
Bridging the FPGA Programmability-Portability
Gap via Automatic

OpenCL Code Generation and Tuning
Konstantinos Krommydas
Dept. of Computer Science

Virginia Tech
kokrommy@vt.edu

Ruchira Sasanka
Intel Corporation

ruchira.sasanka@intel.com

Wu-chun Feng
Dept. of Computer Science

Virginia Tech
wfeng@vt.edu

Abstract—Programming FPGAs has been an arduous task
that requires extensive knowledge of hardware design languages
(HDLs), such as Verilog or VHDL, and low-level hardware
details. With OpenCL support for FPGAs, the design, proto-
typing and implementation of an FPGA is increasingly moving
towards a much higher level of abstraction, when compared to
the intrinsically low-level nature of HDLs. On the other hand,
in the context of traditional (i.e., CPU) software development,
OpenCL is still considered to be low-level and complex because
the programmer needs to manually expose parallelism in the
code. In this work, we present our approach to enhancing FPGA
programmability via GLAF, a visual programming framework, to
automatically generate synthesizable OpenCL code with an array
of FPGA-specific optimizations. We find that our tool facilitates
the development process and produces functionally correct and
well-performing code on the FPGA for our molecular modeling,
gene sequence search, and filtering algorithms.

I. INTRODUCTION

FPGA programming using OpenCL, as introduced by Altera
and Xilinx, facilitates exploiting the FPGA’s reconfigurable
nature and energy efficiency. While, OpenCL is considered
high-level when compared to HDLs, it still remains a low-
level, complex language for the typical programmer, and es-
pecially for the domain scientists (e.g., physicists, engineers).
Eliminating the existing productivity/programmability issues
can position FPGAs as a potential prime solution in the
heterogeneous computing landscape. To that end, we present
GLAF-OCL, our work in extending GLAF [1], a grid-based
language and auto-tuning framework that provides a visual
programming environment for parallel computing. Specifi-
cally, we add support for automatic OpenCL code generation
and show how using GLAF-OCL allows rapid prototyping of
OpenCL applications on reconfigurable targets.

II. GLAF VISUAL PROGRAMMING FRAMEWORK

GLAF [1] is a visual code-generation and auto-tuning
framework that aspires to facilitate parallel algorithm im-
plementation by domain experts with minimal programming
knowledge. Programming using GLAF deviates from the typ-
ical text-based programming paradigm. Instead, it employs

This work was supported in part by Intel Corporation.

visual, point-and-click programming (no code is actually writ-
ten) through an intuitive GUI that incorporates code build-
ing and data visualization (Figure 1). GLAF contains three
back-ends that implement the following core functionalities:
automatic code generation, auto-parallelization, and auto-
tuning. The former auto-generates code in a set of target
languages, while the latter two back-ends support the former
by: a) performing parallelism analysis, b) automatic tuning
with respect to options from which the user can select (e.g.,
different data layouts, loop collapsing, loop interchange).

III. METHODOLOGY

A. Automatic OpenCL Code Generation

Automatic OpenCL code generation produces three files
(Figure 2): a host code (.c) file, a device code (kernels) file
(.cl) and a header file (.h) that contains the OpenCL boilerplate
code and auxiliary functions.

1) Main host and device code generation: GLAF-OCL uses
the existing GLAF parallelism analysis back-end [1], in which
parallelism opportunities are identified at the GLAF step (i.e.,
basic computation building block) level. For exposing paral-
lelism via OpenCL the step’s body is converted to an OpenCL
kernel. GLAF-OCL code generation back-end parses a parallel
loop’s internal representation and converts the loop to the
kernel’s NDRange (global work size dimensions partitioning).
This happens as follows (Figure 3, line 6 of .c file): each loop
index (e.g., row, col, ind2) represents a global dimension in the
NDRange. The value of each global dimension corresponds to
the number of loop’s iterations across this dimension.

The parallel step’s body is replaced with a kernel call (clEn-
queueNDRangeKernel()) to the generated OpenCL kernel in
the separate .cl file (e.g., Figure 3, line 20 of .c file). The
kernel call is preceded by a series of calls (clSetKernelArg()
- Figure 3, lines 15-18 of .c file) for setting the appropriate
kernel arguments as identified by using the GLAF internal
representation of grids in the current step. Last, the kernel
call is followed by a clFinish() call that also functions as
a synchronization point that enforces coherence between the
memory contents of the host and device.

2016 27th IEEE International Conference on Application-specific Systems, Architectures and Processors (ASAP)

Fig. 1: GLAF Graphical User Interface.

GLAF
Program

CPU/Xeon Phi
C/Fortran & OpenMP

Altera FPGA

Host code
(C & .h files)

Device code
(OpenCL

Kernel file)

automatically generate

Altera SDK
for OpenCL

Standard C
compiler

FPGA binary:
ocl_kernels.aocx

CPU executable:
<exec_name>

G
L

A
F

Fig. 2: GLAF-OCL Development Workflow.

As far as device code is concerned (.cl file), kernel functions
and device functions are generated along with their parameters
(in the form of global pointers for dynamically allocated
memory or as scalar variables). Data parallelism in kernel
functions (as per the OpenCL SPMD paradigm) is achieved
by accessing different memory locations based on the com-
bination of work-group/work-item IDs (Figure 3, lines 5-7 of
.cl file). Obtaining the index for each dimension takes into
account the start and step values for each index variable of
the original loop that is being encapsulated in the OpenCL
kernel (star-annotated lines in Figure 3).

2) Host/device memory considerations: In OpenCL, when
the host and device (e.g., CPU and FPGA) have separate
memory address spaces, memory needs to be allocated in both.
GLAF-OCL parses a step’s grid objects’ internal representa-
tion (name, size, data type, etc.) and automatically generates
appropriate code for declaring and allocating space for cl mem
device-side buffers and passes them as needed to the kernel
code.

As execution alternates between host and device, data is
transferred between the two. GLAF-OCL generates the code
(in the form of wrapper functions - e.g., h2d tran(), Figure 3,
lines 12-13 of .c file) that is responsible for host-to-device and
device-to-host data transfers, ensuring data coherence across
host and device memory spaces, and elimination of redundant
data transfers. The above scheme is implemented by tracking
allocation and read/write accesses to the non-scalar grids in
host and device code and by performing appropriate checks at
run-time before each GLAF step.

3) Data linearization: Disjoint memory spaces in an
OpenCL execution scenario (e.g., CPU host/FPGA device)
impose inherent limitations to passing structs that include
pointer elements to a kernel. This kind of structs needs to un-
dergo linearization/marshaling, i.e., a struct declaration needs
to be expanded as multiple declarations of arrays/pointers
of the respective type on the host-side and corresponding
declarations need to take place for the device-side (cl mem

buffers). Initialization of the latter may be needed. All the
above procedures, as well as parameter passing and struct
element accesses are automatically handled by GLAF-OCL.

4) Boilerplate OpenCL code: Every OpenCL program re-
quires an initialization and finalization procedure that, among
others, selects the required OpenCL platform and OpenCL
device, and initializes/finalizes various OpenCL objects (e.g.,
program, command queue(s)). GLAF-OCL obviates the need
for programmers to familiarize themselves with the aforemen-
tioned procedure by auto-generating the appropriate boiler-
plate code. Last, GLAF-OCL provides wrapper functions for
memory allocation that enforce the alignment requirements of
Altera OpenCL, as well as data transfers (III-A2).

B. Generation of Optimized Code for Altera FPGAs
GLAF-OCL performs certain FPGA-specific code optimiza-

tions and renders code amenable for further optimizations by
the Altera Offline Compiler (AOC). Here, we describe such
optimizations, while in Section IV we provide examples and
discuss the effect of the most important ones.

Single Work-Item (SWI) Kernels: In Section III-A, we
describe how GLAF-OCL generates device code in the form of
NDRange kernel (i.e., multiple work-groups and work-items).
In FPGAs, constructing a kernel as a SWI kernel (equivalent
to an OpenCL task) may be a more appropriate paradigm.
This method utilizes loop pipelining and can enable further
optimizations that are not applicable (or beneficial) with
NDRange. With SWI kernel code generation the generated
host code defines a single-dimension, single-item globalWork-
Size[] array. On the device code the kernel contains the loop
itself (i.e., the parallel loop that was previously converted to
NDRange) and the get global id() calls are omitted. AOC
identifies the kernel as a SWI kernel and attempts to infer
a loop pipeline.

Initiation Interval (II) Reduction: SWI kernel compi-
lation with AOC yields an optimization report that informs
whether pipelined execution was inferred, what the initiation

GLAF step code (as filled automatically using the GUI)
(parallelism identified at the granularity of a GLAF step)

a	

b	

a	 Generation of OpenCL kernel code for GLAF steps that
are identified to be parallelizable.

b	
Generation of appropriate OpenCL host code for
parallelizable step (transformation of loop into an OpenCL
kernel call to the kernel generated for the step).

.c	file	

.cl	file	

1 *
2
3
4

5
6
7

8

9

1

3
4
5
6
7
8
9

2

10

12

13

14
15

11

16
17
18
19
20

21

*

*

*

*

Fig. 3: GLAF-OCL Auto-Generated Code.

interval between successive loop iterations is and, if possible,
the reason. In GLAF-OCL SWI execution for parallelizable
loops leads to successful pipeline inference. In certain cases,
however, II may be high. While, the range of such cases
is too broad to conclusively address, we show how GLAF-
OCL can automate loop relaxation [2]. These optimizations
can drastically reduce or eliminate II for reduction operations
within a SWI kernel. An example is shown in Figure 4.
GLAF parallelism analysis back-end identifies reductions and
stores the reduction variable and operation in its internal
representation. After compiling code, parsing the optimization
report reveals the II value and whether it is reduction-induced.

float sum = 0;
for (i = 0; i < N; i++) {
 sum += A[i];
}
result[idx] = sum;

float sum_copies[M];
for (i = 0; i < M; i++) {
 sum_copies[i] = 0;
}
for (i = 0; i < N; i++) {
 float cur = sum_copies[M-1] + A[i];
 #pragma unroll M-1
 for (j = M-1; j > 0; j--) {
 sum_copies[j] = sum_copies[j-1];
 }
 sum_copies[0] = cur;
}
#pragma unroll M
for (i = 0; i < M; i++) {
 sum += sum_copies[i];
}
result[idx] = sum;

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

1
2
3
4
5

a) Original Code b) Code after II Reduction

Fig. 4: Initiation Interval (II) Optimization.

In this case, GLAF-OCL can automatically generate M copies
of the reduction variable (line 1, Figure 4b), and code (lines 2-
4) for initialization of this variable according to the reduction
operation (e.g., zero for addition). The main computational
loop now is transformed to a temporary variable in which
we store the reduction operation on the last reduction variable
copy (line 6), a loop that shifts all copies by one position (lines
7-10), and code for storing the temporary variable to the first
copy (line 11). Finally, code for reduction on the reduction
variable copies is generated outside the reduction loop (lines
13-16) and the result is assigned to the original reduction
variable (line 17). This method relaxes the dependencies and
reduces II. The key change according to the problem at hand
lies on substituting A[i] with the corresponding computation
of the reduction at hand. The number of copies M is the im-
portant factor in reducing II. Different values can be attempted
manually (by changing a simple #define) or automatically
through a script in a feedback loop with AOC compilation
and optimization report parsing.

Shift Register Inference: Sliding window computation [3]
is a common pattern (e.g., filters) that can benefit from a
SWI kernel design. This pattern includes a loop that accesses
a fixed number of contiguous locations in an array shifted
by one position per iteration. Such sliding-window memory
access patterns can benefit from using shift registers. For
AOC to infer a shift register implementation, code has to
be written in a certain, counter-intuitive from a software
development standpoint, way. The resulting implementation
is very similar to the method used for enhancing II in SWI
kernels: declaration and initialization of the shift register to
a zero value, a fully unrolled shifting loop that includes
shifting contents across neighboring elements except to the
first (or last) that gets its value from the original input array.
Last step entails replacing the original input array accesses
with shift register accesses. Since sliding-window algorithms
have a fixed number of iterations (usually small) the above
optimization is coupled with full loop unrolling. What is
challenging, and currently limiting its practical implementa-

tion within GLAF-OCL, is automatically identifying sliding-
window patterns in applications. We see two examples in more
detail in Section IV.

Kernel Vectorization (SIMD) /Multiple Compute Units
(CU): Kernel vectorization enables work-items (in NDRange
kernels) to execute in a SIMD-like fashion. A desirable
potential side effect of kernel vectorization is static memory
coalescing automatically performed by AOC. Compute Unit
replication refers to generating multiple copies of a CU for
a kernel, at the cost of increased global memory traffic.
Generally, between the two, kernel vectorization is more effi-
cient resource-usage-wise, but the trade-offs may not always
be straightforward. GLAF-OCL can generate multiple code
implementations to be compiled and evaluated by annotating
a kernel with the corresponding attributes (attribute):
num simd work items(N) for kernel vectorization with vec-
tors of length N, and num compute units(N) for N compute
units.

Restrict Clause: Visual programming via GLAF entirely
hides the concept of pointers from users and aliasing issues are
de facto not applicable. As such, all pointers in auto-generated
code are further annotated with the restrict keyword in the
function header (see kernel header in Figure 3). This eliminates
unnecessary assumed memory dependencies and leads to more
efficient designs, both in terms of area and performance.

Constant cache memory: Declaring kernel pointers for
data that are read-only throughout kernel execution as

constant enables loading into an on-chip cache optimized
for hit performance. In GLAF-OCL we can keep track of
read-only grids in a kernel (by conservatively analyzing the
read/write locations in the code via the GLAF internal repre-
sentation). If data can fit in cache (detectable for static grid
sizes by inspecting the data type and dimension sizes elements
of the grid object) the generated code for the corresponding
kernel pointers is annotated as constant.

Memory Alignment: Aligned memory allocation of the
host-side buffers enables direct memory access (DMA) trans-
fers that can be considerably faster than data transfers between
the host CPU and FPGA from/to unaligned memory. GLAF-
OCL auto-generated code ensures that all memory allocations
follow the board-specific alignment requirements. Specifically,
instead of the default malloc() call in GLAF, GLAF-OCL
generates alignedMalloc() calls in the host code and the
implementation of this function in the header file (.h) that
is effectively a wrapper of posix memalign().

IV. RESULTS

A. Experimental Setup
Hardware/Software: For the FPGA implementations we

use a Bittware S5-PCIe-HQ board (S5PHQ-D8), based around
a high-performance Altera Stratix V GS FPGA, with 16
GB of DDR3 SDRAM. The OpenCL kernel codes were
compiled using Altera OpenCL SDK v14.2. For the CPU
implementations we use a Intel E5-2697 (Ivybridge) with
12 cores (24 threads), clocked at 2.7GHz, AVX support and
30MB of L3 cache. The CPU (parallel) implementations (in

TABLE I: Kernel Implementations.

Implem. Type CUs SIMD Const. Kernel
mem. Freq.

NB0 NDR 1 1 N 268.95
NB1 SWI 1 1 N 280.58
NB2 NDR 1 8 N 244.91
NB3 NDR 1 16 N 223.01
NB4 NDR 2 16 N 190.73
NB5 NDR 3 16 N 193.19
NB6† NDR 1 1 N 215.33
SS0 NDR 4 8 N 183.95
SS1 NDR 2 16 N 184.16
SS2 NDR 1 1 Y 144.3
SS3 NDR 6 16 Y 153.04
SS4? NDR 1 8 N 186.7
SS5* SWI 1 1 Y 118.35
FF0 NDR 4 16 Y 183.89
FF1 SWI 1 1 Y 262.61
FF2 SWI 10 1 Y 195.65
FF3‡ SWI 1 1 Y 191.97
FF4‡ SWI 10 1 Y 170.12
FF5* SWI 1 1 Y 188.46
† Resource-driven optimized ‡ Initiation interval reduction

* Shift register inference ? Inner loop unrolling
NDR: NDRange SWI: Single work-item

C with OpenMP directives), as well as the host-side code of
the OpenCL implementations, were compiled using gcc v.4.8.2
and run on a Debian host (kernel 3.2.46) with 64GB RAM.

Applications: We present our experiences and results for a
set of example applications that span three different domains
(physics, bioinformatics, signal processing) and that exhibit
different types of parallelism: (a) Electrostatic surface poten-
tial calculation (NB): An n-body type of algorithm in which
the electrostatic potential on a set of points near the surface of
a biomolecule is calculated as a result of their interaction with
a set of atoms within the biomolecule, (b) Gene Sequence
search (SS): An algorithm that scores a given search DNA
sequence against all parts of a reference DNA sequence, given
a similarity scoring matrix, and returns the start index of the
most similar sequence in the reference DNA, (c) Time-domain
FIR filter (FF): A sliding-window algorithm that implements
a set of FIR filters, where each filter’s output is the convolution
of its coefficients (complex number) and the input vector.

B. Results and Analysis
Figures 5a-5c show the execution time of OpenCL kernel

implementations normalized to the corresponding execution
time of the OpenMP-parallel CPU implementation. Both the
CPU and FPGA implementations are generated by GLAF
(in C) and GLAF-OCL (in OpenCL) to ensure a certain
level of fairness of comparisons. We also show the FPGA
resource utilization to obtain insights on the effect of various
optimizations on it and trade-offs between resource utilization
and performance. The characteristics of alternative implemen-
tations for each example application are outlined in Table I.

1) Electrostatic surface potential calculation (NB): NB is
a highly parallel application and provides insight about the
optimizations of kernel vectorization (SIMD), compute unit
(CU) replication, NDRange (NDR) versus single work-item
SWI, and the effectiveness or resource-driven optimizations
by the Altera Offline Compiler (AOC).

As seen in Figure 5a, increasing SIMD lanes from 1 to
8 (NB0, NB2) and doubling SIMD from 8 to 16 (NB2,
NB3) yields a 7.32- and 1.81-fold speed-up, respectively.
With each doubling in SIMD vector length resource utilization
increases by about 1.35x. Memory access patterns of NB
make it amenable for kernel vectorization, as observed in
the profiling data: memory accesses are coalesced and result
to cache hits in over 99% of the time minimizing memory-
related pipeline stalls below 4%. Increased SIMD length only
leads to increase of the datapath of a CU (all SIMD lanes
share control logic). CU replication case differs, as seen in
NB3, NB4, NB5 (SIMD length kept constant): performance
increases by a 1.68x when increasing the number of CUs
from one to two, while tripling the number of CUs yields a
2.27x increase in performance. Increasing the number of CUs
comes at the expense of increased global memory bandwidth
across CUs and each doubling of CUs leads to an approximate
doubling of resource utilization, too.

Comparing NDRange and SWI kernel, we observe (NB0,
NB1) that performance and resource utilization are almost
similar. This is expected, since both NDR and SWI kernels
have no kernel vectorization or CU replication and are ex-
pressed via pipeline parallelism in FPGA hardware. In fact,
the execution time ratio (tNB0/tNB1) equals the inverse kernel
frequencies ratio (fNB1/fNB0). As we see in other example
applications (SS, FF), SWI can be beneficial over NDR after
applying further optimizations that are not applicable in the
NDR paradigm.

Last, NB5 and NB6 provide insight on the effectiveness
of resource-driven optimization by AOC. Specifically, in NB6
we use this feature: AOC compiles a kernel with attributes
(SIMD length, number of CUs, loop unrolling) based on
estimated throughput derived using heuristics. In NB6, AOC
identifies loop unrolling (by a factor of 32) to be the most
beneficial optimization. Our (brute-force) choice (SIMD 16,
CU 3), which provides a 1.2x speed-up over resource-driven
optimization, indicates certain limitations of the latter.

2) Gene sequence search (SS): SS serves as an example
of the trade-offs in combinations of SIMD length, number of
CUs and loop unrolling, use of constant memory, as well as
shift register inference in SWI implementations.

With respect to SIMD, CU and loop unrolling, we compare
versions SS0, SS1, SS4 (Figure 5b) that yield an overall 32-
way parallelism (e.g., SIMD 16 with 2 CUs, or SIMD 8
with 4 CUs). Using wider SIMD (SS1) requires less hardware
resources than SS0 and SS4 and provides speed-up over SS0,
as expected for similar reasons with NB (e.g., more efficient
hardware, coalescing). In SS4, enforcing 4-way loop unrolling
together with SIMD only illustrates that careless combination
of SIMD and loop unrolling without taking memory access
paterns into account can be detrimental for performance (high
cache misses and lengthy pipeline stalls).

For small search sequences, when applicable (as in our
case), use of constant cache memory may present a consid-
erable advantage for an FPGA design, that is better resource
utilization that may allow wider SIMD or more CUs to fit

15.46	14.79	

2.11	 1.16	 0.69	 0.51	 0.61	
0	

20	

40	

60	

80	

100	

0	

5	

10	

15	

20	

NB0	 NB1	 NB2	 NB3	 NB4	 NB5	 NB6	

FPGA	resource	u,liza,on	(%
)	

N
or
m
al
iz
ed

	k
er
ne

l	e
xe
cu
,o

n	
,m

e	
	(v
s.
	O
pe

nM
P	
CP

U
	p
ar
al
le
l)	

Kernel	implementa,on	
Normalized	kernel	execu=on	=me	 FPGA	resource	u=liza=on	

(a) Electrostatic Surface Potential Calculation (NB).

2.36	 2.25	
5.52	

3.54	

19.35	

0.44	
0	

20	

40	

60	

80	

100	

0	

5	

10	

15	

20	

25	

SS0	 SS1	 SS2	 SS3	 SS4	 SS5	

FPGA	resource	u,liza,on	(%
)	

N
or
m
al
iz
ed

	k
er
ne

l	e
xe
cu
,o

n	
,m

e	
(v
s.
	O
pe

nM
P	
CP

U
	p
ar
al
le
l)	

Kernel	implementa,on	
Normalized	kernel	execu<on	<me	 FPGA	resource	u<liza<on	

(b) Gene Sequence Search (SS).

4.31	

18.44	

24.76	 25.13	
28.35	

0.21	
0	

20	

40	

60	

80	

100	

0	

5	

10	

15	

20	

25	

30	

FF0	 FF1	 FF2	 FF3	 FF4	 FF5	

FPGA	resource	u,liza,on	(%
)	

N
or
m
al
iz
ed

	k
er
ne

l	e
xe
cu
,o

n	
,m

e	
(v
s.
	O
pe

nM
P	
CP

U
	p
ar
al
le
l)	

Kernel	implementa,on	
Normalized	kernel	execu<on	<me	 FPGA	resource	u<liza<on	

(c) TDFIR (FF).

Fig. 5: Results: Execution Time and FPGA Resource Utiliza-
tion (lower is better)

in an FPGA (e.g., SS0 and SS1 versus SS3, Table I). In SS,
due to the parallelization scheme and memory access pattern
(i.e., each thread accesses contiguous parts of the reference
sequence array shifted by one position) we may have an
unfavorable partitioning of the problem to CUs. While the
details of scheduling are transparent to the programmer, band-
width efficiency (i.e., percentage of data acquired from global
memory system that the kernel actually uses) is indicative of
such an unfavorable partitioning (about 84% in SS3, 95% in
SS0 and 99% in SS1). Notice that the bandwidth efficiency
increases as the number of CUs decreases.

SS5 illustrates the SWI optimization that pertains to the
sliding-window access pattern of the reference sequence array.

This access pattern is ideal for the shift register inference op-
timization, where OpenCL code follows the guidelines (static
size, full unrolling) that allow AOC to generate a shift reg-
ister structure that is considerably faster than global memory
accesses and placed into block RAM. It is worth noting that
without the constant memory optimization the FPGA hardware
resources would not suffice for full loop unrolling (and hence
successful shift register inference). Also, a search sequence
longer than 128 bases would lead to insufficient hardware
resources, i.e., the search sequence needs to be small and
statically determined to allow the shift register optimization.

3) Time-domain FIR filter (FF): Some optimizations (Sec-
tion III-B) found in NB and SS are relevant for FF, too. For
example, all shown FF implementations utilize constant cache
memory for the filter coefficients. Notably, FF serves as an
example where observed results can be counter-intuitive.

Here, the fastest SWI implementation, with shift register
inference and loop unrolling (FF5) is 20.5 times faster than the
fastest NDR one we compiled. FF reiterates the importance of
the above optimizations in sliding-window algorithms. Notice
that FF5 barely fits the FPGA for our 128-tap filter example.
Without use of constant memory and its lighter resource usage,
FF5 would not be possible. Also, without the shift register
inference optimization full loop unrolling cannot be applied
at all, due to resource restrictions. The above observations
highlight the importance of applying FPGA-specific optimiza-
tions in concert, rather in isolation. GLAF-OCL is useful in
this respect, in that it automates code-generation with multiple
combinations of optimizations that the user can evaluate.

Conversely, optimizations that may be beneficial for a
specific computation pattern can be detrimental for another.
While in NB we observe the positive effect of wider SIMD
and more CUs, in FF this is not the case (FF1 is 1.34x faster
than FF2, with 1/10 of the CUs). Accordingly, higher resource
utilization does not necessarily imply better performance. Last,
the II reduction optimization in FF3 (reduces II from 8 cycles
to 1) yields worse performance than FF1. Despite the reduction
in the number of cycles between iterations in this particular
case the resulting clock frequency for the design is 1.36 times
slower than FF1 (as is the speed-up of FF1 over FF3).

V. RELATED WORK

High-level synthesis (HLS) approaches, as an alternative to
complex RTL-level HDLs, can be broadly divided to two main
categories, text-based and model-based/GUI-based:

Text-based: This approach adopts text-based programming
in languages that allow behavioral algorithm description. Lan-
guages specifically devised for HLS, like Bluespec [4], typi-
cally require a steep learning curve and cannot take advantage
of existing code. Most HLS languages are based on C/C++ [5],
[6] (e.g., C-to-Verilog, Impulse C, Catapult C, Mitrion C,
Synphony C, Vivado HLS), but the code often needs to
be annotated with language-specific constructs. C/C++ itself
was designed as sequential language, thereby the majority
of such HLS languages lacks intrinsic support for describing
parallelism. HLS based on languages like CUDA (FCUDA [7])

or OpenCL (Altera OpenCL [8], SOpenCL [9]) addresses
this problem. In all above tools HDL code is generated and
synthesized at the last step to produce the FPGA binary.

Model-based/GUI-based: Tools in this category are based
on graphical interfaces. NI LabVIEW FPGA Module [10]
extends the capabilities of LabVIEW and targets NI FPGAs.
Matlab HDL Coder [11] allows using Simulink models and
Matlab functions to generate synthesizable VHDL and Verilog
code for Xilinx and Altera FPGAs. Other graphical model-
based design tools include SystemVue [12] and VisualSim [13].

GLAF-OCL attempts to combine the advantages of both the
above approaches. As a framework based on OpenCL (in its
code-generation back-end), its base performance and result-
ing design features are largely contingent on the underlying
OpenCL compiler framework. On the other hand, being a GUI-
based tool (in its development GUI front-end) it provides an
even higher level of abstraction, also obviating any need of
hardware details knowledge.

VI. CONCLUSIONS

We presented a new way of programming FPGAs by
providing OpenCL-oriented extensions for the GLAF intu-
itive, visual programming framework. Automating OpenCL
code generation and FPGA-specific optimizations via tools
like GLAF-OCL has great potential to further democratize
FPGA programming by helping to bridge the performance-
programmability gap and ensuring functional and performance
portability in heterogeneous computing.

REFERENCES

[1] K. Krommydas, R. Sasanka, and W.-C. Feng, “GLAF: A Visual Pro-
gramming and Auto-tuning Framework for Parallel Computing,” in
International Conference on Parallel Processing (ICPP), Sept. 2015.

[2] Altera SDK for OpenCL: Best Practices Guide, Altera, 2015.
[Online]. Available: http://www.altera.com/literature/hb/opencl-sdk/
aocl optimization guide.pdf

[3] C. C. Aggarwal, Data Streams: Models and Algorithms. Springer
Science & Business Media, 2007, vol. 31.

[4] R. Nikhil, “Bluespec System Verilog: Efficient, Correct RTL from High
Level Specifications,” in ACM and IEEE 2nd International Conference
on Formal Methods and Models for Co-Design (MEMOCODE), June
2004.

[5] D. F. Bacon, R. Rabbah, and S. Shukla, “FPGA Programming for the
Masses,” Communincations ACM, vol. 56, no. 4, pp. 56–63, Apr. 2013.

[6] W. Meeus, K. Van Beeck, T. Goedem, J. Meel, and D. Stroobandt, “An
Overview of Today’s High-Level Synthesis Tools,” Design Automation
for Embedded Systems, vol. 16, no. 3, pp. 31–51, 2012.

[7] A. Papakonstantinou, K. Gururaj, J. Stratton, D. Chen, J. Cong, and W.-
M. Hwu, “FCUDA: Enabling Efficient Compilation of CUDA Kernels
onto FPGAs,” in IEEE 7th Symposium on Application Specific Proces-
sors (SASP), July 2009.

[8] Altera, “Implementing FPGA Design with the OpenCL Standard,”
https://www.altera.com/content/dam/altera-www/global/en US/pdfs/
literature/wp/wp-01173-opencl.pdf.

[9] M. Owaida, N. Bellas, K. Daloukas, and C. Antonopoulos, “Synthesis of
Platform Architectures from OpenCL Programs,” in IEEE 19th Annual
International Symposium on Field-Programmable Custom Computing
Machines (FCCM), May 2011.

[10] N. Instruments, “LabVIEW FPGA Module,” http:http://www.ni.com/
labview/fpga/.

[11] MathWorks, “Matlab HDL Coder,” http://www.mathworks.com/
products/hdl-coder/.

[12] Keysight, “SystemVue,” http://www.keysight.com/en/pc-1297131/
systemvue-electronic-system-level-esl-design-software.

[13] Mirabilis, “VisualSim,” http://mirabilisdesign.com/new/visualsim/.

