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Abstract—Current technologies that support live migration
require that the virtual machine (VM) retain its IP network
address. As a consequence, VM migration is oftentimes restricted
to movement within an IP subnet or entails interrupted network
connectivity to allow the VM to migrate. Thus, migrating VMs
beyond subnets becomes a significant challenge for the purposes
of load balancing, moving computation close to data sources,
or connectivity recovery during natural disasters. Conventional
approaches use tunneling, routing, and layer-2 expansion meth-
ods to extend the network to geographically disparate locations,
thereby transforming the problem of migration between subnets
to migration within a subnet. These approaches, however, in-
crease complexity and involve considerable human involvement.

The contribution of our paper is to address the aforementioned
shortcomings by enabling VM migration across subnets and
doing so with uninterrupted network connectivity. We make the
case that decoupling IP addresses from the notion of transport
endpoints is the key to solving a host of problems, including
seamless VM migration and mobility. We demonstrate that VMs
can be migrated seamlessly between different subnets — without
losing network state — by presenting a backward-compatible
prototype implementation and a case study.

Index Terms—migration, virtual machine, wide-area network,
subnet, connectivity, TCP/IP

I. INTRODUCTION

Virtual machine (VM) migration has served as a technology
to enhance resource allocation and utilization. In turn, it
has ushered in the cloud computing era, whether for load-
balancing purposes to eliminate hotspots [1], moving compu-
tation close to data sources [2], or failover planning. Seamless
VM migration across networks opens additional doors for
opportunities. Consider, for example, the possibility of a live
migration of financial services hosted in a data center on the
east coast of the United States. In an impending disaster, these
services may be migrated to a data center on the west coast
without interrupting existing network connections, which may
have originated from within or outside the data center. While
the concerns of live VM migration within a data center have
been successfully resolved to a large extent, the issues of live
VM migration beyond a subnet are yet to be addressed.

The seamless migration of VMs involves a host of chal-
lenges such as transferring VM images [1], [3], managing stor-
age [2], copying intermediate state [4], maintaining network
connections [3], [5], addressing security considerations [6],
meeting performance goals [1], facilitating operations man-
agement, and so forth. In this paper, we focus on the issue

of maintaining network connection state following a live VM
migration beyond a subnet.

Contemporary hypervisors rely on the Reverse Address Res-
olution Protocol (RARP) to maintain network connection state
following a migration within a subnet. However, migration
beyond a subnet is a challenge as the IP addresses of the
network interface normally change. This change results in a
disruption in continuity as existing connections timeout be-
cause the endpoint with the old IP address does not exist any-
more. Unless applications implement reconnection, migration
results in disconnections. This precludes the straightforward
migration of VMs to geographically disparate locations (e.g.,
between data centers in different regions).

We leverage our prior research in developing an isolation
boundary [7], [8], as a backward-compatible extension for
TCP/IP, which decouples the naming of endpoints from the
naming of the flows. The decoupling ensures that a change
of IP address does not impact the connection state because
the connection will be identified by a label independent of
the IP address (rather than by the traditional 4-tuple of IP
addresses and ports). Such independence not only enables VM
migration, but it also facilitates features such as mobility and
reliable connectivity [7].

Conventional solutions, such as tunneling [3], modified
routing [5], and layer-2 expansion [9]–[11], work around the
problem of connection loss due to a change of IP address.
Specifically, in these cases, the layer-2 network is extended to
geographically disparate locations. This approach transforms
the problem of migration of VMs between subnets to VM
migration within a subnet, which is already well understood.

However, extending a subnet to geographically disparate
data centers is complex and requires considerable human
involvement [3], [5]. Methods of expanding the layer-2 net-
work [9]–[11] may not perform well at large scale (e.g., the
scale of the Amazon cloud), where the different subnets are
to form parts of a single layer-2 domain. With tunneling [3],
routing [5], and some layer-2 expansion methods (e.g., [11]),
a coupling exists between the source subnet and the migrated
VM, which is an undesirable constraint.

Moreover, network architects typically partition networks
within a data center into multiple subnets, particularly for
large-scale data centers and clouds (e.g., Google or Amazon).
Whether for flexibility of design, partitioning services, manag-
ing reliability or failover, balancing load, managing operations
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(e.g., maintenance), or maintaining security, partitioning al-
lows the architect to have more degrees of freedom. Therefore,
by enabling layer-3 migration (vs. layer-2 migration), we
can avoid the migration constraints that cloud services may
have due to coupling with the hardware (or layer-2 domain),
particularly when data centers are partitioned into subnets.

Thus, rather than continuing to address the symptoms of the
problem as above, we focus on the source of the problem —
the use of IP addresses in the 4-tuple to identify a transport
connection — in order to enable seamless layer-3 migration
of VMs across networks.

In Section II, we discuss the state-of-the-art methods used
for VM migration across networks. Section III explains the
details of the challenges faced in maintaining network state
and why state-of-the-art technologies cannot address the prob-
lem adequately. Section IV presents our proposed approach
and its realization in FreeBSD v8.1. We also present a case
study of VM migration across networks. Section V discusses
and evaluates our proposed approach and the case study.
To conclude, we summarize our work and identify future
directions of research in Section VI.

II. RELATED WORK

Following a migration within a subnet, hypervisors currently
rely on the Reverse Address Resolution Protocol (RARP)
protocol to enable continued use of existing TCP connections.
After migration, the VM continues to use the IP addresses that
it was configured with in the source subnet. On the other hand,
the physical MAC addresses of the new host will be different.
RARP renews the mapping between the VM’s IP addresses
and the host’s MAC addresses. As a result, the migration
process appears seamless. Here we assume that the downtime
during the migration is such that the network connection does
not timeout.

Apart from the issues of transferring VM images and man-
aging its state and storage, the challenge of migrating a VM
beyond a subnet (in contrast to within a subnet) is maintaining
appropriate network (TCP) connection state. The methods used
to address the challenge of live migration while maintaining
network state are different manifestations of tunneling [3],
routing [5] and layer-2 expansion [9]–[11].

In their tunneling-based approach, Bradford et al. [3] use IP
tunneling [12] to redirect network traffic from the source to
the destination subnet and therefore avoid network disruption.
Upon migration, an IP tunnel is setup, and traffic is tunneled
to the destination subnet after migration is complete. As soon
as the VM is initialized at the destination subnet, it acquires a
new IP address for its interface and can respond to incoming
traffic meant for the new address as well as the old address —
the interface is setup to respond to both addresses. Dynamic
DNS is used to update the IP address of the services hosted in
the VM. The tunnel is terminated after all connections using
the old address are shut down. The above approach, however,
requires cooperation from the source server. In addition, until
the old connections terminate, a coupling exists between the
migrated VM and the source subnet.

Erickson et al. [5] demonstrate that OpenFlow allows ap-
plications/VMs to continue to use their old IP addresses even
when they are migrated to different subnets. The migration
tools and hypervisors deal with the issues of transferring the
VM, while OpenFlow is used to direct traffic to the destination
subnet. If the setup is automated, it may not take long to
configure the forwarding tables.

The VXLAN [9] framework creates an overlay network over
layer-3 by encapsulating the entire layer-2 frame. VXLAN
Tunnel End Points (VTEPs) may be used to expand a layer-
2 network to geographically disparate locations. For example,
two geographically disparate data centers could be made to be
one layer-2 network using a VTEP at each data center. The
VTEPs would be responsible for encapsulating traffic with a
VXLAN header, forwarding it, and subsequently decapsulating
the layer-2 frame when transferring it to the destination host.
Note that as with OpenFlow, the VXLAN solution requires
additional complexity in the form of VTEPs.

Another manifestation of the approach of having a single
layer-2 network is to have a large layer-2 domain. As the
Spanning Tree Protocol (STP) has stability issues when the
layer-2 domain grows too large, protocols such as TRILL [10]
enable large layer-2 domains by replacing STP. In essence,
TRILL applies the Intermediate System to Intermediate Sys-
tem (ISIS) protocol to route Ethernet frames. Though vendors
support such solutions, the debate is still open whether TRILL
would benefit data center implementations or result in poor
data center designs [13].

Similarly, a virtual private LAN service (VPLS) [11] over
IP/MPLS has been used as a method to expand the layer-
2 domain. Typically, LAN segments are brought together by
virtualizing a switch across a link — making multiple switches
appear as a single virtual switch extending over geographical
distances. Here too, the layer-2 domain is allowed to grow to
large sizes by managing multiple but localized spanning trees.

While the above approaches are sound, they are fundamen-
tally ad-hoc solutions because they treat the symptoms of the
problem rather than the problem itself. In contrast, Salz et
al. [14] and Snoeren et al. [15] have suggested decoupling flow
labels from IP addresses. However, their approaches have not
been adopted because they are not backward compatible and
require a “flag day” for deployment.

Furthermore, the primary purpose of the above approaches
is not to support VM migration; instead their contribution is
elsewhere. For example, with VXLANs, the primary motiva-
tion is to expand the VLAN address space. VXLANs can go
well beyond limit of 4094 logical networks that can be setup
with VLANs — with the 24-bit segment ID, 16-million layer-
2 VXLAN networks can exist in a common layer-3 subnet.
Similarly, TRILL replaces STP to allow much larger layer-2
domains as well as better link utilization; layer-2 links, which
may have been ignored to avoid loops, may be used for better
load distribution and thus bandwidth utilization.

By leveraging our research on TCP extensions, we demon-
strate a new approach that decouples flow labels from IP
addresses and enables the continued use of existing TCP
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connections following a migration. Unlike Salz’s solution, our
approach is backward compatible with legacy TCP stacks.
(However, such stacks will not gain the benefit of the extended
features.)

III. BACKGROUND

In this section, we discuss the challenges for VM migration
and our previous research on an isolation boundary.

A. Challenges for VM Migration

Current approaches to VM migration are limited because
they use IP addresses and ports to identify the TCP connection.
However, IP addresses are meant to identify the network
interface of the host. Therefore, overloading the use of an
IP address to also identify a TCP connection binds the
connection, for its lifetime, to that IP address alone. If the IP
address were to change (for reasons of mobility or migration),
the transport connection which uses the old IP address would
break. This is because the interface would have a new IP
address and the transport connection labeled with the old IP
address is not valid. The hypervisor (or application) would
have to setup a new connection with its peer, using a new
socket, to continue communication.

This limitation does not allow seamless VM migration
because migrating to a different subnet requires the acquisition
of new IP addresses. This results in the termination of existing
connections and requires the set-up of new connections. As
mentioned earlier, there are ad-hoc methods that allow con-
tinued use of old addresses. In contrast, we propose a clean
and practical approach that eliminates the dependence on IP
addresses for labeling transport connections.

B. Isolation Boundary

In our prior research, we developed a mechanism called the
isolation boundary [7], [8], which enables rich extensions to
TCP. Here we leverage the capability of the isolation boundary
to decouple transport endpoint identifiers from IP addresses
and thereby address the issue that a change in the IP address
breaks TCP connections. With the isolation boundary, we
create a notion of an abstract flow, which we refer to as a
transport-independent flow (TI flow) to emphasize that it is
different than a TCP flow. The TI flow is identified by a
transport-independent flow identifier (TIFID). As the TIFID
is independent of the underlying network addresses, a change
in the IP addresses does not invalidate the connection. Instead,
the mapping of the TIFID to the (new) IP address is updated.

TIFIDs are options that are exchanged during the connection
setup phase; we refer to such options as isolation boundary op-
tions. A mapping between the abstract flow’s sequence space
to that of the TCP connection is created and synchronized at
key stages during state transition.

Figure 1 shows an illustration of how the isolation boundary
enables the mapping of TI flow to TCP connection. It also
identifies when synchronization of state occurs following a
disruption.

	  	  	  	  	  	  	  	  	  Transport	  Connection	  A	  

	  	  	  	  	  	  Transport	  Connection	  B	  

Time	  

	  Sockets	  	  	  	  
	  	  	  	  	  API	  

Transport	  

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  Transport	  Independent	  Flow	  (TI	  Flow)	  

	  Isolation	  
Boundary	  

	  	  	  	  	  	  	  	  	  	  Disruption	  
	  (e.g.,	  VM	  migration)	  

TIFID	  

Synchronizing	  TI	  Flow	  
with	  TCP	  using	  TIFID	  

Mapping	  TI	  Flow	  to	  TCP	  

Fig. 1: An illustration of the transport-independent flow map-
ping to TCP connections.

IV. METHODOLOGY

Here we discuss the required functionality and mechanics
for enabling layer-3 migration, along with our associated
prototype. We then present our experimental setup and case
study for migration between subnets.

A. Required Functionality

There are three fundamental functionalities that we need to
enable layer-3 migration:

1) The connection between the client and the service needs
to be independent of the underlying transport. The notion
of a logical flow enables layer-3 migration, and changes
in IP address will not disrupt existing TCP connections.

2) Following a migration, a mechanism is needed for the
VM to realize that network configuration needs to change.
This would happen when the VM is migrated and re-
sumed. Ideally, this would be implemented as part of
the hypervisor — perhaps as part of the virtual driver.
(This may also be viewed as a need for cross-layer
communication.)

3) Once the VM that hosts the server has migrated to
a different subnet (with help via the hypervisor), the
network interface gets a new IP address. The abstract flow
to TCP connection mapping can be updated at the VM.
However, the client would not be aware of the server’s
change of IP address, and thus, there is a need to update
the client’s mapping of the abstract flow to the TCP
connection. Once done, the client continues operation.

B. Mechanics

To understand the mechanics of layer-3 migration using the
isolation boundary, we explain the processes involved before,
during, and after the migration. Figure 2 illustrates the steps
involved in the migration.

1) Connection Setup: The client contacts the server that is
hosted in a VM. During connection setup (i.e., three-
way handshake), the isolation boundary options are ex-
changed.

2) Suspension: Upon the decision to migrate, the hypervisor
hosting the VM suspends the VM’s activity and records
ephemeral state. The VM image and intermediate state
are copied over to the destination.1

1This process may be optimized to achieve live migration [4].
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	  setup	  ssh	  connection	  

	  	  resume	  VM	  
(with	  new	  IP)	  

	  	  	  	  pause	  VM	  

	  	  	  	  ssh	  server	  

	  	  	  	  ssh	  client	  

1	  

2	  4	  

resume	  ssh	  connection	  

	  	  migrate	  VM	  
3	  

5	  
192.0.2.228	  198.51.100.233	  

porthos	   athos	  

aramis	  

Fig. 2: An illustration of the steps involved and where they
take place during a VM Migration.

3) Resumption: Once the VM is migrated with its image and
ephemeral state, it is resumed. At this point, the VM still
has the old network configuration.

4) Synchronization: Once the VM migration has taken place,
the server contacts the client with a SYN message.
Here, the TCP SYN request would be with the new
IP address. The client recognizes the TI flow because
of the accompanying TIFID in the SYN message and
allows connection setup instead of replying with a reset or
ignoring the request. The isolation boundary synchronizes
the logical sequence space over the new TCP connection.
In the scenario where the VM hosting the server migrates,
which is explained in Section IV-E, the hypervisors of the
VM triggers synchronization with the client. However, if
the client moves, the client would trigger synchronization.
If both move, additional bookkeeping is required.

5) Continued Operation: The application continues inter-
acting with the service. Seamless migration from the
perspective of the client and server is complete.

C. Implementation

To realize the functionalities identified above, we create
a prototype with the following components: (1) isolation
boundary, (2) link-status daemon, and (3) synchronization
agent. (Other implementations are possible.)

A prototype implementation of the isolation boundary is
available for the FreeBSD v8.1 kernel; details of the imple-
mentation are discussed in our prior work [7], [8]. To update
network configuration of a VM following a migration, we
chose an expedient method of a daemon that monitors for
changes in link status when the VM is resumed and generates
an interrupt-like notification. To synchronize state information,
an agent at the client listens for a new TCP connection with
a complete TIFID. The synchronization updates the mapping
of the TIFID to TCP connection (with the new IP address) for
both the service and the client.

As an artifact of our implementation, the stack in the
client role listens on the same port through which it has an
established connection. The listening port is available only for
SYN messages with complete TIFIDs (not the partial TIFIDs
typical of SYN segments establishing the initial connection)

so that existing TI flows may updated with a mapping to the
new addresses. An ideal approach would be to implement such
functionality as part of the hypervisor.

D. Experimental Setup

To study correctness and establish a proof of concept, we
setup FreeBSD v8.1 images with isolation-boundary-enabled
kernels. We use VMware Player as the hypervisor and Ubuntu
v12.04.1 LTS as the host OS. An SSH server acts as the
service/application and a client aramis connects over the
network to the SSH server. We chose SSH as the application
to validate the correctness of the TI flow to TCP connection
mapping, both before and after the migration, as any mis-
aligned or lost byte in the encrypted bitstream would break
the SSH-over-TCP connection.

As illustrated in Figure 2, the SSH server is hosted in a
VM deployed at the host athos in the subnet 192.0.2.0/24.
The VM migrates to the host porthos, which is setup in the
subnet 198.51.100.0/24. These subnets represent networks in
different buildings on the Virginia Tech campus.

E. Case Study

We study the scenario where we migrate a VM between
buildings, which contain different subnets. In this setup, the
client aramis connects to the VM hosted at athos over
SSH and executes different jobs for test purposes. The VM at
athos is then suspended.

Implementing live migration requires involvement of hy-
pervisors, which we did not choose to do for our prototype
demonstration as we used a proprietary hypervisor to demon-
strate the general applicability of the approach. Instead, to
emulate live migration, we copy the static image hosted at
athos to porthos in advance. After suspension, we use
rsync to copy the intermediate state saved by the hypervisor.

Following the transfer of intermediate state, the VM is re-
sumed at porthos. Upon resumption, the link-state daemon
notices the change in link states and reconfigures the network
interface. The daemon is setup to generate a DHCP request
to acquire network configuration parameters whenever the
interface comes up. Subsequently, the synchronization agent
takes action to synchronize the existing TI flow by setting up
a TCP connection with the client using the new IP address.

After synchronization, the client at aramis continues in-
teraction with the server (migrated to porthos), oblivious
to the fact that the server has migrated to a different subnet.
Thus, SSH connectivity was not interrupted.

V. DISCUSSION & EVALUATION

Here we compare and contrast our proposed approach with
existing solutions and discuss our case study.

A. Layer-3 vs. Layer-2 Migration

Whether migrating VMs within a data center or between
data centers, the challenge remains the same. In either case, the
possibility of layer-3 migration adds to the design flexibility
available to system and network architects as it allows for
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a clean separation of concerns. Such flexibility applies to
both communication scenarios: when communication origi-
nates from within the data center and outside the data center.

Whether we use tunneling, routing, or layer-2 expansion,
the intention is to convert the problem of migrating VMs
between subnets to the problem of migrating within a subnet.
In other words, the problem of layer-3 migration is converted
into a problem of layer-2 migration. As discussed in Section II,
layer-2 expansion proposals are not meant to address VM
migration. Therefore by using a method that was developed
for a different purpose, we are not addressing the problem that
limits migration beyond the subnet, instead we are working
around the problem.

Such an approach puts a constraint on the design of the
network as well. As discussed in Section I, partitioning the
network into subnets adds to the design flexibility. Therefore,
if transport connections are independent of network labels we
would have the best of both worlds, that is, enabling seamless
live migration beyond networks as well as flexibility in the
design of networks.

With the isolation boundary, we tackle the source of the
problem, which is the coupling of naming abstractions. In
effect, the solution does not require dealing with layer-2, but
instead enables layer-3 migration. TIFIDs present a label that
is independent of the network address. Subsequently, a change
in the network address has no impact on connectivity.

B. Downtime and Latency

Minimizing the time for live migration is desirable. Au-
tomating the process of configuring forwarding tables using
OpenFlow incurs a negligible increase in the downtime for
a live migration. Similarly with IP tunneling, setting up the
tunnel incurs minimal overhead, which may be minimized
further by optimizations. Layer-2 expansion methods (i.e.,
VXLAN, TRILL, VPLS/MPLS) also do not incur any more
downtime than what is necessary to transfer intermediate state.

In these cases, if all communication destined for a service
hosted by the migrated VM originates within the subnet,
then the downtime may not be more than what is necessary
for transfer of intermediate state. However, if communication
happens with elements outside the subnet, then migrating a
VM to a geographically disparate location requires traffic to be
routed through the source subnet. This would incur additional
latency for the existing network connections (whose state was
maintained following the migration). It is not be feasible to
advertise new routes to the outside world for the portion of
the subnet that has been migrated to the new location.

With a hypervisor implementing the isolation boundary, the
network interface would need to acquire a new IP address for
the migrated VM. Optimizations may be applied to minimize
this overhead; for example, as part of live migration the
hypervisor may acquire an address for the interface before
the intermediate state is transferred to the destination subnet.
Unless such optimizations are applied, the time required to
acquire a new IP address (e.g., with a DHCP request) would

be greater than that of an RARP request to update the IP-to-
MAC address mapping.

On the other hand, the latency between the client and a
hypervisor implementing the isolation boundary does not incur
any overhead. There is no increase in latency between the
client and migrated server as the new IP address assigned
to the network interface is owned by the destination subnet.
Thus, communication is direct, unlike the other methods where
traffic from the client is routed through the source subnet
before it gets to the server in the destination subnet. This is
what we demonstrate in the case study.

C. VM’s Coupling with Previous State (/Subnet)

As noted above, tunneling, routing, and layer-2 expansion
methods may be applied to extend a subnet to a different
geographical location, but these methods create unnecessary
coupling between the source and destination subnets. Such
solutions do not work well where disaster recovery or failover
management is the concern (i.e., when migrating VMs between
sites).

If VMs are to be migrated to a different site for disaster
management, we cannot assume that the forwarding elements
at the source subnet would continue to assist after migration
is complete. With tunneling methods, communication from
outside the subnet continues to arrive at the source subnet,
which is then forwarded through the tunnel to the destination
subnet. Herein lies the assumption that the source subnet
would continue to assist even after the migration is complete.

There may be some optimizations, where the migrated
VM’s network interface card (NIC) is assigned a new IP
address while it maintains its old IP address until the old TCP
connections are active. However, if the source subnet were
unable to assist, such a solution would not work, at least for
the network connections setup before migration.

Similarly, if an OpenFlow-based approach to the traffic is
used, the controller configures the forwarding elements so that
traffic is sent to the destination subnet. While the VM may be
hosted in the destination subnet, the forwarding element at the
source subnet continues to participate in the communication.
Such behavior would not be acceptable when dealing with VM
migration for disaster management. The same is the case with
layer-2 expansion methods.

Due to the use of the isolation boundary, there is no require-
ment that the source subnet participate after the migration.
This is because the service, after migration, uses an IP address
that belongs to the subnet where the VM migrated.

D. Correctness

Using SSH enables us to validate correctness of the migra-
tion. With SSH any misalignment of bytes, lost segments or
incorrect ordering would break the encrypted stream stream.
As we are able to successfully use the SSH client application
following a migration, we establish the fundamental correct-
ness of the method and implementation. Unfettered network
access is enabled, even after a change of IP address, because
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we were able to decouple the IP address (network label) from
the socket (transport label).

As seen in Figures 3, 4, and 5, the network configuration
changes such that the VM is connected via different subnets
before and after migration. The transport connection state also
shows that, after migration, the old connection does not exist
and a different port at the server is used to interact with the
same port that was used earlier on the client — showing that
the logical connection has been resumed over a new port at
the server. We see the same configuration from the client’s
perspective; the local setup remains the same, but the server
port changes for the same TCP connection after migration.

In spite of these changes, the application continues to
operate without a hitch. Indeed SSH continues to show the
old address. In Figure 6, we see that the SSH_CONNECTION
environment variable is set when the connection was setup but
later the application is oblivious to the change in network con-
figuration. It appears that the SSH application does not make
use of the information stored in the environment variable.

E. Pause-and-Copy Migration

Interruption in connectivity can also be a concern for pause-
and-copy migrations. This is because, if the VM migrates
to a different subnet and is required to acquire new IP
addresses, the existing connections that were paused would
be discontinued. Solutions such as Dynamic DNS that update
domain name to IP mapping cannot help as the services are
paused, not stopped, for migration. Therefore, pause-and-copy
migrations effectively involve the same procedures. It is just
that the time scales at which they happen are much larger as
compared to live migration.

As we demonstrate in the case study, by using the isola-
tion boundary, we can avoid all issues of coupling between
transport and network labels and thereby enable a seamless
pause-and-copy migration.

F. Backward Compatibility

In case a client does not support the isolation boundary,
it is able to interact with the VM initially as the isolation
boundary extension is backward compatible. However, if the
VM migrated in such a case, the client would not be able to
resume connectivity with the VM as it would not recognize
the transport connection with a new IP address.

G. Deployment

As the isolation boundary is backward compatible, there
is no requirement that all participating network elements
be aware of the functionality. Those network stacks that
implement the isolation boundary would benefit from the
functionality, all others would fall back to legacy support.
However, entire subnets can benefit from the features by de-
ploying isolation-boundary-aware gateways (e.g., NATs, load
balancers). The nodes would only benefit from the support
provided by the isolation-boundary-aware gateway during the
time they remain within the scope of the gateway. Neverthe-
less, such gateways may facilitate incremental adoption.

em0, before migration:

ether 08:00:27:49:75:00
inet 192.0.2.228 broadcast 192.0.2.255

em0, after migration:

ether 08:00:27:49:75:00
inet 198.51.100.233 broadcast 198.51.100.255

Fig. 3: Network configuration at the server, before and
after VM migration.

connection state before migration:

Proto Local Address Foreign Address (state)
tcp4 e4.dhcp.v.ssh d8.dhcp.v.41270 ESTAB.
tcp4 *.ssh *.* LISTEN

connection state after migration:

Proto Local Address Foreign Address (state)
tcp4 e9.dhcp.v.48472 d8.dhcp.v.41270 ESTAB.
tcp4 *.ssh *.* LISTEN

Fig. 4: TCP connection state at the server, before and after
migration.

connection state before migration:

Proto Local Address Foreign Address (state)
tcp4 aramis.41270 *.* LISTEN
tcp4 aramis.41270 e4.dhcp.v.ssh ESTAB.

connection state after migration:

Proto Local Address Foreign Address (state)
tcp4 aramis.41270 *.* LISTEN
tcp4 aramis.41270 e9.dhcp.v.48472 ESTAB.

Fig. 5: TCP connection state at the client, before and after
migration. Note the listening socket on the same port is
an artifact of our implementation.

application state before migration:

> echo $SSH_CONNECTION
192.0.2.216 41270 192.0.2.228 22

application state after migration:

> echo $SSH_CONNECTION
192.0.2.216 41270 192.0.2.228 22

Fig. 6: Application state at the server, when logged from
the client, before and after VM migration. Note that the
environment variable is set at the time of connection setup
and is oblivious to change in configuration.

H. Compatibility with Live Migration

Our proposed approach does not make any assumptions
about procedures involved in migration. There is no expec-
tation from either the service hosted at the VM or the client
application. This allows live migration procedures to exist and
operate independent of how the isolation boundary operates.
To these processes, the isolation boundary is an extension. For
our case study, we did not consider a live migration. However,
the case of saving VM’s ephemeral state and resuming it
after migration such that network connections remain valid
involve the same technical challenges (process migration,
storage management, etc.) except for the duration of the time
the VM is inactive. Though live migration is not the focus of
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our study, with the straight forward optimization of copying
the VM image in advance and then using rsync to copy the
intermediate state we were able to reduce the inactive time to
tens of seconds. Adopting an implementation approach similar
to Clark et al. [4] would reduce inactive times to milliseconds.

I. Middleboxes and TCP Options

Honda et al., in their paper [16] state that middleboxes
today tend to either strip custom TCP options if they are part
of the data stream or drop the packets altogether. However,
if the custom options are used during the connection setup
phase alone, then middleboxes tend to allow most of the
traffic through. This finding is favorable to our approach where
the isolation boundary options are only exchanged during
connection setup phase (i.e., the 3-way handshake).

With our case study, we validate the hypothesis that if the
the isolation boundary options are exchanged successfully, we
will be able to enable uninterrupted communication following
a VM migration beyond a network. However, if the options are
removed, the network stack would fall back to legacy behavior
and communication would take place until the VM is migrated
to a different subnet. At this point, communication would stop
and a new connection would have to be setup between the
client and the server, with the server’s new address. Unless
the applications implement reliability such a discontinuation
may require the application to reset.

J. Network Performance & Scalability

As the isolation boundary options only participate during
connection setup or synchronization of state and not during
the rest of the communication, there is no impact on the
performance. Performance evaluation of the isolation boundary
is presented in our prior work [7], [8].

For the network stack to scale in terms of managing
large number of connections, the implementation needs to
be thread safe. The fact that the proposed method is only
active during the 3-way handshake — for connection setup
or synchronization — significantly reduces the demand for
locks, which could otherwise inhibited performance.

K. Security Considerations

Our proposal does not introduce any security threat greater
than that to which TCP is already exposed. A flow can only
be hijacked if the TIFIDs can be guessed correctly along
with the sequence numbers. As we use the same methods
of initializing TI sequence numbers as is done with TCP’s
sequence numbers, we do not introduce any risk greater than
TCP. The response to an invalid request to synchronize a TI
flow over a new TCP connection, with an invalid TIFID or
TIAck, is a reset.

VI. SUMMARY AND FUTURE WORK

In this paper, we highlight that the migration of a virtual
machine beyond a subnet is of significant importance. Until
now, this goal has only been realized through ad-hoc means.

We make a case that the use of IP addresses as part of flow
labels — to identify the transport connection — overloads

the notion of network naming and that this is the fundamental
reason that inhibits a clean approach for VM migration beyond
a subnet. We suggest that decoupling the transport end point
naming from IP addresses is not only possible, but is also effi-
cient. We establish this claim by demonstrating seamless VM
migrations between different subnets such that the application
are oblivious to the migration.

We also note that there are occasions where there is a need
to discover the context in which the communication is taking
place (e.g., link status, network interface name). Subsequently,
there is a need to act if there is a change in context. We
intend to explore how existing network architectures may be
extended to incorporate automated discovery, appreciation, and
reasoning of the context in which communication takes place.
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