
Bridging the Performance-Programmability Gap for FPGAs
via OpenCL: A Case Study with OpenDwarfs

Konstantinos Krommydas⇤, Ahmed E. Helal†, Anshuman Verma†, and Wu-Chun Feng⇤†
Department of Computer Science⇤,

Department of Electrical and Computer Engineering†,
Virginia Tech,

Email: {kokrommy, ammhelal, anshuman, wfeng}@vt.edu

Abstract—For decades, the streaming architecture of FPGAs
has delivered accelerated performance across many application
domains, such as option pricing solvers in finance, computational
fluid dynamics in oil and gas, and packet processing in network
routers and firewalls. However, this performance has come at
the significant expense of programmability, i.e., the performance-
programmability gap. In particular, FPGA developers use hard-
ware design languages (HDLs) to implement the application data
path and to design hardware modules for computation pipelines,
memory management, synchronization, and communication. This
process requires extensive low-level knowledge of the target
FPGA architecture and consumes significant development time
and effort.

To address this lack of programmability of FPGAs, OpenCL
provides an easy-to-use and portable programming model for
CPUs, GPUs, APUs, and now, FPGAs. However, this signif-
icantly improved programmability can come at the expense
of performance; that is, there still remains a performance-
programmability gap. To improve the performance of OpenCL
kernels on FPGAs, and thus, bridge the performance-
programmability gap, we identify general techniques to optimize
OpenCL kernels for FPGAs under device-specific hardware
constraints. We then apply these optimization techniques to
the OpenDwarfs benchmark suite, with its diverse parallelism
profiles and memory access patterns, in order to evaluate the
effectiveness of the optimizations in terms of performance and
resource utilization. Finally, we present the performance of the
optimized OpenDwarfs, along with their potential re-factoring,
to bridge the performance gap from programming in OpenCL
versus programming in a HDL.

Index Terms—OpenDwarfs; FPGA; OpenCL; GPU; GPGPU;
MIC; Accelerators; Performance Portability

I. INTRODUCTION

For decades, the streaming architecture of FPGAs has
delivered accelerated performance across many application
domains, such as option pricing solvers in finance, compu-
tational fluid dynamics in oil and gas, and packet processing
in network routers and firewalls. However, this performance
has come at the significant expense of programmability, i.e.,
the performance-programmability gap. In particular, FPGA
programmers use a hardware design language (HDL) to im-
plement the application data path and to design hardware
modules for computation pipelines, memory management,
synchronization, and communication interfaces at the Register

This work was supported in part by NSF I/UCRC IIP-1266245 via the NSF
Center for High-Performance Reconfigurable Computing (CHREC).

Transfer Level (RTL), i.e., the programmers must specify the
cycle-accurate behavior for the data path in every module
and register in the design [1], [2]. This process is similar
to programming traditional CPUs in assembly language with
the additional complexity of scheduling the instructions and
data on a cycle-by-cycle basis, which requires extensive low-
level knowledge of the target FPGA architecture and consumes
significant development time and effort. In contrast, GPUs
took the parallel computing community by storm in the
late 2000s by significantly enhancing the programmability of
GPUs via higher-level programming abstractions for general-
purpose computing, namely CUDA and OpenCL.

To address this lack of programmability of FPGAs, OpenCL
provides an easy-to-use and portable programming model for
CPUs, GPUs, APUs, and now, FPGAs. However, this signifi-
cantly improved programmability and portability can come at
the expense of performance. Although FPGA compilers for
OpenCL can generate functionally-correct hardware designs
from architecture-agnostic OpenCL kernels, it is unlikely that
these designs will utilize the FPGA resources efficiently to
meet the required performance; that is, there still remains a
performance-programmability gap.

In this paper, we use the OpenDwarfs benchmark suite [3],
a suite of architecture-agnostic OpenCL kernels that capture
common computation and communication patterns across a
wide spectrum of scientific and engineering applications, to
study the performance of the OpenCL programming model
on FPGAs. In OpenDwarfs, none of the dwarfs contain opti-
mizations that favor a specific architecture over another.

First, we assess the performance gap between fixed and
reconfigurable architectures by characterizing the performance
of benchmarks in the OpenDwarfs benchmark suite on multi-
core CPUs, GPUs, Intel MIC and FPGAs. Unsurprisingly,
we find that architecture-agnostic OpenCL kernels result in
inefficient hardware designs on FPGAs. Next, to improve the
performance of OpenCL kernels on FPGAs, and thus, bridge
the performance-programmability gap, we identify general
techniques to optimize OpenCL kernels for FPGAs under
device-specific hardware constraints. We then apply these opti-
mization techniques to an example case from the OpenDwarfs
benchmark suite in order to evaluate the effectiveness of the
optimizations in terms of performance and resource utilization
and present the performance of the optimized implementations.



TABLE I: OpenDwarfs Benchmarks Used

Dwarf Benchmark Input data
N-body Methods GEM nucleosome 80 1 0
Structured Grid SRAD 2048x2048 FP matrix,

128 iterations
Dense Linear Algebra LUD 2048x2048 FP matrix
Unstructured Grid CFD missile.domn.0.2M

II. MOTIVATION AND BACKGROUND

OpenCL is a portable and standard programming model for
heterogeneous systems that typically consist of a hierarchical
array of processing elements and memory structure. At the
high-level, OpenCL defines a unified and abstract machine
model for the different many-core architectures to provide
both portability and programmability. The target architecture
consists of multiple compute units (CUs) that share a sin-
gle global memory and constant memory space. The global
memory can be used across CUs. Each CU has its own local
memory and contains multiple processing elements (PEs) that
share this local memory. In addition, each PE has a low-latency
private memory. Using OpenCL, the programmer can control
the parallelism at different granularity levels, such as task-
level parallelism and data-level parallelism, and manage data
movement between memory levels.

Unlike traditional high-level synthesis (HLS) programming
models for FPGAs, OpenCL is explicitly parallel, which
allows OpenCL-FPGA compilers to automatically generate
a many-core hardware accelerator from the OpenCL kernel
implementation based on the available resources on the tar-
get reconfigurable fabric. Therefore, HLS on FPGAs using
OpenCL has the potential to design a custom hardware
accelerator that matches the applications characteristics and
improve performance and power efficiency [4], [5]. Although
OpenCL’s abstract machine model allow programmers to write
their applications once and run them on multiple architectures,
including CPUs, GPUs, Intel MIC and FPGAs, it is unlikely
that these applications will efficiently utilize the underlying
hardware architecture, i.e., OpenCL provides functional porta-
bility but not performance portability. For example, CPUs
favor task-level parallelism (due to their limited vector units),
and have special hardware that implicitly utilizes data locality
and reduces memory access latency; in contrast, GPUs require
massive data-level parallelism, and the programmer is respon-
sible for reducing the memory access latency by explicitly
utilizing the data locality. In FPGAs, the problem of efficient
utilization of the target hardware is even more complicated,
as the programmers have access to an array of logic elements
and embedded memory blocks that can be configured to a
CPU-like, a GPU-like or an application-specific architecture.

III. A CASE STUDY WITH OPENDWARFS

A. OpenDwarfs Characterization

In this paper, our main goal is to study the performance
of the OpenCL programming model on FPGAs using the

TABLE II: Test Architectures’ Specifications

Model Intel Intel Intel MIC Tesla Tesla
i5-2400 Xeon 7100 C2070 K20X

E5-2700
Type CPU CPU Co-proc. GPU GPU
Freq. (GHz) 3.1 2.7 1.238 1.15 0.732
Cores 4 12 61 14 14
SIMD (SP) 8 8 16 32 192
GFLOPS (SP) 198.4 518.4 2415.6 1030 3950
On-Chip mem. 7.125 33.375 32.406 3.375 3.032
B/W (GB/s) 21 59.7 352 148.42 250
Process (nm) 32 22 22 40 28
TDP (W) 95 130 270 238 235

OpenDwarfs benchmark suite. First, we assess the perfor-
mance gap between fixed and reconfigurable architectures by
characterizing the performance of the OpenDwarfs benchmark
suite on multi-core CPUs, GPUs, Intel MIC and FPGA. Table I
presents the OpenDwarfs subset considered in this study and
their input datasets and/or parameters, and Table II lists the
target fixed architectures. Our FPGA board is the BittWare
S5-PCIe-HQ-D8 board with high density Altera Stratix V
FPGA (28nm process), and the Altera OpenCL SDK v14.0.
Figure 2 shows the performance of the OpenDwarfs on both
the fixed and reconfigurable architectures. The FPGA re-
sources utilization for GEM, SRAD, LUD and CFD is 29.7%,
45.54%, 38.57% and 85.64%, respectively. Unsurprisingly, the
architecture-agnostic implementation of the OpenCL kernels
results in inefficient hardware designs on FPGAs.

1) GEM: N-body algorithms are characterized by all-to-
all computations within a set of particles. In GEM, the
electrostatic surface potential of a biomolecule is calculated as
the sum of charges contributed by all atoms in the biomolecule
due to their interaction with a specific surface vertex (two sets
of bodies). The algorithm complexity is O(N ⇥ M), where
N is the number of points along the surface, and M is the
number of atoms. GEM is a regular compute-bound algorithm,
given that atoms’ data are reused, as each thread independently
accumulates the potential at a single point due to every atom
in the molecule, requiring large number of PEs, and being
sensitive to data locality. Hence, GPUs with their massive
number of PEs achieve the best performance.

2) SRAD: In structured grids algorithms, computation pro-
ceeds as a series of update steps to a regular grid data structure
of two or more dimensions. SRAD is a structured grids
application that attempts to eliminate speckles (i.e., locally
correlated noise) from images, following a partial differential
equation approach. SRAD, similar to all stencil computations,
is a regular, memory-bound algorithm, where each grid cell
can be updated independently. However, synchronization is
required before proceeding to the next grid update step.
Therefore, it requires large number of PEs and high memory-
bandwidth that renders it suitable for GPU architectures.

3) LUD: Dense linear algebra algorithms are characterized
by computations on dense vectors (1D) and matrices (2D data).
In LU decomposition, an NxN matrix is reduced to the upper
and lower triangular matrices in n steps. In every step k, the



Fig. 1: Architecture-agnostic kernel performance

effect of the kth pivot is applied to the trailing matrix of order
N-k x N-k. Therefore, the parallelism decreases in every step,
and there is global synchronization between the factorization
steps. LUD is a regular synchronization-bound and memory-
bound algorithm, if the matrix can’t fit in the on-chip memory.
Hence, it needs efficient global synchronization and is sensitive
to the memory bandwidth. Although GPUs achieve the best
performance, due to their inefficient global synchronization are
on par with CPU-like architectures.

4) CFD: Unstructured grids algorithms use irregular data
structure to keep track of the location and neighborhood of
the points on unstructured grid, and perform a series of update
steps on this unstructured data. CFD is a solver for the three-
dimensional Euler equations for compressible flow that use the
finite-volume method. Similar to SRAD, each cell in the grid
can be updated independently and synchronization is required
before proceeding to the next grid update step. However,
CFD suffers from uncoalesced memory accesses due to the
use of irregular data-layout that significantly impacts GPU
performance. As such, the performance gap between GPUs
and other architectures is less than SRAD.

TABLE III: GEM Kernel Implementations’ Features

Implem. Refact. Restrict Constant SIMD CU Unroll
IMP1 1 1 1
IMP2 1 1 1
IMP3 1 1 1
IMP4 1 1 1
IMP5 1 1 4
IMP6 8 1 1
IMP7 16 1 1
IMP8 8 1 1

B. FPGA Optimizations and Insights

To improve the performance of OpenCL kernels on FPGAs,
we can exploit different parallelism levels: task, data (SIMD
vectorization) and pipeline parallelism. We can minimize
memory accesses by controlling data movement across the
memory hierarchy levels, and coalescing memory accesses.
Since FPGAs have limited hardware resources and memory
bandwidth, it is imperative that we analyze different combina-
tions of these optimization techniques to identify the best and
generate the most efficient (performance, resource utilization)
hardware design for all dwarfs. In the context of this work,



Fig. 2: Optimized GEM Kernel implementations

we start exploring the large FPGA-oriented optimization space
and attempt to provide some preliminary insights.

1) Use of restrict/const keywords and kernel vectorization:
An optimization strongly suggested by Altera [6] is use of
the restrict keyword for kernel arguments that are guaranteed
to not alias (i.e., point to the same memory location). Using
restrict allows more efficient designs in terms of performance
by eliminating unecessary assumed memory dependencies.
Although a side effect of such an optimization could be lower
resource utilization, we find that this is not the case in our
application. Cases IMP2 and IMP4 (Figure 2) highlight the
difference (1.31 times higher utilization with restrict) across
two otherwise identical implementations. Performance-wise,
IMP4 is 3.94 times faster and this stems from the vast majority
of memory accesses resulting in cache hits. Conversely, IMP2
is characterized by sub-optimal memory accesses that result in
cache misses and pipeline stalls (about 80% of the time). As
far as const keyword is concerned we observe no difference
neither in resource utilization, nor in execution time.

2) Compiler resource-driven optimizations: In compilation
with resource-driven optimization the compiler applies a set
of heuristics and estimates resource utilization and through-
put given a number of kernel attributes, like loop unroll
factor, kernel vectorization, number of compute units. This
process should not be always expected to provide the best
implementation. In our example application, we identify at
least one case where manual choice of kernel vectorization
width surpasses (by 3.33x) the compiler-selected attributes
(pragma unroll 4) (IMP6, IMP5 in Figure 2). Profiling the
kernel, we find that IMP6 benefits from coalesced memory
accesses, while memory accesses in IMP5 result in costly
pipeline stalls. Also, bandwidth efficiency is higher (more than
double) in IMP6 (i.e., more of the data acquired from the
global memory system is actually used by the kernel). Altera
discusses the inherent limitations of static resource-driven op-
timizations in their optimization guide [6]. Developers should
consider the aforementioned limitations when compiling using
the resource-driven optimization option.

3) Algorithmic refactoring: A given algorithm implementa-
tion may solve an actual problem, but this does not mean that
a set implementation is appropriate for every platform (e.g.,
CPU, GPU, FPGA). A different implementation for solving
the same problem, i.e., produce the same output given the
same input, may be necessary. While this may not be intuitive,
or even applicable for all cases, certain algorithmic restruc-
turing can prove very beneficial. To illustrate the above, we
apply basic algorithmic refactoring in our example application.
Specifically, we remove the complex conditional statements
for different cases encapsulated in a single kernel, and tailor
the kernel to the problem at hand. This provides a two-fold
benefit: (a) better resource utilization (in our examples the
refactored algorithm requires about 10% less FPGA resources,
and (b) better performance (5% faster, IMP2, IMP3). What is
more important, though, is that better resource utilization may
allow wider SIMD or more compute units to fit in a given
board. In our example (IMP6, IMP7 in Figure 2), the reduced
resource utilization of the refactored algorithm allows SIMD
length of 16, whereas the original one accomodated up to 8
(logical elements being the limiting factor). This translates to
an 1.22x faster execution of the former compared to the latter.

IV. CONCLUSION

In this paper we attempted to identify the performance
and programmability gap in employing OpenCL to program
FPGAs. We start with the unoptimized implementations of
certain applications from the OpenDwarfs benchmark suite
and subsequently explore part of the large FPGA-targeted
optimization space for one of these applications. In the longer
term, we seek to identify these optimizations that are suitable
for common computation and communication patterns as iden-
tified by the dwarfs categorization and subsequently fold them
back into an OpenCL compiler for FPGAs.

REFERENCES

[1] S. Windh, X. Ma, R. Halstead, P. Budhkar, Z. Luna, O. Hussaini, and
W. Najjar, “High-Level Language Tools for Reconfigurable Computing,”
Proceedings of the IEEE, vol. 103, no. 3, pp. 390–408, March 2015.



[2] G. Inggs, S. Fleming, D. Thomas, and W. Luk, “Is High Level Synthesis
Ready for Business? An Option Pricing Case Study,” in FPGA Based Ac-
celerators for Financial Applications. Springer International Publishing,
2015, pp. 97–115.

[3] K. Krommydas, W.-c. Feng, C. D. Antonopoulos, and N. Bellas, “Opend-
warfs: Characterization of dwarf-based benchmarks on fixed and recon-
figurable architectures,” Journal of Signal Processing Systems, pp. 1–20,
2015.

[4] T. S. Czajkowski, D. Neto, M. Kinsner, U. Aydonat, J. Wong,
D. Denisenko, P. Yiannacouras, J. Freeman, D. P. Singh, and S. D.
Brown, “OpenCL for FPGAs: Prototyping a compiler,” in International
Conference on Reconfigurable Systems and Algorithms 2012.

[5] T. Czajkowski, U. Aydonat, D. Denisenko, J. Freeman, M. Kinsner,
D. Neto, J. Wong, P. Yiannacouras, and D. Singh, “From OpenCL to
High-Performance Hardware on FPGAS,” in FPL, Aug 2012.

[6] Altera SDK for OpenCL: Best Practices Guide, Altera, 2015.
[Online]. Available: http://www.altera.com/literature/hb/opencl-sdk/aocl
optimization guide.pdf


