concept and complemented the original set of

dwarfs with six more. Based in part on the dwarfs,

Keutzer et al. later attempted to define a pattern lan-

guage for parallel programming [11].

The combination of the aforementioned works sets

a concrete theoretical basis for benchmark suites. Fol-

lowing this path and based on the very same nature

of the dwarfs and the global acceptance of OpenCL,

our work on extending OpenDwarfs attempts to present

an all-encompassing benchmark suite for heterogeneous

computing. Such a benchmark suite, whose application

selection delineates modern parallel application require-

ments, can constitute the basis for comparing and guid-

ing hardware and architectural design. On a parallel

path with OpenDwarfs, which was based on OpenCL

from the onset, many existing benchmark suites were

re-implemented in OpenCL and new ones were released

(e.g., Rodinia [5], SHOC [7], Parboil [19]). Most of them

were originally developed as GPU benchmarks and as

such still carry optimizations that favor GPU platforms.

This violates the portability requirement for benchmarks

that mandates a lack of bias for one platform over an-

other [3,17] and prevents drawing broader conclusions

with respect to hardware innovations. We attempt to

address the above issues with our efforts in extending

OpenDwarfs.

On the practical side of matters, benchmark suites

are used for characterizing architectures. In [5] and [7]

the authors discuss architectural differences between

CPUs and GPUs on a higher level. Although not based

on OpenCL kernels, a more detailed discussion on ar-

chitectural features’ implications with respect to algo-

rithms and insight on future architectural design re-

quirements is given in [15]. In this work, we comple-

ment prior research by characterizing OpenDwarfs on

a diverse set of modern parallel architectures, includ-

ing CPUs, APUs, discrete GPUs, the Intel Xeon Phi

co-processor, as well as on FPGAs.

3 Background

3.1 OpenCL

OpenCL provides a parallel programming framework

for a variety of devices, ranging from conventional Chip

Multiprocessors (CMPs) to combinations of heteroge-

neous cores such as CMPs, GPUs, and FPGAs. Its plat-
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form model comprises a host processor and a number

of compute devices. Each device consists of a number

of compute units, which are subsequently subdivided

into a number of processing elements. An OpenCL ap-

plication is organized as a host program and a number

of kernel functions. The host part executes on the host

processor and submits commands that refer to either

the execution of a kernel function or the manipulation

of memory objects. Kernel functions contain the com-

putational part of an application and are executed on

the compute devices. The work corresponding to a sin-

gle invocation of a kernel is called a work-item. Multiple

work-items are organized in a work-group.

OpenCL allows for geometrical partitioning of the

grid of independent computations to an N-dimensional

space of work-groups, with each work-group being sub-

sequently partitioned to an N-dimensional space of work-

items, where 1 ≤ N ≤ 3. Once a command that refers

to the execution of a kernel function is submitted, the

host part of the application defines an abstract index

space, and each work-item executes for a single point in

the index space. A work-item is identified by a tuple of

IDs, defining its position within the work-group, as well

as the position of the work-group within the computa-

tion grid. Based on these IDs, a work-item is able to

access different data (SIMD style) or follow a different

path of execution.

Data transfers between host and device occur via

the PCIe bus in the cases of discrete GPUs and other

types of co-processors like Intel Xeon Phi. In such cases,

the large gap between the (high) computation capa-

bility of the device and the (comparatively low) PCIe

bandwidth may incur significant overall performance
deterioration. The problem is aggravated when an al-

gorithmic pattern demands multiple kernel launches be-

tween costly host-to-device and device-to-host data tran-

sfers. Daga et al. [6] re-visit Amdahl’s law to account

for the parallel overhead incurred by data transfers in

accelerators like discrete or fused GPUs. Similar be-

havior, with respect to restricting available parallelism

is observed in CPUs and APUs, too, when no special

considerations are taken during OpenCL memory buffer

creation and manipulation. In generic OpenCL imple-

mentations, if the CPU-as-device scenario is not taken

into account, unnecessary buffers are allocated and un-

necessary data transfers take place within the common

memory space. The data transfer part on the CPU cases

can be practically eliminated. This requires use of the

CL MEM USE HOST POINTER flag and passing the

host-side pointer to the CPU allocated memory loca-

tion as a parameter at OpenCL buffer creation time.

The OpenCL data transfer commands are consequently

rendered useless. In APUs, due to the tight coupling of

the CPU and GPU core on the same die, and depending

on the exact architecture, more data transfer options

are available for faster data transfers between the CPU

and GPU side. Lee et al. [14] and Spafford et al. [18]

have studied the tradeoffs of fused memory hierarchies.

We leave a detailed study of the dwarfs with respect to

data transfers on APUs for future research.

3.2 FPGA Technology

Compared to the fixed hardware of the CPU and GPU

architectures, FPGAs (field-programmable gate arrays)

are configured post-fabrication through configuration

bits that specify the functionality of the configurable

high-density arrays of uncommitted logic blocks and

the routing channels between them. They offer the high-

est degree of flexibility in tailoring the architecture to

match the application, since they essentially emulate

the functionality of an ASIC (Application Specific In-

tegrated Circuit). FPGAs avoid the overheads of the

traditional ISA-based von Neumann architecture fol-

lowed by CPUs and GPUs and can trade-off computing

resources and performance by selecting the appropriate

level of parallelism to implement an algorithm. Since re-

configurable logic is more efficient in implementing spe-

cific applications than multicore CPUs, it enjoys higher

power efficiency than any general-purpose computing

substrate.

The main drawbacks of FPGAs are two-fold:

(a) They are traditionally programmed using Hardware

Description Languages (VHDL or Verilog), a time-

consuming and labor-intensive task, which requires

deep knowledge of low-level hardware details. Using

SOpenCL, we alleviate the burden of implement-

ing accelerators in FPGAs by utilizing the same

OpenCL code-base used for CPU and GPU pro-

gramming.

(b) The achievable clock frequency in reconfigurable

devices is lower (by almost an order of magnitude)

compared to high-performance processors. In fact,

most FPGA designs operate in a clock frequency

less than 200 MHz, despite aggressive technology

scaling.

4 OpenDwarfs Benchmark Suite

OpenDwarfs is a benchmark suite that comprises 13 of

the dwarfs, as defined in [3]. The dwarfs and their corre-

sponding instantiations (i.e., applications) are shown in

Table 1. This OpenDwarfs release provides full coverage

of the dwarfs, including more stable implementations of
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Table 1 Dwarf Instantiations in OpenDwarfs

Dwarf Dwarf Instantiation
Dense Linear Algebra LUD (LU Decomposition)
Sparse Matrix-Vector Matrix CSR (Compressed Sparse-Row Vector
Multiplication Multiplication)
Graph Traversal BFS (Breadth-First Search)
Spectral Methods FFT (Fast Fourier Transform)
N-body Methods GEM (Electrostatic Surface Potential Calculation)
Structured Grid SRAD (Speckle Reducing Anisotropic Diffusion)
Unstructured Grid CFD (Computational Fluid Dynamics)
Combinational Logic CRC (Cyclic Redundancy Check)
Dynamic Programming NW (Needleman-Wunsch)
Backtrack & Branch and Bound NQ (N-Queens Solver)
Finite State Machine TDM (Temporal Data Mining)
Graphical Models HMM (Hidden Markov Model)
MapReduce StreamMR

the Finite State Machine and Backtrack & Branch and

Bound dwarfs. CSR (Sparse Linear Algebra dwarf) and

CRC (Combinational Logic dwarf) have been extended

to allow for a wider range of options, including running

with varying work-group sizes or running the main ker-

nel multiple times. We plan to propagate these changes

to the rest of the dwarfs, as they can uncover potential

performance issues for each of the dwarfs on devices of

different capabilities.

One of the most important changes in this imple-

mentation of OpenDwarfs is related to the uniformity

of optimization level across all dwarfs. More precisely,

none of the dwarfs contains optimizations that would

make a specific architecture more favorable than an-

other. Use of shared memory, for instance, in many of

the dwarfs in the previous OpenDwarfs release favored

GPU architectures. Such favoritism limits the scope of

a benchmark suite, as we discuss in Section 2, in that it

takes away from the general suitability of an architec-

ture with respect to the computation and communica-

tion pattern intrinsic to a dwarf and rather focuses at-

tention into very architecture-specific and often exotic

software optimizations. We claim that architectural de-

sign should be guided by the dwarfs on the premise that

they form the basic, recurring, patterns of computation

and communication, and that the ensuing architectures

following this design approach would be efficient with-

out the need for the aforementioned optimizations (or

at least the most complex - and painfull for program-

mers - ones).

Of course, the above point does not detract from

the usefulness of optimized dwarf implementations for

specific architectures that may employ each and every

software technique available to get the most of the cur-

rent underlying architecture. In fact, we have ourselves

been working on providing such optimized implemen-

tations for dwarfs on a wide array of CPUs, GPUs and

MIC (e.g., N-body methods [12]) and plan to enrich

the OpenDwarfs repository with such implementations

as a next step. The open source nature of OpenDwarfs

actively encourages the developers’ community to em-

brace and contribute to this goal, as well.

In the end, optimized and unoptimized implementa-

tions of dwarf benchmarks are complementary and one

would argue essential constituent parts of a complete

benchmark suite. We identify three cases that exem-

plify why the above is a practical reality:

(a) Hardware (CPU, GPU, etc.) vendors are mostly in-

terested in the most optimized implementation for

their device, in order to stress their current device’s

capabilities. When designing a new architecture,

however, they need a basic, unoptimized implemen-

tation based on the dwarfs’ concept, so that the

workloads are representative of broad categories,

on which they can subsequently build and develop

their design in a hardware-software synergistic ap-

proach.

(b) Compiler writers also employ both types of imple-

mentations: the unoptimized ones to test their com-

piler back-end optimizations on and the (manually)

optimized ones to compare the efficacy of such com-

piler optimizations. Once more, the generality of

the benchmarks, being based on the dwarfs con-

cept, is of fundamental importance in the generality

(and hence success) of new compiler techniques.

(c) Independent parts/organizations (e.g., lists rank-

ing hardware, IT magazines) want a set of bench-

marks that is portable across devices and in which

all devices start from the same starting point (i.e.,

unoptimized implementations) for fairness in com-

parisons/rankings.

In order to enhance code uniformity, readability and

usability for our benchmark suite, we have augmented

the OpenDwarfs library of common functions. For ex-



Characterization of OpenDwarfs on Fixed and Reconfigurable Architectures 5

ample, we introduce more uniform error checking func-

tionality and messages, while a set of common options

can be used to select and initialize the desired OpenCL

device type at run-time. CPU, GPU, Intel Xeon Phi and

FPGA are the currently available choices. Finally, it re-

tains the previous version’s timing infrastructure. The

latter offers custom macro definitions, which record,

categorize and print timing information of the follow-

ing types: data transfer time (host to device and de-

vice to host), kernel execution time, and total execution

time. The former two are reported both as an aggregate,

and in its constituent parts (e.g., total kernel execution

time, and time per kernel- for multi-kernel dwarf im-

plementations).

The build system remains largely the same, except

for changes allowing selecting the Altera OpenCL SDK

for FPGA execution, while a test-run make target al-

lows verifying correct installation and execution of the

dwarfs using default small test datasets. FPGA sup-

port for Altera FPGAs is offered, but currently limited

to two of the dwarfs, due to lack of complete support

of the OpenCL standard by the Altera OpenCL SDK,

which requires certain alterations to the code for suc-

cessful compilation and full FPGA compatibility [2].

We plan to provide full coverage in upcoming releases,

but for completeness in the context of this work we use

SOpenCL that enables full Xilinx FPGA OpenCL sup-

port.

5 SOpenCL (Silicon OpenCL) Tool

We use the SOpenCL tool [16] to automatically gen-

erate hardware accelerators for the OpenDwarf kernels,

thus dramatically minimizing development time and in-

creasing productivity. SOpenCL enables quick explo-

ration of different architectural scenarios and evaluation

of the quality of the design in terms of computational

bandwidth, clock frequency, and size. The final output

of this procedure is synthesizable Verilog, functionally

equivalent to the original OpenCL kernels, which can

in turn be used to configure an FPGA. This section

outlines some of the basic concepts of the SOpenCL

compilation tool-flow and template architecture.

5.1 Front-end

The SOpenCL front end is a source-to-source compiler

that adjusts the parallelism granularity of an OpenCL

kernel to better match the hardware capabilities of the

FPGA. OpenCL kernel code specifies computation at

a work-item granularity. A straightforward approach

would map a work-item to an invocation of the har-

dware accelerator. This approach is suboptimal for FP-

GAs which incur heavy overhead to initiate thousands

of work-items of fine granularity. SOpenCL, instead, ap-

plies source-to-source transformations that collectively

aim to coarsen the granularity of a kernel function at a

work-group level. The main step in this series of trans-

formations is logical thread serialization. Work-items

inside a work-group can be executed in any sequence,

provided that no synchronization operation is present

inside a kernel function. Based on this observation, we

serialize the execution of work-items by enclosing the

instructions in the body of a kernel function into a triple

nested loop, given that the maximum number of dimen-

sions in the abstract index space within a work-group

is three. Each loop nest enumerates the work-items in

the corresponding dimension, thus serializing their exe-

cution. The output of this stage is a semantically equiv-

alent C code at the work-group granularity.

5.2 Back-end

SOpenCL back-end flow is based on the LLVM com-

piler infrastructure [13] and generates the synthesiz-

able Verilog for synthesizing the final hardware modules

of the accelerator. The functionality of the back-end

supports bitwidth optimization, predication, and swing

modulo scheduling (SMS) as separate LLVM compila-

tion passes:

(a) Bitwidth optimization is used to minimize the width

of functional units and wiring connecting them, to

the maximum expected width of operands at each
level of the circuit, based on the expected range of

input data and the type of operations performed on

input and intermediate data. Experimental evalu-

ation on several integer benchmarks shows signif-

icant area and performance improvement due to

bitwidth optimizations.

(b) Predication converts control dependencies to data

dependences in the inner loop, transforming its body

to a single basic block. This is a prerequisite in or-

der to apply modulo scheduling in the subsequent

step.

(c) Swing modulo scheduling is used to generate a sched-

ule for the inner loops. The scheduler identifies an

iterative pattern of instructions and their assign-

ment to functional units (FUs), so that each itera-

tion can be initiated before the previous ones ter-

minates. SMS creates software pipelines under the

criterion of minimizing the Initiation Interval (II),

which is the constant interval between launches of

successive work-items. Lower values of Initiation In-
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Fig. 1 Architectural
template of a Processing
Element (PE) mod-
ule (left). An example
block diagram of an
automatically generated
hardware accelerator
(right) instantiates mul-
tiple PEs, although only
the PEs with external
access are equipped
with a Streaming Unit.
OpenCL arrays are
implemented as internal
FPGA SRAMs.

terval correspond to higher throughput since more

work-items are initiated and, therefore, more re-

sults are produced per cycle. That makes the Ini-

tiation Interval the main factor affecting computa-

tional bandwidth in modulo scheduled loop code.

5.3 Accelerator Architecture

Figure 1 outlines the architectural template of a Pro-

cessing Element (PE), which consists of the data path

and the streaming unit. The Data Path implements the

modulo-scheduled computations of an innermost loop

in the OpenCL kernel. It consists of a network of func-

tional units (FUs) that produce and consume data el-

ements using explicit input and output FIFO channels

to the streaming units. The customizable parameters

of the data path are the type and bitwidth of func-

tional units (ALUs for arithmetic and logical instruc-

tions, shifters, etc.), the custom operation performed

within a generic functional unit (e.g., only addition or

subtraction for an ALU), the number and size of regis-

ters in the queues between functional units, and the

bandwidth to and from the streaming unit. For ex-

ample, when II=1, one FU will be generated for each

LLVM instruction in the inner loop. The data path sup-

ports both standard and complex data types and all

standard arithmetic operations, including integer and

IEEE-754 compliant single- and double-precision float-

ing point. At compile time, the system selects and in-

tegrates the appropriate implementation according to

precision requirements and the target initiation inter-

val. We use floating-point (FP) units generated by the

FloPoCo [8] arithmetic unit generator.

In case the kernel consists of a single inner loop, the

streaming unit handles all issues regarding data tran-

sfers between the main memory, and the data path.

These include address calculation, data alignment, data

ordering, and bus arbitration and interfacing. The strea-

ming unit consists of one or more input and output

stream modules. It is generated to match the memory

access pattern of the specific application, the charac-

teristics of the interconnect to main memory, and the

bandwidth requirements of the data path.

SOpenCL infrastructure supports arbitrary loop ne-

sts and shapes. Different loops at the same level of a

loop nest are implemented as distinct PEs data paths,

which communicate and synchronize through local mem-

ory buffers (Figure 1). Similarly, SOpenCL supports

barrier synchronization constructs within a computa-

tional kernel.

Finally, Control Elements (CEs) are used to control

and execute code of outer loops in a multilevel loop

nest. CEs have a simpler, less optimized architecture,

since outer loop code does not execute as frequently as

inner loop code.
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Table 2 Configuration of the Target Fixed Architectures

Model AMD Opteron AMD Llano AMD Radeon AMD A10- AMD Radeon AMD Radeon Intel Xeon Phi
6272 A8-3850 HD 6550D 5800K HD 7660D HD 7970 P1750

Type CPU CPU* Integr. GPU* CPU* Integr. GPU* Discrete GPU Co-processor
Frequency 2.1 GHz 2.9 GHz 600 MHz 3.8 GHz 800 MHz 925 MHz 1.09 GHz
Cores 16 4 5† 4 6† 32† 61
Threads/core 1 1 5 1 4 4 4
L1/L2/L3 16/2048/ 64/1024/- 8/128/- 64/2048/- 8/128/- 16/768/- 32/512/-
Cache (KB) 8192‡ (per core) (L1 per CU) (per 2 cores) (L1 per CU) (L1 per CU) (per core)
SIMD (SP) 4-way 4-way 16-way 8-way 16-way 16-way 16-way
Process 32nm 32nm 32nm 32nm 32nm 32nm 22nm
TDP 115W 100W* 100W* 100W* 100W* 210W 300W
GFLOPS (SP) 134.4 46.4 480 121.6 614.4 3790 2092.8

† Compute Units (CU) ‡ L1: 16KBx16 data shared, L2: 2MBx8 shared, L3: 8MBx2 shared * CPU and GPU fused on the
same die, total TDP

6 Experimental Setup

This section presents our experimental setup. First, we

present the software setup and methodology used for

collecting the results and discuss the hardware used in

our experiments.

6.1 Software and experimental methodology

For benchmarking our target architectures we use Open-

Dwarfs (as discussed in Section 4), available for down-

load at https://github.com/opendwarfs/OpenDwarfs.

The CPU/GPU/APU software environment consists

of 64-bit Debian Linux 7.0 with kernel version 2.6.37,

GCC 4.7.2 and AMD APP SDK 2.8. AMD GPU/APU

drivers are AMD Catalyst 13.1. Intel Xeon Phi is hosted

on a CentOS 6.3 environment with the Intel SDK for

OpenCL applications XE 2013. For profiling we use

AMD CodeXL 1.3 and Intel Vtune Amplifier XE 2013

for the CPU/GPU/APU and Intel Xeon Phi, respec-

tively. In Table 3 we provide details about the subset of

dwarf applications used and their input datasets and/or

parameters. Kernel execution time and data transfer

times are accounted for and measured by use of the cor-

responding OpenDwarfs timing infrastructure. In turn,

the aforementioned infrastructure lies on the OpenCL

events (which return timing information as a cl ulong

type) to provide accurate timing in nanosecond resolu-

tion.

6.2 Hardware

In order to capture a wide range of parallel architec-

tures, we pick a set of representative device types: a

high-end multi-core CPU (AMD Opteron 6272) and

a high-performance discrete GPU (AMD Radeon HD

7970). An integrated GPU (AMD Radeon HD 6550D)

and a low-powered low-end CPU (A8-3850), both part

Table 3 OpenDwarfs Benchmark Test Parameters/Inputs

Benchmark Problem Size
GEM Input file & parameters: nucleosome 80 1 0.
NW Two protein sequences of 4096 letters each.
SRAD 2048x2048 FP matrix, 128 iterations.
BFS Graph: 248,730 nodes and 893,003 edges.
CRC Input data-stream: 100MB.
CSR 20482 x 20482 sparse matrix.

of a heterogeneous Llano APU system (i.e., CPU and

GPU fused on the same die), as well as a newer gener-

ation APU system (Trinity) comprising an A10-5800K

and an AMD Radeon HD 7660D integrated GPU. Fi-

nally, an Intel Xeon Phi co-processor. Details for each of

the aforementioned architectures are given in Table 2.

To evaluate OpenDwarfs on FPGAs, we use the Xilinx

Virtex-6 LX760 FPGA on a PCIe v2.1 board, which

consumes approximately 50 W and contains 118560 logic

slices. Each slice includes 4 LUTs and 8 flip-flops. FPGA

clock frequency ranges from 150 to 200 MHz for all de-

signs.

7 Results

Here we present our results of running a representative

subset of the dwarfs on a wide array of parallel archi-

tectures. After we verify functional portability across

all platforms, including the FPGA, we characterize the

dwarfs and illustrate their utility in guiding architec-

tural innovation, which is one of the main premises of

the OpenDwarfs benchmark suite.

7.1 N-body Methods: GEM

The n-body class of algorithms refers to those algo-

rithms that are characterized by all-to-all computations

within a set of particles (bodies). In the case of GEM,

our n-body application, the electrostatic surface po-

tential of a biomolecule is calculated as the sum of
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Fig. 2 GEM

charges contributed by all atoms in the biomolecule

due to their interaction with a specific surface vertex

(two sets of bodies). In Figure 2 we illustrate the com-

putation pattern of GEM and present the pseudocode

running on the OpenCL host and device. Each work-

item accumulates the potential at a single vertex due

to every atom in the biomolecule. A number of work-

groups (BLOCKS=120 in our example) each having

blockDimX*blockDimY work-items (4096 in our exam-

ple) is launched, until all vertices’ potential has been

calculated.

GEM’s computation pattern is regular, in that the

same amount of computation is performed by each work-

item in a work-group and no dependencies hinder com-

putation continuity. Total execution time mainly de-

pends on the maximum computation throughput. Com-

putation itself is characterized by FP arithmetic, in-

cluding (typically expensive) division and square root

operations that constitute one of the main bottlenecks.

Special hardware can provide low latency alternatives

of these operations, albeit at the cost of minor accu-

racy loss that may or may not be acceptable for certain

types of applications. Such fast math implementations

are featured in many architectures and typically utilize

look-up tables for fast calculations.

With respect to data accesses, atom data is accessed

in a serial pattern, simultaneously by all work-items.

This facilitates efficient utilization of cache memories

available in each architecture. Figure 3 and Table 2

can assist in pinpointing which architectural features

are important for satisfactory GEM performance: good

FP performance and sufficient first level cache. With

respect to the former, Opteron 6272 and A10-5800K

CPUs reach about 130 GFLOPS and A8-3850 falls be-

hind by a factor of 2.9, as defined by their number of

cores, SIMD capability and core frequency. However,

the cache hierarchy between the three CPU architec-

tures is fundamentally different. Opteron 6272 has 16K

of L1 cache per core, which is shared among all 16 cores.

Given the computation and communication pattern of

n-body dwarfs, such types of caches may be an effi-

cient choice. Cache miss rates at this level (L1), are

also indicative of the fact: A8-3850 with 64KB of ded-

icated L1 cache per core is characterized by a 0.55%

L1 cache miss rate, with Opteron 6272 at 10.2% and

A10-5800K a higher 24.25%. Those data accesses that

result in L1 cache misses are mostly served by L2 cache

and rarely require expensive RAM memory accesses.

Measured L2 cache miss rates are 4.5%, 0.18% and
0%, respectively, reflecting the L2 cache capability of

the respective platforms (Table 2). Of course, the ab-

solute number of accesses to L2 cache, depend on the

previous level’s cache misses, so a smaller percentage

on a platform, tells only part of the story if we plan

to compare different platforms to each other. In cases

where data accesses follow a predictable pattern, like

in GEM, specialized hardware can predict what data

is going to be needed and fetch it ahead of time. Such

hardware prefetch units are available - and of advanced

maturity - in multi-core CPUs. This proactive loading

of data can take place between the main memory and

last level cache (LLC) or between different cache levels.

In all three CPU platforms, a large number of prefetch

instructions is emitted, as seen through profiling the

appropriate counter, which, together with the regular

data access patterns, verify the overall low L1 cache

miss rates mentioned earlier.
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Fig. 3 Results: (a) GEM, (b) NW, (c) SRAD, (d) BFS, (e) CRC, (f) CSR

Xeon Phi’s execution is characterized by high vec-

torization intensity (12.84, the ideal being 16), which

results from regular data access patterns and implies ef-

ficient auto-vectorization on behalf of the Intel OpenCL

compiler and its implicit vectorization module. How-

ever, profiling reveals that the estimated latency impact

is high indicating that the majority of L1 misses result

in misses in L2 cache, too. This signifies the need for

optimizations such as data reorganization and block-

ing for L2 cache, or the introduction of a more ad-

vanced hardware prefetch unit in future Xeon Phi edi-

tions - currently there is lack of automatic (i.e., har-

dware) prefetching to L1 cache (only main memory to

L2 cache prefetching is supported). Further enhance-

ment of the ring interconnect that allows efficient shar-

ing of the dedicated (per core) L2 cache contents across

cores would also assist in attaining better performance

for the n-body dwarf. While Xeon Phi, lying between

the multi-core CPU and many-core GPU paradigms,

achieves good overall performance for this - unopti-
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  Kernel(	
  );	
  

}	
  
for(j=block_width-­‐1;	
  i>=1;	
  j-­‐-­‐){	
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  Kernel(	
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  cell;	
  
	
  barrier();	
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}	
  

Kernel:	
  

Host	
  code:	
  

Fig. 4 Needleman-Wunsch

mized, architecture agnostic - code implementation, it

falls behind its theoretical maximum performance of

nearly 2 TFLOPS.

With respect to GPU performance, raw FP perfor-

mance is one of the deciding factors, as well. As a result

HD 7970 performs the best and is characterized by the

best occupancy (70%), compared to 57.14% and 37.5%

for HD 7660D and HD 6550D, respectively. In all three

cases, cache hit rates are over 97% (reaching 99.96%

for HD 7970, corroborating that our conclusions for the

CPU cache architectures hold for GPUs, too, for this

class of applications (i.e, n-body dwarf). Correspond-

ingly, the measured percentage of memory unit stalls

is held at low levels. In fact, the memory unit is kept

busy for over 76% of the time for all three GPU ar-

chitectures, including all extra fetches and writes and

taking any cache or memory effects into account.

Although FPGAs are not made for FP performance,

SOpenCL produces accelerators whose performance lies

between that of CPUs and GPUs. SOpenCL instanti-

ates modules for single-precision FP operations, such as

division and square root. Partially unrolling the outer

loop executed by each thread four times results in nearly

4-fold speedup (FPGA C2) compared to the base accel-

erator configuration (FPGA C1). Multiple accelerators

can be instantiated and process in parallel different ver-

tices on the grid, thus providing even higher speedup

(FPGA C3).

7.2 Dynamic Programming: Needleman-Wunsch (NW)

Dynamic programming is a programming method in

which a complex problem is solved by decomposition

into smaller subproblems. Combining the solutions to

the subproblems provides the solution to the original

problem. Our dynamic programming dwarf, Needleman-

Wunsch, performs protein sequence alignment, i.e., at-

tempts to identify the similarity level between two given

strings of aminoacids. Figure 4 illustrates its computa-

tion pattern and two levels of parallelism. Each element

of the 2D matrix depends on the values of its west,

north and north-west neighbors. This set of dependen-

cies limits available parallelism and enforces a wave-

front computation pattern. On the first level blocks of

computation (i.e., OpenCL work-groups) are launched

across the anti-diagonal and on the second level, each

of the work-group’s work-items works on cells on each

anti-diagonal. Available parallelism at each stage is vari-

able, starting with a single work-group, increasing as

we reach the main anti-diagonal and decreasing again

as we reach the bottom right. Parallelism varies within

each work-group in a similar way, as shown in the re-
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Fig. 5 NW profiling on HD 7660D.

spective figure, where a variable number of work-items

work independently in parallel at each anti-diagonal’s

level. Needleman-Wunsch algorithm imposes significant

synchronization overhead (repetitive barrier invocation

within the kernel) and requires modest integer perfor-

mance. Computations for each 2D matrix cell entail cal-

culating an alignment score that depends on the three

neighboring entries (west, north, northwest) and a max

operation (i.e., nested if statements).

In algorithms like NW that are characterized by

inter- and intra-work-group dependencies there are two

big considerations. First, the overhead for repetitively

launching a kernel (corresponding to inter-work-group

synchronization), and second, the cost of the intra- work-

group synchronization via barrier() or any other syn-

chronization primitives. Introducing system-wide (har-

dware) barriers would help to solve the former of the

problems, while optimization of already existing intra-

work-group synchronization primitives would be bene-

ficial for this kind of applications for the latter case.

Memory accesses follow the same pattern as compu-

tation, i.e., for each element the west, north and north-

west elements are loaded from the reference matrix. For

each anti-diagonal m within a work-group (Figure 4)

the updated data from anti-diagonal m-1 is used.

As we can observe, GPUs do not perform consid-

erably better than the CPUs. In fact, Opteron 6272

surpasses all GPUs (and even Xeon Phi), when we only

take kernel execution time into account. What needs to

be emphasized in the case of algorithms, such as NW, is

the variability in the characteristics of each kernel itera-

tion. In Figure 5 we observe such variability for metrics

like the percentage of the time the ALU is busy, the

cache hit rate, the fetch unit is busy or stalled, on the

HD 7660D. Similar behavior is observed in the case of

HD 6550D. Most of these metrics can be observed to be

a function of the number of active wavefronts in every

kernel launch. For instance, cache hit follows an inverse-

U-shaped curve, as do most of the aforementioned met-

rics. In both cases, occupancy is below 40% (25% for

HD 6550D) and ALU packing efficiency barely reaches

50%, which indicates a mediocre job on behalf of the

shader compiler in packing scalar and vector instruc-

tions as VLIW instructions of the Llano and Trinity

integrated GPUs (i.e., HD 6550D and HD 7660D).

As expected, the FPGA performs the best when it

comes to integer code, in which case, its performance

lies closer to GPUs than to CPUs. Multiple accelera-

tors (5 pairs) and fully unrolling the innermost loop

deliver higher performance (FPGA C2) than a single

pair (FPGA C1) and render the FPGA implementa-

tion the fastest choice for the dynamic programming

dwarf. In the FPGA implementation of NW, the data

fetches’ pattern favors decoupling of the compute path

from the data fetch & fetch address generation unit, as

well as from the data store & store address generation

unit. This allows aggressive data prefetching in buffers

ahead of time of the actual data requests.

7.3 Structured Grids: Speckle Reducing Anisotropic

Diffusion (SRAD)

Structured grids refers to those algorithms in which

computation proceeds as a series of grid update steps. It

constitutes a separate class of algorithms from unstruc-

tured grids, in that the data is arranged in a regular grid

of two or more dimensions (typically 2D or 3D). SRAD

is a structured grids application that attempts to elim-

inate speckles (i.e., locally correlated noise) from im-

ages, following a partial differential equation approach.

Figure 6 presents a high-level overview of the SRAD
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Loop	
  for	
  iter	
  number	
  of	
  itera/ons{	
  
	
  calculate	
  sta/s/cs	
  for	
  the	
  region	
  of	
  interest 	
  	
  
	
  blockX=columns/BLOCK_SIZE;	
  
	
  blockY=rows/BLOCK_SIZE;	
  
	
  localWorkSize[2]={BLOCK_SIZE,	
  BLOCK_SIZE};	
  
	
  globalWorkSize[2]={blockX*localWorkSize[0],	
  
	
   	
   	
   	
  	
  	
  	
  	
  	
  	
  blockY*localWorkSize[1]};	
  
	
  kernel1();	
  
	
  kernel2();	
  

}	
  

(Each	
  work-­‐item	
  (i,j)	
  works	
  on	
  a	
  2D	
  table	
  element)	
  
dN[i][j]=J[north][j]-­‐J[i][j];	
  
dS[i][j]=J[south][j]-­‐J[i][j];	
  
dW[i][j]=J[i][west]-­‐J[i][j];	
  
dE[i][j]=J[i][east]-­‐J[i][j];	
  
Calculate	
  various	
  parameters	
  based	
  above	
  	
  
values	
  &	
  ini/al	
  J[i][[j]	
  value;	
  
Using	
  the	
  above	
  value,	
  calculate	
  diffusion	
  	
  
coefficient	
  c[i][j];	
  

(Each	
  work-­‐item	
  (i,j)	
  works	
  on	
  a	
  2D	
  table	
  element)	
  
cN=c[i][j];	
  
cS=c[north][j];	
  
cW=c[i][j];	
  
cE=c[i][east];	
  
D=cN*dN[i][j]+cS*dS[i][j]+cW*dW[i][j]+cE*dE[i][j];	
  
J[i][j]=J[i][j]+0.25*lambda*D;	
  

Host	
  code:	
  

Kernel1:	
  

Kernel2:	
  

Fig. 6 SRAD

algorithm, without getting into the specific details (pa-

rameters, etc.) of the method. Performance is deter-
mined by FP compute power. The computational pat-

tern is characterized by a mix of FP calculations in-

cluding divisions, additions and multiplications. Many

of the computations in both SRAD kernels are in the

form: x = a ∗ b + c ∗ d + e ∗ f + g ∗ e. These com-

putations can easily be transformed by the compiler

to multiply-and-add operations. In such cases, special

fused multiply-and-add units can offer a faster alterna-

tive to the typical series of separate multiplication and

addition. While such units are already existent, more in-

stances can be beneficial for the structured grids dwarf.

A series of if statements (simple in kernel1, nested

in kernel2 ) handles boundary conditions and different

branches are taken by different work-items, potentially

within the same work-group. Since boundaries consti-

tute only a small part of the execution profile, espe-

cially for large datasets, these branches do not intro-

duce significant divergence. In the case of CPU and

Xeon Phi execution, branch misprediction rate never

exceeded 1%, while on the GPUs VALUUtilization re-

mained above 86% indicating a high number of active

vector ALU threads in a wave and consequently mini-

mal branch divergence and code serialization.

Following its computational pattern, memory access

patterns in SRAD, as in all kinds of stencil compu-

tation, are localized and statically determined, an at-

tribute that favors data parallelism. Although the data

access pattern is a priori known, non-consecutive data

accesses, prohibit ideal caching. As in the NW case,

where data is accessed in a non-linear pattern, data lo-

cality is an issue here, too. Cache hit rates, especially

for the GPUs, remain low (e.g., 33% for HD 7970). This

leads to the memory unit being stalled for a large per-

centage of the execution time (e.g., 45% and 29% on

average for HD 7970, for the two OpenCL kernels).

Correspondingly, the vector and scalar ALU instruction

units are busy for a small percentage of the total GPU

execution time (about 21% and 5.6% for our example,

on the two kernels on HD 7970). All this is highlighted

by comparing performance across the three GPUs, and

once more, indicates the need for advancements in the

memory technology that would make fast, large caches

more affordable for computer architects.

On the CPU and Xeon Phi side, large cache lines can

afford to host more than one row of the 2D input data

(depending on the input sequences’ sizes). The huge L3

cache of Opteron 6272, along with its high core count,

make it very efficient in executing this structured grid

dwarf. In such algorithms, it is a balance between cache

and compute power that distinguishes a good target ar-

chitecture. Of course, depending on the input data set

there are obvious trade-offs, as in the case of GPUs,

which despite their poor cache performance are able

to hide the latency by performing more computation

simultaneously while waiting for the data to be avail-

able.

An FPGA implementation with a single pair of ac-

celerators (one accelerator for each OpenCL kernel) of-

fers performance worse even than that of the single-

threaded Opteron 6272 execution (FPGA C1). This is

attributed mainly to the complex FP operations FP-

GAs are notoriously inefficient at. Multiple instances

of these pairs of accelerators (five pairs in FPGA C2)

can process parts of the grid independently, bringing

FPGA performance close to that of multicore CPUs.

Different work-groups access separate portions of mem-

ory, hence multiple accelerators instances access differ-

ent on-chip memories, keeping accelerators isolated and

self-contained.
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1	
   3	
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4	
  

)d=getGlobalId();	
  
if()d<numNodes	
  and	
  node_as_source[)d]==1){	
  

	
  node_as_source[)d]=0;;	
  
	
  for	
  (all	
  neighbors	
  neighb[i]	
  of	
  current	
  node)	
  
	
   	
  if(!node_visited[neighb[i]]){	
  
	
   	
   	
  cost[neighb[i]]=cost[)d]+1;	
  
	
   	
   	
  update_node_info[neighb[i]]=1;	
  
	
   	
  } 	
   	
  	
  

}	
  

)d=getGlobalId();	
  
if()d<numNodes	
  and	
  	
  
update_node_info==1){	
  

	
  node_as_source[)d]=1;	
  
	
  mark	
  node_visited[)d]=1;	
  
	
  update_node_info[)d]=0;	
  
	
  stop=0;	
  

}	
  

maxThreads=numNodes	
  <	
  maxThreads?numNodes	
  :	
  maxThreads;	
  
globalWorkSize=(numNodes/maxThreads)*maxThreads+	
  

	
   	
   	
  ((numNodes%maxThreads)==0?0:maxThreads);	
  
localWorkSize=max_threads;	
  
node_as_source[]={1,0,0,0,0,0,0};	
  	
  
node_visited[]={1,0,0,0,0,0,0};	
  
update_node_info[]={0,0,0,0,0,0,0};	
  	
  
cost[]={0,0,0,0,0,0,0};	
  
	
  Iter.	
   Kernel	
   Thread	
  id	
  (8d)	
  

0	
   1	
   2	
   3	
   4	
   5	
   6	
  

1	
   kernel1	
   ✔	
   ✗ ✗ ✗ ✗ ✗ ✗
1	
   kernel2	
   ✗ ✔ ✔ ✔ ✗ ✗ ✗
2	
   kernel1	
   ✗ ✔ ✔ ✔ ✗ ✗ ✗
2	
   kernel2	
   ✗ ✗ ✗ ✗ ✔	
   ✔	
   ✔

3	
   kernel1	
   ✗ ✗ ✗ ✗ ✔	
   ✔	
   ✔

4	
   kernel2	
   ✗ ✗ ✗ ✗ ✗ ✗ ✗

Kernel1:	
   Kernel2:	
  

do{	
  
	
  stop=1;	
  
	
  kernel1();	
  
	
  kernel2();	
  

}while(stop==0);	
  

Host	
  code:	
  

Fig. 7 BFS

7.4 Graph Traversal: Breadth-First Search (BFS)

Graph traversal algorithms entail traversing a number

of graph nodes and examining their characteristics. As

a graph traversal application, we select a BFS imple-

mentation. BFS algorithms start from the root node

and visit all the immediate neighbors. Subsequently,

for each of these neighbors the corresponding (unvis-

ited) neighbors are inspected, eventually leading to the

traversal of the whole graph. BFS’s computation pat-

tern can be observed through a simple example (Fig-

ure 7), as well as by its host and device side pseudocode.

The BFS algorithm’s computation pattern is character-

ized by an imbalanced workload per kernel launch that

depends on the sum of the degrees deg(vi) of the nodes

at each level. For example (Figure 7), deg(v0)=3, so

only three work-items perform actual work in the first

invocation of kernel2. Subsequently, kernel1 has three

work-items, as well. Second invocation of kernel2 per-

forms work on three nodes again (deg(v1) + deg(v2)

+ deg(v3) = 8, but nodes v0, v1, v2 have already been

visited, so effective deg(v1) + deg(v2) + deg(v3) = 3).

Computation itself is negligible, being reduced to a sim-

ple addition with respect to each node’s cost.

The way the algorithm works might lead to erro-

neous conclusions, if only occupancy and ALU utiliza-

tion is taken into account, as in all three GPU cases it

is over 95% and 88%, respectively (for both kernels).

The problem lies in the fact that not all work-items

perform useful work, and the fact that the kernels are

characterized by reduced compute intensity (Figure 7).

In such cases, up to a certain degree of problem size

or for certain problem shapes, the number of compute

units or frequency are not of paramount importance

and high-end cards, like HD 7970 are about as fast

as an integrated GPU (e.g., HD 7660D). The above is

highlighted by the hardware performance counters that

indicate poor ALU packing (e.g., 36.1% and 38.9% for

the two BFS OpenCL kernels, on HD 7660D). Simi-

larly, for HD 7970, the vector ALU is busy only for

5% (approximate value across kernel iterations) of the

GPU execution time, even if the number of active vec-

tor ALU threads in the wave is high (VALUUtilization:

88.8%).

For similar reasons, CPU execution performance is

capped on Opteron 6272, which performs only marginally

better than A8-3850. It is interesting to see that A10-

5800K and even Xeon Phi, with 8- and 16-way SIMD

are characterized by lack of performance scalability.

Why performance of A10-5800K is not at least simi-

lar to that of A8-3850 could not be pinpointed during

profiling. However, in both A10-5800K and Xeon Phi

cases, we found that the OpenCL compiler could not

take advantage of the 256- and 512-bit wide vector unit,

because of the very nature of graph traversal.

With respect to data accesses, BFS exhibits irreg-

ular access patterns. Each work-item accesses discon-

tiguous memory locations, depending on the connectiv-

ity properties of the graph, i.e, how nodes of the cur-

rent level being inspected are being connected to other

nodes in the graph. Figure 7 is not only indicative of

the resource utilization (work-items doing useful work),

but of the inherent irregularity of memory accesses that
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Fig. 8 BFS cache performance comparison between HD 7970
and HD 7660D.

depend on run-time assessed multiple levels of indirec-

tion, as well. Available caches’ size define the cache hit

rate, even in these cases, so HD 7970, which provides

larger amounts of cache memory provides higher cache

hit rates compared to the HD 7660D (varying for each

kernel iteration, Figure 8).

The FPGA implementation of BFS (FPGA C1) is

the fastest across all tested platforms. While kernel1 is

not as fast as in the fastest of our GPU platforms, min-

imal execution time for kernel2 and data transfer time

render it the ideal platform for graph traversal, despite

the dynamic memory access pattern causing the input

streaming unit to be merged with the data path, elim-

inating the possibility of aggressive data prefetching.

7.5 Combinational Logic - Cyclic Redundancy Check

(CRC)

Cyclic Redundancy Check (CRC) is an error-detecting

code designed to detect errors caused by network trans-

mission (or any other accidental error on the data). On

a higher level, a polynomial division by a predetermined

CRC polynomial is performed on the input data stream

S and the remainder from this division constitutes the

stream’s CRC value. This value is typically added to

the end of the data stream as it is transmitted. At the

receiver end, a division of the augmented data stream

with the (same, pre-determined) polynomial, will yield

zero remainder on successful transmission. CRC algo-

rithms that perform at the bit level are rather inefficient

and many optimizations have been proposed that oper-

ate in larger units, namely 8, 16 or 32 bits. The imple-

mentation in OpenDwarfs follows a byte-based table-

driven approach, where the values of the look-up table

can be computed ahead of time and reused for CRC

computations. The algorithm we use exploits a multi-

level look-up table structure that eliminates the exis-

tence of an additional loop, thereby trading-off on-the-

fly computation with the need for pre-computation and

additional storage. Figure 9 shows the pseudocode of

this implementation and provides a small, yet illustra-

tive example of how the algorithm is implemented in

parallel in OpenCL: the input data stream is split in

byte-chunked sizes and each OpenCL work-item in a

work-group is responsible for performing computation

on this particular byte. The final CRC value is com-

puted on the host once all partial results have been com-

puted in the device. Figure 10 supplements Figure 9 by

illustrating how multi-level look-up tables used in the

kernel work and their specific values for the example at

hand.

CRC, being a representative application of combi-

national logic algorithms is characterized by abundance

of simple logic operations and data parallelism at the

byte granularity. Such operations are fast in most archi-

tectures, and can be typically implemented as minimal-

latency instructions, in comparison to complex instruc-

tions (like floating point division) that are split across

multiple stages in modern superscalar architectures and

introduce a slew of complex dependencies. Given the

computational pattern of the CRC algorithm at hand,

which is highly parallel, we are not surprized to observe

high speedups for multi-threaded execution, in all plat-

forms. For instance, in the Opteron 6272 CPU case, we

observe a 12.2-fold speedup over the single-threaded ex-

ecution. Similarly, Xeon Phi execution for the OpenCL

kernel reaches maximum hardware thread utilization,

according to our profiling results. The integrated GPUs

in our experiments, which belong to the same archi-

tecture family, exhibit performance that is analogous

to their number of cores and threads per core (as de-

fined in Table 2). HD 7970, is a representative GPU of

the AMD GCN (Graphics Core Next) architecture and

bears fundamental differences to its predecessors, which

may affect performance, as we see below.

With respect to the algorithm’s underlying commu-

nication patterns, memory accesses in CRC are affine

functions of a dynamically computed quantity (tmp).

Specifically, as we see in Figure 9, inner-loop, cross-

iteration dependencies due to stored state in variable

tmp, cause input data addresses to the multi-level look-

up table to be runtime-dependent. Obviously, this im-

plies lack of cache locality, is detrimental to any prefetch-

ing hardware utilization and hence results to poor over-

all cache behavior. The effect of such cache behavior is

highlighted by our findings in profiling runs across our

test architectures. All three GPUs suffer from cache hit

rates that range from 5.48% to 7.13%. Depending on

the CRC size, such precomputed tables may be able to
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Host	
  code:	
  
localWorkSize=getMaxWorkitemsPerWorkgroup();	
  
globalWorkSize=N_bytes/localWorkSize-­‐N_bytes%localWorkSize;	
  
Kernel();	
  	
  
for(i=0;	
  i<N_bytes;i++){	
  

	
  crc=crc^crc_loc[i];	
  //crc_loc[]	
  contains	
  crc	
  for	
  byte	
  i,	
  	
  
	
   	
   	
   	
  //calculated	
  on	
  the	
  device.	
  

}	
  

Kernel:	
  

Qd=getGlobalId();	
  
If(Qd<N_bytes){	
  

	
  tmp=in_stream_byte[Qd];	
  
val=N_bytes-­‐Qd;	
  
for(i=0;	
  i<numTables;	
  i++){ 	
  	
  

	
  if(	
  (val>>i)%2==1){	
  
	
  tmp=table[i][tmp] 	
  	
  

} 	
  	
  
}	
  
crc_loc[Qd]=tmp;	
  

}	
  

Work-­‐item	
  0	
  
Qd=0	
  
tmp=00001011(=11)	
  
val=2-­‐0=2	
  
i=0:	
  (condiQon	
  false)	
  
i=1:	
  tmp=table[1][11]	
  
crc_loc[0]=tmp;	
  

Work-­‐item	
  1	
  
Qd=1	
  
tmp=00000011(=3)	
  
val=2-­‐1=1	
  
i=0:	
  tmp=table[0][3]	
  
i=1:	
  (condiQon	
  false)	
  
crc_loc[1]=tmp;	
  

S	
  =	
  0000101100000011	
  
in_stream_byte[]	
  =	
  	
  
{00001011,	
  00000011}	
  

Example:	
  

Fig. 9 CRC pseudocode and a simple traceable example.

In	
  our	
  example:	
  
table[1][11]	
  =	
  table[0][table[0][11]]	
  	
  =	
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table[0][3]	
  =	
  0101	
  

Look-­‐up	
  table	
  seman4cs:	
  
•  table[0][i]	
  contains	
  the	
  CRC	
  value	
  of	
  i	
  with	
  a	
  given	
  n-­‐bit	
  polynomial	
  P	
  

(here	
  P	
  =	
  10011)	
  
•  table[j][i]	
  =	
  table[j-­‐1][table[j-­‐1][i]]	
  

table[0][14]	
  =	
  0001	
  
and:	
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Fig. 10 CRC look-up table semantics.

fit into lower level caches. In such cases, more efficient

data communication may be achieved, even in the ad-

verse, highly probable case of consecutive data accesses

spanning multiple cache lines. CRC is yet another dwarf

that benefits from fast cache hierarchies.

Of course, in algorithms like this where operations

take place on the byte-level the existence of efficient

methods for accessing such data sizes and operating

on them is imperative, if one is to fully utilize wider

than 8-bit data-path, bus widths, etc. Such an example

is SIMD architectures that allow packed operations on

collections of different data sizes/types (such as bytes,

single or double precision floating point elements). CPU

and GPU architectures follow a semantically similar ap-

proach.

Profiling for Xeon Phi corroborates a combination

of the above claims. For instance, vector intensity is

14.4 close to the ideal value (16). This metric portrays

the ratio between the total number of data elements

processed by vector instructions and the total number

of vector instructions. It highlights the vectorizability

opportunities of the CRC OpenCL kernel, and helps
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Host	
  code:	
  

Kernel:	
  

globalWorkSize=num_rows;	
  
localWorkSize=getMaxWorkitemsPerWorkgroup();	
  
Kernel();	
  	
  

cur_row=getGlobalWorkitemId();	
  
if(cur_row<num_rows){	
  

	
  sum=Y[cur_row];	
  
	
  row_start_in_Ax=Ap[cur_row];	
  
	
  row_end_in_Ax=Ap[cur_row+1];	
  
	
  for(j=row_start_in_Ax;	
  j<row_end_in_Ax;	
  j++){	
  
	
   	
  sum+=Ax[j]*X[Aj[j]];	
  
	
  }	
  
	
  Y[cur_row]=sum;	
  

}	
  

Fig. 11 CSR representation and algorithm.

quantify the success of the Intel OpenCL compiler’s vec-

torization module in producing efficient vector code for

the MIC architecture.

L1 compute to data access ratio is a mere 2.45. The

ideal value would be close to the calculated vector in-

tensity (14.4). This metric portrays the average num-

ber of vector operations per L1 cache access and its low

value highlights the irregular, dynamic memory access

pattern’s toll in caching. In this case vector operations,

even on high-width vector registers will not benefit per-

formance being bounded by the time needed to serve

consecutive L1 cache misses.

On the FPGA, the SOpenCL implementation can-

not disassociate the module that fetches data (input

streaming unit) from the module that performs com-

putations (data path), hence, reducing the opportunity

for aggressive prefetching. A Processing Element (PE)

is generated for the inner for-loop (FPGA C1). This

corresponds to a ”single-threaded” FPGA implemen-

tation. If multiple FPGA accelerators are instantiated

and operate in parallel, the execution time is better

than that of the lower-end HD 6550D GPU. The num-

ber of accelerators that can ”fit” in an FPGA is a di-

rect function of available resources. In our case, up to

20 accelerators can be instantiated in a Virtex-6 LX760

FPGA, each reading one byte per cycle from on-chip

BRAM (FPGA C2). The area of accelerator can be re-

duced after bitwidth optimization. Utilization of fully

customized bitwidths results to higher effective band-

width between BRAM memory and the accelerators,

which in turn translates to performance similar to that

of HD 7970, with a more favorable performance-per-

power ratio (FPGA C3).

7.6 Sparse Linear Algebra - Compressed Sparse Row

Matrix-Vector Multiplication (CSR)

CSR in OpenDwarfs calculates the sum of each of a ma-

trix’s rows’ elements, after it is multiplied by a given

vector. The matrix is not stored in its entirety but

rather in a compressed form, known as compressed row

storage sparse matrix format. This matrix representa-

tion is very efficient in terms of storage when the num-

ber of non-zero elements is much smaller than the zero

elements.

Figure 11 provides an example of how a ”regular”

matrix corresponds to a sparse matrix representation.

Specifically, only non-zero values are stored in Ax (thus



Characterization of OpenDwarfs on Fixed and Reconfigurable Architectures 17

saving space from having to store a large number of

zero elements). Alongside, Aj[i] stores the column that

corresponds to the same position i of Ax. Ap is of size

num rows+1 and each pair of positions i, i+1 denote

the range of values for j where Ax[j] belongs to that

row. The pseudocode of CSR and a small, traceable

example is depicted in Figure 11.

In this particular implementation of sparse matrix-

vector multiplication, a reduction is performed across

each row, in which the results of the multiplication of

that row’s non-zero elements are summed with the cor-

responding vector’s elements. Such operations’ combi-

nations, which are typical in many domains, such as dig-

ital signal processing, can benefit from specialized Fused

multiply-add (FMADD) instructions and hardware im-

plementations thereof. This is yet another example where

a typical, recurring combination of operations in a do-

main is realized in a fast, efficient way in architec-

ture itself. FMADD instructions are available in CPUs,

GPUs, and Intel Xeon Phi alike. OpenDwarfs, based on

the dwarfs concept that emphasizes such recurring pat-

terns, seeks to aid computer architects in this direction.

CSR is memory-latency limited and its speedup by

activating multiple threads on the two CPUs is low (5-

fold and 1.8-fold for 16 and 4 threads on the Opteron

and Llano CPUs, respectively). While performance in

absolute terms is better in HD 7970 and Xeon Phi, its

bad scalability is obvious and speedups compared to the

CPU multithreaded execution are mediocre. As we can

see in Figure 11, data parallelism in accessing vector x is

based on indexed reads, which limits memory-level par-

allelism. As with other dwarfs, such runtime-dependent

data accesses limit the efficiency of mechanisms like
prefetching. Indeed, in contrast to dwarfs like n-body

the number of prefetch instructions emitted in all three

CPUs, as well as in Xeon Phi are very low. Gather-

scatter mechanisms, on the other side, are an impor-

tant architectural addition that alleviates the effects of

indirect addressing that are typical in sparse linear al-

gebra. Especially in sparse linear algebra applications,

the problem is aggravated from the large distance be-

tween consecutive elements within a row’s operations

(due to the high number of - conceptual - zero elements

in the sparse matrix) and elements across rows (depend-

ing on the parallelization level/approach, e.g., multi-

threading, vectorization). In these cases, cache locality

is barely existent and larger caches may only prove of

limited value. Overall cache misses are less in Opteron

6272 that employs a larger L2 cache and an L3 cache,

compared to the rest of the CPUs. On the GPU side,

we have similar observations: HD 7970 13.27% cache hit

rate, followed by 4.3% and 3.93% in HD 7660D and HD

6550D, respectively. The memory unit is busy (MemU-

nitBusy and FetchUnitBusy counters for HD 7990 and

HD 6550D/HD 7660D) for most of the kernel execution

time (reaching 99% in all the GPU cases). Any cache

or memory effects are taken into account and the above

indicates the algorithm in GPUs is fetch-bound.

VALUBusy and ALUBusy counters indicate a recip-

rocal trend of low ALU utilization, ranging from 3-6%.

Even during this time, ALU vector packing efficiency,

especially n Llano/Trinity is in the low 30%, which in-

dicates ALU dependency chains prevent full utilization.

The case is not much different in Xeon Phi, where the

ring interconnect traffic becomes a serious bottleneck,

as L1 and L2 caches are shared across the 61 cores.

In the FPGA implementation of sparse matrix-vector

multiplication, cross-iteration dependence due to y[row]

causes tunnel buffers to be used to store y[row] values.

Tunnels are generated wherever a load instruction has a

read-after-write dependency with another store instruc-

tion with constant cross-iteration distance larger than

or equal to one (FPGA C1). Allowing OpenCL to fully

unroll the inner loop dramatically improves FPGA per-

formance by almost 23-fold because it reduces iteration

interval (II) from 8 down to 2 (FPGA C2).

8 Conclusions and Future Work

In this paper we presented the latest release of Open-

Dwarfs, which provides enhancements upon the original

OpenDwarfs benchmark suite. We verified functional

portability of dwarfs across a multitude of parallel ar-

chitectures and characterized a subset’s performance

with respect to specific architectural features. Com-

putation and communication patterns of these dwarfs

lead to diversified execution behaviors, thus corroborat-

ing the suitability of the dwarf concept as a means to

characterize computer architectures. Based on dwarfs’

underlying patterns and profiling we provided insights

tying specific architectural features of different parallel

architectures to such patterns exposed by the dwarfs.

Future work with respect to the OpenDwarfs is mul-

tifaceted. We plan to:

(a) Further enhance the OpenDwarfs benchmark suite

by providing features such as input dataset gener-

ation, automated result verification and OpenACC

implementations. More importantly, we plan to ge-

nericize each of the dwarfs, i.e., attempt to abstract

them on a higher level, since some dwarf applica-

tions may be considered too application-specific.

(b) Characterize more architectures including Altera

FPGAs by using Altera OpenCL SDK, evaluate dif-

ferent vendors’ OpenCL runtimes and experiment

with varying size and/or shape of input datasets.
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(c) Provide architecture-aware optimizations for dwa-

rfs, based on existing implementations. Such opti-

mizations could be eventually integrated as com-

piler back-end optimizations after some form of ap-

plication signature (i.e., dwarf) is extracted by code

inspection, user-supplied hints, or profile-run data.
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