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Abstract

Streaming multimedia content with UDP has become
increasingly popular over distributed systems such as the
Internet. However, because UDP does not possess any
congestion-control mechanism and most best-effort traffic is
served by the congestion-controlled TCP, UDP flows steal
bandwidth from TCP to the point that TCP flows can starve
for network resources. Furthermore, such applications
may cause the Internet infrastructure to eventually suffer
from congestion collapse because UDP traffic does not self-
regulate itself. To address this problem, next-generation
Internet routers will implement active queue-management
schemes to punish malicious traffic, e.g., non-adaptive UDP
flows, and to the improve the performance of congestion-
controlled traffic, e.g., TCP flows. The arrival of such
routers will cripple the performance of today’s UDP-based
multimedia applications.

So, in this paper, we introduce the notion of inter-packet
spacing with control feedback to enable these UDP-based
applications to perform well in the next-generation Inter-
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net while being adaptive and self-regulating. When com-
pared with traditional UDP-based multimedia streaming,
we illustrate that our counterintuitive, interpacket-spacing
scheme with control feedback can reduce packet loss by
90% without adversely affecting delivered throughput.

Keywords: network protocol, multimedia, packet spacing,
rate-adjusting congestion control.

1 Introduction

The ability of the Internet to support multimedia ap-
plications such as RealPlayer [17, 18] and Microsoft
NetShow [13] will become increasingly difficult because
these applications’ unresponsiveness to network congestion
places unfair demands on the network, particularly in light
of an exponentially increasing volume of traffic. These ap-
plications generally blast UDP packets across a network
at the expense of applications using TCP. Active queue-
management schemes [3, 10, 5, 6, 16] for routers are be-
ing proposed to punish these non-adaptive applications by
dropping the packets from their flows to ensure that well-
behaved TCP applications do not starve for network re-
sources. Consequently, the performance of multimedia ap-
plications will be crippled, thus providing the impetus for
our work — an interpacket-spacing scheme with control
feedback, layered on top of UDP, that can be used by multi-
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media applications to achieve good performance in the pres-
ence of active queue management.

1.1 Insight

Based on our recent work in network traffic characteri-
zation [24, 7, 8], we observed significant packet loss even
when the offered load was less than half of the available
network bandwidth. An analysis of our ns [1] simulations
revealed that this behavior was due to simultaneous bursts
of traffic coming from client applications and overflowing
the buffer space in the bottleneck router. Metaphorically,
this could be viewed as what happens at a major highway
interchange during rush hour where everyone wants to go
home simultaneously at 5:00 p.m., thus “overflowing” the
highway interchange. To avoid such a situation, some peo-
ple self-regulate themselves by heading home at a different
time, i.e., spacing themselves out from other people.

If we view vehicles as packets and the highway inter-
change as a router, then to avoid buffer overflow and en-
hance throughput, packets should not be blasted onto the
network one after another. Instead, packets should be
spaced out over time. To test this hypothesis, we ran live
wide-area network (WAN) tests between Los Alamos Na-
tional Laboratory (LANL), University of Illinois at Urbana-
Champaign (UIUC), and Ohio State University (OSU).
These tests consisted of sending UDP packets between
LANL and either UIUC or OSU at different packet-spacing
intervals. Figures 1 and 2 show the throughput and packet
loss, respectively, of a representative test between LANL
and UIUC [4]. When the packet spacing is zero, e.g., to-
day’s UDP-based multimedia-streaming applications, the
throughput is 62 Mb/s but with a packet loss of almost 90%!
With as little as 100 � s of spacing between packets, the
throughput remains the same, but the packet loss drops all
the way down to 35%. And when the packet spacing is 50

� s, the throughput is actually higher than when the packets
are not spaced as in UDP-based multimedia streaming.

All curves from our other live WAN tests have the same
general shape. That is, the throughput initially increases
when the amount of packet spacing increases and then de-
creases exponentially as the amount of spacing increases
further. The packet-loss percentage immediately decreases
in an exponential manner as packet spacing increases.

1.2 Related Work

In 1997, Mahdavi and Floyd [12] informally proposed
the notion of equation-based congestion control for unicast
applications. While the “additive increase, multiplicative
decrease” (AIMD) algorithm found in TCP backs off by
cutting its sending rate in half in response to a single con-
gestion indication, equation-based congestion control uses
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Figure 1. Delivered Throughput to the Re-
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Figure 2. Packet-Loss Percentage

a control equation that more gradually and smoothly adapts
its maximum rate because some real-time applications find
that halving the sending rate is unnecessarily severe and can
noticeably reduce the user-perceived quality [23]. Although
the above work has given rise to a significant amount of
research on equation-based and other types of congestion-
control mechanisms [22, 20, 23, 15, 21, 9], we still do
not have any deployable congestion-control mechanisms for
best-effort streaming multimedia.

Previous work in packet spacing includes [11, 2]. In [11],
Jain argues that rate-control protocols for congestion con-
trol may not work without the cooperation of intermediate
routers because packets may get clumped together at the
intermediate routers anyway. This would result in larger
bursts at the intermediate routers even though the goal may
have been to reduce the burstiness of the traffic. While this
may have been true a decade ago, we believe that the boom



of the world-wide web and other multimedia applications
creates enough interleaving traffic to maintain packet spac-
ing between end hosts. We will substantiate this belief in
Section 3.2.4.

Aggarwal et al. [2] study the effect of uniform packet
spacing (or “pacing”) over a round-trip time in TCP. While
pacing results in better fairness, throughput, and lower drop
rates in some cases, the throughput is worse than regular
TCP most of the time because a paced-TCP is susceptible
to synchronized losses and delays congestion notification.
In contrast, we focus on the effects of packet spacing over
UDP with control feedback rather than on TCP itself.

In general, our packet-spacing protocol differs from the
above work in several ways. First, rather than focus-
ing primarily on being compatible or fair with TCP, our
rate-adjusting protocol addresses fairness while simulta-
neously delivering UDP-like bandwidth. Second, we ac-
complish the above feat by introducing the counterintuitive
notion of packet spacing. Third, rather than relying on
equation-based congestion control to more smoothly adapt
the sending rate, we allow the sending rate to adapt as
needed (based on available network resources). We then
rely on transcoding, e.g., mapping a multimedia stream onto
rapidly-varying available bandwidth [19], to smooth out any
potentially rapid change in available bandwidth.

2 Approach

Packet spacing refers to the delay introduced between
two consecutive packets, as shown in Figure 3. Here, ��� is
the amount of spacing between packets, and ��� is the trans-
mission time for each packet. By introducing such a de-
lay, bursts of packets can be spaced out, resulting in fewer
packet drops at intermediate routers and potentially higher
throughput at the end host, as shown back in Figure 1. Thus,
packet spacing can potentially be used as a mechanism to
assist in congestion avoidance and control.

Based on Figure 1, the ideal operating region of our
packet-spacing mechanism ranges from 50 ��� to 500 ��� .
No packet spacing or packet spacing of less than 50 ��� re-
sults in very high packet loss with less delivered bandwidth
than when the packet spacing is 50 ��� .

Depending on the application, the ideal packet-spacing
range may be as small as 100 ��� to 200 ��� in order to get
UDP-like bandwidth but with significantly less packet loss,
e.g., at 200 ��� , bandwidth is 50 Mb/s while packet loss is
only 10%, or as large as 400 ��� to 500 ��� to obtain TCP-like
reliability but with higher throughputs. To exploit this coun-
terintuitive finding, we develop our packet-spacing protocol
(PSP) to adjust the amount of packet spacing based on feed-
back from the network.1

1We note that at the present time, the feedback is only used for adjusting
the packet spacing and that no retransmissions are done at this time.
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Figure 3. Packet Spacing

2.1 Packet-Spacing Protocol (PSP)

In PSP, the sender transmits packets at the highest possi-
ble rate, i.e., no inter-packet spacing, and the receiver sends
acknowledgments every round-trip time (RTT) for the pack-
ets it received. (This RTT is the base propagation-delay
time, not the dynamic RTT. To keep the protocol simple,
we did not experiment with dynamic RTTs.)

We calculated the base RTT by performing ping during
connection set-up.2 After the connection is established, the
sender conveys the calculated RTT to the receiver by includ-
ing it within the header of each packet. Note that this is not
required after the first acknowledgment is received, but we
have left this provision so that dynamic RTTs can be used
in the future. Each acknowledgment contains the number of
packets that were received in the previous RTT.

When the sender receives such acknowledgments, it
compares the number of packets sent, � �	��
� , in the previous
RTT to the number of packets received, ��������� . Based on
the values of ������
�� and ��������� , the sender adapts its packet
spacing ��� as shown in Figure 4.

if ���	��
�������������� (i.e., packets were lost) then
/* sender must reduce its transmission rate */
if ������� then

���� 50 ���
else

���� "!$#�%'&(��� �*),+�-/.0.�1
else /* sender tries to increase its sending rate */

���� 2���43 )

Figure 4. Packet-Spacing Protocol

Because our WAN experiments and simulations showed
that the ideal packet spacing occurred between 0 ���
and 2000 ��� , we chose an initial packet spacing of 50 ���
because (1) anything smaller generated significantly higher
packet loss with no benefit with respect to throughput
and (2) finding the ideal packet spacing within this range
quickly would take no more than seven RTTs. Larger spac-

2A more sophisticated mechanism could be developed to get a better es-
timate of the RTT. However, for the purposes of our experiments, we only
needed a value that was reasonable enough to provide timely feedback.



ings can be reached in only a few more RTTs because the
packet spacing increases exponentially.

The ���  !$# %'& ��� � ),+�-/.0./1 clause ensures that the
maximum packet spacing is one RTT. This ensures that at
least one packet is sent every RTT.

2.2 Damped Packet-Spacing Protocol

Due to the opposing packet-spacing decisions in PSP, our
initial tests of PSP resulted in large oscillations around the
ideal sending rate. To prevent this, we added the following
heuristic to damp the oscillations: If a loss occurred due
to a deliberate decrease in the packet spacing (and conse-
quently, increase in rate), then the sender reverts to the pre-
vious packet-spacing value. Using this heuristic, the sender
makes significantly smaller oscillations around the ideal op-
erating point. Figure 5 shows a comparison between PSP
and damped PSP. In this figure, each experiment was run
for 100 � , and the sending rate for each was plotted. With
damping, the overall throughput increased by 10%.
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Figure 5. Oscillation Damping

3 Experiments

For our WAN simulations, we used ns-2, which is a net-
work simulator developed by the VINT group [1]. We will
refer to senders and receivers as agents, which follows nat-
urally from the terminology employed by ns-2. Our simple
packet-spacing agents (PSAs) implement packet spacing
without feedback while our adaptive packet-spacing agents
implement the damped PSP rather than the plain PSP.

3.1 Architecture

Figure 6 shows the network topology that we used in our
experiments. The

�
nodes on the left ( %�� + %�� +������ + %
	 ) sim-

ulate senders on an Ethernet that are transmitting via a com-
mon gateway router (e.g., LAN/WAN gateway or %��� � ��� � )
to a WAN backbone running at 155 Mb/s or OC-3. All the
receivers are aggregated into the node % �  
 	 . The gateway
router has a buffer size of 10 packets, 100-Mb/s Ethernet
links with 2-ms delays to the senders, and a 155-Mb/s link
with 40-ms delay to the receivers. This delay is typical of
the delay found in a transcontinental WAN connection.
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Figure 6. Topology for WAN Simulations

3.2 PSA Simulations

Here we study the behavior of (1) a single PSA with no
other traffic, (2) competing PSAs, and (3) PSAs competing
with TCP agents. Like Mo et al. [14] who compare TCP
Reno and TCP Vegas using infinite file transfers, we use in-
finite file transfers for the TCP connections as well. (For
the figures in this section, each data point in the simulation
graphs represents the result of a 500- � simulation for a par-
ticular packet-spacing interval.)

3.2.1 Single PSA

Figure 7 shows the throughput for a single PSA for packet
spacings between 0 ��� and 5000 ��� . (Note that there is
no other traffic on the network besides that of the single
PSA.) As expected, the sender and receiver throughputs are
the same. This is because there is no other traffic on the
channel, and therefore, no packet loss.

3.2.2 Competing PSAs

In this set of experiments, we ran simulations with 2, 4,
8, and 16 PSAs competing against each other, respectively.



Figures 8 and 9 show the results for the last case. The re-
sulting behavior is similar to what we observed in the actual
WAN experiments (i.e., Figures 1 and 2). (Note that all the
16 competing PSAs showed a similar behavior.)

In Figures 8 and 9, the region of interest occurs be-
tween 0 ��� and 1000 ��� . With a packet spacing of 0 ��� , the
sender throughput is 100 Mb/s while the receiver-realized
throughput is only a measly 10 Mb/s with a packet loss of
90%! As packet spacing increases, the packet-loss percent-
age drops sharply, and the throughput at the receiver actu-
ally increases to its maximum point at 1000 ��� of inter-
packet spacing. This phenomena is similar to what we
found with our live WAN tests in Figures 1 and 2.

3.2.3 PSAs Competing with TCP Agents

In these experiments, we ran simulations with 1, 2, 4, 8, and
16 sender/receiver TCP pairs and an equal number of PSA
pairs, respectively. Figures 10 and 11 show the behavior of
one particular PSA competing with 15 other PSAs and 16
TCP connections. All other simulations resulted in simi-
lar behavior. Again, we see that the behavior is strikingly
similar to that seen in the actual WAN experiments. The op-
timal performance of the PSAs with respect to throughput
and packet loss occurs at 1000 ��� to 1050 ��� , i.e., through-
put is 11 Mb/s while packet loss is 0%.

Figures 12 and 13 show the throughput and packet-
loss behavior of one particular TCP connection competing
with 15 other TCPs and 16 PSAs, respectively. In these
figures, we cannot help but notice that the TCP through-
put does not increase beyond 2.7 Mb/s (even when the PSA
throughput is low)! The reason for this behavior has noth-
ing to do with the TCP-friendliness of our damped PSP and
has everything to do with TCP’s default advertised receiver
window of 20 packets. This receiver’s window size is the
default in many operating systems and artificially limits the
amount of outstanding data that a sender can have in the
network. Further, the figures also show that with very small
packet spacings, the PSAs operate like UDP connections (as
expected), thus starving TCP connections of any bandwidth.

Figures 14 and 15 show how TCP behaves with a win-
dow large enough to keep a bandwidth-delay product’s
worth of information outstanding in the network. These fig-
ures show that with sufficient spacing by the PSAs, a TCP
connection can consume its share of available bandwidth.
For example, Figures 10 and 14 illustrate that with 5000 ���
of packet spacing, each PSA receiver sees 2.23 Mb/s while
each TCP receiver gets 6.57 Mb/s.

3.2.4 PSA Spacing at the Receiver

To verify our claim that packet-spaced traffic stays spaced
out by the time it reaches the receiver (rather than getting
clumped as claimed by [11]), we recorded the inter-arrival
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0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

10

20

30

40

50

60

70

80

90

100
Sender and receiver throughput

packet−spacing, micro seconds

th
ro

ug
hp

ut
, M

b/
s

sender  
receiver

Figure 8. Throughput for One of the 16 PSAs
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Figure 10. Throughput for One PSA of 16
PSAs and 16 TCP Connections
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Figure 11. Packet Loss for One PSA of 16
PSAs and 16 TCP Connections
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Figure 12. Throughput for One TCP of 16 TCP
Connections and 16 PSAs
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Figure 13. Packet Loss for One TCP of 16 TCP
Connections and 16 PSAs
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Figure 14. Throughput for One TCP (Window
Size = 800 Packets) of 16 TCP Connections
and 16 PSAs
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time of packets at one PSA receiver, using the same exper-
imental set-up as described in Section 3.2.3. The sending
PSAs used a spacing of 1500 ��� ; the resulting inter-packet
spacings at the receiver averaged 1540.6 ��� with a standard
deviation of 64.75 ��� .

3.3 Adaptive PSA Simulations

Our adaptive PSAs implement the damped PSP, which
tries to find the ideal packet spacing under varying net-
work conditions. We first show the behavior of two adap-
tive PSAs competing against each other and then with two
additional TCP connections. As in Section 3.2, the TCP
connections were that of infinite file transfers.

3.3.1 Competing Adaptive PSAs

Figure 16 shows how the sending rate of an adaptive PSA
varies with time. The adaptive PSA makes small oscilla-
tions around the ideal sending rate. Figure 17 demonstrates
that our adaptive PSAs are fair (when both are started simul-
taneously) as both adaptive PSAs have sending rates that lie
on the fairness line.

Figure 18 shows us a portion of the fairness graph where
one adaptive PSA started 10 seconds later than the other.
As we can see, both adaptive PSAs change their rates in
a fair manner and eventually make small oscillations about
the ideal sending rate.

3.3.2 Competing Adaptive PSAs with Background
Traffic

In this simulation, we ran 10 TCP connections with infinite
file transfers in the background and two adaptive PSAs com-
peting in the foreground. Figure 19 shows that the adaptive
PSAs respond readily to congestion. And again, both adap-
tive PSAs have very similar sending rates.

4 Conclusion

Perhaps the most interesting result in this paper is that a
receiver’s realizable throughput actually increases (up to a
point) even when the sender’s transmission rate decreases.
This result has dramatic implications on many of today’s
multimedia applications that blast packets onto the network
as fast as possible, i.e., no packet spacing. By slowing down
the introduction of packets into the network, congestion is
alleviated at the intermediate routers; this, in turn, results in
a net increase in throughput. Thus, this work provides an
incentive for multimedia provides not to blast UDP packets
indiscriminately into the network. In addition, it provides
motivation for the deployment of a packet-spaced protocol
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that can deliver UDP-like performance yet still be respon-
sive to competing connections.

Our damped packet-spacing protocol (PSP), imple-
mented via an adaptive PSA, sends data near its “optimal”
sending rate by using a simple feedback mechanism that
reports packet loss every RTT. This mechanism in turn con-
trols the amount of packet spacing. Our preliminary results
demonstrate that by introducing packet spacing to a multi-
media stream, packet loss can be reduced dramatically with-
out much loss in throughput.

Future work includes examining the performance of our
damped PSP with different types of application traffic. Of
particular interest are those applications that generate data
in short bursts with relatively large intervals between bursts.
Based on the experimental results presented here, we expect
that the packet loss that would normally be induced by these
bursts to be greatly reduced.
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