7th International Conference on Bioinformatics and Computational Biology, Honolulu, Hawaii, March 2015.

CentroidBLAST: Accelerating Sequence Search via Clustering

Wu-chun Feng, Konstantinos Krommydas, Liqing Zhang
Department of Computer Science
Virginia Tech
{wfeng, kokrommy, lgzhang}@vt.edu

Abstract

BLAST, short for Basic Local Alignment Search Tool,
searches for regions of local similarity between a query
sequence and a large database of DNA or amino-acid
sequences. It serves as a fundamental tool to many dis-
covery processes in bioinformatics and computational
biology, including inferring functional and evolutionary
relationships between sequences, identifying members
of gene families, and phylogenetic profiling. Conse-
quently, researchers have spent many decades making
local alignment search (such as BLAST) more efficient,
both with respect to speed and accuracy.

In this paper, we present our approach for more
efficient sequence search, which we dub CentroidBLAST.
CentroidBLAST first works on a representative fraction
of the original database, where each representative
serves as a “centroid” of similar sequences. A cen-
troid’s cluster of sequences is then searched only if
its representative sequence is a similar match to the
query sequence. This approach delivers as much as a
6.85-fold speed-up over NCBI BLAST. In addition, we
analyze different aspects of CentroidBLAST, including
execution time, biological significance of resulting align-
ments, selection of e-value cut-off, and effect of database
compression.

1 Introduction

Sequence search is a fundamental process in bioin-
formatics and computational biology. Informally, it
can be defined as finding similarities between a query
sequence (i.e., an unknown string of DNA bases or
amino acids) and a subject sequence (i.e., a sequence
in the database that may have known origin and
functionality). Identifying similarities between DNA or
protein sequences serves as a prozy for detecting sim-
ilarities in function and structure between sequences,
thus providing clues on the evolutionary history and
origin of unknown sequences, for example. Other uses
include phylogenetic profiling and identifying members
of gene families.

Our work addresses the need for fast and accurate se-
quence search using commodity off-the-shelf hardware.
In contrast to other alternatives, our approach uses
the widely-trusted NCBI-BLAST and CD-HIT at its
core. More importantly, we explore the search space
for sequence search, with respect to parameters such as
e-value cut-offs and clustering similarity threshold.

Our approach, and more generally, approaches based
on compressive genomics, have the potential to reduce
the need for supercomputers, at least for small- or
medium-sized research facilities. They also help to
make in-house analysis of sequence data a feasible
alternative. Though we do not employ graphics pro-
cessing units (GPUs) or other accelerators (such as Intel
Xeon Phi) in our prototype implementation, the overall
concept can be applied in such environments.

The rest of the paper is organized as follows. Sec-
tion 2 presents our related work while Section 3 presents
our representative-based approach and discusses the
implementation of the core functionalities of such an
approach in the context of our CentroidBLAST pro-
totype. In Section 4, we present the results and
discuss the efficiency of our approach with respect to
various parameters. Section 5 concludes the paper, and
Section 6 highlights opportunities for future work.

2 Related Work

Many algorithms have been proposed in order to
facilitate efficient sequence search. Early sequencing
technologies (i.e., Sanger sequencing) produced data
at a significantly slower pace than what we are able
to achieve today with the advent of next-generation
sequencing (NGS) [20]. However, even before the
advent of NGS, biological data analysis was slow.
Specifically, exact alignment algorithms based on dy-
namic programming, such as Smith-Waterman [22] or
Needleman-Wunsch [21], eventually became obsolete in
favor of heuristic-based ones, such as BLAST [4], which
perform much faster than either Smith-Waterman or
Needleman-Wunsch. However, this faster speed using
heuristics came at the expense of reduced sensitivity
(i-e., increased possibility for less accurate results).

7th International Conference on Bioinformatics and Computational Biology, Honolulu, Hawaii, March 2015.

By the mid-2000s, with biological sequence databases
growing exponentially in size and processor clock fre-
quencies stalling out, researchers added parallel comput-
ing to the mix in order to accelerate the heuristic-based
sequence-search algorithms, e.g., mpiBLAST [5, 13, 15].
These efforts also resulted in optimizing the associ-
ated parallel algorithms for the underlying hardware
architectures [6, 7, 8, 9, 11, 16, 17, 23]. In addition,
the emergence of accelerator-based computing systems
gave rise to massively parallel GPU implementations of
BLAST [24, 25]. Such parallel implementations require
(1) the management and scheduling of tens, hundreds,
and even thousands of CPU cores in order to deliver
high performance in the case of mpiBLAST; (2) the
mapping and optimization of parallel algorithms onto
specialized hardware, such as CUDA-enabled GPUs, for
the GPU implementations; or (3) the packaging of par-
allel algorithms to map onto a cloud infrastructure [19].

A complementary approach to parallelizing the search
algorithms is based on the idea of clustered sequence
representation [10] or compressive genomics [12, 18].
Instead of parallelizing or accelerating the computation
itself, this approach aims to reduce the amount of data
on which the computation needs to be performed by
taking advantage of the inherent redundancy of DNA
and protein databases, as explained below.

DNA and protein databases are inherently redundant.
When performing a typical BLAST search, one needs to
search a query sequence against the entire database of
interest. Sequences in the database that bear similarity
(over a certain threshold) either trigger a successful
alignment (hit) or not. In either case, searching against
a redundant database incurs redundant computation.
To address this inefficiency, our CentroidBLAST ap-
proach starts by clustering similar sequences together
and selecting one sequence (i.e., centroid) to represent
each cluster. If an initial BLAST search triggers a hit
between a query and a centroid, there is a conceptually
high probability that it would trigger hits for other
members of the cluster, too. If it does not, the inverse
implication that no other member of that cluster would
trigger a hit obviates the need for performing a BLAST
search between the query and the rest of that cluster’s
sequences. This idea allows for potentially signficiant
computational savings but depends on the database and
query combination as well as the underlying clustering
algorithm’s efficiency. In the worst case, if a query
triggers hits against all the centroids, then all the
original database’s sequences will be searched.

3 Approach

Here we describe our compressive genomics approach
to sequence search, herein referred to as Centroid-

BLAST. A high-level schematic representation of the
CentroidBLAST algorithm, including the necessary
preprocessing stage and the actual Centroid BLAST
search stage, is depicted in Figure 1.

3.1 Preprocessing Stage

The preprocessing stage ensures that the original
sequence database (protein or DNA) is represented
by a carefully selected set of representative sequences
(i.e., centroids). The collection of these centroids
constitutes what we call the centroid database. The
basis of compressive genomics (or representative-based
sequence search) relies on the fact that an unprocessed
database, i.e., the original database as formed from the
output of the sequencing process or a concatenation
of databases of closely related species, are bound to
exhibit certain amounts of redundancy. The problem
of efficient clustering is a entire area of research in and
of itself, and compressive genomics will largely rely on
the output of such research.

Our CentroidBLAST preprocessing stage handles the
creation of the centroid database by employing an
open-source clustering algorithm called CD-HIT [14].
CD-HIT follows a greedy and incremental clustering
approach, where the longest input sequence is selected
as the first cluster representative and then subsequent
sequences (sorted from longest to shortest) are com-
pared to the current representatives and classified as
either redundant or representatives of new clusters.
It supports both protein and DNA clustering and
provides a sufficient amount of parameterization. One
of its main advantages is multithreading support, i.e.,
utilizing multiple compute threads on a multi-core
CPU. Although the clustering step is the main part of a
once-per-database procedure, it is very time-consuming
and fast execution is a desirable feature.

After running CD-HIT, similar sequences (where sim-
ilarity is defined by a user-defined similarity threshold
parameter) are identified and grouped, and a sequence
per cluster is used as this cluster’s representative.’ The
centroid database is stored in FASTA format, and the
clustering information is contained in a separate file
that undergoes further processing, as discussed below.

The centroid database effectively represents the orig-
inal sequence database, and its size is much smaller
than the original database. The effectiveness of this
representation and the size of the centroid database
depends on the setting of the similarity threshold as
well as on the efficiency of the clustering algorithm.
To better understand these aspects, we examine the
compression efficiency of CD-HIT in detail for different

1The terms centroid and representative sequence will be used
interchangeably throughout the rest of this paper.

7th International Conference on Bioinformatics and Computational Biology, Honolulu, Hawaii, March 2015.

Original
sequence

Preprocessing
stage

—_— Clustering with
CD-HIT

Clustered databases

database ﬁ
entroi
database

Similarity threshold

parameter
o Query files
(*)]
"g an
n Identify queries st

Concatenate
S ' ¢ @ ‘ <« ;taAgS?l' <« I:g:I <« and centroid hit 28 <« S
E combinations BLAST
@® Final results 2nd stage + i b i 1st stage ¢
2 BLAST results Stringent e-value Corresponding clusters BLAIST Permissive e-value
results

that triggered hits

Figure 1: CentroidBLAST pipeline: preprocessing and Centroid BLAST search stages.

similarity thresholds and explore the trade-offs between
compression efficiency and clustering execution time in
Section 4.2.

Along with the centroid database, the original
database information needs to be retained in a slightly
different form. Specifically, in place of the original
FASTA database, we store separate small databases
that correspond to the sequence clusters, as generated
by CD-HIT. These cluster databases as well as the
centroid database must undergo formatting by NCBI-
BLAST, using the corresponding NCBI-BLAST’s
formatdb tool. These databases are then used during
the coarse-grained and fine-grained BLAST stages,
respectively, of CentroidBLAST (as explained in more
detail in Section 3.2).

The preprocessing stage only needs to be run once per
database. Among the preprocessing stage’s constituent
procedures, CD-HIT clustering is by far the most time-
consuming, i.e., orders of magnitude longer than the
rest of the preprocessing.

3.2 Search Stage

Once preprocessing completes, Centroid BLAST is
used in place of a regular BLAST search. Centroid-
BLAST conceptually consists of two BLAST searches:
(1) a coarse-grained search stage (1st-stage BLAST), in
which the BLAST search is conducted against the cen-
troid database and with a more permissive e-value cut-
off parameter and (2) a fine-grained search stage (2nd-
stage BLAST), where each query that participated in
a hit during the first stage is BLASTed against those
cluster databases whose centroid triggered the hit with
the query under consideration. For this second stage of
CentroidBLAST search, a more stringent e-value cut-
off is used.

As shown in Figure 1, our CentroidBLAST approach
executes the following steps:

(1) Performs 1st-stage BLAST search with a more
permissive e-value cut-off value and collects the hit
results (i.e., combinations of queries and database
sequences that align over a given e-value thresh-
old). The centroid database and original query file
(potentially consisting of multiple single queries)
are used as inputs at this stage. The output
is passed on the algorithmic pipeline in NCBI-
BLAST’s tabular format (-m 8 parameter).

Identifies the individual queries within a query
file that triggered a hit against a certain centroid
during the previous stage and splits them into
multiple query files (one query per query file).
The sequence IDs of all the centroid sequences
that triggered a hit in the first stage are used
as pointers to the corresponding clusters they
represent. A separate 2nd-stage NCBI-BLAST
search is subsequently performed between each
of the above queries and the cluster databases
previously identified. Those BLAST searches use
a more stringent e-value cut-off than the 1st-stage
BLAST.

The second stage’s BLAST results are concate-
nated in a single file and constitute the final
CentroidBLAST output.

4 Results and Discussion

This section presents the results of our experiments
with CentroidBLAST and a comparison against the
results obtained from performing sequence alignment
using NCBI-BLAST. Specifically, we focus on two

7th International Conference on Bioinformatics and Computational Biology, Honolulu, Hawaii, March 2015.

important aspects of sequence search: execution time
and accuracy. Each of these two aspects depends on
a number of factors (or parameters). In addition,
these two aspects are expected to compete against one
another. First, we perform a sensitivity analysis using
such parameters in our experiments and present the
results for each target metric in isolation. Then, we
discuss the measured trade-offs between execution time
and accuracy.

Prior to this, however, we begin by outlining our
experimental set-up, followed by an analysis of the pre-
processing stage and search stage for CentroidBLAST.

4.1 Experimental Setup

In this section we present our experimental setup, i.e.,
the software and hardware used to collect the results as
well as the database and queries used.

4.1.1 Software

The results presented in this work are obtained by
use of our CentroidBLAST prototype implementation.
CentroidBLAST is designed as a bi-partite software,
consisting of a server-side pipeline (used for preprocess-
ing of the input databases) and a client-side pipeline
(used for the actual sequence search process). Each of
the pipelines utilizes custom Perl scripts performing the
required operations. NCBI-BLAST (3] lies at the core
of the client-side CentroidBLAST pipeline, performing
the two required parameterized BLAST stages, while
CD-HIT [1] is the application used in the preprocess-
ing stage in the server-side CentroidBLAST pipeline
that is responsible for finding similarities between the
database’s sequences and grouping them in clusters
represented by a single sequence (centroid).

4.1.2 Database and Queries

For our proof of concept experiments we chose to use
a reasonably big, yet not huge input database. The
reason behind that lies in the detailed analysis we
wanted to conduct which would be prohibitive time-
wise if we were to use a much larger database (i.e., in
the order of tens or hundreds of gigabytes). Moreover,
the databases we used to form our bigger test database
are redundant by their nature, i.e., contain information
potentially including duplicates or near duplicates (as
opposed to mnon-redundant databases). Specifically,
we obtained three redundant protein databases from
the European Bioinformatics Institute (part of the
European Molecular Biology Laboratory- EMBL): the
EPO database (429MB), JPO database (688MB), and
the USPO database (581MB) [2]. The aforementioned

databases contain proteins extracted from patent appli-
cations submitted to the European, Japan, and United
States patent offices and consist of 459328, 416219 and
505583 sequences, respectively. These three databases
were combined to a single database, which was the
target input database in all our experiments.

We search these databases using six different sets of
queries of random length, where each set consists of 100,
200, 300, 400, 500, 600 queries drawn randomly from
the combined input database after being randomly mu-
tated at a 20% rate. Due to lack of space for presenting
the huge amount of data points (see Section 4), and
for better visual clarity, in some experiments we only
present results for the 300 queries file.

4.1.3 Hardware

The platform used to run all experiments is based on
an Intel E5-2680 processor, which is a representative
implementation of a high-performance, homogeneous
multi-core system and is a processor with 16 cores
in a package organized as two independent eight-core
modules packaged together. Each core supports two
hardware threads (for a total of 32 threads) and is
clocked at 2.7 GHz.

4.2 Preprocessing Stage for
CentroidBLAST

As mentioned in Section 3, the preprocessing stage
is dominated by the clustering procedure (in terms of
execution time). CD-HIT employs all available cores
in a multi-core system and clustering run-time heavily
depends on the similarity threshold parameter. We
experiment with similarity threshold values ranging
from 60-90% to evaluate the compression efficiency, as
well as the execution time. The results are shown in
Table 1. The first row corresponds to the original
database, as described in Section 4.1, where each
sequence effectively corresponds to a single cluster.
One can observe the huge space savings even at the
90% similarity threshold, where the resulting centroid
database consists of 17.98% of the original sequences.
A similarity threshold of 80% increases the reduction at
11.94%. After that point we only observe diminishing
returns, where a 70% and 60% similarity threshold
yields a mere 2.07% and 1.78% further reduction,
respectively. In terms of actual space savings the above
reduction in number of clusters (i.e., sequences in the
centroid database compared to sequences in the original
database) corresponds to reductions starting at 80.67%
and going up to 88.93%. Looking at the clustering
execution time, we observe a steady increase going
from 90% to 80% to 70%. At that point reducing

7th International Conference on Bioinformatics and Computational Biology, Honolulu, Hawaii, March 2015.

Table 1: Preprocessing stage: clustering and Perl
scripts.

e Cluster # | Space | Clustering Auxiliary
Similarity . . . g o
threshold # Clusters savings savings time scripts time

(%) (%) (minutes) (seconds)
100% 6,910,715 N/A N/A N/A N/A
90% 1,242,770 82.02 80.67 17 59
30% 825,362 88.06 84.66 22 61
70% 682,378 90.13 86.91 27 66
60% 559,689 91.91 88.93 147 72

the similarity threshold to 60% induces a huge increase
of clustering execution time (by a factor of 5.44).
The main reason lies in the internals of the CD-HIT
clustering algorithm. Specifically, the seed used in
comparing sequences for similarity and clustering needs
to be reduced to a minimum of 4 letters for 60%
similarity threshold, as opposed to 5 (for over 60%)
to preserve comparable compression efficiency [14].
Intermediate auxiliary Perl scripts in the preprocessing
CentroidBLAST stage only range between 59 and 72
seconds. In any case, since the preprocessing step only
needs to be performed once for each target database,
and for lack of space, we select for our experiments
and present our findings for the centroid database and
clustering output of running CD-HIT with the 60%
similarity threshold.

4.3 Execution Time of
CentroidBLAST: Search Stage

In this subsection we present our experiments that
are related to the execution time of the sequence
search through the CentroidBLAST pipeline. We
experiment with an extensive range of coarse- and fine-
grained stage e-value cut-offs, since these are the main
execution parameters that affect total execution time.
Specifically, we test e-values from 10738 to 107! in
many possible combinations. Allowed combinations
require the first stage BLAST (or coarse-grained) e-
value to be less stringent (i.e., larger) than the second
stage’s (or fine-grained). Figure 2 shows some of the
values for the 120 possible combinations in the x-axis,
while the y-axis depicts the relative execution time
between the coarse- and fine-grained BLAST stages
comprising Centroid BLAST. Multiple query files drawn
randomly from the target database and randomly mu-
tated at a certain level (as described in 4.1) exhibit
similar behavior. In particular, while the coarse-grained
BLAST stage is characterized by minimal variations
in execution time (since the cut-off e-value only affects
what final results are presented after the same amount
of computation has been performed), the execution
time of the fine-grained stage depends on the amount
of hits resulting from the coarse-grained stage. The
more permissive the coarse-grained e-value, the more

hits, i.e., the more centroids are found. In turn, the
clusters represented by these centroids formulate the
databases to be searched in the fine-grained BLAST
stage. Conceptually, the larger the databases to be
searched the longer the fine-grained search, and the
lower the ratio, as observed in Figure 2.

Figure 3 presents another aspect of execution time
by comparing CentroidBLAST’s speed-up over NCBI-
BLAST. For visual clarity, we show results for the query
file including 300 queries only, but our observations are
quite similar for the rest of the test cases. In contrast
to Figure 2, in Figure 3 we group the pair of e-values on
the x-axis according to the coarse-grained stage e-value.
This is to highlight that the decisive factor in attainable
speed-ups lies in that first, coarse-grained BLAST
search. The lowest speed-up observed here is 5.37x and
the highest 6.85x, compared to the corresponding multi-
threaded (i.e., parallel) NCBI-BLAST implementation
that uses an e-value cut-off similar to the cut-off e-value
of the fine-grained BLAST stage of Centroid BLAST.

4.4 Accuracy of CentroidBLAST
Search Results

For any sequence search method accuracy of the
results is arguably a very important aspect. In our case,
we treat the original NCBI-BLAST results (obtained
by using the same e-value as the fine-grained stage of
CentroidBLAST) as the gold standard against which we
calculate our method’s accuracy (in terms of true posi-
tives, false positives, etc.) for each coarse-/fine-grained
e-value combination. In all cases, only alignments with
identical information (i.e., not only query and subject
sequence, but start and end point, bit-score, e-value
etc.) are considered true positives. Figure 4 shows the
ROC curve for sequence search with CentroidBLAST
using NCBI-BLAST as the gold standard. Different
points represent different combinations of coarse- and
fine-grained e-values for the two BLAST stages within
CentroidBLAST. As such, one should not be confused
by the fact that the ROC curve does not exhibit positive
correlation, as it captures the TPR and FPR as a
function of such combinations and encompasses the
non-trivial interactions of the two BLAST stages within
CentroidBLAST. As observed in the ROC curve all
combinations achieve true positive rate (TPR) and false
positive rate (FPR) more than 83% and less than 8%,
respectively. More specifically, for about 2/3 of the
combinations our method achieves TPR greater than
97% with FPR less than 2%. About 1/3 of the tested
combinations yields TPR > 99% with FPR < 0.7%.
Overall, CentroidBLAST exhibits satisfactory accuracy
for most e-value combinations.

7th International Conference on Bioinformatics and Computational Biology, Honolulu, Hawaii, March 2015.

0T °
£ X
£ 245
=R =100 <8200 ~*300
+ T
1
eS8 4
5 9
S ¥ 35 =€400 =500 -©-600
8 3.
e wn
od-l
Q9
ES °
)
c 4
6§ 8 25
"Bln
S
[SIR7,} 2
o<
xX J
v @
"'6-5 1.5
(7]
o c
EE e .. .
oo
D D P B B B S S S AD DD DI I IIIF OSSP ESES S
NN
PoVoP

7 1
6.8 0.98
o LI | 036
3 U | =
Fus al
5., nnim NIARRARAES o5z g
: . | i u u L T o 2
8 | RS o 3
: e WU o6 &
] 5 lol#i%1*
g N WU o
"o I o
5.2 0.8
K 9 HTPR
Coarse-grained e-value, fine-grained e-value pair < Speed-up

Figure 3: Speed-up over NCBI-BLAST for e-value cut-off similar to the fine-grained Centroid BLAST.

4.5 Execution Time vs. Accuracy
Trade-off

In the previous sections, we discussed two important
aspects: (1) the execution time of CentroidBLAST
and (2) the accuracy of CentroidBLAST compared
to NCBI-BLAST. We observed the importance of pa-
rameters like the similarity threshold of the clustering
algorithm in the preprocessing stage’s execution time
and space savings and most importantly the effect of
coarse- and fine-grained e-values in the execution time
of the CentroidBLAST search. While our method has
a proven ability to perform fast sequence alignment, as
well as accurate alignment results (compared to NCBI-
BLAST), we need to quantify the relationship (or trade-

off) between execution speed and accuracy. Intuitively,
one would expect those two targets to be competing
and this trend is generally the case, as we observe in
Figure 3. Specifically, to achieve the highest speed-
up one has to sacrifice accuracy, in that many hits
discovered by NCBI-BLAST are not identified as such
by Centroid BLAST. Depending on the coarse- and fine-
grained e-value pair selection, we can generally attain
speed-ups approaching six-fold with a TPR > 98%.

5 Conclusion

In this work, we demonstrated the effectiveness of
the compressive-genomics concept. We presented a
prototype implementation of an automated centroid-

7th International Conference on Bioinformatics and Computational Biology, Honolulu, Hawaii, March 2015.

True positive rate .

0 0.2 0.4
False positive rate

0.6 0.8

True positive rate

0.98 2
0.9 \}‘V”%«.o\, .
0.94 SR ety

LY VS
0.92 \,—&Q
0.9 S
0.88 L A

L+ 4 v .
0.86 >
0.84 v) 474
0.82
0.8
0 002 004 006 008 01

False positive rate

Figure 4: ROC curve for sequence search with CentroidBLAST with varying e-value combinations using NCBI-

BLAST as the gold standard.

BLAST pipeline, by means of appropriate core and
supplementary shell scripts, as well as their constituent
Perl programs. The centroidBLAST framework we
propose is built with a lego-like approach for being
easily adjustable and with future eztensibility in mind.
While high-throughput next generation sequencing has
resulted in huge amounts of sequencing data and typ-
ical BLAST searches have become notoriously time-
consuming, our centroidBLAST approach delivered an
up to 6.85x speed-up in our experimental set-up with
minimal sacrifice in results’ accuracy. Although our test
protein database already demonstrates the effectiveness
of centroidBLAST, much larger input databases (in the
order of hundreds or thousands of GB of sequencing
data) can potentially prove the centroidBLAST ap-
proach even more efficient. We presented a detailed
analysis of the obtained results with respect to various
parameters’ selection, including clustering similarity
threshold, different query sets, and most importantly
cut-off e-value combinations for our two-stage BLAST
approach at the core of the centroidBLAST pipeline.

6 Future Work

While our centroidBLAST prototype implementation
serves as a reasonable proof of concept of our approach,
there yet remains space for future work to further ex-
tend its utility and effectiveness. Experimentation with
more and novel clustering tools is one of our primary
concerns, as clustering efficiency in the centroidBLAST
preprocessing step constitutes the basis for better cen-
troidBLAST searches. Furthermore, adding support
for incremental clustering is an important avenue of
future research; by saving intermediate BLAST results
for a query of interest, one can avoid repeating large
amounts of computation, once a database is updated

with new sequences. As new sequences are added
to an existing database they are assigned to existing
clusters. A new search (based on a saved BLAST
result) needs to only take into account those new
sequences that fall under the clusters whose centroid
previously incurred a hit. Otherwise they can be
disregarded altogether. Further research on auto-tuning
the parameters mentioned earlier (clustering similarity
threshold, etc.) for achieving the best results, either
in terms of execution time or in terms of biological
accuracy could be conducted, depending on the user’s
preference. To further enhance execution speed, with
even less sacrifices in accuracy, one can employ parallel
hardware, such as the many-core graphics processing
unit (GPU) or other accelerators, such as Intel Xeon
Phi. Finally, from a software engineering standpoint,
while our script-based automated pipeline only sup-
ports the most important BLAST options, it can be
trivially extended to support the full array of BLAST
features/options and a graphical user interface (as
opposed to a command line tool) would greatly enhance
its usability.

Acknowledgments

This work was supported in part by the Institute for
Critical Technology and Applied Science (ICTAS) and
by NSF IIS-1247693.

References

[1] CD-HIT Website. http://weizhong-lab.ucsd.
edu/cd-hit/.

[2] EMBL-EBI: Patent protein sequences.
www.ebi.ac.uk/patentdata/proteins.

http://

7th International Conference on Bioinformatics and Computational Biology, Honolulu, Hawaii, March 2015.

3]

[4]

[10]

[11]

[12]

NCBI-BLAST FTP server. ftp://ftp.ncbi.nlm.
nih.gov/blast/executables/release/LATEST/.

S. F. Altschul, W. Gish, W. Miller, E. W. Myers,
and D. J. Lipman. Basic local alignment search
tool. Journal of Molecular Biology, 215(3):403—
410, October 1990.

J. Archuleta, E. Tilevich, and W. Feng. A
maintainable software architecture for fast and
modular bioinformatics sequence search. In IEEFE
Int’l Conf. on Software Maintenance, 2007.

P. Balaji, W. Feng, J. Archuleta, and H. Lin.
ParaMEDIC: Parallel Metadata Environment for
Distributed I/O and Computing. In Supercomput-
ing Storage Challenge Winner, 2007.

P. Balaji, W. Feng, J. Archuleta, H. Lin,
R. Kettimuthu, R. Thakur, and X. Ma. Semantics-
based distributed I/O for mpiBLAST. In ACM
SIGPLAN PPoPP, 2008.

P. Balaji, W. Feng, and H. Lin. Semantics-based
distributed I/O with the ParaMEDIC framework.
In Proceedings of the ACM/IEEE Int’l Symposium
on High Performance Distributed Computing, Jun
23-27 2008.

P. Balaji, W. Feng, H. Lin, J. Archuleta,
S. Matsuoka, A. Warren, J. Setubal, E. Lusk,
R. Thakur, I. Foster, D. Katz, S. Jha, K. Shin-
paugh, S. Coghlan, and D. Reed. Distributed I/0
with ParaMEDIC: Experiences with a worldwide
supercomputer. In Int’l Supercomputing Conf.,
2008.

M. Cameron, Y. Bernstein, and H. E. Williams.
Clustered sequence representation for fast homol-
ogy search. Journal of Computational Biology : a
Journal of Computational Molecular Cell Biology,
14(5):594-614, June 2007.

A. Ching, W. Feng, H. Lin, X. Ma, and
A. Choudhary. Exploring I/O strategies for
parallel sequence database search tools with
S3aSim. In Proceedings of the Int’l Symposium
on High Performance Distributed Computing, June
2006.

N. M. Daniels, A. Gallant, J. Peng, L. J. Cowen,
M. Baym, and B. Berger. Compressive genomics
for protein databases. Bioinformatics, 29(13):1283~
290, 2013.

A. E. Darling, L. Carey, and W. Feng. The design,
implementation, and evaluation of mpiBLAST. In
Cluster World, 2003.

[14]

[15]

[17]

[23]

L. Fu, B. Niu, Z. Zhu, S. Wu, and W. Li. CD-
HIT: accelerated for clustering the next-generation
sequencing data. Bioinformatics, 28(23):3150—
3152, 2012.

M. Gardner, W. Feng, J. Archuleta, H. Lin, and
X. Ma. Parallel genomic sequence-searching on
an ad-hoc grid: Experiences, lessons learned, and
implications. In SC, 2006.

H. Lin, P. Balaji, R. Poole, C. Sosa, X. Ma, and
W. Feng. Massively parallel genomic sequence
search on the Blue Gene/P architecture. In SC,
2008.

H. Lin, X. Ma, W. Feng, and N. F. Samatova.
Coordinating computation and I/O in massively
parallel sequence search. IEEE Transactions on
Parallel and Distributed Systems, 99, 2010.

P. Loh, M. Baym, and B. Berger. Compressive
genomics. Nature Biotechnology, 30(7):627-630,
July 2012.

A. Matsunaga, M. Tsugawa, and J. Fortes. Cloud-
BLAST: Combining MapReduce and virtualiza-
tion on distributed resources for bioinformatics
applications. In IEEE Fourth Int’l Conf. on
eScience, pages 222-229, Dec 2008.

M. L. Metzker. Sequencing technologies - the next
generation. Nature Reviews. Genetics, 11(1):31-
46, January 2010.

S. B. Needleman and C. D. Wunsch. A general
method applicable to the search for similarities in
the amino acid sequence of two proteins. Journal
of Molecular Biology, 48(3):443-453, March 1970.

T. F. Smith and M. S. Waterman. Identification
of common molecular subsequences. Journal of
Molecular Biology, 147(1):195-197, March 1981.

O. Thorsen, K. Jiang, A. Peters, B. Smith, H. Lin,
W. Feng, and C. Sosa. Parallel genomic sequence-
search on a massively parallel system. In ACM
Int’l Conf. on Computing Frontiers, May 2007.

P. D. Vouzis and N. V. Sahinidis. Gpu-blast: Using
graphics processors to accelerate protein sequence
alignment. Bioinformatics, 2010.

S. Xiao, H. Lin, and W. Feng. Accelerating protein
sequence search in a heterogeneous computing
system. In 2011 IEEE Int’l Parallel Distributed
Processing Symposium, May 2011.

