Cascaded TCP: Big Throughput for Big Data Applications in Distributed HPC

Umar Kalim*, Mark Gardner*+, Eric Brown+, Wu-chun Feng* Department of Computer Science*, Office of IT+, Virginia Tech, {umar, mkg, brownej, wfeng}@vt.edu

Motivation

- Vanilla TCP implementations are typically unable to saturate links over high latency and high capacity paths → poor utilization
- Cause: congestion-control feedback is coupled with acknowledgements:
 - Larger the latency, the longer it takes to increase the window size
 - Higher the capacity, the longer it takes to saturate the link

- Bulk data transfer solutions cannot be applied as such to streaming apps
- Streaming Big Data application operating over WAN:

Hypotheses

- Throughput improves when layer-4 relay(s) are used to convert a long-haul TCP connection to a cascade of connections
 - Particularly for long-lived TCP connections over WAN long haul

Improvement in performance justifies costs of layer-4 processing at relays

Approach & Experimental Setup

- Goal: Characterize performance of Cascaded TCP vs. Long-Haul TCP for BIG DATA in an emulated environment
- Configuration:
 - FreeBSD v9.0
 - TCP New Reno
 - Dummynet (~1000Hz)
 - netcat
 - iperf
- A conducting node sets up the receiver, relay(s) and sender, and maintains timestamps

Results

- Increased throughput observed with Cascaded TCP
- Cross-over point is between a bandwidth-delay product of 32KB and 64KB
- As bandwidth-delay products increase, utilization is accentuated before we see diminishing returns
- Cascaded TCP ameliorates impact of losses; as losses increase, the cross-over point – where Cascaded TCP performs better – moves towards smaller bandwidth delay products (i.e., 64KB to 32KB)
- Owing to relay setup time, for small bandwidth-delay products, long-haul TCP results in better utilization than Cascaded TCP

Setup: One Relay

- Adding two relays, further improves throughput
- As high as 90% utilization is observed when the E2E latency is 64ms and loss is 0% (Note: protocol overheads limit peak to ~94%)

• Even when utilization is low (at high bandwidth-delay products), Cascaded TCP shows 100% improvement in throughput

Related Work

- H. Y. Pucha and C. Hu, "Slot: Shortened Loop Internet Transport using Overlay Networks," Purdue University, TR-ECE-5-12, 2005.
- A. Cohen, S. Rangarajan, and H. Slye. "On the Performance of TCP Splicing for URL-Aware Redirection", In USENIX Symposium on Internet Technologies and Systems (USITS), 1999.

Future Work

- How many relays are needed for optimal performance?
- Is the overhead of relay setup within tolerable limits?
- What are the implications of for TCP semantics?
- Are results also applicable to other congestion-control algorithms?
- Use the Cascaded TCP framework for NRAO/VLA data transfer

Acknowledgements

Research was funded in part by Virginia Tech and Juniper Networks