
SLIM: Enabling Transparent Extensibility and Dynamic
Configuration via Session-Layer Abstractions

Umar Kalim, Mark K. Gardner, Eric J. Brown, Wu Feng
Virginia Tech

{umar,mkg,brownej,wfeng}@vt.edu

ABSTRACT
Increasingly, communication requires more from the network stack,
e.g., seamless hando� and synchronization of state between multi-
ple participants. Due to the lack of support for desired functional-
ity, networking libraries are created to �ll the void. This leads to
considerable duplication of e�ort and complicates cross-platform
development. Furthermore, the means for extending legacy proto-
col stacks is largely exhausted (e.g., the TCP options space in the
SYN message is mostly allocated), making the addition of future
extensions much more challenging.

In this paper, we tease apart elements of session management
that are currently con�ated with the transport semantics in TCP and
highlight the need for sessions in contemporary communications.
Next, we propose session, �ow, and endpoint abstractions that lead
to a clearer description of advanced communication models. This
e�ort results in an extensible session-layer intermediary (SLIM)
that leverages the above abstractions to support the additional
functionality needed by modern applications, such as mobility,
communication between two or more participants, and dynamic
recon�guration. SLIM’s approach also provides themeans for future
extensibility of the network stack in a backward-compatible way,
thus enabling incremental adoption.

CCS CONCEPTS
•Networks! Network architectures; Session protocols;

ACM Reference format:
Umar Kalim, Mark K. Gardner, Eric J. Brown,Wu Feng. 2017. SLIM: Enabling
Transparent Extensibility and Dynamic Con�guration via Session-Layer
Abstractions. In Proceedings of ACM/IEEE ANCS, China, 2017, 13 pages.
DOI: 10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
To achieve greater functionality, modern applications require more
from networks stacks. When the desired functionality is not avail-
able, developers are burdened with creating support mechanisms
to mitigate the limitations of the network stack and enable modern
use cases. This is in addition to developing features for the appli-
cations. Apple Continuity [1] and Android OS [3] are examples of
such cases. They both implement support for synchronizing state

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci�c permission and/or a
fee. Request permissions from permissions@acm.org.
ACM/IEEE ANCS, China
© 2017 ACM. 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
DOI: 10.1145/nnnnnnn.nnnnnnn

between processes on multiple hosts as well as resilient communi-
cations to enable seamless hando�. Such duplicate functionality
makes software development for modern cross-platform solutions
far more complex than it needs to be.

Part of the reason for the di�culty is due to the accumulation
of technical debt in the form of limiting assumptions, simplistic
abstractions, and (once expedient) implementation shortcuts. For
example, the assumption that network addresses do not change
during communication (i.e., the duration of a connection is shorter
than the lifetime of network address assignment) led to identifying
connections by network addresses. However, this makes mobil-
ity complicated and fragile. Similarly, the socket abstraction is
too simple to describe communication involving more than two
participants, which we discuss further in § 2.

To realize modern use cases, there is a need for abstractions
that enable greater functionality (e.g., mobility, migration, dynamic
con�guration), the implementations of which must allow for fur-
ther extensions as well as a path for incremental adoption. Notable
attempts have been made to minimize duplication of e�ort, enable
extensibility, or mitigate limitations of legacy stacks. These vary
from higher-layer abstractions (e.g., [29, 31]), transport protocols
(e.g., [11, 34, 39]), and network-layer proposals (e.g., [22, 23]) to
clean-slate designs (e.g., [12, 35]). While these approaches high-
light the need for greater functionality, none of them have achieved
signi�cant adoption, except for Multipath TCP [39]. The reasons
for this include narrow scope, limited abstractions, lack of back-
ward compatibility, high transition cost vs. value, or addressing the
symptoms and not the root cause of problems.

We propose an extensible session-layer intermediary (SLIM),
which provides session semantics to support innovative communi-
cations and enables future extensions to the network stack. SLIM
(1) uses session, �ow, and endpoint abstractions to support current
and future communication models; (2) enables interactions between
two or more participants and support for mobility; and (3) provides
an out-of-band channel for the exchange of control messages that
enables dynamic recon�guration of ongoing communications.

Our contributions in this paper are as follows:
• A characterization of challenges when using legacy com-

munications for modern use cases, such as con�ation of
session and transport semantics, and therefore, the need
for separate session, �ow, and endpoint abstractions (§ 2);

• The architecture of an extensible session-layer intermedi-
ary (§ 4) and the roles of the session, �ow, and endpoint
abstractions (§ 3) that support typical and advanced com-
munications; and

• A prototype implementation of SLIM (§ 5) that exposes
an API for the aforementioned abstractions, followed by an

ACM/IEEE ANCS, 2017, China Umar Kalim, Mark K. Gardner, Eric J. Brown, Wu Feng

evaluation of the session layer and the backward-compatible
extensions enabling incremental adoption (§ 6).

2 CHALLENGES
Modern communications have outstripped the extensibility of net-
work stacks [13] leading to a growing notion that network transport
has ossi�ed and that HTTP is now the “evolvable narrowwaist” [25].
Hope for evolution of the network stack seems to be fading away
and is instead being replaced by application-layer “kludges,” which
are needlessly complicated due to attempting to �x problems at the
wrong layers. In spite of a large corpus of research (§ 7), we see that
enabling greater functionality and encouraging adoption continues
to be a challenge [28]. The following aspects play a signi�cant role
in this challenge:
Lack of Backward Compatibility and Limited Extensibility:
It is widely accepted that today TCP supports nearly 90% of the
Internet tra�c [18]. With such tremendous momentum behind
legacy networks, any proposal for extensions that is not backward
compatible or does not look like TCP on the wire will not stand
a chance of adoption because of the signi�cant transition cost.
The proposals that are backward compatible are constrained by
the means for extension, such as the shrinking TCP option space,
particularly the option space of the SYN message during TCP con-
nection setup [13, 15]. Thus, the key to introducing change would
therefore be to enable incremental adoption, thereby facilitating
a smooth evolution of network communication and providing a
means for extensibility, which not only cater to modern use cases
but also enable those that we have not considered yet.
Con�ation of Session and Transport Semantics: Using the
Socket API, legacy communications instantiate a transport con-
nection. These communications are based on the end-to-end model.
A �le descriptor is created that serves as a handler for the transport
connection [4]. The instantiation of a socket not only represents a
transport connection, but also the communication session. Doing
so implicitly ties the semantics of the session with the semantics of
the transport connection and couples the life of the session to the
lifetime of the TCP connection. If the transport connection fails,
e,g., due to the change of network address, the session fails.

Process A Process BNetwork

Transport connection
(stream or datagram)

Socket
abstraction

Figure 1: The socket abstraction, identi�ed with a �le de-
scriptor, strictly tied to the underlying network interface.
Limiting or Missing Abstractions: Figure 1 shows that the �le
descriptor serves as a representation of the socket abstraction and
a surrogate for the transport connection. It does not present an
explicit representation of the communication endpoint, the com-
munication streams between participants or the conversation as a
whole. This lack of explicit abstractions is the reason that partici-
pants are identi�ed using inferences when it is required to explicitly
identify communication endpoints. Similarly, network interface
labels and port identi�ers are used to indirectly represent commu-
nication streams. The labels used are by de�nition strictly tied to

the underlying networking interface identi�ers, creating a strong
coupling between concepts that span multiple layers in the network
stack. In addition, current implementations assume that communi-
cations involve two participants alone. Moreover developers are
expected to maintain bookkeeping about the conversation.

Thus, it is due to the lack of higher-layer abstractions that we see
developers duplicating e�ort and implementing mechanisms to sup-
port greater functionality at the application layer (e.g., supporting
mechanisms for state sharing/management [3]).
Limited Security Considerations: Typically, security consider-
ations have been an afterthought when proposing network ex-
tensions [5]. Today, however, information security concerns are
of paramount importance in network communications. Whether
it is the matter of access control (e.g., identi�cation, authentica-
tion, authorization), con�dentiality, integrity, or non-repudiation,
contemporary proposals must enable solutions that address such
concerns; Proposals must not create impediments or introduce
weaknesses in meeting information security goals. Designs that
do not take such aspects into account, struggle in convincing the
wider community to adopt their proposals.
Immutable Con�guration of Communications: Legacy imple-
mentations assume that once communication is setup, the con�g-
uration will not change. In other words, it is assumed that the
lifetime of the communications (i.e., transport) is the same as the
duration of the conversations (i.e., session). Since device or ser-
vice mobility is a very important capability in today’s mobile and
cloud computing environments, tying the lifetime of the session to
that of an underlying TCP connection gets in the way of clients as
they roam between networks and services as they migrate between
data centers or cloud providers. Developers and service providers
work around this issue but at great cost; working around the issue
distracts them from focusing on their product’s unique value and
contributes to brittle network behavior.
Conclusions: With legacy TCP implementations we see that ses-
sions are constrained by transport semantics. When these stacks
were implemented, con�ation of session and transport resulted in an
e�cient solution that contributed to the success of the Internet [8].
However, today this con�ation is impeding the implementation of
desirable services [28] and thus needs to be addressed. Sessions
and transport connections need to be managed separately and ex-
plicitly. This requires separating and improving the abstractions
used to describe communications. Therefore, we propose three
additional abstractions beyond those provided by TCP: session, �ow,
and endpoint. These are described in the following section. These
abstractions not only make it easier to support greater functionality
(e.g., describing two or more participants in a conversation), but
also enable other avenues of extensibility (e.g., enabling dynamic
recon�guration and mobility).

3 SESSION-LAYER ABSTRACTIONS
Here we describe the endpoint, �ow, and session abstractions that
form the session layer. We use Figures 2–7 in the descriptions
that follow to illustrate a representative session involving three
endpoints with two data �ows and one control �ow. Each endpoint
may create or participate in one or more sessions. Each session

SLIM: Enabling Transparent Extensibility and Dynamic Configuration via Session-Layer Abstractions ACM/IEEE ANCS, 2017, China
Endpoint A

Control
flow

Endpoint B Endpoint C

Data
flows

Session
abstraction

Network

Figure 2: The session abstraction involving three partici-
pants, each with two data �ows instantiated by the applica-
tion. The control �ow enables setup and recon�guration.

may have one or more participants. Flows may or may not exist
between endpoints.

3.1 Endpoint Abstraction
An endpoint is an entity participating in a conversation and represents
a source and destination of communications. Note that the real
endpoint is often the user with some process serving as proxy; in
computer-to-computer communications, endpoints are processes.
Our de�nition of an endpoint is in contrast with the de�nition of
an endpoint in the socket API. The socket API de�nes the endpoint
as an immutable entity associated with a 5-tuple hlocal IP, local port,
remote IP, remote port, protocoli at the time of instantiation and
made available to the process as a �le descriptor [4]. The contrast
is illustrated in Figure 3.

ProcessNetwork

Transport
connection Socket

abstraction
Endpoint
abstraction

Figure 3: Contrast of endpoint and socket abstractions.

Modern use cases require that the association of the process and
the host that houses the endpoint not be permanent. Instead, an
endpoint should be identi�ed by a label independent of the network
address of its host. A process may change hosts (in case of service
migration), may appear to change network attachment points (in
case of mobility), or may want to use multiple network paths (and
therefore potentially use multiple network interfaces). Therefore,
to construct an endpoint label independent of the underlying layers,
we draw inspiration from the Host Identity Protocol (HIP) [22] and
use public keys as the foundation for building identi�ers. Since
private-public key pairs are uniquely associated with users or ser-
vices [9], using the public key as the foundation of a unique label
is prudent for modern communications.

As shown in Figure 4, we construct a unique endpoint label
using a cryptographic hash [22] (or a �ngerprint) of the user’s,
service’s, or client’s public key along with a suitable tag to distin-
guish between endpoints. Based on the mathematics of the birthday
problem, we can conclude that with the hash size of more than
100 bits, we can safely assume that a collision will not occur until
one quadrillion (i.e., 250) hashes are generated. For this reason, we
chose 128 bits as the hash size, 24 bits as the distinguishing tag size

and 8 bits for the hash-algorithm type, resulting in a label size of
160 bits (20 bytes) and allowing more than 16 million endpoints per
key and 256 hash algorithms to choose from. Implementations may
choose di�erent label sizes based on the hash algorithm type and
the number of endpoints allowed per key. Note that Figure 4 is the
logical representation of the label and does not cater to implemen-
tation concerns. For convenience, we also use human-readable tags
mapped to endpoint labels (e.g., meetup.alice).

cryptographic hash (public key)type tag

i bits

j bits k bits

Figure 4: Endpoint label.
The endpoint labels may be translated to obtain information that

describes how the endpoint may be contacted. In the case of TCP,
this contact information would be an IP address and port number.
We can imagine adapting the domain name system (DNS) [38] to
be a translation service.

Deriving the endpoint labels from the public key enables intrin-
sic security in the design of communications. For example, access
control services (of identi�cation, authentication, and authoriza-
tion) may be enabled by verifying digitally-signed endpoint labels,
which we will discuss further in § 4.2. In the same vein, symmetric
ciphers may be derived using associated private-and-public keys
to enable con�dentiality. Note that the use of PKI does not require
deployment of additional infrastructure beyond what already exists.

3.2 Flow Abstraction
A �ow represents a data exchange between a set of endpoints. It gives
a name to the concept of communication but requires mapping onto
underlying transport connections before communication actually
occurs. Because �ows are independent of transport connections,
the concept of a �ow can precede the creation of a transport con-
nection and can persist after the transport connection has been
closed. This separation allows us to distinguish between session
and transport semantics. Doing so further enables recon�guration
of �ows on the �y (and subsequently recon�guration of underlying
transports). This is illustrated in Figure 5 where a �ow may be
mapped onto a transport connection p and later mapped onto a
transport connection r (e.g., when transport p is disrupted due to
recon�guration or migration of the client into a di�erent subnet).
Recon�guration of transport connections is not possible when us-
ing the socket abstraction since it essentially means terminating
and setting up a new instance with intended parameters.

We identify each �owwith a human-readable label that ismapped
to an opaque identi�er, unique within the scope of the session. Ini-
tially, the endpoints have di�erent opaque labels for the same �ow.
However, endpoints may exchange and agree upon �ow labels for
the duration of the conversation. We explain this further in § 4.2.

SLIM supports the notion of data and control �ows, both shown
in Figures 2 and 5. SLIM data �ows are visible to the application;
SLIM control �ows are not. SLIM exposes data �ows to the appli-
cation as a means for exchanging data between participants. On
the other hand, SLIM uses control �ows to con�gure or recon�gure
session-layer abstractions. For example, the control �ow may be
used to seamlessly create and destroy transport connections (as

ACM/IEEE ANCS, 2017, China Umar Kalim, Mark K. Gardner, Eric J. Brown, Wu Feng

Session

Transport

Time

Session

control flow

data flow 1

transport connection p

data flow 2

transport connection q

transport connection r

transport connection α

Figure 5: The �ow abstractions and their mappings onto un-
derlying transports in relation to time.

needed) to support mobility, resilience, and dynamic recon�gura-
tion. It also uses control �ows as an extension mechanism. We
discuss control �ows further in § 4.2.

The manner in which a �ow is mapped onto a transport is guided
by its structure. We de�ne two types of structures for �ows: 1)
broadcast and 2) one-to-one. With a broadcast structure, the reads
and writes to the �ow involve all participants. On the other hand,
a one-to-one structure suggests a point-to-point link between the
participants. This is illustrated in Figure 6. Other forms or struc-
tures are worthwhile; however, we limit the scope of our work to
these two common structures in this paper.

broadcast flow

b

ca

1-1 flows

b

ca

Figure 6: The structure of �ows in relation to the endpoints.

3.3 Session Abstraction
A session represents the complete conversation between participants
in an agreed-upon context. It encapsulates endpoints and �ows that
constitute the conversation and allows them to be reasoned about
together. This is illustrated in Figure 2.

Each session is labeled with a session identi�er, chosen by the
endpoint initiating the session. As illustrated in Figure 7, the label
consists of the initiator’s endpoint label and a distinguishing tag. We
chose the tag size to be 32 bits, which allows for about four billion
simultaneous sessions per endpoint. As with the endpoint labels,
di�erent session tag sizesmay be implemented. Our choice of 32 bits
is intended towards accommodating a su�cient number of sessions
per endpoint and thus future-proo�ng labels. For convenience,
we also map a human-readable label to the session label — e.g.,
org.meetup. The session label must be globally unique if it is to
serve as a publicly accessible session. This is implicitly achieved
since the session label is based on the initiator’s endpoint label,
which itself is based on a globally unique public key. Session labels
may be published and publicly visible or may remain unpublished.
We discuss aspects of session labels registration further in § 4.1.

Each endpoint maintains a local view of the session. The iden-
tities of the endpoints are maintained as part of the session state.
In addition, identities and descriptions of �ows originating from
or terminating at the end point are also recorded as part of the ses-
sion state. A local session state available at an endpoint would not
include information about �ows that the endpoint is not involved

with (e.g., endpoint a would not be aware of the 1-1 �ow between
endpoints b and c in Figure 6).

endpoint / initiator label session tag

i bits m bits

Figure 7: Session label.

4 SLIM’S ARCHITECTURE
As Figure 8 illustrates, SLIM exposes an API while providing three
sets of services to the application to assist with communication
setup and management. These services ful�ll three roles: 1) session
management, 2) negotiation of con�guration, and 3) data transfer.
SLIM uses the underlying transport services to realize the session
abstractions.

SLIM does not force the application to gain network access
through it, as shown in Figure 8. The reasons for this are two-fold.
First, it highlights that SLIM is designed for incremental adoption
and therefore does not force applications to use SLIM to access net-
work services; applications may continue to use the legacy socket
API if they choose to do so. Second, it emphasizes that SLIM is
primarily engaged in communication setup (in the beginning) and
management (in case of recon�guration) and does not interfere
with data exchange. As we explain later, SLIM is a “pass through”
for data exchange once communications are setup.

4.1 Session Management
SLIM session services allow sessions to be instantiated, con�gured,
recon�gured, and torn down. Figure 9 provides a state transition
diagram illustrating relationships between session primitives and
states of the session abstraction.

SLIM’s state-transition diagram may appear to share similarities
with the TCP state-transition diagram [26]. This is not because
SLIM’s design is a derivative of TCP’s implementation; rather, as
explained in § 2, legacy TCP implementations con�ate session and
transport semantics, hence its state-transition diagram has aspects
relevant to sessionmanagement. It is these shared aspects of session
management that are re�ected in both the state-transition diagrams.
Session-Related Primitives: Typically, an endpoint expresses its
willingness to communicate and is then joined by other endpoints.
An endpoint creates a session to encompass the intended commu-
nication and awaits contact from other endpoints. Later, other
endpoints join the session and one or more data �ows are added
to begin communication. Alternatively, endpoints may be invited
to participate in a session. Endpoints can leave the session at any
time without disrupting the ongoing communications.

Joining a session requires knowledge of the session label. The
session can be publicly advertised by registering the label with a
session discovery mechanism. An endpoint wishing to join the
session looks up the label from the session registry and requests a
translation of the label into contact information. This contact infor-
mation consists of the details necessary to reach the endpoint. An
implementation of SLIM over TCP considers the network and port
addresses as contact information and allows these to change during
the lifetime of the session. Alternatively, the contact information
for a session can be conveyed to an endpoint by other means (e.g.,
if the session is not registered publicly).

SLIM: Enabling Transparent Extensibility and Dynamic Configuration via Session-Layer Abstractions ACM/IEEE ANCS, 2017, China

SLIM

Transport

Application

Internet Protocol

Session Layer Intermediary (SLIM)

Session
Management

Negotiation of
Configuration

Data
Transfer

Figure 8: SLIM in relation to the network stack.

!!

INITIALIZED!

DEPARTED!

TERMINATED!

REVOKED!
LABEL!

REGISTERED!
LABEL!

join()'/'
invite()'

leave()'

end()'

revoke()'

end()'

register()'

create()'

await_call()'

attend()'

await_call()'

end()'

reconfigure()' end()'

!! !!ESTABLISHED!

register()'

!! AWAITING!
CONTACT!

await_call()'

cleanup()'

Figure 9: Session state-transition diagram.

Although highly unlikely, there is a possibility that an endpoint
joining a session may face a collision of endpoint labels. In this case
the collision is resolved by choosing an alternate distinguishing tag
(see Figure 4). Further naming issues, e.g., multiple identities per
endpoint, are beyond the scope of this paper and will be tackled as
part of future work.

The session state recorded at the registry needs to be managed.
The record is expunged when an endpoint ends the session, or it is
maintained via a heartbeat mechanism that indicates the session’s
continued existence. Other primitives that assist with negotiation
of con�guration are discussed in § 4.2.
Flow-Related Primitives: The add_flow primitive creates a data
�ow within the session. It takes a named parameter session and
optional inputs of [structure] and [type]. The structure de�nes
the communication model for the conversation (e.g., broadcast or
one-to-one). The type de�nes the mapping onto the underlying
transport (e.g., stream- or message-oriented transport). There may
be more than one �ow between processes. Although �ows origi-
nating from the same endpoint are independent of each other, yet
they are associated with each other through the endpoint. This is
relevant because �ow recon�guration primitives may be applied to
the session as a whole instead of individual �ows — e.g., to change
underlying transport protocol from TCP to Multipath TCP. The
terminate_flow primitive tears down the �ow.
Session Registration and Discovery: The session registration
and discovery mechanism assists with recording and translating
session labels to the information needed to participate in the session.
Upon registration, a mapping is created between the session label
and at least one endpoint participating in the session. The mapping
is removed when an authorized participant revokes the label.

We refer to the process that registers the label as the initiator.
Any process that wishes to participate in a session can query the
registry to acquire contact information about the participants to

subsequently join the session. The only requirement is for the
intended participant to know the label that it wants translated. For
this purpose, the human-readable labels associated with session
labels make this requirement relatively convenient to manage.

Mechanisms exist that address similar challenges of label regis-
tration and translation, which can be adapted as a session registry.
For example, we envision a DNS [21]-like hierarchical LDAP [33]
service that would not only meet timeliness requirements, but
would also scale well. The use of hierarchical human-readable la-
bels is expected to enable scalable solutions. Note that participants
that do not wish to register their session can still communicate.
However this assumes that contact details of at least one participant
are available. An in-depth investigation of session registries are
beyond the scope of this paper.

4.2 Negotiation of Con�guration
In support of more sophisticated communications, SLIM uses the
control �ow to exchange commands (or control signals) between
participating network stacks and peers. These commands, called
verbs, include, for example, requests to suspend or resume a �ow
or change the underlying transport protocol.
Verbs: Control �ows exchange verbs to con�gure communications.
The facility to exchange control information or alert peers of a
change in the communication context, along with the ability to re-
con�gure abstractions after communication has been setup, enables
dynamic con�guration.

For example, Listing 1 shows an example JSON representation of
the sync verb requesting the peer stacks to update their endpoint to
network address mappings (e.g., when the source moves between
subnets). This may result in a new transport connection if the
existing transport is not valid anymore. Applications will not be
aware of this adaptive behavior, since SLIM insulates them from
the underlying transport via the �ow abstraction. The transition,
labeled as reconfigure, in Figure 9, re�ects such recon�guration.

Required �elds of the verb indicate the source of the request,
the session label, a transaction ID, and an authentication token.
These enable stacks to distinguish between requests and to ensure
authorization. The remaining �elds are verb-speci�c.

{"VERB" : "sync",
"SOURCE": "meetup.alice",
"TRANSACTION_ID": "1872", "TIMEOUT" : 20,
"SESSION_LABEL" : "org.meetup",
"AUTH_TOKEN": "2N8ISiGELBzNw1sOunAxgOF3MrQF4ugf",
"PAYLOAD" : { "list" : [{

"END_POINT_LABEL": "meetup.alice",
"IP" : "192.0.1.222", "PORT": 5432 }]}}

Listing 1: An example of a verb and its payload, represented
in JSON, requesting an update of endpoint label mappings.

Activities (e.g., endpoints joining a session, recon�guration re-
quests through verbs) may be authenticated using the authenti-
cation tokens. These tokens represent digitally-signed endpoint
labels, which can be veri�ed as the endpoint label is based on the
public key of the user, client, or service that the endpoint is repre-
senting [9]. Also, the authentication process creates an opportunity

ACM/IEEE ANCS, 2017, China Umar Kalim, Mark K. Gardner, Eric J. Brown, Wu Feng

for the recipient of verbs to pose compute-intensive puzzles before
taking action and thus preempt denial-of-service attacks.

Much as network stacks disregard unknown TCP options and
thereby facilitate incremental adoption of new extensions [26],
the SLIM control protocol requires stacks to disregard unknown
verbs. Currently, the set of verbs are limited to those needed to
support migration and resilience (e.g., sync, suspend_flow, and
resume_flow are useful for migration and recovery from disrup-
tion). Other verbs, such as change_protocol, allow on-the-�y
recon�guration of the underlying transport protocol.
Enabling Future Extensions: It is well established that su�cient
TCP option space, particularly as part of the TCP SYN message, is
no longer available for extensions that require space for control
signaling [20]. To further add to the complexity, we know that
middleboxes either do not allow TCP packets with custom options
to traverse through them or strip custom options [6, 13, 16, 27]. The
control �ow provided by SLIM serves as a signaling channel for
future extensions. For example, to implement support for process
migration or state synchronization between peers, verbs may be
de�ned and implemented over the control channel. New primitives
may then be implemented and exposed to support future network
services. Examples of such extensions include change_protocol

and sync. In § 5 we explain how verbs are implemented with cor-
responding handlers. To add extensions, developers implement
handlers that receive, consume, and act upon the verb and its pa-
rameters.
Context Management: In addition to allowing the application to
indirectly use the control �ow as a means for exchanging control
signals, a context manager, also makes use of the control �ow to
exchange control signals between the network stacks. For example,
when a network interface is disconnected, the transport connection
using the interface would timeout. To avoid having communica-
tions fail, the context manager recognizes the change and triggers
an instantiation of a new transport connection that uses an alternate
interface, if one is available. This would also trigger an exchange
of a sync verb to synchronize state.

Here we have considered one aspect of context management (i.e.,
resilient communications). However, there are other possibilities
that can be explored to enable the network stack to be cognizant of
its operating environment. An example of such context awareness
may be to recognize that multiple network paths to peers exist
through di�erent network interfaces on the host and thus enabling
multi-homing, fail-over, or redundant communications. Similarly
the network stack may recognize the existence of an accelerator or
a gateway in the network and enable con�guration of communica-
tions — e.g., engaging SSL accelerators or interacting with captive
portals. With session-based abstractions, SLIM serves at a suitable
vantage point to realize such a variety of goals that include policy
enforcement, and dynamic recon�guration.

4.3 Data Services
Once communications are setup, the �ow abstraction merely serves
as an indirection to the transport connection. Thus, SLIM essentially
acts as a pass-through for an application writing to or reading data
from a �ow, until there is a disruption (e.g., connection loss due to
migration), or a verb is triggered to recon�gure communications —
e.g., SLIM participates to restore communications.

5 PROTOTYPE IMPLEMENTATION
Herewe discuss a prototype of the session-layer intermediary, SLIM,
implemented as a user-space library in C. The application interface,
session-layer primitives, control signaling, session registry and a
shim layer for backwards compatibility with legacy applications
are implemented in 3189 lines of source code (without comments).

5.1 Session State
In the prototype, a view of the session is maintained for each partic-
ipating process. This session state includes details of participating
endpoints, the �ows that exist between them, the con�guration and
structure of the �ows, the �ow-to-transport mappings, the available
network interfaces on the host where the endpoint resides, and the
session type. In addition, the identities of the session, �ows and
endpoints and the mappings of those identities — e.g., endpoint
label to location mapping (IP and port addresses) — are maintained
as part of the session state.

During the lifetime of communication, the session state changes.
The changes that are local to the endpoint need not be shared with
the other participants (e.g., the sequence space mappings of the
�ows to underlying transport). However, the changes in state that
are relevant to the entire session may be shared with participants
to maintain consistency (e.g., endpoint label to location mappings).
These updates are shared through the control �ow (using the sync

verb) and are initiated by the source of the change.

5.2 Data Flows
Data �ows are added with the add_flow primitive. Each data �ow
is identi�ed internally by a unique �ow label and mapped to an
appropriate transport connection (stream ormessage) depending on
the �ow type. The �ow label exposed to the application is mapped
to the �le descriptor returned by the standard libc socket API.

5.3 Flow Labels and Greater Functionality
For legacy application behavior of the �ow labels merely serves as a
reference to the session-level concept of a �ow. However, they play
a signi�cant role in supporting extensions to the stack, for example,
in case of mobility. After the host servicing an endpoint moves to
a di�erent subnet, the network address assigned to the interface
may change. This invalidates the transport connection that the
�ow was mapped onto (for simplicity, consider the example of two
participants involved in the session). However, SLIM recognizes the
change and instantiates a new transport connection, onto which the
�ow is mapped. The participants are able to recognize that this is
the same �ow since the sync verb initiated by the source triggers an
update of mappings between the �ow and new transport connection
at the recipient. Note that this allows the communications to work
in spite of the presence of middleboxes (e.g., NATs that may change
the IP addresses associated of tra�c �owing through them).

5.4 Structure of Flows
To realize a one-to-one structure for �ows between endpoints, we
have a correspondence between a �ow and a transport connection.
On the other hand, for a broadcast structure, we implement an all-
to-all connectivity of transport connections between the endpoints,
to which the �ows aremapped. Note that the focus on broadcast and

SLIM: Enabling Transparent Extensibility and Dynamic Configuration via Session-Layer Abstractions ACM/IEEE ANCS, 2017, China

one-to-one �ows is not fundamental and that the entire spectrum
of con�gurations can be supported. For example, for peer-to-peer
communications, a broadcast structure might not be feasible and
a Chord-like con�guration [36] may be appropriate. However, we
leave that exploration for future work.

5.5 Flow-to-Transport Mappings
The �ow-to-transport mapping requires a mapping of sequence
spaces between the two. The session-layer implementation del-
egates the responsibility of managing transport semantics (e.g.,
retransmission of lost bytes) to the underlying transport implemen-
tation. Doing so allows the book-keeping of delivered and undeliv-
ered bytes in the context of �ows to be relatively straight-forward.
We leverage our experience from our previous work [15, 16] in
creating this mapping of sequence spaces. If a transport connec-
tion ends prematurely, a new connection is created and the data
�ow is mapped onto it. Without duplication of e�ort, we are able
to use the mapping of sequence spaces to ensure that no data is
lost during reliable transfers. This indirection allows the session
layer to provide resilience and hide the messy details of adaptation
from the application. Comprehensive details of the sequence space
mapping are documented in our prior work [15, 16].

5.6 Control Flows
A control �ow is created when an endpoint joins the session; the
intention here is to have a control �ow between endpoints partici-
pating in the session to allow exchange of control signaling. Note
that in our implementation, a control �ow1 is the same as a data
�ow with the exception that the abstraction is not directly exposed
to the application.

Control �ows are used to exchange verbs, which are commands
that trigger corresponding handlers. For example, the receipt of
the verb suspend_flow triggers the launch of the corresponding
handler v_suspend_flow(). After ensuring that the request is
valid and authorized, the parameters are processed to e�ectively
pause further writes and reads to and from the �ow — e.g., this
may be required when migrating between subnets for which new
transport connections need to be established to resume connectivity.
Note that extending SLIM to include additional verbs translates into
registering the verb and the corresponding verb issuer and handler
with the library. For example, the verb sync has its corresponding
issuer i_sync and handler v_sync registered with the library.

Typical verbs are implemented as non-blocking requests. The
recipient acknowledges the receipt with (success or failure) codes.
However, this does not preclude implementation of verbs as block-
ing requests. Blocking requests are prudent where transactions may
need to be rolled back if unsuccessful. This behavior is implemented
as part of the verb issuer.
ContextManager: A context management thread runs in the back-
ground with a low pro�le. The intent here is to allow the session
layer to be cognizant of the circumstances in which communication
is taking place.

In the prototype implementation, the context manager creates
a netlink socket and listens for network interface events through

1The management of control �ows and execution of verbs is implemented in indepen-
dent threads. This avoids interference with the application’s execution thread.

RTMGRP_LINK. If the interface is disconnected (i.e., the link
goes down) and an alternate interface is available, the context
manager triggers the setup of a new transport connection over the
alternate interface and issues a sync between the participants to
resume connectivity. Alternate solutions that listen for OS events
may be used instead, to solve this problem. We plan to evaluate
such methods with SLIM’s implementation as a kernel module. We
implemented this feature as an example of other possibilities that
range from variety of dynamic con�gurations to applications of
policy enforcement (e.g., assisting captive portals).

5.7 Session Labels and Registry
The session maintains a session identi�er and a human-readable
label, which may be published in a session registry. We implement
a rudimentary LDAP service to act as a session registry and an-
ticipate that a production deployment would involve a DNS [21]
like hierarchical LDAP [33] service. Upon registration, the mem-
bers’ endpoint details are listed along with the label. The register,
push_update, revoke, and translate primitives enable interac-
tion of the session layer with the registry and ensure that it is kept
up to date. Further details are available in the technical report [17].

5.8 Support for Legacy Applications
Since the prototype implementation of SLIM is available as a user-
space library, applications using the API simply link to the library
for network access. To support legacy applications, which use the
Socket API, we have implemented a shim layer, which intercepts
Socket API calls using LD_PRELOAD and then maps these to the
SLIM API. This is illustrated in Figure 10. Doing so allows SLIM to
be backwards compatible with the legacy applications.

Legacy App

Socket API

SLIM

LD_PRELOAD wrapper

App

Socket API

SLIM

SLIM supporting
legacy applications

SLIM enabling greater
functionality

Figure 10: SLIM in relation to legacy applications and those
using the library.

Understandably, with the use of the shim layer, legacy applica-
tions will not be able to make use of all the features supported by
SLIM, other than those that we implement as part of the shim layer.
On the other hand, applications that are programmed using the
SLIM API are able to bene�t from the greater functionality that
the library enables. Note that the illustrations in Figures 8 and 10
highlight that SLIM serves as a wrapper around the Socket API.

5.9 Support for Mobility, Migration, and
Resilient Communications

Leveraging our experience from our prior work [16] we highlight
how separation of session and transport semantics can enable mi-
gration of services between networks without disrupting commu-
nications. We demonstrated a live migration of a virtual machine
(hosting an SSH server) from Blacksburg, Virginia on the East Coast
to Sunnyvale, California on theWest Coast. In spite of themigration
to a di�erent network, the client application remained connected

ACM/IEEE ANCS, 2017, China Umar Kalim, Mark K. Gardner, Eric J. Brown, Wu Feng

to the service and continued to operate successfully [14]. This was
only possible because the session-layer �ow was able to update
its mapping from one transport connection (to the service hosted
in the Blacksburg network) to another after the migration (in the
Sunnyvale network) as illustrated in Figure 5. The indirection intro-
duced due to separation of session and transport semantics allowed
SLIM to enable resilient communications.

We also highlight the ability of SLIM to demonstrate resilience,
by leveraging our experience from prior work [6, 15], where we
interrupt communications by physically disconnecting the net-
work between a legacy client application (Video LAN) and a me-
dia streaming server. The physical disconnection resulted in the
network interface going down. Upon reconnection, the context
manager recognizes the change in interface status and triggers a
synchronize event. Following which the media continues to stream
to the client application without losing the session. This would not
have been possible with legacy TCP, for which the socket would
become invalid after the disconnection.

6 DISCUSSION AND EVALUATION
With explicit session management along with the built-in control
�ow, SLIM provides support for several innovative uses of the net-
work not well served by legacy TCP, including resilience, migration,
and stack extension. It also has the potential for simplifying and
re�ning existing communications. In this context, we discuss and
evaluate SLIM’s contributions.

6.1 Separation of Session and Transport
Semantics via Session-Based Abstractions

In the previous sections, particularly in § 2 and 3 we made a case in
favor of separating session and transport semantics as the means
to rejuvenate innovation in network stacks. We explained that
legacy stack implementations have con�ated session and transport
semantics within the Socket API and why this makes future inno-
vation a challenge. For example, from the application developer’s
perspective, when using legacy implementations the con�ation of
semantics results in the transport connection appearing as if it were
the entire session; the beginning and end of the connection is the
beginning and end of the session, when in fact the session and �ow
semantics are fundamentally independent of how the transport
transfers data across the network. Thus, a feasible way forward
is to decouple these semantics and subsequently avoid having the
limitations of underlying layers permeate through to the applica-
tions; unless the session and transport semantics are decoupled,
developers will be forced to implement modern applications with
limited abstractions, they will continue to be constrained by the
limitations of the underlying implementations, and they will con-
tinue to duplicate e�orts in implementing session-management to
support their use cases [1, 3].

With SLIM we are able to decouple session management from
transport semantics and subsequently the limitations of the un-
derlying implementations. As a result, the SLIM API only exposes
session semantics to the developer and thereby simpli�es the de-
sign of network applications and services. For example, unlike the
transport implementations that couple transport labels to network

labels, the session abstractions insulate themselves from the limita-
tions of such cross-layer coupling and are therefore not limited by
naming constraints. As a result, developers are relieved from the
concerns of maintaining resilient communications, and instead fo-
cus on session semantics alone. We demonstrate the e�cacy of this
decoupling with our prototype implementation (§ 5) and through
the virtual machine migration demonstration [14, 16], where we
highlight support for mobility and resilient communications. This
separation of session and transport semantics also helps in mini-
mizing duplication of e�ort as we see developers tackling the same
challenges over and over again [1, 3], which are in part addressed
through SLIM. Table 1 summarizes SLIM’s contributions along with
other notable proposals, which we discuss further in § 7.

6.2 Enabling Greater Functionality
All communication models [37] bene�t from the separation of ses-
sion and transport semantics. Explicit session management opens
avenues for innovation and extensibility. For example, explicit
session management enables: sessions with more than two partic-
ipants, session migration between hosts (in contrast to host mo-
bility), adaptive con�guration of communications, multihoming
— explicitly binding �ow-to-transport mappings to use di�erent
network interfaces (when available), transformation of �ows, and
variety of �ow to transport mappings, etc.
Adding Value to Communication: Consider the example of a
browser accessing aweb page typically createsmultiple connections
to a server to obtain content for constructing the page. In this client-
server model, once a session has been established, the transport
connection-setup cost for subsequent connections can be avoided
because transport parameters between the same two hosts can be
used as such or derived rather than recreated — e.g., the three-
way handshakes become redundant for subsequent connections
because the session has already incurred the cost of bootstrapping
and thus data can be sent along with the �rst TCP segment of
subsequent connections. This is especially bene�cial when �ows
within a session share authentication and encryption parameters.
Enabling Richer Functionality: SLIM bene�ts applications us-
ing the publish-subscribe model by supporting sessions involving
two or more participants with dynamic recon�guration. For ex-
ample, clients can subscribe and unsubscribe to a video streaming
service yet be treated as a whole by the server through the ses-
sion abstraction. While responsibility for changes in video quality
in response to varying network conditions belongs higher in the
stack (in the “presentation layer”), feedback from the �ows to the
application is required for the quality to be properly adapted.

Another potential bene�t, which we do not support yet, is for
peer-to-peer communication where processes are not con�ned to
speci�c roles — e.g., bittorent protocol simultaneously creates con-
nections to multiple peers, where distributed hash table records,
available �les, and content segments can be shared over the in-
dependent �ows in the same session. In such a case, �ows may
be structured between endpoints in a manner suitable to the algo-
rithms (e.g., in a Chord-like fashion [36]). This simpli�es the design
of protocols between peers.

SLIM: Enabling Transparent Extensibility and Dynamic Configuration via Session-Layer Abstractions ACM/IEEE ANCS, 2017, China

Table 1: Comparison of SLIM’s contributions (3does/can support, 7: does not support, 7 / 3: subjective).
SIP [29] TESLA [31] SCTP [34] SST [11] MPTCP [27] SERVAL [23] III [35] SLIM

Separation of
semantics &
enabling
innovation

Session abstractions 7 / 3 7 / 3 7 7 7 7 7 3
Flow migration 7 7 7 / 3 7 3 7 / 3 7 3
Endpoint migration 7 / 3 7 7 7 7 7 3 3
Extensibility 7 7 / 3 7 7 7 7 7 3

Backward
compatibility

Like TCP on the wire 3 3 7 7 3 7 7 3
Compat. with legacy applications 7 7 7 7 / 3 3 7 7 3
Compat. with TCP stacks 3 7 7 7 3 7 7 3

Enabling greater
functionality

Transport independence 3 7 7 3 7 7 3 3
Fault tolerance 7 3 7 3 3 3 7 / 3 3
Dynamic recon�guration 3 7 7 7 7 7 7 / 3 3
Multihoming 7 7 3 7 3 3 7 3

6.3 Enabling Innovation and Extensibility
Through the control �ow, SLIM presents a large control-signaling
space for future extensions. This is in sharp contrast to the shrink-
ing option space available through TCP options — i.e., the space
in the TCP SYN message [13, 15]. Having a signaling space to ex-
change control information between stacks is necessary to enable
future extensions. Developers can use the control space to integrate
extensions that operate within session semantics by de�ning verbs
and registering corresponding handlers with the SLIM framework,
for applications and services to use.

For example, clients connecting to a secure web server may
connect through a SSL accelerator which terminates the secure
connection and proxies the now unencrypted tra�c to the servers
that make up the service. Because of the need for all tra�c to
pass through the accelerator, it has the potential to become the
bottleneck. An alternative approach enabled by SLIM is to set
up a session between the client and all the servers implementing
the service, including the SSL accelerator. Once authenticated,
the session is secure and the participants can switch to using less
computationally expensive symmetric ciphers allowing �ows to go
directly between endpoints without going through the accelerator.
Alternatively, the accelerator can migrate the �ow to the servers.
Here all the control signaling necessary to manage the session
activities can be implemented through SLIM’s control �ow.

6.4 Backward Compatibility and Adoption
As we discuss in § 2 and § 5, backward compatibility is critical for
adoption of the proposals by the wider community. With SLIM,
we successfully achieve backward compatibility with both legacy
applications and the network stacks. We implement a shim library
along with SLIM, which allows us to intercept legacy socket API
calls from the applications using LD_PRELOAD and then pass it
on to the SLIM API. This is when the intent is to indirectly use the
SLIM API. If the intent of the application developer is not to use
the SLIM API, the application may be programmed traditionally
to use the Socket API and without LD_PRELOAD SLIM will not
interfere with the communications. Similarly, SLIM uses the TCP
custom options as part of the TCP SYN message to determine if the
peer stacks support SLIM. If they do then enriched communications
are setup as planned. However, if peer stacks do not support SLIM,
the implementation gracefully falls back to legacy TCP. Details of
the use of custom options is discussed in the technical report [17]
and our prior work [15].

By enabling backward compatibility and allowing applications
as well as network stacks to gracefully fall back to legacy TCP,
SLIM supports incremental adoption by not forcing everyone to
opt into using SLIM to setup communications.

6.5 In the Presence of Middleboxes
Research indicates that tra�c with custom transport headers is
either dropped altogether or that the options are stripped o� when
packets pass through middleboxes [13, 15, 16, 20, 36]. This poses a
signi�cant challenge towards adoption when our network infras-
tructures today host many middleboxes serving useful purposes.
Thus the proposal for evolution of communications not only has
to be backward compatible with legacy applications and network
stacks, but also with network elements that form part of the infras-
tructure. Also, in some cases, the middleboxes modify the tra�c
�owing through them to provide their services. For example, NATs
change the IP addresses of outgoing tra�c and therefore the recipi-
ents cannot assume that the source IP address is that of the original
client (or that of a NAT box). Therefore, careful considerations need
to be made about assumptions.

With SLIM, because we decouple session semantics from that of
transport, communications are independent of changes in under-
lying con�guration or modi�cations to in-�ight tra�c. The only
scenarios where existence of a middlebox could possibly interfere
with the SLIM session layer are during: 1) creation of a data �ow or
2) creation of the control �ow. Setting up a data �ow maps to a TCP
connection via the add_flow primitive so middleboxes will react
the same whether or not the TCP connection is initiated directly or
via SLIM. Since control �ows are also mapped to TCP connections,
middlebox are not be able to tell the di�erence either. While NATs,
accelerators, and load balancers do not interfere with SLIM, �re-
walls may cause disruptions since SLIM uses custom TCP options
along with the TCP SYN message to setup communications. Sur-
veys [13] show that �rewalls typically let custom options through if
they are associated with the TCP SYN message (and not otherwise),
which we have also con�rmed with testing [16]. Nevertheless, if
the control �ow setup fails, SLIM gracefully falls back to legacy
behavior. The key enabler is that SLIM and legacy tra�c behavior
are identical on the wire.

6.6 Development E�ort — Cost vs. Value
With SLIM managing the conversation (session management neces-
sary to support dynamic recon�guration, communication involving

ACM/IEEE ANCS, 2017, China Umar Kalim, Mark K. Gardner, Eric J. Brown, Wu Feng

two or more participants, mobility, session abstractions to transport
mappings etc.) developers are free to focus on their application
rather than implementing the underlying plumbing to enable ap-
plication features.

Using the additional functionality that SLIM enables does re-
quire some modi�cations to applications. However, a subset of the
SLIM session API is designed to mimic traditional socket seman-
tics, allowing existing code to run on top of a SLIM stack without
change by way of shared library interposition. We demonstrate
this work by developing a shim library that uses LD_PRELOAD
to intercept Socket API calls and implement a wrapper for SLIM.
While the application will not gain all the bene�ts, e.g., communi-
cations involving more than two participants or mobility, it will
automatically gain the increased resilience that comes from being
able to restart �ows in a session.

Automated Code Refactoring We have implemented a proto-
type source-to-source translator that takes code using the Socket
API as input and translates it into code that uses SLIM API. We have
successfully tested the prototype for correctness on simple client
and server applications. While this is work-in-progress, we’ve con-
cluded that such transformations are possible and would facilitate
evolution towards SLIM. Note that a simple refactoring enables
support for fault-tolerant communication [15, 16].

6.7 User Space vs. Kernel
The transport layer is implemented within the kernel for various
reasons including cross-layer communication and performance.
Our prototype is primarily in the user space, with the modi�cations
for custom TCP options as the only portion implemented as part of
the kernel. We envision a production version to be implemented
in the kernel and its functionality exposed with an interface to
applications. Functionality which does not lie on the critical path
may continue to be implemented in the user space. However, we
have not explored other kernel-implementation concerns yet.

6.8 Security Considerations
As explained in § 3, we intend to lay a foundation that enables
well-established information-security methods in assisting session
management. We argue that if e�cient methods of access control
(i.e., identi�cation, authentication, authorization), con�dentiality,
integrity, or other information security concerns are to be realized,
then incorporating such concerns in the design is important (§ 3).
On the other hand, opaque identi�ers may be used for endpoints,
�ows, and sessions to develop simpler session management solu-
tions. While doing so would not preclude higher-layer solutions of
information security, they would not bene�t from the gains of an
integrated session-layer. Even when simpler/opaque identi�ers are
used, SLIM extensions do not expose network communications to
additional security threats when compared to legacy TCP.

While the use of public keys as basis for endpoint labels might
suggest that anonymity may become a challenge, this is not the
case. In fact signi�cant e�orts are already underway to address such
aspects [24]. Also, since the public-key infrastructure is already
well established and deployed worldwide, its use doesn’t require
deployment of additional resources in the network.

6.9 Performance Evaluation
The overarching question that we try to answer here is: does the
use of session abstractions incur a negative impact when compared
to the use of the Socket API? We �nd that there is no statistically
signi�cant di�erence between the use of SLIM and the Socket API.
The reasons behind this are two-fold: 1) SLIM is engaged in con�g-
uration of communications during setup, recon�guration and tear
down phases and is not actively involved during data transfer; 2)
The �ow abstractions, which are primarily used during data trans-
fer, are implemented using the Socket API to manage transport
semantics in the prototype.

We set up the environment using dummynet [7]. Dummynet

is con�gured to obtain precise measurements (e.g., set the kernel
frequency timer to 4000Hz sinceDummynet’s emulation is coarse
grained and bursty in nature for microsecond-level precision, which
becomes apparent at low latencies). We de�ne maximum window
sizes and bu�er sizes to ensure that they do not gate throughput
tests. We also enable window scaling and selective acknowledg-
ments. We de�ne link capacities of 1 Gbps between nodes using
dummynet pipes. We vary round trip times (RTTs) and packet
loss rates based on typical values [10] — < 1ms , 5ms , 10ms , 25ms ,
50 ms and 100 ms for RTTs and 0%, 1%, and 10% for packet loss
rates. Here we show select results due to limited space.
Throughput: After a session is setup, the �ow abstractions are
mapped on to the underlying transport. Therefore, we would expect
both Socket API and SLIM to achieve similar throughputs. Our mea-
surements con�rm that results for di�erent RTTs are statistically
the same for all variations of con�guration that we tested. Figure 11
shows the results for one con�guration where the endpoints are
able to saturate the link to the achievable throughputs of about 94%
of link capacity. With increasing RTTs, achievable throughputs are
met after relatively longer running tests. Since both SLIM and the
Socket API use TCP as the transport protocol we veri�ed achieved
throughputs with Mathis’ estimates [19]. With packet loss, we see
that throughputs for both the Socket implementation and SLIM are
adversely e�ected with increasing loss rate (see Figure 12).

Figure 13 summarizes the throughputs from the �ow’s perspec-
tive with a broadcast structure. Figure 14 on the other hand sum-
marizes throughputs of underlying transport connections for the

●

●●

●
●
●

●

●●●

●

●

●

●

●
●

●

●

●●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●
●●

●
●

●

●

●

●

●

●

●
●

●

●●

●
●

●

●

●

●
●

●

●●

●

●

●
●
●
●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

SLIM Socket

0
250
500
750

1000

0 10 20 30 40 50 0 10 20 30 40 50
Measurements

Av
er

ag
e

Th
ro

ug
hp

ut
(M

bp
s)

RTT (ms) ● < 1

Figure 11: Average throughput, with 90% con�dence inter-
val, for Socket and SLIM (1 Gbps link capacity, 0% loss).

●● ●●

SLIM Socket

0
250
500
750

1000

0 10 20 30 40 50 0 10 20 30 40 50
Measurements

Av
er

ag
e

Th
ro

ug
hp

ut
(M

bp
s)

% Loss ● 0 1

Figure 12: Average throughput for Sockets and SLIM (1Gbps
link, < 1ms RTT 0% and 1% loss.

SLIM: Enabling Transparent Extensibility and Dynamic Configuration via Session-Layer Abstractions ACM/IEEE ANCS, 2017, China

same �ow. While it may seem that increasing number of partic-
ipants reduces throughput, this is not the case. When there are
three participants in a session, from the sender’s perspective there
are two underlying transport connections that implement the �ow
with a broadcast structure. Therefore, in this case when the �ow
observes a throughput of 468.5 Mbps to the endpoints, it is be-
cause the underlying transports observe a throughput of 449 and
488Mbps to each process. These adds up to about 937Mbps , which
is close to the achievable peak throughput. Note that throughputs
for underlying transports increase until link capacity is reached.
Setup Time: Time to initialize a session is expected to be nearly
equal to the time to allocate memory for the instance. We measured
this to be 5 µs , which is the same as initializing a socket. There
is no statistically-signi�cant di�erence between the time to create
a session with a single data �ow and a TCP connection, which is
dictated by the RTT between the endpoints (shown in Table 2).
Usually, sessions will include a control �ow and at least one data
�ow. The setup time is not impacted by the creation of the control
�ow as its setup is managed independently in parallel. Once a
session context has been established, subsequent data �ows do not
require three-way handshakes before sending data.

Table 2: Setup Time between Peers
RTT (ms) x̄ (ms) s (ms)

TCP connection < 1 0.16 0.06
50 50.35 0.56

Session with no �ows < 1, 50 0.005 0.001
Session with a data and
control �ow

< 1 0.16 0.07
50 50.52 0.70

Exchange of Verbs and Recon�guration: When an asynchro-
nous request is issued, the receiving endpoint returns an acknowl-
edgment with a code. We measure the time it takes for the request
to be issued and the return code to be received. A subset of results
are presented in Table 3, where we issue consecutive requests to
obtain a trace and also capture the variance. We see that the la-
tency is dictated by the RTT between the endpoints. The variation
measured in our traces is a characteristic of dummynet due to the
coarseness of its implementation when inducing delays through
pipes. For blocking recon�gurations, the the response time would
depend on the type and context of the verb.
Table 3: Response Time of Non-Blocking Recon�gurations

RTT (ms) x̄ (ms) s (ms)
10 10.36 0.61
50 50.77 0.65

Memory Footprint: With support for higher layer abstractions, a
session instance’s memory footprint is larger than that of a socket
abstraction, which essentially is a �le descriptor. When two end-
points are involved in a session, the instance has amemory footprint
of 132 b�tes . The breakdown is shown in Table 4. The addition
of every subsequent endpoint increases the footprint by 42 b�tes ,
while the addition of a data �ow increases the footprint by 18 b�tes .
The above pro�le is calculated with the assumption that endpoint
hosting the session has a single interface. Every additional interface
on the endpoint increases the footprint by 22 b�tes . While the foot-
print of 132 b�tes seems large in contrast to a 4 b�te socket, note
that the developer would have to implement similar bookkeeping
as part of the application for similar use cases.

●

●

2 3 4 5

0

250

500

750

1000

< 1 5 10 25 50 < 1 5 10 25 50 < 1 5 10 25 50 < 1 5 10 25 50
RTT (ms)

Av
er

ag
e

Th
ro

ug
hp

ut
 (M

bp
s) Participants

Figure 13: Flow’s perspectivewith SLIMand increasing num-
ber of participants (1 Gbps link, varying RTTs, 0.01% loss)

< 1 ms 10 ms 50 ms

0

250

500

750

1000

2 3 4 5 6 2 3 4 5 6 2 3 4 5 6
of Participants

Av
er

ag
e

Th
ro

ug
hp

ut
(M

bp
s)

Connections
T1
T2
T3
T4
T5

Figure 14: TCP’s perspective with SLIM and increasing num-
ber of participants (1 Gbps link, varying RTTs, 0.01% loss)

Table 4: Session’s Memory Footprint
Bytes

Human-readable label 20
Opaque ID 24
One endpoint 20 (label) + 22 (sockaddr_in)
Control �ow 10 (label) + 4 (ID) + 4 (handler)
One Data �ow 10 (label) + 4 (ID) + 4 (handler)
Misc. bookkeeping 10
Total 132

CPU Overhead: We studied the CPU usage of applications con-
ducting small (e.g., 10 KB), medium (e.g., 1MB) and large volume
(e.g., 10 GB) transfers. We did not observe any statistically signi�-
cant di�erence between applications using the SLIM and the Socket
API. This is in spite that the fact that SLIM implements the control
�ow and a context manager; the control �ow is not over bearing
since it only plays a role during communications management and
is not involved in the data transfer phase.

7 RELATEDWORK
There have been several notable attempts when it comes to in-
novation in and extensions of communications to enable modern
use cases. However, the corpus of research is too vast to cover
comprehensively within this paper. Nevertheless, we select few
prominent proposals [11, 22, 23, 27, 29, 31, 34, 35, 40] and classify
them into groups of session-layer proposals, modern transport-
layer proposals, network-stack extensions, and clean-slate designs.
Table 1 summarizes the contributions of SLIM and these proposals.
Session-Layer Proposals: TESLA [31] presents notable session
layer services based on a �ow abstraction. The authors propose the
use of �ow handlers to implement higher-layer and end-to-end ser-
vices (e.g., encryption). Although TESLA de�nes a �ow abstraction
and looks like TCP on the wire, it was not widely adopted perhaps
because: 1) it assumes that all networks stacks implement TESLA
as a session layer service; and 2) it focuses on extensions to trans-
port services (e.g., encryption of �ows) and only proposes the �ow
abstraction, which alone is not su�cient to describe conversations.
This is in contrast with SLIM, which does not assume that all stacks

ACM/IEEE ANCS, 2017, China Umar Kalim, Mark K. Gardner, Eric J. Brown, Wu Feng

integrate SLIM services and that SLIM proposes the session, �ow
and endpoint abstractions to describe conversations.

The Session-Initiation Protocol (SIP) [29], is one of the well-
known session-based communication protocols. As the name sug-
gests, it assists with the setup and tear down of a session. It does
not engage with data communication itself. It is primarily geared
towards multimedia services and is the cornerstone of most VoIP
services. It handles call management, while the voice and video
data is transferred using RTP [32]. Although SIP has seen tremen-
dous success with call services, it has not been adopted for use
outside of multimedia. This may be because, unlike SLIM which
proposes the session, �ow and endpoint abstractions, SIP does not
present constructs that describe the communication, thus limiting
support to managing conversations. Unlike SLIM, which addresses
the limiting assumptions of existing stacks (e.g., con�ation of ses-
sion and transport semantics) SIP builds on top of existing stacks.
Thus, services built using SIP are not only constrained by the limita-
tions of the existing stacks, but will also incur additional overheads
for working around these limitations. Also unlike SLIM which
provides seamless support for mobility and resilience, SIP is depen-
dent on the application developer to monitor the session state and
assist with recon�guring or resetting communication. Although
SIP has not seen adoption outside of multimedia (perhaps due to
the challenges listed above), it still presents useful insights into
session management. SLIM leverages the lessons learned by SIP
and proposes a generic framework that extends the network stack
by providing session-layer services to the application.

The OSI model [40] includes a session layer in its design. How-
ever, it too was not widely adopter, perhaps due to its slow devel-
opment and also because TCP/IP, at the time, was proving to be an
e�ective alternate [30]. Today, the modern use cases demand much
more than what the reference model was designed for and therefore
it would not meet the needs of contemporary communications.
Modern Transport-Layer Proposals: Structured Streams [11]
proposes a transport abstraction as an alternative to TCP. The in-
tent is to create child transport streams from existing transport
connections while incurring minimal cost. It allows the application
to have parallel streams. The proposed stream abstraction has not
been widely adopted perhaps because: 1) it is not like TCP on the
wire and therefore middleboxes do not let the tra�c through unless
it is tunneled through another transport protocol (e.g., TCP or UDP),
which takes away much of the advantage of the abstraction; 2) it
exposes a di�erent API to the application, which implies that the
implementation is not backwards compatible with legacy applica-
tions; and 3) unlike SLIM, it doesn’t support modern use cases (e.g.,
multi-homing) or richer abstractions.

Multipath TCP [39] provides extensions to TCP to support multi-
homing, fault tolerance and �owmigration. As proposed extensions
are based around TCP, they are backwards compatible but appli-
cations must be modi�ed if extended functionality is to be used;
using the legacy API does not translate into access to all features.
Multipath TCP focuses on extending transport services and un-
like SLIM does not propose richer communication abstractions or
encourage decoupling of session and transport semantics. Never-
theless, among all proposals, Multipath TCP is the only proposal
that has seen adoption (by Apple [2], perhaps because the company
has complete control over its software and can have a �ag day for

deployment). We compare and contrast SLIM with SCTP [34] in
our technical report [17].
Network-Layer Extensions: SERVAL, an end-host stack for service-
centric networking [23], proposes a service-access layer between
the TCP and IP layers to: 1) enable endpoints to use multiple net-
work addresses, 2) enable �ows to migrate across interfaces, and
3) create multiple �ows for communication. SERVAL suggests that
the proposed layer be between the transport and IP layer to reduce
the coupling between the two and enable the features listed above.
The fundamental limitation in the adoption is that the tra�c does
not look like TCP on the wire. Finally, the research does not present
an abstraction that represents the conversation between processes
or support multi-party communication; the focus of SERVAL is
towards a service abstraction, not a session abstraction.

The focus of the Host Identity Protocol (HIP) [22] is to address
an issue of mobile networking. The intention is to allow hosts
to maintain shared IP-layer state, which removes the coupling
between the locater and identi�ed roles of the network address.
This allows the network application to continue communication
in spite of change of network (i.e., IP) address. HIP does so while
taking into account several information security considerations.
While the proposal addresses an important problem for modern use
cases, the solution addresses one aspect of a larger problem, which
is to enable greater functionality for modern communications.
Clean-Slate Designs: Stoica et al., urge that we reconsider the
way we approach networking; they propose the use of rendezvous-
based communication, Internet Indirection Infrastructure (i3) [35],
that decouples the act of sending from the act of receiving. Such a
model decouples the notion of communication labels from the loca-
tion of the end hosts and in doing so mitigates concerns of mobility.
This model also describes di�erent communication paradigms (e.g.,
multicast, broadcast, anycast). While these are valuable contribu-
tions, we see that any proposal that is not backwards compatible has
not gained traction with the wider community — perhaps because
of the momentum behind TCP.

8 SUMMARY AND FUTUREWORK
In this paper, we propose an extensible session-layer intermediary,
called SLIM, built upon explicit session, �ow, and endpoint abstrac-
tions. The separation of session and transport concerns leads to
clearer descriptions of communication models and enables advance
network functionality: mobility, communications involving two
or more participants, and dynamic recon�guration. Even more
important, SLIM’s control �ow provides a mechanism for revital-
izing network stack innovation by providing a space for control
signaling. A prototype SLIM implementation has been created to
explore various design alternatives.

In the future, we plan to explore the bene�ts of more internal
cross-layer communication within the stack to allow for better
coordination. We also wish to further expand the set of control
�ow verbs with a view towards creating mechanisms upon which
applications can build policies and functionality. We also plan to
explore which portions of SLIM should be in kernel space and
which should be in user space, leading to a more production-ready
implementation. Finally, we will modify additional applications to
utilize the advanced functionality of SLIM and report an empirical
performance evaluation of its use.

SLIM: Enabling Transparent Extensibility and Dynamic Configuration via Session-Layer Abstractions ACM/IEEE ANCS, 2017, China

REFERENCES
[1] 2015. iOS and OSX Hando� - Apple Continuity.

https://developer.apple.com/hando�. (2015). Accessed December 16,
2016.

[2] 2015. iOS: Multipath TCP Support in iOS 7. http://support.apple.com/en-
us/HT201373. (2015).

[3] 2015. New Features in Android OS 5.0 - Multi Networking. http://android-
developers.blogspot.com/2014/10/whats-new-in-android-50-lollipop.html. (2015).
Accessed December 16, 2016.

[4] 2015. POSIX.1-2008 Speci�cation. http://pubs.opengroup.org/onlinepubs/9699919799
/functions/contents.html. (2015). Accessed December 16, 2016.

[5] David G. Andersen, Hari Balakrishnan, Nick Feamster, Teemu Koponen,
Daekyeong Moon, and Scott Shenker. 2008. Accountable Internet Protocol
(AIP). In ACM SIGCOMM.

[6] Eric Brown, Mark Gardner, Umar Kalim, and Wu Feng. 2011. Restoring End-to-
End Resilience in the Presence of Middleboxes. In IEEE International Conference
on Computer Communication and Networks (ICCCN).

[7] Marta Carbone and Luigi Rizzo. 2010. Dummynet Revisited.
http://doi.acm.org/10.1145/1764873.1764876, ACM SIGCOMM Computer
Communication Review (2010).

[8] Vinton G. Cerf and Munindar P. Singh. 2010. Internet Predictions: Future Imper-
fect. http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5370817,
IEEE Internet Computing (2010).

[9] D. Cooper, S. Santesson, S. Farrell, S. Boeyen, R. Housley, and W. Polk. 2008.
Internet X.509 Public Key Infrastructure Certi�cate and Certi�cate Revocation
List (CRL) Pro�le. RFC 5280 (Proposed Standard). (2008). Updated by RFC 6818.

[10] Les Cottrell. 2016. Ping End-to-End Reporting. http://www-
iepm.slac.stanford.edu/pinger/. (2016). Accessed December 16, 2016.

[11] Bryan Ford. 2007. Structured Streams: A New Transport Abstraction. In ACM
SIGCOMM Computer Communication Review.

[12] Dongsu Han, Ashok Anand, Fahad Dogar, Boyan Li, Hyeontaek Lim, Michel
Machado, Arvind Mukundan, Wenfei Wu, Aditya Akella, David G. Andersen,
John W. Byers, Srinivasan Seshan, and Peter Steenkiste. 2012. XIA: E�cient
Support for Evolvable Internetworking. In USENIX NSDI.

[13] Michio Honda, Yoshifumi Nishida, Costin Raiciu, Adam Greenhalgh, Mark Han-
dley, and Hideyuki Tokuda. 2011. Is it Still Possible to Extend TCP?. In ACM
Internet Measurement Conference.

[14] Umar Kalim. 2011. Demonstration Video of Seamless Virtual Machine Migration.
http://www.cs.vt.edu/ umar/vm-demo. (2011).

[15] Umar Kalim, Eric Brown, Mark Gardner, and Wu Feng. 2010. En-
abling Renewed Innovation in TCP by Establishing an Isolation Boundary.
http://p�d.net/2010/technical.php. In 8th International Workshop on Protocols
for Future, Large-Scale and Diverse Network Transports (PFLDNeT).

[16] Umar Kalim, Mark Gardner, Eric Brown, and et al. 2013. Seamless Migration of
Virtual Machines Across Networks. In IEEE International Conference on Computer
Communication and Networks (ICCCN).

[17] Umar Kalim, Mark Gardner, Eric Brown, and Wu Feng. 2015. SLIM: A Session-
Layer Intermediary for Enabling Multi-Party and Recon�gurable Communication.
Technical Report TR-15-04. Department of Computer Science, Virginia Tech.

[18] Craig Labovitz. 2008. Internet Tra�c Trends. NANOG 43. (2008). North
American Network Operators’ Group.

[19] Matthew Mathis, Je�rey Semke, Jamshid Mahdavi, and Teunis Ott. 1997. The
Macroscopic Behavior of the TCP Congestion Avoidance Algorithm. ACM
SIGCOMM Computer Communication Review (1997).

[20] Alberto Medina, Mark Allman, and Sally Floyd. 2005. Mea-
suring the evolution of transport protocols in the Internet.
http://portal.acm.org/citation.cfm?doid=1064413.1064418, ACM SIGCOMM
Computer Communication Review (2005).

[21] P.V. Mockapetris. 1987. Domain names - implementation and speci�cation. RFC
1035 (STANDARD). (1987). Updated by RFCs 1101, 1183, 1348, 1876, 1982, 1995,
1996, 2065, 2136, 2181, 2137, 2308, 2535, 2845, 3425, 3658, 4033, 4034, 4035, 4343,
5936, 5966, 6604.

[22] R. Moskowitz, T. Heer, P. Jokela, and T. Henderson. 2015. Host Identity Protocol
Version 2 (HIPv2). RFC 7401 (Proposed Standard). (2015).

[23] Erik Nordström, David Shue, Prem Gopalan, Robert Kiefer, Matvey Arye,
Steven Y. Ko, Jennifer Rexford, and Michael J. Freedman. 2012. Serval: An
End-host Stack for Service-centric Networking. In USENIX NSDI.

[24] S. Park, H. Park, Y. Won, J. Lee, and S. Kent. 2009. Traceable Anonymous
Certi�cate. RFC 5636 (Experimental). (2009).

[25] Lucian Popa, Patrick Wendell, Ali Ghodsi, and Ion Stoica. 2012. HTTP: An
Evolvable Narrow Waist for the Future Internet. Technical Report UCB/EECS-
2012-5. University of California Berkeley.

[26] J. Postel. 1981. Transmission Control Protocol. RFC 793 (INTERNET STANDARD).
(1981). Updated by RFCs 1122, 3168, 6093, 6528.

[27] Costin Raiciu, Christoph Paasch, Sebastien Barre, Alan Ford, Michio Honda,
Fabien Duchene, Olivier Bonaventure, and Mark Handley. 2012. How Hard Can
It Be? Designing and Implementing a Deployable Multipath TCP. In 9th USENIX
Symposium on Networked Systems Design and Implementation (NSDI 12).

[28] Jennifer Rexford and Constantine Dovrolis. 2010. Future Internet Architecture.
http://portal.acm.org/citation.cfm?doid=1810891.1810906, Communications of the
ACM (2010).

[29] J. Rosenberg, H. Schulzrinne, G. Camarillo, and et al. 2002. SIP: Session Initiation
Protocol. RFC 3261 (Proposed Standard). (2002). Updated by RFCs 3265, 3853,
4320, 4916, 5393, 5621, 5626, 5630, 5922, 5954, 6026, 6141, 6665.

[30] Andrew L. Russell. 2013. OSI: The Internet that Wasn’t — How TCP/IP eclipsed
the Open Systems Interconnection standards to become the global protocol for
computer networking. http://spectrum.ieee.org/computing/networks/osi-the-
internet-that-wasnt, (July 2013).

[31] Jon Salz, Alex C. Snoeren, and Hari Balakrishnan. 2003. TESLA: A Trans-
parent, Extensible Session-Layer Architecture for End-to-end Network Ser-
vices. http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.13.5061. In USITS.
USENIX.

[32] H. Schulzrinne, S. Casner, R. Frederick, and et al. 2003. RTP: A Transport Protocol
for Real-Time Applications. RFC 3550 (INTERNET STANDARD). (2003). Updated
by RFCs 5506, 5761, 6051, 6222.

[33] J. Sermersheim. 2006. Lightweight Directory Access Protocol (LDAP): The
Protocol. RFC 4511 (Proposed Standard). (2006).

[34] R. Stewart. 2007. Stream Control Transmission Protocol. RFC 4960 (Proposed
Standard). (2007).

[35] I. Stoica, D. Adkins, S. Zhuang, S. Shenker, and S. Surana. 2004. Internet Indirec-
tion Infrastructure. IEEE/ACM Transactions on Networking (2004).

[36] Ion Stoica, Robert Morris, David Karger, M. Frans Kaashoek, and Hari Bal-
akrishnan. 2001. Chord: A Scalable Peer-to-peer Lookup Service for Internet
Applications. In ACM SIGCOMM.

[37] Andrew S. Tanenbaum and Maarten Van Steen. 2006. Distributed Systems: Prin-
ciples and Paradigms. Prentice Hall.

[38] P. Vixie, S. Thomson, Y. Rekhter, and J. Bound. 1997. Dynamic Updates in the
Domain Name System (DNS UPDATE). RFC 2136 (Proposed Standard). (1997).
Updated by RFCs 3007, 4035, 4033, 4034.

[39] Damon Wischik, Costin Raiciu, Adam Greenhalgh, and Mark Handley. 2011.
Design, Implementation and Evaluation of Congestion Control for Multipath
TCP. In 8th USENIX NSDI.

[40] Hubert Zimmermann. 1980. OSI Reference Model — The
ISO Model of Architecture for Open Systems Interconnection.
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=1094702. In IEEE
Transactions on Communications. IEEE, 425–432.

