
GLAF: A Visual Programming and Auto-Tuning Framework for
Parallel Computing

Konstantinos Krommydas*
Dept. of Computer Science

Virginia Tech
kokrommy@vt.edu

Ruchira Sasanka
Intel Corporation

ruchira.sasanka@intel.com

Wu-chun Feng
Dept. of Computer Science

Virginia Tech
wfeng@vt.edu

Abstract—The past decade’s computing revolution has de-
livered parallel hardware to the masses. However, the ability
to exploit its capabilities and ignite scientific breakthrough at
a proportionate level remains a challenge due to the lack of
parallel programming expertise. Although different solutions
have been proposed to facilitate harvesting the seeds of parallel
computing, most target seasoned programmers and ignore the
special nature of a target audience like domain experts.

This paper addresses the challenge of realizing a program-
ming abstraction and implementing an integrated development
framework for this audience. We present GLAF — a grid-
based language and auto-parallelizing, auto-tuning framework.
Its key elements are its intuitive visual programming interface,
which attempts to render expressing and validating an algo-
rithm easier for domain experts, and its ability to automatically
generate efficient serial and parallel Fortran and C code,
including potentially beneficial code modifications (e.g., with
respect to data layout). We find that the above features assist
novice programmers to avoid common programming pitfalls
and provide fast implementations.

I. INTRODUCTION

The ongoing parallel revolution has democratized parallel
computing by making unprecedented amounts of computa-
tional power accessible to an ever increasing part of the
scientific community. In contrast to what used to be the
norm, more scientists, engineers, researchers (herein collec-
tively referred to as domain experts) have access to at least
commodity multi-core CPUs or single-node accelerator-
based heterogeneous systems.

While powerful hardware is readily available, the ability
to exploit it at its fullest and ignite scientific breakthrough at
a proportionate level remains on the ground. One prime rea-
son is that programming itself remains a prerogative of the
few. Many domain experts possess rudimentary knowledge
of at least one programming or scripting language that allows
them to verify functional correctness of their algorithms, but
the vast majority practically ignores parallel programming,
an issue exacerbated by the number of parallel program-
ming abstractions and languages. As such, domain experts
typically have to resort to programming experts in order to
have their algorithms coded, or optimized for performance.

*This work was conducted during an internship at Intel.

This process introduces communication overhead, errors and
barriers, including the need for the programmer to obtain
domain-specific knowledge and vice versa.

The question we attempt to address in this work is: “Can
we realize a programming abstraction and implement a
development framework for domain experts that adresses
the aforementioned issues, i.e., an approach that provides a
balance between performance/programmability, and renders
this audience active participants of the parallelism era?”

We claim that such an abstraction should ideally be:
(a) automatically parallelizable, optimizable and tunable to
desired target hardware, yet platform agnostic, (b) intuitive,
familiar, with minimalistic syntax, yet general, scalable and
powerful enough to express real-world problems, (c) data-
visual and interactive, in that code, data structures and data
itself are visible simultaneously, thus facilitating algorithmic
expression, understanding, and debugging, (d) able to (im-
plicitly) integrate with existing legacy code (code used today
in many sciences dates back to the early 70s).

In this work, we propose GLAF, a visual code-generation
and auto-tuning framework for shared-memory parallel com-
puting systems, which aspires to steer programming by do-
main experts with minimal or basic programming knowledge
towards the general directions discussed above.

The rest of the paper is organized as follows. Section II
discusses the constituent parts of the framework: the graph-
ical user interface, GLAF as a programming language and
its internal representation. Section III provides details about
the proposed approach (automatic code generation, auto-
parallelization, auto-tuning, and visualization). Sections IV
and V present example use-cases and performance results,
and Sections VI and VII discuss related work and conclude
the paper, respectively.

II. GLAF FRAMEWORK

A. Graphical User Interface (GUI)
Programming using GLAF differs from programming

using a typical programming language (e.g., C or Java). In
the latter users write code in a free textual format using the
keyboard and express the algorithm using the appropriate
language constructs. In GLAF, typing is kept at a minimum

44th International Conference on Parallel Processing (ICPP), Beijing, China, 2015

Figure 1: GLAF user interface: a GLAF step (code boxes are automatically filled through a point-and-click interface).

(e.g., naming grid variables) and programming is based on
an intuitive point-and-click visual interface. GLAF’s GUI
is implemented in the form of a web page (Figure 1) that
is written in a combination of HTML5 and JavaScript.
This code drives the web interface (buttons, forms, images,
menus, etc.) that facilitates GLAF code development and is
responsible for populating appropriate environment variables
(or internal objects, modeled after JavaScript functions).
Modeling of such objects (Section II-C) lies at the basis
of code generation and parallelism analysis algorithms.

B. GLAF as a Programming Language

1) Data Structures: GLAF variables are based upon
the concept of grids. Grids are simple, yet powerful data
structures that can be used to represent a variety of real-
world problems. A scalar variable is a 0D grid with one
element and a 1D array is a 1D grid with multiple elements.
Similarly, we can generalize for higher-dimensional data
structures. Grids of this type may contain a single data type
and be indexed by corresponding index variables. Allowing
dimension(s) to have titles we can represent tables, in which
case we may use a combination of titles and indices to
address a specific grid cell. More complex structures can
be described using the grid abstraction, by use of multiple
data types across one of the dimensions with titles. Such
grids can represent what would be a struct in C. Examples
of grid declaration in GLAF are shown in Figure 2.

The grid abstraction has been used as the basis of pro-
gramming languages or language extensions in the past ([1],
[2]) due to certain advantages over using multiple, distinct
data structures. In practical terms, the grid abstraction is

general and scalable enough to model many real-world
problems. A mathematical relation (a mapping from a do-
main to a range) that is discrete and finite can be represented
with a grid (e.g., trees, graphs, databases). For example, a
graph can be represented by using an adjacency matrix, a
tree data structure can be substituted by matrices indicating
the parent-child relationships and a sparse matrix can be
represented in the compressed sparse row format (CSR).
More importantly, the regularity of the grid abstraction
allows for a uniform internal representation (Section II-C)
that in turn renders code generation and many types of trans-
formations and optimizations, including parallelism analysis,
more straightforward. In terms of programming, coding an
algorithm using the grid abstraction urges programmers to
think in terms of relationships as opposed to exact data
layout. For instance, representing a tree requires considering
the higher-level relationships within the data (e.g., parent of,
child of), instead of the exact tree structure and how it is
coded on the lower language-level , e.g., using pointers in C
and how to follow them. All things considered, the grid is
a familiar abstraction (e.g., images, matrices, spreadsheets)
to programmers and non-programmers, alike, makes visu-
alizing certain data structures easy and inspecting results
more intuitive. In some cases, however, and despite the
aforementioned advantages, visualization-wise the original
data structures may be more intuitive. Visualization-related
issues are further discussed in Section III-D.

2) Programming Constructs: In Figure 1 we see an
instance of a GLAF step. A step is the basic building block
of a GLAF program and represents a step of computation,
whereby data from input grid(s) flows after undergoing

44th International Conference on Parallel Processing (ICPP), Beijing, China, 2015

(a) Declaration of a struct.

(b) Declaration of a simple database.

Figure 2: Examples of grid declaration in GLAF.

computation to an output grid. It may include a loop over
zero, one or more dimensions. Such loops can be typical
foreach loops (in the start:end:step format), or forever loops.
Furthermore, a step may include conditional statements.
Appropriate buttons insert the corresponding conditional
keyword when a condition box is clicked on, and boxes are
indented accordingly to make the order (and potential nest-
ing) of conditionals clear. A formula statement can include
grid cells, arithmetic/logical operations on them, as well as
user-defined or library function calls (i.e., predefined sets of
useful functions, like typical Math or I/O library functions).
A GLAF program may include multiple steps, which belong
into one (main) or more (user defined) functions. Functions,
finally, can be grouped into GLAF modules.

C. Internal Representation
All constituent GLAF elements have a corresponding

internal representation in JavaScript. As the user develops
an algorithm using GUI buttons and keyboard, event lis-
teners activate appropriate JavaScript functions to popu-
late JavaScript objects modeled after constructor functions
(in support of an object-oriented programming JavaScript).
These are used in creating and navigating the GUI screens,

IndVarsWrittenInStep[M][F][S]: 3D structure, elements correspond to a step
(in a given module/function) containing info on the index variables iterated
over on this step’s loop.
FuncsFromCaller[M][F][S]: 3D structure, elements correspond to a step (in a
given module/function) containing info (like name, ID, arguments per each
call within step) about each function called from within this step.
NonScalarGridsInFunc[M][F]: 2D structure, elements correspond to a
function (in a given module) containing info (like name, written/read, indices
written/read for each dimension) about non-scalar grid arguments of function.
NonScalarGridInstances[M][F][S]: 3D structure, elements correspond to a
step (in a given module/function) containing info (like name, written/read,
indices written/read per dimension) on non-scalar grids written/read in step.
ScalarGridInstances[M][F][S]: 3D structure, elements correspond to a step
(in a given module/function) containing info on scalar grids written/read in
this step.
!
Figure 3: Internal representation objects for parallelism
analysis back-end.

in code generation, parallelism analysis, etc. They can
also provide a preliminary error checking substrate (e.g.,
disallows declaring the same grid name twice) before code
is generated, thus minimizing multiple compiler errors at
the last development stage. A representative selection of the
most important internal objects is outlined below:

(a) Expression Type object: defines the type of an
expression object (e.g., grid, function call, string, number,
conditional statement), (b) Function object: models a func-
tion and contains information about grids declared in a
function, its arguments, its return value, etc. A function
object encapsulates an array of step objects containing
information about its steps, (c) Step object: models a step
and contains information about all grids used in it, as well
as information about the code in this step contained in
arrays of box expression objects, (d) Expression object:
models a line of code, can represent a formula, a loop, or
a conditional statement and be a single object or comprise
more expression objects in a tree-like structure, (e) Grid
object: models a grid object according to the guidelines set
in II-B1 (name, number of dimensions and their sizes, etc.)

For parallelism analysis the above objects are used in a
single pass to formulate an additional collection of objects
that store information about scalar and non-scalar grids
(Figure 3). Finally, for non-parallelizable steps, detailed
information is stored in appropriate objects that may be used
in a feedback functionality. Such objects collect information
about the name of grid, its type (scalar/non-scalar), error
type (e.g., RAW dependency), and the name of function(s),
steps and box numbers (“line of code”).

III. CAPABILITIES

A. Code Generation

To support GLAF data visualization within the GUI,
JavaScript code generation is de-facto supported. However,
to broaden GLAF’s utility we have implemented support
of code generation and optimizations for Fortran and C,

44th International Conference on Parallel Processing (ICPP), Beijing, China, 2015

Figure 4: Example of automatically generated C code.

languages that have been extensively used in technical/
scientific computing. Users need not write a single line of
Fortran- or C-specific code, since GLAF follows a paradigm
of writing an algorithm in one language (GLAF) and
getting source code in many. Much of the complexity and
peculiarities of languages are concealed from the user, thus
facilitating code development for domain experts.

Code generated for a target language by GLAF falls under
two broad categories, i.e., serial and parallel. The former is a
one-on-one mapping of the GLAF programming constructs,
as represented internally, to the target language’s constructs,
while the latter decorates parallelizable regions with appro-
priate OpenMP directives so that code can run on any device
supporting OpenMP (e.g., multi-core CPUs, Intel Xeon Phi).
Detecting parallelism is a task undertaken by the GLAF
parallelization analysis back-end (Section III-B). Following
those two code categories (serial, parallel) we provide a
secondary level of auto-tuning options (Section III-C).

Figure 4 shows generated C code for the parallel im-
plementation of a GLAF step (Figure 1) (Fortran look is
similar). One can notice the readability of the automatically-
generated code: code is indented and contains appropriate
comments, as inserted by the user using the GUI. Depending
on the user, the above features may vary on the importance
scale: a non-programmer domain expert may never need to
see the actual code. On the other hand, users that know
programming (although not necessarily parallel), may want
to inspect the code, apply further optimizations, or write a
GLAF module, auto-tune taking into account legacy code’s

(a) Code for AoS.

(b) Code for SoA.

Figure 5: Generated code for declaration and accessing
different data layouts.

requirements (e.g., data types and layout of a function’s
arguments) and use the resulting parallel generated code as
part of that larger unoptimized or serial legacy code.

B. Auto-Parallelization
An important part of GLAF is its parallelism analysis

back-end. Parallelism is analyzed at the granularity of a
GLAF step and the result of this analysis is two-fold: (a)
information about the loop index variables whose loops are
parallelizable, (b) information about the reasons paralleliza-
tion is not possible. Our analysis and resulting code trans-
formations act in a complementary manner to a compiler
providing code more favorable to compiler optimizations and
do not claim to surpass its well-established capabilities.

For (a), a form of cross-iteration loop dependence analysis
is carried out in a pre-code-generation pass to identify
dependencies within a GLAF step. High-level pseudocode
is given in Figure 6. This analysis includes: non-scalar
grid variables (includes grids passed in functions called
from within a step), and scalar grid variables (for which
we build a control flow graph that is subsequently used
to identify dependencies). More details about information
collected in this pre-pass stage are given in Section II-C.
Relevant parallelism information is used in parallel code
generation and displayed in a parallelism meter on each
step’s header indicating the index variable name and the
number of iterations that can be parallelized. For (b), each
dependency is recorded and GLAF can provide feedback
about module name(s), function name(s), step(s) and line(s),
as well as a description of the reason parallelization fails.

44th International Conference on Parallel Processing (ICPP), Beijing, China, 2015

Function findParallelismInProgram()
For each module M
 For each function F of M
 For each non-scalar grid argument G
 Record name of G in NonScalarGridsInFunc[M][F]
 Call recordGridsAndIndicesOfStepBoxes(M, F)
Call findParallelismInFunction(MainModule, MainFunc)

Function findParallelismInFunction(M: <module ID>, F: <function ID>)
For each step S of F of M
 Parse Index Range box, record index var. in IndVarsWrittenInStep[M][F][S]
 Call buildCFG() (builds control flow graph used in scalar grid dep. analysis
 For each box B after the Index Range box
 If B is of type Mask Statement (if/elseif)
 Add non-scalar/scalar grids in Mask to NonScalarGridInstances[M][F][S]
 Else if B is a Formula of the form G = RHS_expr
 Call addGrid(G) and parseRightHandSide(RHS_expr)
 Else if B is a formula of the form LET N = RHS_expr,
 Call parseRightHandSide(RHS_expr)
 Else if B is a stand-alone function call of the form func(args)
 Add func(arg) info to FuncsFromCaller[M][F][S]
 // Do cross-iteration dependency analysis among non-scalar grids, in two
 // steps: (i) For each function in FuncsFromCaller[M][F][S], detect and
 // record iteration dependencies among its arguments
 Call doDependAnalForNonScalarGridsPassedToAllFuncs(M, F, S)
 // (ii) For each grid in this step, find iteration dependencies ignoring any
 // function calls (since they were processed in (i))
 Call doDependAnalForNonScalarGrids(M, F, S)
 Call analyzeConstantIndices(M, F, S)
 Call doScalarDependAnalysis(CFG)
 Call estimateOverallParallelization(M, F, S)

Function addGrid(G: <grid to be added>)
If G scalar and entry for G does not exist in ScalarGridInstances[M][F][S],
add entry E for G to ScalarGridInstances[M][F][S] or if G non-scalar do so
for NonScalarGridInstances[M][F][S]
Init./update E to indicate if G is read/written and record attributes of G (e.g.,
box id, box type where G is found if scalar, or dimension read/written and the
index (location) from/to which each dimension is read/written if non-scalar)

Function addNonScalarForFunc(NS: <non-scalar grid to be added>, M: <mo-
dule ID>, F: <function ID>)
If NS is in NonScalarGridsInFunc[M][F], update information of corresponding
element E named after NS as read/written in NonScalarGridsInFunc[M][F] and
store current instance (i.e., index) for each of the dimensions

Function doDependAnalForNonScalarGrids (M: <module ID>, F: <function
ID>, S: <step ID>)
gridsInstances = NonScalarGridInstances or NonScalarGridsInFunc depen-
ding if called from MainFunc or not)
For all elements E of gridsInstances[M][F][S] whose grid G is written
 For each dimension D of E
 For all combinations of write instances I1,I2 in D
 If I1,I2 write locations are different and contain index variable I from
 IndVarsWrittenInStep[M][F][S], mark I as non-parallelizable in G
 For each combination of write & read instances I1, I2
 If I1, I2 write/read locations are different & contain index variable I from
 IndVarsWrittenInStep[M][F][S], mark I as non-parallelizable in G

Function parseRightHandSide(RHS_expr: <expression appearing as right-hand
side of assignment)
For each element E in RHS_expr, call addGrid(G) if E is a grid G or add F
call’s information to FuncsFromCaller[M][F][S], if E is a function call

Function recordGridsAndIndicesOfStepBoxes(M: <module ID>, F: <function
ID>)
For each step S in function F, record (in NonScalarGridsInFunc[M][F]) each
grid G that appears in boxes of S, if G is an incoming argument to F. For each
function-call foo(args) in S that passes G as an argument, record foo and its
relevant info in FuncsFromCaller[M][f], and call this method recursively.

Function doDependAnalForNonScalarGridsPassedToAllFuncs(M: <module
ID>, F: <function ID>, S: <step ID>)
For each function-call FC in FuncsFromCaller[M][F][S] and for each non-
scalar grid G passed as an argument in FC’s call
 Find corresponding name G of FC’s argument GC in F’s argument list
 If G present and read-only in S
 If GC read-only in FC, do nothing
 Else if GC is written or both read and written in FC
 Analyze all valid pairs of indices across all dimensions D that G is read in
 F and GC written (or written and read) in FC and if indices differ and
 contain index variable I from IndVarsWritenInStep[M][F][S], stop check-
 ing for I and mark I on G as non-parallelizable
 Else if G present and written (or written and read) in S and written or read (or
 written and read) in FC
 Analyze all valid pairs of indices across all dimensions D that G is written (or
 written and read) in FC and written (or written and read) in FC and if indices
 differ and contain index variable I from IndVarsWrittenInStep[M][F][S], stop
 checking for I and mark I on G as non-parallelizable
 Else if G not present in current step of F
 Call nonScalarGridDependencyAnalysis(MC, FC, SC)
 Call analyzeConstantIndices(MC, FC, SC) for all steps SC of FC of MC

Function estimateOverallParallelization (M: <module ID>, F: <function ID>, S:
<step ID>)
Check and mark if parallelism is broken for each index variable I in
IndVarsWrittenInStep[M][F][S], because of:
 - start/end/ step scalar variable for I being written in S
 - a scalar grid (using info from scalar grid dependency analysis)
 - a non-scalar grid (using info from non-scalar grid dependency analysis)
For each func. called from S of F of M, call findParallelismInFunction(M, F)

Function analyzeConstantIndices(M: <module ID>, F: <function ID>, S: <step
ID>)
gridsInstances = NonScalarGridInstances or NonScalarGridsInFunc (depending
if called from MainFunc or not)
For each G in gridsInstances[M][F][S] that is written
 Check the indices of the instances where G is written and identify the cases
 where a dimension’s index is always a constant as non-parallelizable

Function doScalarDependAnalysis(CFG: <control flow graph for a step>)
For each scalar grid occurrence X that is written at least once
 Push CFG root node in stack
 While stack not empty
 N = pop last element from stack
 If X is written in current node N
 If there is a read of X in N
 Identify write after read condition, reduction, break
 Else do nothing, break
 Else if X is not written in N
 If there is a read of X in N
 Identify write after read condition, reduction, break
 Else push each child of N to stack
 If reduction found, mark as a reduction clause

Figure 6: Parallelism back-end pseudocode (related internal objects used are described in Figure 3).

44th International Conference on Parallel Processing (ICPP), Beijing, China, 2015

(a) Values only. (b) Values and colorization. (c) Image map.

Figure 7: Examples of data visualization methods in GLAF.

C. Auto-Tuning

The auto-tuning menu screen includes options regarding
source code, binaries, compilation and execution scripts
generation, as well as execution times presentation for
the resulting implementations. At the first level the user
selects the target platform (currently CPU and Xeon Phi).
This option identifies the appropriate compilation flags to
be passed to the generated platform-specific auto-tuning
script. In the future, this option will allow platform-specific
optimizations. The second level of auto-tuning concerns
the target language (currently Fortran or C). The third
level offers three different basic implementations within a
selected language and platform: (a) serial: serial code, as
automatically generated by GLAF, (b) GLAF-parallelized:
parallel implementation of the code, in which appropriate
OpenMP directives precede parallelizable code sections, as
identified by the auto-parallelization back-end, (c) compiler-
parallelized: with this option serial code in (a) is to be
compiled with the auto-parallel compiler flag (-parallel) -
this flag is not used in (b) where the code includes explicit
OpenMP pragmas and is compiled with the -openmp flag.
The fourth level expands our choices in code generation.
Options at this level can be combined. The first option
showcases the flexibility in expressing data structures, and
creates implementations where grids are expressed as either
Structures of Arrays (SoA) or Arrays of Structures (AoS), if
applicable (i.e., in the form of Figure 2a). Figure 5 shows
code automatically generated in C for declaring, initializing
and using such data structures. The second option, tunes
the level of loop collapsing for nested parallelizable loops
and the third concerns loop interchange, when applicable.
Particular options from this category are more suitable for
specific algorithmic patterns and their effect is reflected in
the execution time of an application written in a specific
way. We discuss such concerns in more detail in Section V,
where we present results for representative cases. Users who
are familiar with the options’ meaning and implications may

select to prune the auto-tuning space by deselecting certain
options. Non-programmers may simply let the auto-tuner
generate code using all applicable permutations and present
the best combination (and corresponding code).

D. Visualization
Data visualization facilitates understanding the algorithms

being developed, as well as revealing bugs, in an intuitive,
visual way. Currently, GLAF supports two ways of visu-
alizing data. By selecting the “Show Data” menu item
in a step, data for each grid cell are calculated up to
that step by evaluating automatically generated JavaScript
code on-the-fly and using the internal representation of data
structures, which is by design in JavaScript (Section II-C).
The user can navigate in multi-dimensional grids by clicking
on the appropriate dimension. For grids whose dimensions
are larger than the screen space, appropriate arrows enable
navigating within grid contents. The “Colorize” menu op-
tion paints each grid cell on the greyscale color spectrum
according to the magnitude of the corresponding cell value,
together with its value. Finally, the “Image Map” option, a
straightforwad extension of the previous two, contains only
color (i.e., no data values). Techniques based on color make
it easy to spot outlier values or specific patterns in relative
problems, especially in the presence of huge amounts of
data, thus facilitating result observation and interpretation.
They are especially useful in the image processing field,
as well. Figure 7 shows three simple examples of data
visualization functionalities. In the future, more complex
visualization schemes can be built upon the unified and
regular internal representation of the grid abstraction by
use of specialized visualization libraries for frequently-used
data structures. For example, sparse matrices in CSR format
could be visualized automatically as single (sparse) matrices,
rather than the collection of the helping 1D arrays that
represent such matrices in CSR format. Similarly, graphs
could be visualized as such, while internally represented via
adjacency matrices.

44th International Conference on Parallel Processing (ICPP), Beijing, China, 2015

IV. EXAMPLE APPLICATIONS

To assess GLAF’s code generation, parallelism analysis
and auto-tuning back-ends in diverse situations, we resort to
applications that fall under the dwarfs classification [3]. We
focus on the structured grids and n-body methods dwarfs
to illustrate how easy it is for novice programmers using
typical programming languages to fall into coding pitfalls,
their effect in performance, and how GLAF addresses these
problems in an automated way thus providing a fair trade-off
between performance and programmability.

A. 3D Finite Difference Calculation (3DFD)
In structured grids algorithms computation proceeds as a

series of grid update steps. In the 3D case data is arranged
in a regular 3D grid. For each step iteration each point is
updated as a function of its neighboring points’ values across
each of the 3 dimensions. In our example each point for step
n+ 1 is the value at step n plus the sum of 8 neighboring
points across each dimension (Listing 1). We define a source
and destination grid, which are used interchangeably at each
computation iteration. In 3DFD, we have ample parallelism
within a step iteration: within each dimension summation
of all 8 neighboring values for each point can be seen as a
reduction and on the outer level (3 nested for loops) each
grid cell update can be calculated independently.
f o r number o f s t e p s / i t e r a t i o n s S

f o r each point[i, j, k]
(i n c l . v e r t i c a l boundary c o n d i t i o n)

sum[i, j, k]+ = 8pt stencil across horizontal dim

f o r each point[i, j, k]
(i n c l . h o r i z o n t a l boundary c o n d i t i o n)

sum[i, j, k]+ = 8pt stencil across vertical dim

f o r each point[i, j, k]
(i n c l . 3 rd dim . boundary c o n d i t i o n)

sum[i, j, k]+ = 8pt stencil across 3rd dim

Listing 1: 3DFD pseudocode

B. Electrostatic Surface Potential Calculation (ESP)
In ESP we calculate the electrostatic potential at a col-

lection of points on the surface of a biomolecule. The
potential at each point is the sum of charges contributed
by its interaction with all atoms within the biomolecule
(Listing 2). Each surface point and atom is represented as
a structure containing information about its electric charge
and its coordinates in the 3D space (Figure 2a). In ESP we
have two levels of parallelization opportunities for the two
nested loops described above (the latter being a reduction).
Computations are independent for each surface point and for
each surface point/atom pair.
f o r a l l s u r f a c e p o i n t s sp[i]

f o r a l l atoms at[j]
sq dist = (x[i]� x[j])2 + (y[i]� y[j])2 + (z[i]� z[j])2

sum esp[i]+ = Ke ⇤ (q[i] ⇤ q[j])/sq dist

Listing 2: ESP pseudocode

V. RESULTS

Our experiments were run on: (a) a dual-socket Intel
Xeon E5-2697 CPU (each with 12 cores at 2.6GHz, 256KB
of L2 and 30MB of L3 cache) , and (b) an Intel Xeon Phi
(XP) 7120 co-processor (61 cores at 1.238GHz, 30.5MB
cache). We used the Intel set of compilers (ifort for Fortran,
icc for C, in Intel Composer XE 2015 v.15.0.1), Intel
Vtune Performance Analyzer and compiler optimization/par-
allelization reports to identify performance issues.

In our example applications, we generate serial, compiler-
parallelized and GLAF-parallelized, implementations (see
Section III-C for details) for both Fortran and C, with
appropriate optimizations applied by the auto-tuning back-
end. For explicit performance comparisons graphs for our
experiments show speed-up (y-axis) over a single baseline
implementation (Fortran CPU serial) for the most rele-
vant implementations (x-axis) as created by the auto-tuning
framework. The serial baseline code highly resembles code
that a novice programmer would write (e.g., Figure 4).

A. 3DFD Results
For the 3DFD experiment we run the algorithm for 20

steps and a 512x512x512 input grid. There are no data
layout concerns (i.e., SoA, AoS) in 3DFD, however, loop
collapsing and loop interchange auto-tuning options are
applicable. For the former, we present results for collapse(1)
(i.e., no collapsing), and collapse(3). For the latter, we auto-
generate the fastest loop ordering, according to the target
language’s way of arranging multi-dimensional arrays in
memory (row-major for C, column-major for Fortran).

The best performance is obtained using the C CPU restr
GLAF-parallelized(col(1)) implementation (4.7x), followed
by the corresponding implementation in Fortran (4.17x).
Despite this performance difference across languages, within
each language and platform, C achieves better speed-
up (over serial) than Fortran (e.g., 38.37x for compiler-
parallelized C XP restr versus 24.64x Fortran XP). More-
over, a non-negligible 1.49x performance gain (on XP,
compiler-parallelized implementation) can be obtained by
switching from Fortran to C. GLAF renders this trivial by
its ability to automatically generate code in both languages.

In Figure 8a, we observe that C CPU restr and
C XP restr perform overall better than their norestr coun-
terparts in all implementations. Norestr corresponds to an
earlier stage of C code generation in GLAF. In the case
of C norestr implementations, we observe that compiler-
parallelized code fails to provide any speed-up versus the
corresponding serial. C enforces strict aliasing rules, and as
such the compiler acts conservatively by not parallelizing the
three nested loops (Listing 1) and assuming the existence of
dependence between the pointer variables for each grid in a
function call. To indicate no aliasing a C programmer would
need to use the restrict keyword and -restrict compiler flag.
In Fortran, grids (i.e., Fortran arrays) are always passed by

44th International Conference on Parallel Processing (ICPP), Beijing, China, 2015

0"

0.5"

1"

1.5"

2"

2.5"

3"

3.5"

4"

4.5"

5"

serial" compiler3parallelized" GLAF3parallelized(col(3))" GLAF3parallelized(col(1))"

Sp
ee
d%
up

'o
ve
r's
er
ia
l'f
or
tr
an

_C
PU

'

Implementa8on'

fortran_CPU"

C_CPU_norestr"

C_CPU_restr"

fortran_XP"

C_XP_norestr"

C_XP_restr"

(a) 3DFD results.

0"

5"

10"

15"

20"

25"

serial"SoA" serial"AoS" compiler2parallelized"SoA"compiler2parallelized"AoS" GLAF2parallelized"SoA" GLAF2parallelized"AoS"

Sp
ee
d%
up

'o
ve
r's
er
ia
l'S
oA

'fo
rt
ra
n_

CP
U
'

Implementa9on'
fortran_CPU" fortran_CPU_tmp" C_CPU_norestr" C_CPU_restr_tmp" C_CPU_restr_tmp_powf"

fortran_XP" fortran_XP_tmp" C_XP_norestr" C_XP_restr_tmp" C_XP_restr_tmp_powf"

0"

0.2"

0.4"

0.6"

0.8"

1"

1.2"

1.4"

0"

0.1"

0.2"

0.3"

0.4"

0.5"

0.6"

0.7"

(b) ESP results

Figure 8: Performance results for the example applications developed, auto-tuned by the GLAF framework.

reference and are assumed to not alias by default. Strict
aliasing rules, when unnecessarily enforced, do not only
affect auto-parallelization, but vectorization, too. Namely,
it seriously hinders serial C performance, as well. Note
the huge difference (restr vs. norestr) in XP (16.04x), as
opposed to 3.07x in CPU, owing to the wider vector units in
XP compared to the CPU. Novice programmers are typically
not aware of issues like aliasing and related solutions. This
is another point in favor of automatic code generation by
GLAF, doing so in multiple languages, as well as GLAF’s
simplicity in not allowing aliasing by default. As such, the
above remedies can be taken care of by the framework at
code-generation and compilation script creation time.

In some cases, where nested loops are parallelizable, it
may make sense to collapse them. A novice programmer
with rudimentary OpenMP knowledge and lack of architec-
ture knowledge could have coded these nested loops with

nested OpenMP pragmas, spawning an increasing number of
threads with the associated overheads, or with a collapse(3)
OpenMP clause. Using collapse(1) (i.e., parallelizing only
across one dimension) allows the compiler to generate vector
code for the remaining two (parallelizable with unit stride)
loops. This increases performance as a function of the vector
unit’s width. As such the relevant performance gain between
those two options is higher (16.8x) in the case of Xeon Phi
(512-bit wide vector units), than in the lower (3.7x) CPU
case (256-bit AVX) in both Fortran and C implementations.

B. ESP Results

For ESP we use a problem size of 128000 surface points
and 256000 atoms. ESP illustrates the utility of GLAF’s data
layout transformations. Structure-of-arrays and array-of-
structures implementations can be automatically generated
by GLAF for the surface point and atom grids (Figure 5).

44th International Conference on Parallel Processing (ICPP), Beijing, China, 2015

The best overall performance for ESP is obtained using
the Fortran GLAF-parallelized SoA implementation in the
CPU, followed by the corresponding C CPU implementa-
tion. The fact that the language of choice for EPS is different
than that of 3DFD emphasizes the utility of automatic code-
generation in multiple target languages. In many instances
Xeon Phi execution proves slower than the corresponding
CPU C and Fortran implementations. We expect to be able
to achieve better speed-ups for the Xeon Phi case, once
GLAF provides MIC architecture-specific hints to the com-
piler (e.g., alignment attributes that facilitate more efficient
vectorization, aligned loads, cache miss reduction).

As in the case of 3DFD we observe compiler-parallelized
C implementations (norestr) to initially exhibit subpar per-
formance, equal to the serial. According to the compiler
parallelization report the reason for failing to parallelize the
outer loop was “insufficient work”. This was an erroneous
assessment by the compiler, given the available amount
of work. In fact, the 2013 (v.13.1.3) version of icc did
parallelize the same loop when the number of loop iterations
was larger than the number of (logical) processors. The latest
compiler was eventually able to automatically parallelize this
loop once we performed (via GLAF) another optimization
that the compiler was not performing itself. In particular
(restr tmp), we introduce a temporary variable in the nested
loop of Listing 2 in place of the sum [i] array, which further
allows the loop to be identified as a reduction (C does not
otherwise allow reductions on dynamically allocated arrays).
GLAF applies the same code transformation for Fortran.

ESP is an illustrative case for the utility of data layout
transformations. Results highlight how a bad choice for
structs declaration (AoS here) account for twice worse per-
formance. SoA layouts are amenable to efficient vectoriza-
tion and offer the possibility for unmasked unit stride loads,
as opposed to more expensive strided loads, and gather
operations employed with AoS. Profiling data across our
implementations validate AoS detrimental effect, especially
on cache, as CPU and XP speed-ups denote. Especially
for the serial fast implementations performance degradation
ranges between 1.52 to 2x (C, Fortran in CPU) and 2.89
to 3.15x (C, Fortran in XP). In SoA cases, all vector
loads in Fortran are aligned, whereas in C the majority is
unaligned, resulting in higher load latencies. In both SoA
and AoS CPU cases C is better in its compiler-parallelized
and worse in the GLAF-parallelized implementations, while
in XP it far surpasses the corresponding Fortran compiler-
parallelized implementations and performs similarly for the
GLAF-parallelized. While GLAF provides the answer to
what the best implementation is, we can imagine the pitfalls
a novice user would fall into if he were to write a serial
version in the “wrong” language and/or in the “wrong” struct
format (i.e., failure of compiler auto-parallelization).

Finally, C implementations with powf suffix (Figure 8b)
highlight how a simple oversight can affect performance. In

particular, our code-generation back-end initially produced a
pow() function call for the corresponding function in GLAF.
While in Fortran the exponentiation intrinsic function (**)
is overloaded with the appropriate version according to the
arguments, in C pow() emits the double version. Ignoring
calling appropriate versions of a function in C is common
among non-programmers. Use of powf() instead of pow()
increased C serial CPU performance by 1.94x for the SoA
and 1.61x for the AoS case. Argument type detection is
inherent within the framework (Section II-C) and detection
of such cases of potential unwanted performance degradation
is important in steering users away from such pitfalls.

VI. RELATED WORK

In an effort to achieve parallelism gains a programmer
has an array of tools at his disposal, some of which
attempt to automate the conversion of sequential code to
parallel in a transparent way and others that require the
user to explicitly identify and indicate available parallelism
by hinting the compiler through directives or other special
notation. The former category includes modern compilers,
like GCC, Intel/Cray/PGI Compilers, which perform loop
parallelization and code vectorization, among a wider collec-
tion of optimizations. The latter includes languages, exten-
sions, libraries, such as the well known Pthreads, OpenMP,
OpenACC, Intel Cilk Plus [4], Chapel [5]. Exploiting the
above solutions requires programming knowledge, either
sequential in the former case or a certain understanding of
parallel in the latter. This is a task that domain experts are
often reluctant to undertake. But, even in the case of novice
programmers’ attempting to exploit the auto-parallelization
features of compilers failure may ensue due to restrictions
enforced by the conservative nature of compiler optimization
algorithms. We discuss such examples in Section V. Our
work complements the first category, by generating code that
is more amenable to auto-parallelizing compilers and that
automatically takes advantage of extensions like OpenMP.

A different research path attempts to target domain experts
with problem solving environments (PSEs), with examples
from the computational biology, physics, or even more
specific subareas within a class of problems ([6], [7], [8]).
Such solutions offer the added benefit of high-performance,
often a result of optimizations based on domain knowledge.
This specific nature of PSEs and auto-tuning frameworks,
however, is a double-edged sword, in that it also introduces
the problem of lack of generality of applicability. Such
solutions focus to very function-specific codes, like dense
linear algebra code [9] or FFT [10]. Irrespective of that, most
are restrictive in terms of target language and/or architecture
(e.g., GPU, CUDA, OpenCL [11], [12]). PSEs and auto-
tuning frameworks, like the ones mentioned above have their
indisputable merits and strengths, based on their intended
purpose. Our work attempts to address the need for a pro-
gramming abstraction and framework that is general enough

44th International Conference on Parallel Processing (ICPP), Beijing, China, 2015

to be of use across domains, as problems in engineering
and sciences may be composed by multiple different parts
that the restrictive nature of auto-tuners may not be able
to directly address. Generality also refers to multiple tar-
get languages and architectures. Grid-based data structures,
which lie at the basis of GLAF, have also been the central
datatype of languages/extensions (APL [1], NumPy [2]). In
GLAF the grid data structure is – among others – meant
to support a programming paradigm that resembles the
familiar spreadsheet workflow (where cells/tables undergo
transformations based on formulas/macros). GLAF extends
this familiar paradigm in ways to enable complex, general-
purpose program development, and addresses the need for
performance via parallelism support and other optimizations
in automatically generated code. Last, we enhance upon
existing work by integrating the visualization aspect in
programming, where data and the operations on data (i.e.,
code) coexist during the development stage.

VII. CONCLUSIONS AND FUTURE WORK

In this work we presented GLAF, an all-encompassing
code development environment for non-programmers or
novice programmers, like the majority of domain experts. Its
key elements are its intuitive visual programming interface
that aspires to make it easy for them to express and validate
their algorithms and its ability to automatically generate
efficient serial and parallel Fortran and C code, including
an array of potentially beneficial code modifications with
respect to data layout, loop ordering, etc. for fast execution.

We showed illustrative example applications and pre-
sented results that corroborate that GLAF and its associated
approach that attempts to bridge the gap between perfor-
mance and programmability may be a useful addition in
the array of programming tools at the disposal of domain
experts. We showed how automatically generating multiple
versions of code (derived from the same GLAF code) in
different languages and using different data layouts and op-
timizations can facilitate obtaining the best performing code.
This systematic code generation and auto-tuning approach
extends beyond standard optimizations and tuning that typ-
ically target a single language and is especially useful for
novice programmers, where certain mistakes in a language
may result in code that the compiler fails to auto-parallelize.
Our findings reveal that the traditional coding paradigm,
where a single implementation is written, can be sub-optimal
for novice (or even average) programmers. Rather, GLAF
allows multiple starting points (analogous to different seeds
in a state-space search algorithm) for different optimizations,
which lead to overall better performance (analogous to the
global as opposed to local minimum).

Our GLAF prototype incorporates core functionalities that
form the substrate for an extensible set of capabilities.
For future work we plan to enable support for more lan-
guages and extensions (e.g., OpenACC), distributed-memory

systems via MPI, and dynamic and user-friendly feedback
concerning issues that limit parallelism. Finally, we seek to
improve the robustness of the auto-parallelization back-end
and implement additional auto-tuning options.

ACKNOWLEDGMENT

This work was supported in part by the Institute for
Critical and Applied Sciences (ICTAS) at Virginia Tech.

REFERENCES

[1] K. E. Iverson, “A Programming Language,” in Spring Joint
Computer Conference. ACM, 1962, pp. 345–351.

[2] S. van der Walt, S. Colbert, and G. Varoquaux, “The NumPy
Array: A Structure for Efficient Numerical Computation,”
Computing in Science Engineering, vol. 13, no. 2, pp. 22–
30, 2011.

[3] K. Asanovic et al., “The Landscape of Parallel Computing
Research: A View from Berkeley,” EECS Dept., U. of Cali-
fornia, Berkeley, Tech. Rep. UCB/EECS-2006-183, 2006.

[4] A. D. Robison, “Composable Parallel Patterns with Intel Cilk
Plus,” Computing in Science and Engineering, vol. 15, no. 2,
pp. 66–71, 2013.

[5] B. Chamberlain, D. Callahan, and H. Zima, “Parallel Pro-
grammability and the Chapel Language,” Int. Journal of High
Performance Computing Applications, vol. 21, no. 3, pp. 291–
312, 2007.

[6] T. Goodale, G. Allen, G. Lanfermann, J. Masso, T. Radke,
E. Seidel, and J. Shalf, “The Cactus Framework and Toolkit:
Design and Applications,” in High Performance Computing
for Computational Science VECPAR 2002, ser. Lecture Notes
in Computer Science. Springer Berlin Heidelberg, 2003, vol.
2565, pp. 197–227.

[7] J. Davison de St.Germain, J. McCorquodale, S. Parker, and
C. Johnson, “Uintah: a Massively Parallel Problem Solving
Environment,” in The 9th International Symposium on High-
Performance Distributed Computing, 2000, pp. 33–41.

[8] A. Dubey, K. Antypas, M. K. Ganapathy, L. B. Reid, K. Riley,
D. Sheeler, A. Siegel, and K. Weide, “Extensible Component-
Based Architecture for FLASH, a Massively Parallel, Mul-
tiphysics Simulation Code,” Parallel Computing, vol. 35,
no. 10, pp. 512–522, 2009.

[9] R. Clint Whaley, A. Petitet, and J. J. Dongarra, “Auto-
mated Empirical Optimizations of Software and the ATLAS
Project,” Parallel Computing, vol. 27, no. 1, pp. 3–35, 2001.

[10] M. Frigo and S. Johnson, “The Design and Implementation
of FFTW3,” Proceedings of the IEEE, vol. 93, no. 2, pp.
216–231, 2005.

[11] A. Davidson and J. Owens, “Toward Techniques for Auto-
tuning GPU Algorithms,” in Applied Parallel and Scien-
tific Computing, ser. Lecture Notes in Computer Science.
Springer Berlin Heidelberg, 2012, vol. 7134, pp. 110–119.

[12] Y. Li, Y. Zhang, H. Jia, G. Long, and K. Wang, “Automatic
FFT Performance Tuning on OpenCL GPUs,” in IEEE 17th
International Conference on Parallel and Distributed Systems,
2011, pp. 228–235.

44th International Conference on Parallel Processing (ICPP), Beijing, China, 2015

