ICPP 2018, Eugene, OR,

A Framework for Auto-Parallelization and Code Generation:
An Integrative Case Study with Legacy FORTRAN Codes

Konstantinos Krommydas
Intel Corporation
Hillsboro, Oregon

konstantinos.krommydas@intel.com

Ruchira Sasanka
Intel Corporation
Hillsboro, Oregon

ruchira.sasanka@intel.com

ABSTRACT

GLAF, short for Grid-based Language and Auto-parallelization
Framework, is a programming framework that seeks to democ-
ratize parallel programming by facilitating better productivity in
parallel computing via an intuitive graphical programming interface
(GPI) that automatically parallelizes and generates code in many
languages. Originally, GLAF addressed program development from
scratch via the GPI; but this unduly restricted GLAF’s utility to cre-
ating new codes only. Thus, this paper extends GLAF by enabling
program development from pre-existing kernels of interest, which
can then be easily and transparently integrated into existing legacy
codes. Specifically, we address the theoretical and practical limita-
tions of integration and interoperability of auto-generated parallel
code within existing FORTRAN codes; enhance GLAF to overcome
these limitations; and present an integrative case study and evalua-
tion of the enhanced GLAF via the implementation of important
kernels in two NASA codes: (1) the Synoptic Surface & Atmospheric
Radiation Budget (SARB), part of the Clouds and the Earth’s Radiant
Energy System (CERES), and (2) the Fully Unstructured Navier-Stokes
(FUNS3D) suite for computational fluid dynamics.

CCS CONCEPTS

« Software and its engineering — Development frameworks
and environments; Integrated and visual development envi-
ronments; Software notations and tools;

ACM Reference Format:

Konstantinos Krommydas, Paul Sathre, Ruchira Sasanka, and Wu-chun
Feng. 2018. A Framework for Auto-Parallelization and Code Generation:
An Integrative Case Study with Legacy FORTRAN Codes. In ICPP 2018:
47th International Conference on Parallel Processing, August 13-16, 2018,
Eugene, OR, USA. ACM, New York, NY, USA, 10 pages. https://doi.org/10.
1145/3225058.3225143

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ICPP 2018, August 1316, 2018, Eugene, OR, USA

© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-6510-9/18/08...$15.00
https://doi.org/10.1145/3225058.3225143

Paul Sathre
Dept. of Computer Science, Virginia Tech
Blacksburg, Virginia
sath6220@cs.vt.edu

Wu-chun Feng
Dept. of Computer Science, Virginia Tech
Blacksburg, Virginia
feng@cs.vt.edu

1 INTRODUCTION

With the ubiquity of parallel computing architectures and their
increasing heterogeneity — from traditional multi-core CPU archi-
tectures to accelerator/co-processor architectures, e.g., graphics
processing units (GPU), Intel Many Integrated Core (MIC), and
field-programmable gate arrays (FPGAs) — application program-
mers face the daunting task of trying to realize a significant fraction
of their theoretical performance. Unfortunately, this daunting task
is further excerbated by the variety of programmming models and
interfaces (e.g., CUDA/C, CUDA/Fortran, OpenACC/C, OpenMP/C,
and so on) to the aforementioned architectures.

To ameliorate the above task, and in turn, democratize parallel
programming, many approaches (including domain-specific lan-
guages, auto-tuning frameworks, programming languages, library-
based frameworks) have been proposed in the past [3, 5, 6, 8-10].
Different approaches each come with their own benefits and draw-
backs [7, 17], which we discuss in greater detail in §5 in the con-
text of this work. Along these lines, we created the Grid-based
Language and Auto-parallelization Framework (GLAF) [14, 15], a
programming framework that seeks to bridge the gaps between per-
formance, programmability and portability on parallel computing
architectures. While GLAF addressed many of the shortcomings of
prior alternative approaches, GLAF itself has been limited in that it
has focused exclusively on developing a program from scratch via
the GLAF graphical programming interface (GPI). Although this
approach enabled the application programmer to take advantage
of the framework’s auto-parallelization, it failed to address an im-
portant use case: auto-parallelization and optimization of existing
programs, where a few critical functions often consume the bulk of
the total execution time. In fact, this is a common case with multi-
core CPU architectures and accelerator/co-processor architectures,
where compute-intensive code segments are offloaded to multiple
threads on a multi- or many-core CPU or accelerator/co-processor
(e.g., GPU or Intel MIC) while the rest of the code executes seri-
ally on the CPU. In such cases, performance parallelization and
optimization techniques would be applied to these aforementioned
functions, i.e., kernels, rather than the entire legacy program, which
can be on the order of hundreds of thousands to millions of source
lines of code (SLOC). Thus, developing an existing program from

ICPP 2018, Eugene, OR,

ICPP 2018, August 13-16, 2018, Eugene, OR, USA

scratch within a programming framework like GLAF, only to paral-
lelize and optimize a (relatively) small fraction of the entire legacy
code, is inefficient and impractical.

To address this, we adapt and extend our previous work [15],
which dealt with writing programs from scratch, to auto-parallelize
and auto-generate kernel code that can be seamlessly integrated
with two legacy FORTRAN codes from NASA: (1) the Synoptic Sur-
face & Atmospheric Radiation Budget (SARB) (or “Synoptic SARB”),
part of the Clouds and the Earth’s Radiant Energy System (CERES),
and (2) the Fully Unstructured Navier-Stokes (FUN3D) suite of com-
putational fluid dynamics simulation and design tools. Our contri-
butions encompass the following:

o Characterization of issues and solutions for the integration and in-
teroperatiliby of auto-generated code within existing FORTRAN
codes.

o Extension of the GLAF user interface on the front-end and code
generation on the back-end to facilitate the aforementioned inte-
gration and interoperability.

e Analysis and evaluation of the enhanced GLAF via two real-world
applications — Synoptic SARB and FUN3D — as a case study.

The rest of the paper is organized as follows: §2 presents an overview
of GLAF and the two NASA codes: Synoptic SARB and FUN3D. §3
describes the needed extensions in GLAF for code generation and
for facilitating integration of GLAF auto-generated code with exist-
ing legacy FORTRAN code. §4 presents the details of realizing the
kernels within Synoptic SARB and FUN3D using GLAF as well as
an evaluation of functional correctness, performance insights, and
limitations. Lastly, §6 concludes the paper.

2 BACKGROUND

We provide a brief overview of GLAF, short for Grid-based Language
and Auto-parallelization Framework, which is our originally pro-
posed visual parallel programming framework [15]. We leverage
and extend the original GLAF realization as a means to showcase
the problem at hand, i.e., the fact that programming frameworks
generally provide minimal provisions for code integration! within
large pre-existing legacy codes. Then, we present the two real-
world codes from NASA, in particular, specific kernels that we use
to showcase our approach.

2.1 GLAF

GLAF is a programming framework that facilitates high-productivity
parallel programming. Towards this goal, GLAF employs a graphical
programming interface (GPI) on the front-end and three back-ends
that are responsible for (1) auto-parallelization, (2) code optimiza-
tion, and (3) automatic code generation,

The GLAF programming model revolves around the concept of
a grid. All variables in GLAF (e.g., scalar variables, arrays, structs)
are represented via the grid abstraction. A grid can represent data
structures as simple as a scalar variable or multi-dimensional array
or as complex as C-like structs with elements of varying data types,
e.g., trees or graphs. In fact, the grid abstraction is general and scal-
able and can represent any discrete and finite mathematical relation.
Figure 1 shows the internal representation of a grid in GLAF. Its

IEither in a specialized language or auto-generated code in a traditional programming
language.

Konstantinos Krommydas, Paul Sathre, Ruchira Sasanka, and Wu-chun Feng

Internal representation of grid object

num_dims = 2
dataTypes[RowDim] = {T_INT}
dataTypes[ColIDim] = {T_INT}
size[RowDim] = 4

size[ColDim] = 4

caption = “img_src”

comment = “Image before filtering”

¥

Auto-generated C source code (excerpt)
/I Image before filtering
int *img_src;

i-r-ﬁg_src = (int *)malloc(4*4*sizeof(int));

Figure 1: Grid internal representation (simplification)

structure format enables a uniform, regular internal representation
that guides GLAF’s back-end features, as articulated above.

Figure 2 shows the graphical programming interface (GPI) of
GLAF, which serves as the interface to the grid internal representa-
tion. It utilizes HTML5 and JavaScript in the familiar web-browser
abstraction for easy access to the programmer. In addition, it uses
a simple point-and-click interface for most of its functionality with
text entry being enabled only when necessary (e.g., naming grids).
The GPI also enforces a structured way of programming in modules
that include functions, which in turn, are composed of steps. A spe-
cial module, Global Scope, represents a scope that is visible across
the whole program. This workflow provides a structured way of
programming that is ideal for novice or inexperienced programmers
and greatly reduces complexity and the chances for programming
errors, which may occur with free-flow, text-based programming
languages. Overall, the GPI delivers more intuitive code develop-
ment, enables visualization of the computation and results, and
facilitates debugging.

User actions via the GPI guide the implementation of the al-
gorithm and feed the appropriate information (in the form of the
GLAF internal representation) to the GLAF back-ends. Specifically,
GLAF functionality is handled by three back-ends:

o Auto-parallelization includes algorithms that parse the internal
representation of the algorithm, identify dependencies, and guide
code generation of parallel code (e.g., OpenMP directives for C
and Fortran or appropriate kernel offload calls and kernels for
OpenCL).

o Code optimization includes options for guiding the code gener-
ation by providing different data layout (array-of-structures vs.
structure-of-arrays), loop collapsing, or loop interchange options.

o Automatic code generation parses the internal representation,
collects the input from the auto-parallelization and code opti-
mization back-ends, and generates human-readable, compatible
code for the selected language.

Originally, GLAF sought to facilitate programming from scratch
once and then to automatially generate parallel source code in many
target languages. Specifically, GLAF supported C and FORTRAN
auto-parallelization and code generation [15] and later extended
support to OpenCL [14], thus facilitating execution on target de-
vices that follow offload programming models, e.g., GPUs and FP-
GAs. In contrast, this work exploits the extensibility of the GLAF

ICPP 2018, Eugene, OR,

A Framework for Auto-Parallelization and Code Generation

ICPP 2018, August 13-16, 2018, Eugene, OR, USA

Module1 v | :: |calcPointCharge() v |:: |Step1 v Loop through all atoms vs single <
(integer) (real) (4] col end1 0 col end1 ==l
0 (real) q (real) q (integer) 0
T (real) X (real) X row
row Ke (real) y (real) y T8 endo
end0 (Parameter 5) (real) z (real) z curr_surf_pt s
= R - T8 (Parameter 2) sum_Fs
n_atoms atoms surface_pts (Parameter 1)
(Parameter 0) (Parameter 4) (Parameter 3)
Index Variables : [row,col]
Add Source Grid
Index Range: forsach ro Add Formula
Condition: Add Condition
Formula: Delete Formula
Formula: W) iJ:—J

f | fip end Delete

Figure 2: GLAF graphical programming interface (GPI) [15]

framework in order to accomodate the common need for paral-
lelization of certain parts of existing legacy codes, two of which we
discuss below.

2.2 Synoptic SARB Code

NASA’s Cloud and the Earth’s Radiant Energy System (CERES) pro-
gram [13] seeks to enhance the existing knowledge about the
Earth’s climate system and contribute to the associated climate
prediction models. Specifically, it aims to provide a better under-
standing of the interdependencies between clouds and the energy
cycle and their effect in the global climate change.

The key software system in CERES is SARB, short for Surface
and Atmospheric Radiation Budget. Each subsystem of SARB ingests
certain inputs and generates outputs that may be archived “as is”
or used as inputs in a subsequent subsystem. In the context of this
work, we focus on Synoptic SARB, which computes the vertical
longwave, shortwave, and window channel flux profiles that span
from the surface of the earth to the top of the atmosphere. That
is, it calculates the energy exchange between the sun, the earth’s
atmosphere, clouds and surface, and outer space.

For Synoptic SARB, the earth is split into multiple zones that run
parallel to the equator. Computation for each zone can occur inde-
pendently (and hence in parallel), serial processing occurs within
each zone, according to the synoptic hour for which the data being
processed was acquired via the related measurement collection
instruments. However, within each synoptic hour, many computa-
tions can run in parallel in a finer-grained resolution. The execution
of each zone takes time that is proportional to its size (i.e., zones
closer to the equator are naturally larger than zones near the poles).
Prior to our introduction to the code, Synpotic SARB only used
(coarse-grained) inter-zone parallelism via MPI. Opportunities for
intra-zone parallelism were ignored. Hence, any opportunities for
the parallel execution of loops via multithreading or vectorization
within a zone were left unexploited, leaving computing resources
underutilized. As one of the two real-world applications in our case

study, we use GLAF to implement subroutines (or functions) of in-
terest to the Synoptic SARB program, and evaluate the implemented
subroutines for functional correctness and for performance.

2.3 FUNS3D Code

FUN3D, short for Fully Unstructured Navier-Stokes, is a suite of
applications developed by NASA to support research into unstruc-
tured grid computational fluid dynamics (CFD) simulations. The
suite supports incompressible and compressible transonic flows and
has evolved over the years to include many additional capabilities.
The suite supports a number of input grid formats, boundary con-
ditions, grid motion and adaptation, and design optimization. For
additional information, see the expansive FUN3D website details
about the scientific community’s research contributions, including
related research publications and presentations [1, 2, 4].

We focus on the Jacobian matrix reconstruction portion of the
FUN3D solver. This phase of FUN3D had not been previously paral-
lelized. The matrix reconstruction consists of about 10 subroutines
that build pieces of the matrix for linear solving. This linear solver is
realized by using a Green-Gauss formulation of primitive gradients
at nodes in order to try and resolve an inconsistency in heating
and shear observed with the former Gram-Schmidt approach [12].
For this portion of reconstruction, the computation must account
for the flux across all the cells in the local MPI process’ domain.
Within each cell, this process must further loop over all nodes, faces,
and edges within a cell. Thus, many opportunities exist to exploit
intra-node parallelism at multiple scales. Currently, the original
matrix reconstruction is implemented as a single function with
several levels of loop nesting. GLAF (via its GPI) realizes the entire
function, including all interior nested loops, such that opportunities
for parallelization at each loop nesting level may be investigated,
both in isolation and in concert.

ICPP 2018, Eugene, OR,

ICPP 2018, August 13-16, 2018, Eugene, OR, USA

3 ENABLING TRANSPARENT CODE
INTEGRATION WITH ENHANCED GLAF

Due to the inability of existing programming frameworks (includ-
ing GLAF until now) to easily and transparently integrate auto-
generated kernel code into an existing legacy code, we articulate
below how we extend GLAF to enable such transparent code inte-
gration via two real-world NASA programs, both of which happen
to be written in FORTRAN. Specifically, we provide an overview of
the extensions, enhancements, or changes required of the graphical
programming interface (GPI) on the front-end and the FORTRAN
code generation on the back-end. While the focus of this paper is
intentionally on FORTRAN, similar requirements are presented in
the case of other languages and many of the solutions presented
here can also be applied to code generation for other languages.

3.1 Enabling the Use of Existing Variables from
Imported Modules

Many code scenarios include variables that may be declared in
externally included files (modules in FORTRAN terminology). To
access such variables in GLAF and use them in various GLAF steps,
we need to create the corresponding grids in the GLAF Global Scope
and mark them as belonging to an “existing module.” For grids that
belong to an existing FORTRAN module, the user needs to provide
the name of the module the grid belongs to. This information is then
used in code generation. Figure 3 shows an example screenshot
of the GLAF GPI, where the user can specify an existing variable
(grid) and indicate it belongs to an existing MODULE.

Specifically, variables that belong to the above category do not
need to be re-declared in the body of the function where they
are used (so they are excluded from the variable declaration set).
However, the code generation back-end needs to generate code for
using (i.e., importing) the appropriate FORTRAN module (via the
appropriate “USE < var_name >” code).

3.2 Enabling the Use of Variables in COMMON
Blocks

The COMMON block is a FORTRAN 77 language construct that
defines a block of memory that can be shared among different pro-
gram units (e.g., functions or subroutines). Variables that belong
to a COMMON block can be used in any program unit where the
COMMON block is referenced. While this eliminates the need for
passing variables that belong in COMMON blocks as arguments in
functions and subroutines, it is considered a bad programming prac-
tice that creates more complex and less maintainable code. Despite
the above, COMMON blocks are present in a lot of production-level
codes. Therefore, maintaining backward compatibility and enabling
integration of GLAF auto-generated FORTRAN code with an exist-
ing legacy code requires that COMMON blocks be supported.

The way variables that belong to COMMON blocks are declared
in GLAF is similar to variables that belong to existing imported
modules. Specifically, the grid that corresponds to such a variable
needs to be created in the GLAF Global Scope and be marked as
belonging to a COMMON block (Figure 3). The user then indi-
cates the name of that COMMON block. In code generation, the
appropriate language structure reflects the COMMON block; all the

Konstantinos Krommydas, Paul Sathre, Ruchira Sasanka, and Wu-chun Feng

variables in a given program unit that are identified by the code
generation back-end as belonging to the same COMMON block are
automatically grouped and declared (i.e., grid type and grid name),
and the appropriate “COMMON /< name >/ varl, var2, ..” code is
subsequently generated.

3.3 Enabling the Use of Module-Scope
Variables

Module-scope variables in FORTRAN (similar to global-scope vari-
ables in C/C++) provide a means for multiple functions from the
same module to share data without relying on complex pointer
passing schemes. Within GLAF, these variables are treated simi-
larly to those imported from other modules or COMMON blocks.
However, as they are provided by the GLAF-generated module,
rather than some external component, GLAF must explicitly declare
and initialize them within the module’s global scope.
Module-scope variables may be present in existing code that
users wish to auto-parallelize via GLAF or may become necessary
due to GLAF’s enforced rigid program structure. A typical use
case would be for multiple subprograms that compute portions of
a shared data structure. Within GLAF, an additional use appears
when interior loops must return complex data to an outer scope.
GLAF requires that interior nested loops be modeled as a separate
function call, and thus, complex data may be passed into interior
loops, but it is difficult or impossible to pass out without a data
structure that is visible to both the interior and exterior function.

3.4 Enabling the Use of Subroutines

The original GLAF version [14, 15], in which the user was lim-
ited in developing a program from scratch, model all FORTRAN
subprograms as functions and generate the corresponding code.
FORTRAN supports functions (where a value is returned to the
caller) and subroutines (where no value is returned). In practice, a
subroutine’s functionality can be achieved using a function. How-
ever, to enable interoperability and integration of auto-generated
code with existing FORTRAN code, we need to explicitly support
generation of a subprogram as a subroutine (i.e., subprograms that
do not return a value, as opposed to functions).

For every subprogram structure, the GLAF GPI presents the
programmer with a choice for a return value type in the header
step. To indicate preference for a subroutine structure, the user
simply needs to specify the void data type (i.e., no return value) in
the subprogram header screen (Figure 4). The code generation back-
end subsequently constructs the subprogram as a subroutine (in the
‘SUBROUTINE < subroutine_name >(...arguments...)” form), and
for all the caller sites a “CALL < subroutine_name > subroutine
call code is also generated.

3.5 Enabling the Use of Existing Elements of
TYPE Variables

TYPE structures in FORTRAN are analogous to structs in C and,
accordingly, TYPE elements correspond to C struct elements. As
with the case of simple variables from existing MODULES, variables
that are elements of TYPE structures can be already defined in an
existing MODULE.

ICPP 2018, Eugene, OR,

A Framework for Auto-Parallelization and Code Generation

Module1 % | :: | Global $) | Step1 %
integer B
var_A

Back Done

Enable manual entering of initial data
Global variable exists in existing module

Grid belongs in COMMON block

Figure 3: Global scope grid configuration screen

Module1 %) :: | func_example() ¥ :: | Header §
void E
'R
ReturnValue

Figure 4: Subprogram header screen

Support for such elements of existing TYPE structures is a sub-
case of using existing variables from imported modules. The user
needs to declare the grid’s type (e.g., INTEGER) as normal in the
grid definition GPI screen within the Global Scope, mark it as be-
longing to an existing module (Figure 3) and provide the name of
the MODULE the TYPE element belongs to (not shown in Figure 3).
In addition to simple existing variables from imported modules, the
user needs to specify that the grid is part of an existing TYPE struc-
ture, in which case he is prompted for the TYPE variable name. On
the code generation side, any code for use of the above element of a
TYPE structure is appropriately generated with the TYPE variable
name prefix (e.g., an element charge that belongs to a TYPE atom
variable named atom1 would be generated as atom1%charge).

3.6 Extending GLAF Auto-Generated Libraries

GLAF already supports a number of common libraries and asso-
ciated library functions. Such functions correspond to frequently
used operations (e.g., GLAF supports a large number of the C/FOR-
TRAN math library functions). Using a library function (via the GPI)
leads to appropriate code generation for all supported languages.
Libraries are an extensible part of GLAF, which can be adapted as
needed to domain-specific needs. In the case of this work, we ex-
tended support for the ABS(), ALOG(), SUM(), and other functions,
used in FORTRAN that were missing in the previous versions of
GLAF.

ICPP 2018, August 13-16, 2018, Eugene, OR, USA

4 RESULTS

In §3 we discuss the requirements for generating code that can be
transparently integrated with existing FORTRAN codes and illus-
trate how we extend the GLAF programming framework to acco-
modate such code integration. In this section, we test the enhanced
GLAF version by implementing specific kernels (subprograms) of
interest from two NASA-related codes: Synoptic SARB and FUN3D.

4.1 SARB: Synoptic SARB

Synoptic SARB is contained within a large and complex code-base. A
large part of this code includes the fuliblibrary. This library provides
an implementation of the Fu-Liou Radiative Transfer Model [11],
which is the model used in Synoptic SARB to model the energy
transfer (in the form of electromagnetic radiation) between and
across the earth and the top of the atmosphere. The Fu-Liou model
takes into account absorption, emission and scattering of the ra-
diation. Energy can be lost due to absorption, gained by emission,
while redistribution can occur by scattering.

4.1.1 Subroutines of interest and evaluation of functional
correctness. The algorithmic implementation of Fu-Liou in Syn-
optic SARB addresses two sub-cases of radiation: in the longwave
and shortwave spectrum (as can be inferred from the names of the
corresponding subroutines in Table 1). The subroutines of interest
for implementation via GLAF, as identified by NASA scientists,
originally span about 700 source lines of code (a per-subroutine
break-down is presented in Table 1). This number does not account
for lines of code that correspond to data types and variables from
imported modules (mainly related to the Fu-Liou radiative transfer
model’s input, output variables, and custom data types whose part
some of the variables are). Due to the nature of the computations,
and the fact that these subroutines are part of a much larger code-
base with lots of dependencies, we are able to exercise multiple
aspects of GLAF auto-parallelization and code generation, includ-
ing the aspects of code integration this work focuses on, which
were not tested or supported before.

For evaluating the functional correctness of the code, we create
a wrapper function that calls the GLAF auto-generated subroutines
and provides sample values for the required inputs. The imported
FORTRAN modules, from which the auto-generated code uses ex-
isting variables and custom data types, are used “as is”. We then
conduct a step-by-step unit testing of the code, and a code-wide
side-by-side comparison of the results from the execution using
the GLAF auto-generated subroutines, against the results from exe-
cuting the original code. We repeat this process for both the serial
and parallel versions of the auto-generated code and verify that
the auto-generated code is functionally equivalent to the original.
For the parallel version of the auto-generated code, as an addi-
tional inspection step, we manually verify the correctness of the
OpenMP directives and associated clauses used. After the unit test-
ing process via the wrapper, we substitute the original subroutines
in the Synoptic SARB code with the ones that were implemented
and whose code was automatically generated by GLAF. We subse-
quently run the provided Synoptic SARB test suite and corroborate
the correctness of the results in real-world test scenarios.

ICPP 2018, Eugene, OR,

ICPP 2018, August 13-16, 2018, Eugene, OR, USA

Table 1: Subroutines implemented using GLAF

Subroutine name SLOC
Iw_spectral_integration 75
longwave_entropy_model 422
sw_spectral_integration 50
shortwave_entropy_model 13
entropy_interface 46
adjust2 38

4.1.2 Performance evaluation. In this section we present
and discuss the performance of the parallel code for Synoptic SARB,
as automatically generated by GLAF in FORTRAN (the original
code-base that the GLAF-generated code needs to be integrated
with is in FORTRAN, too). The code was compiled with gfortran
(v4.9.2) at the -O3 optimization level and was run on a Linux-based
machine (Debian Linux 8.6, kernel v3.16) with an Intel Core i5-2400
CPU (four cores clocked at 3.10 GHz). Figure 5 shows the results of
performance evaluation across different implementations of Synop-
tic SARB kernels. Specifically, it shows the speed-up of the GLAF
serial implementation (GLAF serial) and incrementally optimized
GLAF parallel (four threads) implementations (GLAF-parallel v0-v3)
versus the original serial Synoptic SARB implementation (original
serial). The details of each implementation are given in Table 2.

First, we observe that the GLAF generated code in its serial
implementation (GLAF serial) performs slightly worse than the
original serial implementation (original serial). In our prior expe-
rience with GLAF we have both observed cases like this, as well
as cases where the GLAF auto-generated serial implementation
outperforms the original serial. As noted in §3.3, the GLAF GPI
programming enforces an implicit structure in a program, wherein
any loops within a step except at the outermost level (e.g., within
an if statement) need to be implemented as a new GLAF function.
If the functions are not inlined by the compiler, there is a certain
calling overhead that depending on the algorithm may negatively
affect its execution time. Also, certain compiler optimizations may
be difficult/impossible when code spans multiple functions. In the
opposite case, smaller functions can be automatically inlined by
the compiler, and the implicitly enforced structure can even help
with certain function-level compiler optimizations. In any case, the
potential for such (small) performance deterioration is normally
outweighted by the parallelism benefits of GLAF auto-generated
(parallel) code.

GLAF-parallel v0 in Figure 5 corresponds to the implementation
that contains the parallel code generated by GLAF. As we describe in
Table 2, this includes OpenMP directives that surround all loops that
the parallelism detection back-end has identified as parallelizable.
This implementation performs about 50% slower than the original
serial implementation, highlighting the disadvantage of a “one-size
fits all” approach when it comes to applying OpenMP directives
to eligible loops. Currently, GLAF does not contain a means of
evaluating whether a loop is better off without OpenMP directives.
As future work, we suggest the incorporation of a performance
prediction/modeling back-end that will guide the automatic code
generation in a more intelligent way (e.g., selecting SIMD directives,
instead of OpenMP, or neither). In the cases GLAF-parallel v0 to

Konstantinos Krommydas, Paul Sathre, Ruchira Sasanka, and Wu-chun Feng

GLAF-parallel v3 we incrementally remove OpenMP directives from
three distinct cases of loops and provide insights on performance,
thereby highlighting the potential impact of intelligent automation
of such removal in future work.

GLAF-parallel v1is based on GLAF-parallel v0 with the difference
that we have manually removed OpenMP parallelization directives
from two types of loops: a) initialization of arrays (grids) to zero
value, and, b) initialization of arrays with a single value loaded
from another array. These two are typical cases where the compiler
can apply optimizations that outperform thread-level parallelism
(and its associated overheads). For instance, initializing an array
to zero can be done via memset emitted by the compiler, as an
optimization, for eligible loops. Alternatively, SIMD operations can
be used for loading and assigning values from an input array. This
can be observed in the performance results: speed-up increases
from 0.48-fold (GLAF-parallel v0) to 0.66-fold (GLAF-parallel v1).

In GLAF-parallel v2 we proceed with removal of further OpenMP
directives from otherwise parallelizable parts of the code. Specifi-
cally, we remove OpenMP directives from all remaining single loops
of the code. This contains loops with one-line assignments that
contain mathematical operations, few lines (two to four) of similar
assignments, as well as loops that contain reductions (and that have
been identified as such by GLAF auto-parallelization back-end).
In these cases, we identified (as above, via inspection of the com-
piler optimization reports and/or generated assembly code) that the
compiler emits SIMD instructions or proceeds with loop unrolling
(when the number of loop iterations is low). As with the previous
cases, the overhead of thread-level parallelism is not justified over
data-level parallelism (SIMD) or instruction-level parallelism (ILP).
Hence, removing the OpenMP directives from the corresponding
loops and allowing the compiler to apply its own optimizations
increases the speed-up over the original serial implementation to
1.11-fold.

Last, in GLAF-parallel v3 we remove OpenMP directives from
double-nested loops that contain one or a few statements without
including any control structure (if/else statements). Again, observa-
tion of the compiler optimization reports reveals that the compiler
can identify the loops as parallel and applies SIMD optimizations
or loop unrolling. Effectively, this leaves the GLAF auto-generated
parallel code with OpenMP directives in two large loops in the
longwave_entropy_model subroutine. The compiler fails to identify
these loops as parallel, hence the performance of the GLAF code
that includes the appropriate OpenMP directives (“OMP PARAL-
LEL FOR” with the necessary “PRIVATE” clause) outperforms the
original serial implementation by 1.41-fold.

As we mention at the start of §4.1.2, the parallel implementations
shown correspond to execution with four threads. Experimentation
with varying number of threads (up to the maximum of 8 threads
for our test CPU) showed that four threads provides the optimal
performance. Figure 6 shows the performance of the fastest imple-
mentation (GLAF-parallel v3) as the speed-up over the GLAF-serial
implementation. The parallel version that uses one thread presents
a minor slow-down (0.92-fold over GLAF-serial) due to the OpenMP
run-time associated overhead (which is present, despite using a
single thread). Two and four threads yield speed-ups of 1.24- and
1.59-fold, respectively, while adding more threads (e.g., 8) yields di-
minishing returns (0.7-fold). For the latter, one should consider the

ICPP 2018, Eugene, OR,

A Framework for Auto-Parallelization and Code Generation

ICPP 2018, August 13-16, 2018, Eugene, OR, USA

Table 2: Synoptic SARB implementations

Implementation | Description
original serial Original serial implementation
GLAF serial Serial implementation generated by GLAF
GLAF-parallel v0 | Parallel implementation generated by GLAF with OMP directives
in all applicable loops
GLAF-parallel vi | GLAF-parallel v0 with removed OMP directives from initializations
to zero or with single value assignments (loads)
GLAF-parallel v2 | GLAF-parallel v1 with removed OMP directives from simple single
loops
GLAF-parallel v3 | GLAF-parallel v2 with removed OMP directives from simple double
loops
16 141
s 14
3 111
=5 2 1.00 0.89
£E 1 =
a 8
=t
: % 0.8 0.66
:_ = 06 7 048
S E
T 04
(]
& 02 -
0 - ; ; ; ; ; ‘
original serial ~ GLAF serial ~ GLAF-parallel GLAF-parallel GLAF-parallel GLAF-parallel
v0 vl v2 v3

Figure 5: Performance results: Speed-up of GLAF-generated versions versus the original serial implementation of Synoptic

SARB kernels of interest

fact that our test CPU has a maximum of four physical cores (up to
8 logical cores with hyper-threading). Also, the double-nested loops
that are annotated with OpenMP directives by GLAF consist of a to-
tal of 2 x 60 = 120 iterations (since GLAF generates a “COLLAPSE(2)”
clause). This is a small number (also considering the complexity
of the loop code), hence more threads entail overhead (OpenMP
run-time, memory coherence, etc.) that cannot be amortized. This
adds another dimension to consider in our future efforts for further
automation of the GLAF optimization process.

Overall, we find that GLAF auto-generated parallel code (with
appropriate selection of which parallelized loops to keep) performs
1.41 times faster than the original serial implementation. While
this may appear underwhelming for a multi-threaded execution
with four threads, it does not reflect on the capabilities of GLAF
itself. Rather, performance owing to parallelization is limited by
the workload itself (in the original algorithm) as described above
(i.e., small number of iterations in parallel loops). Also, serial parts
of the algorithm, between the parallel section can limit the maxi-
mum parallelism (Amdahl’s Law). As far as other opportunities for
parallelism are concerned, most loops prove to be amenable to au-
tomatic optimizations by the compiler (mainly in the form of SIMD
or loop unrolling optimizations). The amount of optimizations the
compiler can perform depend on the algorithm itself (in previous
works [14, 15] we have seen instances of GLAF parallel code to far
outperform the compiler’s optimizations). In any case, GLAF does

not seek to compete against the compiler, but rather to complement
it in an attempt to provide the best achievable performance for
domain scientists in automated ways.

4.2 FUNS3D: Jacobian Matrix Reconstruction

The GLAF implementation of the FUN3D Jacobian Matrix Recon-
struction mini-app decomposes the original function into five sub-
functions. The first (EdgeJP) represents the outermost scope, which
initializes critical module-wide constants and loops over cells of
the simulation. The second (cell_loop) represents the computation
required within a cell and includes interior loops over nodes, faces,
and edges within the cell. The node and face loops are parallelized
within cell_loop, as they do not include any further nesting, whereas
the loop over edges calls out to the third sub-function, edge_loop.
The final two sub-functions (angle_check) and (ioff_search) are both
called by cell_loop and respectively represent a check for a cell-face
angle in excess of some threshold (which results in skipping the
rest of the cell’s contribution), and a search for the offset at which
anode’s contribution should be recorded in the final output data
structure.

4.2.1 Functional Correctness and Adaptations. To evalu-
ate the correctness of the GLAF-generated version, the produced
code is integrated with the rest of the program’s code, and output
at various stages is compared to that produced by the original on a

ICPP 2018, Eugene, OR,

ICPP 2018, August 13-16, 2018, Eugene, OR, USA Konstantinos Krommydas, Paul Sathre, Ruchira Sasanka, and Wu-chun Feng
s 8 159
§ c 1.6
& .% 1.4 1.24
ot 12 00
o 1. 0.92
g 17
23 08 0.70
TE o6
& 04
0.2

0
GLAF-serial ~ GLAF-parallel GLAF-parallel GLAF-parallel GLAF-parallel
(1) (2T) (4T) (8T)

Figure 6: Parallel scalability: Speed-up of fastest GLAF-generated version (GLAF-parallel v3) with varying number of threads
(T) versus GLAF serial implementation of Synoptic SARB kernels of interest

representative data set provided by NASA. The dataset consists of the -O3 optimization level and with support for the AVX2 instruction-
approximately one million cells and ten million edges. Additionally, set. 2 Our Dell Edge node runs Debian Linux 8.9 (kernel 3.16.0-4-
the dataset includes a reference root mean square of the output amd64), contains two Intel Xeon E5-2637 v4 CPUs (4 cores/8 threads,
arrays that is automatically checked at a 107 (absolute) tolerance each) clocked at 3.50 GHz, and 8x32GB of DDR4-2400 ECC RAM.
after all cells have been processed to ensure against any major The original serial implementation was used as the baseline and
floating point errors in the computation - critical when performing was compared to the GLAF-generated code in all combinations of
parallel summation, as required by the kernel. parallelization and non-reallocation options. Finally, the original
The implementation of Jacobian matrix reconstruction via GLAF serial version was manually parallelized at the same level as the
uncovered the need for various enhancements in the code-generation best-performing GLAF implementation to provide for an additional
and auto-parallelization back-ends. While we were able to automate comparison case.
most, there was an array of manual code tweaks performed on the Figure 7 gives an overview of the speed-up achieved versus the
GLAF generated code to satisfy final correctness of the integrated original serial version (results from parallelizing the cell-face angle
parallel implementation of the program. These are relatively simple check are omitted as it had negligible performance impact). Of note
engineering tasks and we plan to address in subsequent updates we find that the decomposition of the multiply-nested loop into sep-
but we report for the sake of completeness. Such manual tweaks arate GLAF functions can have a negative performance effect due
included the below: to the sheer number of arrays that are reallocated within interior
contexts. For example the innermost edge loop has 50 dynamically
¢ Function-scope arrays from inner functions are applied the allocated temporary arrays and is called an average of 10 times
“save” attribute, when in a parallelized region, to reduce per cell in the provided test case. Once this dynamic reallocation
excess dynamic reallocation. was eliminated via FORTRAN SAVE attributes and manual pointer
¢ Module-scope (and some function-scope) arrays are explic- storage, parallelization began to yield a performance benefit. As
itly declared as private or thread-private as appropriate based future work, an option to GLAF could be added to limit such exces-
on the selected parallelization level. sive reallocation automatically. The best performance is achieved
¢ Some module-scope arrays are replaced with pointers and when parallelized at the coarsest granularity, that is, the outermost
copyprivate clauses when supporting nested parallelism (to loop over all the simulation cells. Within each cell the maximum
share to multiple threads in an inner scope without sharing number of nodes and edges is limited and thus the opportunity
to threads at an outer scope). for parallelism is inherently limited too. Consequently, the cost of
o Reduction clauses are updated to specify multiple reduction repeated calls to the more complex parallel loop structures cannot
variables when a loop has effectively more than one output be efficiently amortized. To estimate the trade-off between pro-
(common when computing multiple values from all nodes in grammability and performance when using GLAF, we manually
a given cell). parallelized the original serial code at the same outermost scope as
¢ Atomic update clauses are added to parallel updates to module- GLAF. In this regard GLAF’s generation of all possible levels of par-
scope arrays generated by GLAF or imported from other allelization drastically eased the search of the optimization space,
modules. as well as identifying the 219 variables that needed to be declared
e An OpenMP critical clause is added to the early-return sec- as OpenMP private. This manual version ends up outperforming
tion of ioff_search, to ensure the correct offset is returned. the best GLAF version by almost 2.3-fold. It is once more worth
noting that manually creating this implementation from scratch in
4.2.2 Performance Evaluation. Performance evaluation of FORTRAN would be difficult if not impossible for someone without

the above modified GLAF-generated code was performed on a Dell
Edge server node. The code was compiled with ifort v2017.1.132 at

2The entire set of compiler options is (-O3 -ip -align array64byte -fno-alias -g -traceback
-qopt-report=5 -std03 -axCORE-AVX2 -convert big_endian -openmp -qopenmp).

ICPP 2018, Eugene, OR,

A Framework for Auto-Parallelization and Code Generation

4x 3.85x
©
o 2x
n c
% .g 1Xx
< °
2 E 2x g
n Q.
28ax 3
= 2
5 £ 1/8x 2
2 s
Q. o
- 1/16x E 5
1/32x 33
© %
1/64x =
<
-
1/128x o
Parallel EdgeJP v

Parallel Cell_loop

Parallel Edge_loop
Parallel IOff Search
No reallocation

ICPP 2018, August 13-16, 2018, Eugene, OR, USA

1.67x
[&]
S
T
s ¢
® ©
3 <
e =
T
O ®
c Qa
= =
g3
b B
w ©
'
32
O J
o

Figure 7: Performance results: 16-thread parallel speed-up of GLAF-generated matrix reconstruction of a 1M cell test case
with all combinations of parallelization and no-reallocation options. Manual parallel version (based on best-performing GLAF
options), provided for comparison. A colored/checked box indicates the indicated option is “on” in the column above, and a
blank box indicates it is “off” (i.e., running the function in serial or with default reallocation behavior).

good parallel programming knowledge, such as domain scientists.
Ultimately, GLAF provides a trade-off between programming effort
(programmability) and performance.

5 RELATED WORK

Parallel computing is of high importance across scientific domains
with many applications in engineering, physics, finance, among
others. It has enabled scientists to perform complex computations
faster, on larger amounts of data, and/or do so with much higher ac-
curacy than in the past. Parallel programming can prove challenging
for many programmers, and even more so for non-expert program-
mers like domain scientists. In order to facilitate optimized parallel
programming for such audiences many approaches have been ex-
plored. These include domain-specific languages (DSLs), problem-
solving environments (PSEs), auto-tuning frameworks, and spe-
cialized programming languages. Examples of DSLs, PSEs, and
auto-tuning frameworks include works like ATLAS [9], FFTW [10],
PATUS [8], FAST [16] - to name a few. On the other hand, Chapel [5],
X10 [6], Julia [3], are some representative programming languages
specifically targeting programmability and productivity.

While all the above approaches have their indisputable merits
for the specific use case they were conceived, they also come with
certain limitations. For instance, as their name denotes, DSLs are
specific to a domain (or an even more specific subdomain). For exam-
ple, ATLAS [9] addresses dense linear algebra code, and FFTW [10]
relates to FFTs. This allows them to utilize domain-specific knowl-
edge to achieve the best performance, but lack of generalization
poses limitations to their practical utility.

On the other hand certain tools that belong in the categories
mentioned above may generate code in a specific language, other
than Fortran (e.g., C, CUDA, or OpenCL). Therefore, integrating the

generated code within FORTRAN legacy scientific codes is rendered
problematic. For example, R-Stream [18] takes C as input and gen-
erates parallel C code with OpenMP directives (also supports code
generation for the Cell BE processor and CUDA for GPU execu-
tion). Our own previous work, GLAF [15], does generate FORTRAN
parallel code (among other languages), however it did not provide
ways for easy integration and interoperability of auto-generated
parallel code with existing FORTRAN code (beyond trivial cases).

All the above notwithstanding, the major problem of the above
approaches in relation to the motivating issue of this work lies in the
lack of consideration for the integration of auto-parallelized code
with existing FORTRAN code. Many tools do address integration of
their code (i.e., in a specialized programming language) with code
in “traditional” programming languages (like C or FORTRAN). For
example, Chapel supports C code integration (e.g., pointers and
external C types, variables and constants). Julia, similarly, provides
a C interface (e.g., for calling C functions via ccall()). To the best of
our knowledge, however, such works as the ones described above
typically lack provisions for the inverse process, i.e., integration of
their code within languages like C or FORTRAN. The exception is
Julia that supports passing Julia functions as callbacks to C functions
(assuming one includes the appropriate Julia library file and links
against libjulia). Julia2C (j2c) [19] is also able to translate basic Julia
types and expressions to C. In our work, we seek to address this gap
that exists between software approaches for programmability for
parallel programming and the ability to integrate specific kernels
within large, existing scientific codes that are typically written in
FORTRAN a language used heavily in scientific codes.

ICPP 2018, Eugene, OR,

ICPP 2018, August 13-16, 2018, Eugene, OR, USA

6 CONCLUSIONS

In this work, we discussed an important requirement of program-
ming frameworks and tools that seek to enhance programmability
and productivity for parallel computing. Specifically, we focused
on the need for modular program development, integration and
interoperability of a program’s kernels developed in such tools with
the encompassing program’s code. We explored the issues related
to the above in the context of our GLAF programming framework
and provided a reference implementation of the proposed solutions.
Last, we evaluated the new functionalities within kernels of two
real-world applications of interest to NASA (Synoptic SARB and
FUN3D).

In experimenting with these two large scale, real-world applica-
tions, we were able to further exercise all GLAF front-ends, back-
ends and overall functionality in concert. This included previously
developed capabilities (such as the graphical programming interface,
code generation, and auto-parallelization) and the novel functional-
ity of auto-generated code integration with existing encompassing
code. Our experiments allowed us to draw useful conclusions for
enhancing the automatic code generation of parallel code in this
version, as well as current limitations that serve as learnings for
further improving GLAF in our future work.

Overall, our experiments with two real-world NASA applica-
tions and code integration supplement our prior work that had
focused on stand-alone microbenchmarks. We showed that the grid
abstraction upon which GLAF is built is generic enough and can
represent real-world application scenarios. Last, we illustrated that
GLAF itself is now more robust and can generate correct serial and
parallel FORTRAN code for program kernels that can in turn be
transparently integrated with the respective existing encompassing
programs.

ACKNOWLEDGMENTS

This work was supported in part by NSF I/UCRC IIP-1266245 and
NASA via the NSF Center for High-Performance Reconfigurable
Computing and the Institute for Critical Technology and Applied
Science (ICTAS). The authors would like to acknowledge Dana
P. Hammond, Louis Nguyen, and Erik Nielsen for their guidance
with regards to the case-study applications, as well as their overall
feedback on the GLAF project.

REFERENCES

[1] W Kyle Anderson and Daryl L Bonhaus. 1994. An Implicit Upwind Algorithm
for Computing Turbulent Flows on Unstructured Grids. Computers & Fluids 23, 1

Konstantinos Krommydas, Paul Sathre, Ruchira Sasanka, and Wu-chun Feng

(1994), 1-21.

[2] W Kyle Anderson, Russ D Rausch, and Daryl L Bonhaus. 1996. Implicit/Multigrid
Algorithms for Incompressible Turbulent Flows on Unstructured Grids. J. Comput.
Phys. 128, 2 (1996), 391-408.

[3] Jeff Bezanson, Stefan Karpinski, Viral B Shah, and Alan Edelman. 2012. Julia: A
Fast Dynamic Language for Technical Computing. arXiv preprint arXiv:1209.5145
(2012).

[4] Jan-Renee Carlson. 2018. FUN3D Fully Unstructured Navier Stokes. (March
2018). https://fun3d.larc.nasa.gov/

[5] B.L.Chamberlain, D. Callahan, and H.P. Zima. 2007. Parallel Programmability and
the Chapel Language. Int. Journal of High Performance Computing Applications
21, 3 (2007), 291-312. https://doi.org/10.1177/1094342007078442

[6] Philippe Charles, Christian Grothoff, Vijay Saraswat, Christopher Donawa, Allan
Kielstra, Kemal Ebcioglu, Christoph von Praun, and Vivek Sarkar. 2005. X10:
An Object-Oriented Approach to Non-Uniform Cluster Computing. In ACM
SIGPLAN Conference on Object-oriented Programming, Systems, Languages, and

Applications (OOPSLA). 20. https://doi.org/10.1145/1094811.1094852
Iris Christadler, Giovanni Erbacci, and Alan D. Simpson. 2012. Facing the

Multicore - Challenge II: Aspects of New Paradigms and Technologies in Paral-
lel Computing. Springer Berlin Heidelberg, Berlin, Heidelberg, Chapter Per-
formance and Productivity of New Programming Languages, 24-35. https:
//doi.org/10.1007/978-3-642-30397-5_3

M. Christen, O. Schenk, and H. Burkhart. 2011. PATUS: A Code Generation
and Autotuning Framework for Parallel Iterative Stencil Computations on Mod-
ern Microarchitectures. In IEEE International Symposium on Parallel Distributed
Processing (IPDPS). https://doi.org/10.1109/IPDPS.2011.70

R Clint Whaley, Antoine Petitet, and Jack] Dongarra. 2001. Automated Empirical
Optimizations of Software and the ATLAS Project. Parallel Comput. 27, 1 (2001),
3-35.

M. Frigo and S.G. Johnson. 2005. The Design and Implementation of FFTW3.
Proc. IEEE 93, 2 (2005), 216-231. https://doi.org/10.1109/JPROC.2004.840301
[11] Qiang Fu and K. N. Liou. 1993. Parameterization of the Radiative Properties
of Cirrus Clouds. Journal of the Atmospheric Sciences 50, 13 (1993), 2008-2025.
https://doi.org/10.1175/1520-0469(1993)050< 2008:POTRPO>2.0.CO;2

Peter Gnoffo. [n. d.]. Updates to Multi-Dimensional Flux Reconstruction for
Hypersonic Simulations on Tetrahedral Grids. In 48th AIAA Aerospace Sciences
Meeting Including the New Horizons Forum and Aerospace Exposition. 1271.
Edward Kizer and Norman Loeb. 2018. NASA CERES: Clouds and the Earth’s
Radiant Energy System Information and Data. https://ceres.larc.nasa.gov. (April
2018).

[14] K. Krommydas, R. Sasanka, and W. Feng. 2016. Bridging the FPGA
programmability-portability Gap via automatic OpenCL code generation and
tuning. In 2016 IEEE 27th International Conference on Application-specific Systems,
Architectures and Processors (ASAP), Vol. 00. 213-218. https://doi.org/10.1109/
ASAP.2016.7760796

K. Krommydas, R. Sasanka, and W. C. Feng. 2015. GLAF: A Visual Programming
and Auto-tuning Framework for Parallel Computing. In 2015 44th International
Conference on Parallel Processing. 859-868. https://doi.org/10.1109/ICPP.2015.95
Yulong Luo, Guangming Tan, Zeyao Mo, and Ninghui Sun. 2015. FAST: A Fast
Stencil Autotuning Framework Based On An Optimal-Solution Space Model. In
ACM International Conference on Supercomputing (ICS). 10. https://doi.org/10.
1145/2751205.2751214

Matt Martineau, Simon McIntosh-Smith, Mike Boulton, and Wayne Gaudin.
2016. An Evaluation of Emerging Many-Core Parallel Programming Models. In
International Workshop on Programming Models and Applications for Multicores
and Manycores (PMAM). 10. https://doi.org/10.1145/2883404.2883420

Benoit Meister, Nicolas Vasilache, David Wohlford, Muthu Manikandan Baskaran,
Allen Leung, and Richard Lethin. 2011. R-stream compiler. In Encyclopedia of
Parallel Computing. Springer, 1756-1765.

Hongbo Rong, Todd A Anderson, and Hai Liu. 2015. Julia2C Source-to-Source
Translator. https://github.com/IntelLabs/julia/tree/j2c/j2c. (January 2015).

7

[8

[

[10

[12

(13

=
&

[16

(17

(18

=
L

