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ABSTRACT
This paper presents the design and implementation of a com-
piler algorithm that effectively optimizes programs for en-
ergy usage using dynamic voltage scaling (DVS). The al-
gorithm identifies program regions where the CPU can be
slowed down with negligible performance loss. It is im-
plemented as a source-to-source level transformation using
the SUIF2 compiler infrastructure. Physical measurements
on a high-performance laptop show that total system (i.e.,
laptop) energy savings of up to 28% can be achieved with
performance degradation of less than 5% for the SPECfp95

benchmarks. On average, the system energy and energy-
delay product are reduced by 11% and 9%, respectively, with
a performance slowdown of 2%. It was also discovered that
the energy usage of the programs using our DVS algorithm
is within 6% from the theoretical lower bound. To the best
of our knowledge, this is one of the first work that evaluates
DVS algorithms by physical measurements.

Categories and Subject Descriptors
D.3.4 [Programming Languages]: Processors—compil-
ers, optimization

General Terms
Algorithms, Experimentation, Measurement, Performance

Keywords
Dynamic voltage scaling, energy savings

1. INTRODUCTION
Power dissipation has always been a crucial issue in the

design of battery-powered computing systems. Projected
improvements in the capacity of the batteries (5-10%) can-
not keep pace with what is needed to support the increasing
demands of new features and performance on mobile plat-
forms [23]. This widening “battery gap” drives the research
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and development of low power electronics since battery life-
time correlates positively with power dissipation, i.e., re-
duced power dissipation leads to prolonged battery life. Yet,
current state-of-the-art high-performance mobile micropro-
cessors have battery lives of less than 4 hours for typical
Windows applications [31].

More recently, power is becoming a first-class design con-
straint for high-performance computing systems [35]. It is
projected that power dissipation of future microprocessor
chips will increase from 100 W today to about 2,000 W in
2010 [6]. High power consumption raises temperature, dete-
riorates performance and reliability, and increases the costs
of thermal packaging and power delivery. Power is also a big
issue for server clusters. A server farm with 8,000 servers
consumes 2 megawatts [35], and a future petaflop system will
consume around 100 megawatts [4]. Heavy-duty air condi-
tioning and backup cooling and power-generation equipment
already constitute a significant portion of the total opera-
tion cost, presently around 25% [35, 39]. The environmental
impact of increased power demands has also become a ma-
jor concern. The recent trend towards ultra-dense clusters
[40] will only worse the problem.

Dynamic voltage scaling (DVS) is recognized as one of
the most effective power reduction techniques. It exploits
the fact that a major portion of power of CMOS circuitry
scales quadratically with the supply voltage [8]. As a result,
lowering the supply voltage can significantly reduce power
dissipation. For non-interactive applications such as movie
playing, decompression, and encryption, fast processors re-
duce device idle times, which in turn reduce the opportu-
nities for power savings through hibernation strategies. In
contrast, DVS techniques are still beneficial in such cases,
i.e., DVS reduces power even when these devices are active.
However, DVS comes at the cost of performance degrada-
tion. An effective DVS algorithm is one that intelligently
determines when to adjust the current frequency-voltage set-
ting (scaling points) and to which frequency-voltage setting
(scaling factors), so that considerable savings in energy can
be achieved while the required performance is still delivered.

Designing a good DVS algorithm is not an easy task.
First of all, the overheads of transitions to and from differ-
ent frequency-voltage settings may wipe out the benefits of
DVS. Currently, it takes hundreds of microseconds to switch
from one setting to another, which may be translated into
tens of thousands of instructions for a high-performance pro-
cessor. As a result, proposals such as using cache misses to
trigger DVS [29] may not be effective if the performance
requirement is critical. Furthermore, the battery lifetime
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does not have a simple linear relationship with the power
consumption of the circuit. It has been shown that the max-
imum battery lifetime is achieved when the variance of the
discharge current distribution is minimized [36]. Most prior
DVS algorithms do not consider these transition overheads.
Recent work (e.g., [1, 18, 50]) starts to pay attention to these
costs.

Even if the transition overheads are taken into account,
the design of a good DVS algorithm is still not easy. A
simple approach is to identify regions that show energy re-
duction potential within the performance bounds, and to ex-
ecute these regions at lower frequencies. This is exactly the
philosophy behind many so-called interval-based DVS algo-
rithms (e.g. [37, 10, 27, 13, 44, 43, 28]). Interval-based DVS
algorithms adapt to the variations of a workload closely by
calculating a scaling factor at the beginning of each fixed-
length time interval. Unfortunately, in practice, a recent
study by Grunwald et al. [15] shows noticeable performance
loss in some of interval-based algorithms. Theoretically, it
has been formally proved [51, 21] that the optimal DVS algo-
rithm is to run each non-interactive task at a constant speed
and complete it right at the deadline. Ishihara and Yasuura
goes further by showing that, in a system where only a lim-
ited set of voltage-frequency settings are available, at most
two of the settings are required to implement the optimal
DVS algorithm. While this strategy seems simple and at-
tractive, it is practically not implementable for tasks whose
execution times are unknown in advance,

The impact of shutting down other computer components,
such as the disk and the display, is another factor a good
DVS algorithm needs to take into account. In this setting,
running at a higher frequency and turning off components
may result in lower energy usage than running at a slow
speed and leaving them on (until the deadline) [27, 33]. In
other words, running as slowly as possible will minimize the
CPU energy consumption but increase the total system en-
ergy consumption, because the power-consuming non-CPU
devices stay on longer. Similarly, the performance impact
of computer components may need to be considered as well.
For example, nonideal memory behavior are identified in [5,
30], which may affect the choice of the scaling factor at each
scaling point.

This paper presents the design and implementation of a
compiler algorithm that effectively addresses the aforemen-
tioned design issues. The idea is to identify the program
regions in which the CPU is mostly idle due to memory
stalls, and slow them down for energy reduction. On an ar-
chitecture that allows the overlap of the CPU and memory
activities, such slow-down will not result in serious perfor-
mance degradation. As a result, it alleviates the situation
where non-CPU system components become dominant in
the total system energy usage. The algorithm takes transi-
tion overheads into account, and is evaluated on a real sys-
tem with the total system energy as the comparison metric.
More importantly, the algorithm is parametric. A set of
parameter values is provided and shown to be appropriate
for the effectiveness of the algorithm. Finally, we choose
to use SPECfp95 benchmark suite for experiments because
of its variety of CPU-boundness, which will be explained
later, and because we target both mobile computers and
high-performance systems. The main contributions of this
paper include

• the design and implementation of a compiler-directed

DVS algorithm, and the evaluation of its effectiveness
on a real high-performance laptop machine through
physical measurements. To the best of our knowledge,
this is one of the first implementation of a DVS algo-
rithm on a real system.

• physical measurements showing that total system en-
ergy savings in the range of 0% to 28% can be achieved
with performance degradation from 0% to 4.7% for
the SPECfp95 benchmarks. On average, the energy us-
age and energy-delay product are reduced by 11% and
9%, respectively, at a performance penalty of 2.15%.
To the best of our knowledge, this is one of the first
evaluation using physical measurements and address-
ing total system energy usage.

• further findings that our profile-driven algorithm is
able to reduce energy usage within 6% from the the-
oretical lower bound, and that its effectiveness is not
critically dependent on the training inputs.

• a study of two commercial laptops from the system de-
sign point of view. The experimental results show that
in some cases the high-performance high-power system
together with our DVS algorithm is more energy effi-
cient than the low-performance low-power system. We
are not aware of any similar study published in the lit-
erature.

The rest of the paper is organized as follows: Section 2
lists some of the previous work. Section 3 discusses in detail
the design and implementation of our compiler-directed DVS
algorithm. The experiment setup and results are discussed
in Section 4, followed by conclusions and future work in
Sections 5.

2. RELATED WORK
There are many proposed DVS algorithms in the litera-

ture. Due to the space limitation, we only discuss work re-
lated to intra-task DVS algorithms, as which our algorithm
can be categorized. An intra-task algorithm allows the scal-
ing points to be put in the middle of a task execution. The
determination of scaling points and the calculation of scaling
factors may be done off-line or on-line.

Interval-based DVS algorithms are one type of intra-task
algorithms. They operate at fixed-length time intervals and
rely solely on the state of the system and the trace history
to determine the scaling factors. Examples in this category
include [37, 10, 27, 13, 44, 43, 28]. Checkpoint-based al-
gorithms are another type of intra-task algorithms. In this
type of algorithm, the scaling points are identified off-line
and the scaling factors are calculated on-line [25, 34, 42, 3].
In contrast to interval-based algorithms which place scal-
ing points at the beginning of each fixed-length interval,
checkpoint-based algorithms place scaling points at selected
branches to exploit the slacks due to run-time variations. As
a result, they require off-line program analysis to identify the
candidate branches.

The algorithm we present in this paper identifies scaling
points and determines scaling factors off-line, with the help
of profile data. Our algorithm has many significant differ-
ences from the algorithms mentioned above. Our algorithm
has a tighter performance constraint in mind. Many existing
algorithms use the worst-case execution time or the execu-
tion time of the unoptimized program as the performance



constraint. In our experiments, 5% of the total execution
time of the optimized program is all the slack time DVS can
exploit. As we will show in Section 4.4, tighter performance
constraint may lead to better system energy efficiency.

Our algorithm also takes the transition overheads into ac-
count and is evaluated on real systems with the measure-
ments of the total system energy usage. Many of the previ-
ous results were based on simulation, using simulators such
as Wattch [7] and SimplePower [52], and evaluated the pro-
posed algorithms using the power model associated with the
particular simulator. As a consequence, the quality of the
comparison results relies on the accuracy of the power model
in a simulator. To the best of our knowledge, our work is
one of the first attempts in using the physical measurement
for the evaluation of the DVS algorithms. Pillai and Shin
[38] evaluated their inter-task algorithm on a laptop with
a 550 MHz AMD K6-2+ chip. Flautner and Mudge [12]
implemented their inter-task algorithm on a laptop with a
300-600 MHz Transmeta TM5600 processor.

Our work adopts a table-driven approach similar to the
one presented by Saputra et al. [41]. However, the table
entries in our algorithm only store the performance infor-
mation, through profiling, and the energy information is de-
rived from an analytical model. In contrast, their algorithm
stores both performance and energy information in the ta-
ble. The work in this paper is also different from our pre-
vious work in [20, 18]. In the previous work, an analytical
performance prediction model was used. As a result, the
effectiveness of the DVS algorithm depends on how well the
performance model predicts the target architecture. In this
work we treat the target architecture as a black box. In ad-
dition, this work presents a more general framework for our
DVS algorithm and introduces an additional constraint for a
better quality of the algorithm. Finally, the work of [20, 18,
41] was done using a simulator, while the work presented in
this paper uses physical measurements for evaluation, and
targets total system energy usage, not only energy usage of
single system components.

3. THE ALGORITHM
We propose a DVS algorithm which can be summarized

as solving the following minimization problem.

minR,f Pf · T (R, f) + Pfmax · T (P − R, fmax)

+Ptrans · 2 · N(R) (1)

subject to

T (R, f) + T (P − R, fmax)+

Ttrans · 2 · N(R) ≤ (1 + r) · T (P, fmax) (2)

The problem simply states: given a program P , find a region
R and a frequency f such that, if region R is executed at
frequency f and the rest of the program P − R is executed
at the peak frequency fmax, the total execution time plus
the switching overhead Ttrans ·2 ·N(R) is increased no more
than r percent of the original execution time T (P, fmax),
while the total energy usage is minimized. Here T (R, f)
represents the total execution time of region R running at
frequency f , N(R) represents the number of times region
R is executed, Pf represents the power dissipation of the
system at frequency f , and Ttrans and Ptrans represent a
single switching overhead in term of performance and power,
respectively.

In our DVS algorithm, a program region R is assumed
to be a single entry and single exit program structure. Ex-
amples of a region include a loop nest, a call site, a called
procedure, a sequence of statements, or even the entire pro-
gram. While this definition may sound too restrictive, it is
able to guarantee that all the top-level statements inside a
region are executed the same number of times. As a result,
the algorithm is able to count the number of occurrences of
DVS switchings as 2·N(R), since the algorithm assumes that
DVS interface will only be called at the entry and the exit
of the region. Experiments have shown that this definition
works reasonably well in practice.

Besides the performance constraint in Equation (2), our
DVS algorithm introduces an additional constraint on the
size of the selected region, namely

T (R, fmax)/T (P, fmax) ≥ ρ (3)

Equation (3) enforces the size of the selected region R to be
sufficiently large for two reasons. First, it makes sure that
the region takes longer time to execute than a single execu-
tion of the DVS call. Furthermore, our past experience has
suggested that executing a larger region (in time) at a higher
frequency often has less performance impact than executing
a smaller region at a lower frequency. The importance of
introducing Equation (3) will be illustrated in Section 4.7.

In short, the DVS algorithm we propose in this paper is
parameterized by four sets of factors. Tables T (R, f) and
N(R) capture the behavior of the input program. Parame-
ters Pf , Ttrans, and Ptrans model the underlying machine.
Parameter r represents the user’s specification, while pa-
rameter ρ is a design parameter for the compiler.

3.1 Implementation Details
The prototype for our DVS algorithm is implemented as a

profile-driven source-to-source transformation in SUIF2 [48],
as shown in Figure 1. It starts by instrumenting the input
program at selected program locations (the instrumentation
phase). The instrumented code is then executed, filling a
subset of entries in tables T (R, f) and N(R) (the profil-
ing phase). Once the profiling is done, the rest of table
entries are derived based on these filled entries. Then the
minimization problem is solved by enumerating all possi-
ble regions and frequencies. Finally, the corresponding DVS
system calls are inserted at the boundaries of the selected
region (the selection phase).

Two kinds of program constructs are instrumented in our
implementation, namely, all sites and explicit loop struc-
tures. Explicit loop structures include for and while loops.
Currently, loops based on goto’s are not instrumented and
will not be considered as candidate regions.

The profiling of the instrumented program only constructs
part of tables T (R, f) and N(R). The rest of the table en-
tries are derived using the rules shown in Figure 2. In order
to do this, an interprocedural analysis pass is implemented.
The pass traverses all procedures reachable from the main
routine in reverse topological order, treating strongly con-
nected components in the call graph as single nodes. For
each visited procedure, the annotated abstract syntax tree
(AST), embedded in the SUIF2 intermediate format, is tra-
versed in a bottom-up fashion. To improve the efficiency,
only AST nodes representing if statements, explicit loop
structures, and call sites are annotated with the appropri-
ate T (R, f) and N(R) values. The corresponding values for
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Figure 1: The flow diagram of the compiler imple-
mentation.

sequences of regions as a larger region are computed “on the
fly” in the selection phase.

Note that only regions in a forward sequencing manner
are taken into account. That is, for program construct

loop() sequence(R1, . . . , Rn)

the regions composed of Ri → Ri+1 → . . . → Rj for j ≥ i
are considered, but not the “wrap-around” regions, Ri →
. . . → Rn → R1 → . . . → Rj for j < i.

3.2 An Illustrating Example
In this section, we illustrate our compiler algorithm using

an example program shown on the left in Figure 3. The
example code is presented in terms of control flow between
what we call basic regions, where L and C stand for loop
nests and call sites, respectively. The algorithm first identi-
fies which regions to instrument. In our example, it is these
basic regions our algorithm instruments. After the profiling
phase, the entries of T (Ri, f) and N(Ri) for these regions are
filled, as shown on the right in Figure 3 assuming only two
CPU frequencies fmax and fmin are available. Then, the al-
gorithm starts to consider other candidate regions which we
call combined regions. For example, if(L4,L5) is a candi-
date region since it is an if-then-else construct that encloses
regions L4 and L5. Similarly, seq(C2,C3) is a candidate re-
gion that consists of two consecutive procedure calls. The
region seq(C2,C3,if(L4,L5)) is also considered as a can-
didate region. Even the entire program foo is treated as a
candidate region in our implementation.

Not all combinations of regions are qualified as candi-
date regions. For example, seq(C1,C2) is not considered
as a combined region since it has two entry points, one at
the entry of C1 and the other at the entry of C2. Simi-
larly, seq(C3,L4) is not a candidate region because of the
two exit points. Our current implementation does not con-
sider region seq(if(L4,L5),L2) either. While it satisfies
the single-entry-single-exit property, it does not satisfy our
forward sequencing restriction. The particular reason for us
to impose this restriction is to reduce the number of candi-
date regions that need to be examined in the region selection
phase. For our example, there are nine regions total.

During the selection phase, the values of T (R, f) and
N(R) for the combined regions are required. To derive the
values, our implementation follows the rules in Figure 2. For
example, the execution time of region if(L4,L5) running at

if statement:
R: if () then R1 else R2

T (R, f) = T (R1, f) + T (R2, f)
N(R) = N(R1) + N(R2)

explicit loop structure:
R: loop () R1

T (R, f) = T (R1, f)
N(R) is profiled

call site:
R: call F()

T (R, f) = T (F, f) · N(R)/N(F )
N(R) is profiled

sequence of regions:
R: sequence(R1, . . . ,Rn)

T (R, f) =
∑

{T (Ri, f) : 1 ≤ i ≤ n}
N(R) = N(R1) = . . . = N(Rn)

procedure:
F : procedure F() R

T (F, f) = T (R, f)
N(F ) =

∑
{N(Ri) : Ri is a call site to F ()}

Figure 2: The rules of deriving the table entries
T (R, f) in our DVS algorithm.

frequency f can be derived as the sum of execution times of
regions L4 and L5 running at frequency f , i.e.,

T (if(L4, L5), f) = T (L4, f) + T (L5, f)

As a result, our implementation derives T (if(L4, L5), fmax)
= 8 + 2 = 10 and T (if(L4, L5), fmin) = 12 + 4 = 16. The
number of visits in region if(L4,L5), N(if(L4, L5)) can be
derived as ten. For the call sites, let us assume C1 and C3

call to the same procedure foo, which is only called by these
two sites and contains basic regions. Our implementation
attributes the time period from the entry of C1 to the entry
of the first encountered basic region in foo to T (C1, f). This
profiled time is usually very small; in our case it is zero. As
a result, we need to “recover” the execution time for each
call site. The rule in Figure 2 assumes the execution time
of a call does not depend on the actual parameters. We can
then estimate the execution time for call site C1 as

T (C1, f) = T (foo, f) · 1/(1 + 10)

where T (foo, f) is the estimated total execution time for
procedure foo running at frequency f .

Finally, our implementation enumerates all candidate re-
gions with respect to the minimization problem shown in
Equations (1)–(3). In general, our implementation exam-
ines many more candidate regions. For example, it found 30
program locations to instrument in the SPEC95 swim bench-
mark and considered 2387 candidate regions.

3.3 Discussion
The proposed DVS algorithm is parameterized in terms

of T (R, f) without describing how to compute these val-
ues. Our current implementation uses profiling to get these



ENTRY

EXIT

C1

C2

C3

L4 L5

if

T (R, f)
R N(R) fmax fmin

C1 1 0 0
C2 10 10 12
C3 10 0 0
L4 8 8 12
L5 2 2 4

Figure 3: The example program is shown on the
left in terms of control flow between regions. The
table on the right represents the profiled data for
the instrumented regions.

values. Profile-driven compiler optimization has its advan-
tages and disadvantages. A program optimized with respect
to one data input or machine configuration may not work
well on another input or configuration. Profile-driven opti-
mization also increases the compilation time. On the other
hand, profiling captures more system effects which a com-
piler model may have difficulty to model, is more generally
applicable, and allows more aggressive optimization. Our
early work [19] proposed a compiler model that enables us
to profile T (R, fmax) and estimate the rest of T (R, f) an-
alytically. While it may shorten the compilation time, this
early work involves the computation of the memory stall
time for each region and requires the help from performance
counters in the system. Unfortunately, for the target system
we experimented on (described later), we had a hard time re-
lating the counted events to the actual performance. This is
partially due to the lack of documentation and desired event
types. Using a compile-time prediction model to compute all
T (R, f) entries sounds attractive since it is “portable” across
different data inputs and machine configurations. However,
the quality of the optimized code highly depends on the ac-
curacy of the model which is hard to guarantee due to the
complex interaction between all components in the system.

4. EXPERIMENTS

4.1 Hardware Platform
The hardware platform is a Compaq Presario 715US note-

book computer. We chose this laptop as our hardware plat-
form for at least three reasons. First of all, notebook com-
puters are battery-powered and are therefore very sensitive
to energy consumption. Secondly, the technology used in
notebook computers today addresses more power issues and
will soon be adapted to the high-performance systems for
temperature control. Thirdly, this laptop is equipped with
a high-performance microprocessor (mobile AMD Athlon 4)
that allows DVS. Intel’s Xscale-based processors, although
they support DVS, do not have floating-point units. Trans-
meta’s Crusoe processors do not provide enough memory

Compaq
spec Presario 715US

AMD
CPU mobile Athlon 4

f 600-1200 MHz
V 1.15-1.45 V

front side bus DDR 100 MHz
memory 256 MB PC-133
graphics VIA 16 MB

LCD display 14.1-inch 1024x768
disk 20 GB

f Vf

600 1.15
700 1.20
800 1.25
900 1.30
1000 1.35
1100 1.40
1200 1.45

Table 1: The system configuration of the Compaq
Presario 715US notebook computer.

level parallelism (i.e., allow multiple outstanding cache misses
at the same time) which is a salient feature in many high-
performance computers.

The Presario computer is equipped with a high-performance
mobile AMD Athlon 4 microprocessor. The processor is a
3-way superscalar out-of-order decode and execution decou-
pled computing engine with dynamic branch prediction and
speculative execution. It contains a 64KB instruction cache,
a 64KB data cache, a full-speed on-die 256 KB level two ex-
clusive cache, and a hardware data prefetching unit. The
processor supports DVS under software control. For our ex-
periments, it is able to operate from 600 MHz at 1.15 V to
1200 MHz at 1.45 V, wih 7 different frequency-voltage pairs.
Table 1 summaries the configuration of the system.

4.2 Software Platform
The Linux 2.4.18 kernel was installed on the laptop. All

the benchmarks were compiled by the GNU compilers using
optimization level -O2. The DVS support is done through
user-level system calls. The input of a DVS call is the desired
frequency. The call will find the corresponding voltage and
write both frequency and voltage encodings into machine-
specific registers. The registers’ values are then used by the
regulator to adjust the CPU clock frequency and voltage
level.

To profile the values of T (R, f) and N(R), we also imple-
mented another user-level system call. The input of such
a call is the region number. For T (R, f), a high-resolution
timer is needed to measure the elapsed time between two
such system calls. We did this by reading out the current
cycle counter value on a per-process basis. For N(R), the
system call implementation maintains a table indexed by the
region number and increments the appropriate table entry.

4.3 Benchmark Choices
The SPECfp95 benchmark suite was used for experiments

because of its variety of CPU-boundness and because we tar-
get both mobile computers and high-performance systems.
We found that the overall energy savings for a benchmark
correlates negatively with the CPU boundness of the bench-
mark. In other words, less CPU-bound applications have
potentially more energy reduction. Here we define the CPU
boundness βcpu as a ratio between 0 and 1, with 1 being
extremely CPU-bound, using the least square fitting of { Tf

} to the following linear model.

Tf/Tfmax = βcpu · (fmax/f) + c0



SPECfp95

benchmark βcpu

swim 0.04
tomcatv 0.06
hydro2d 0.13

su2cor 0.17
applu 0.30

apsi 0.37
mgrid 0.45
wave5 0.57

turb3d 0.75
fpppp 1.00

SPECint95

benchmark βcpu

compress 0.47
vortex 0.70

gcc 0.83
ijpeg 0.95

li 1.00
perl 0.98

go 1.00
m88ksim 1.00

Table 2: The potential DVS energy savings and per-
formance slopes of the SPEC95 benchmarks.

Table 2 shows the corresponding CPU-boundness for each
benchmark in the entire SPEC95 benchmark suite. It can be
seen that SPECfp95 benchmarks have a wider range of pro-
gram behavior than SPECint95 benchmarks. Recent studies
[45, 46] have shown that typical multimedia benchmarks are
more CPU-bound than SPECint95 benchmarks. This is par-
tially due to the fact that many of the popular multimedia
benchmarks are really compression and decompression pro-
grams [24]. In addition, a recent study [22] observes that
multimedia applications do not just contain fixed-point op-
erations. We believe that more and more multimedia appli-
cations will be implemented as floating-point intensive com-
putations, partly because of the current trend of physically-
based modeling for virtual reality environments such as PC
games, for example, [49].

4.4 Comparison Metrics
For comparison, we used total execution time T , total sys-

tem energy usage E, and energy-delay product E · T [14].
As described in Section 1, power-performance trade-offs mo-
tivates the technique of dynamic voltage scaling. While an
application can be executed with low power dissipation, its
execution time may be unacceptably long. To seemlessly
include the latency constraint into the picture, energy and
energy-delay product are used by many as metrics for the
comparison of different power-aware systems. The energy is
equal to the product of the average power dissipation and
the total execution time, i.e., E = P ·T . Energy-delay prod-
uct is equal to the product of the energy usage and the total
execution time, i.e., E · T = P · T 2. Energy translates di-
rectly to battery life, while the energy-delay product ensures
a greater emphasis on performance.

4.5 Measurements
We performed several experiments with our DVS algo-

rithm and measured the actual energy consumption of the
system through a digital power meter. The power meter,
a Yokogawa WT110 [32], sent power measurement data ev-
ery 250 ms to another computer, which stores them in a log
for later use. Each power measurement data point is the
average power over 9500 samples in the period of 250 ms.
That is, the power meter samples current and voltage at
a rate of 26 µs. The comparisons were done by executing
the benchmark with the reference data set. When profiling,
the training data set (train.in) provided with the SPEC95

Profiling 

Computer

Laptop
(battery removed)

Digital

Power Meter

Wall 

Power Outlet

AC Adapter

Figure 4: The experimental setup.

parameter value

T (R, f) profiled
N(R) profiled
Pf V 2

f · f
Ttrans 20 µs
Ptrans 0 W

r 5%
ρ 20%

Table 3: The input parameters for our algorithm.

benchmark distribution was used. All the benchmarks were
run to completion. During the measurements, the battery
was removed. In addition, the power dissipation of the AC
adapter was excluded. The monitor may be on or off during
the measurements, depending on whether the benchmark
needs it or not. Figure 4 shows the measurement setup.

The cost of each instrumentation call is about 50 ns. The
cost of each DVS call is approximately 10 µs plus the tran-
sition time from one DVS level to another. We do not know
the actual time required for voltage transition to occur. The
white paper [2] suggests that it takes less than 100 µs but
provides no specific information. A typical DC-DC con-
verter is about 200µs/1V [42]. In the experiments we set
the transition time to be 20 µs and the associated power
dissipation to be 0 W. We found that Ttrans = 20 µs works
well in our experiments. As long as it is sufficiently large
to prevent the transition overheads from being a dominant
factor in the system performance, the accuracy of Ttrans is
not critical. In addition, the large value of Ttrans allows us
to ignore the cost of Ptrans and simplify the algorithm. Ta-
ble 3 lists the parameter settings of our DVS algorithm used
in the experiments.

4.6 The Compilation Time
The compilation time of our algorithm is in the order of

minutes. Table 4 lists the timing spent in each phase. The
instrumentation phase takes 7–157 seconds which includes
the times of converting to and from the SUIF2 intermediate
representation plus the time of selecting program locations
to instrument. The sub-phase of selecting program locations
to instrument contributes 6%–13% of the total compilation
time for the instrumentation phase, with 9% on average. In
other words, the conversion between the input C program
and the SUIF2 representation is very expensive. On the other
hand, in the selection phase, the dominating sub-phase is
the process of evaluating all candidate regions for the best
region. It accounts for 74%–98% of the total compilation



total instru-
compilation mentation profiling selection

time phase phase phase
swim 34 7 8 19

tomcatv 173 4 158 11
hydro2d 340 44 173 123

su2cor 403 37 257 109
applu 284 83 13 188

apsi 1264 157 40 1067
mgrid 190 10 152 28
wave5 544 151 48 345
turb3d 1839 39 268 1532
fpppp 1628 82 11 1535

Table 4: The compilation time (in seconds) of our
algorithm in various phases.

time for the phase, with the average 83%.
Benchmarks apsi, turb3d and fpppp took the longest

compilation times among all benchmarks. The long com-
pilation times can be attributed to the large number of can-
didate regions and the cost of finding these candidate re-
gions. The current implementation enumerates all possible
sequences of a statement list for finding candidate regions.
As a result, the cost can be characterized by the number of
statement sequences tried. For benchmarks apsi and fpppp,
the selection phase evaluated 77,335 and 51,025 candidate
regions respectively. In contrast, only 2,044–27,535 candi-
date regions were evaluated for other benchmarks. The se-
lection phase looked 290,299–340,448 statement sequences
for the three benchmarks. It only looked 3,955–118,775 com-
binations for other benchmarks. Clearly, there is room for
improvement in our compiler algorithm.

4.7 Experimental Results
The experimental results are shown in Table 5. The exe-

cution time Tr and energy consumption Er are all relative to
the case in which the same program was run on the non-DVS
system, i.e., the program is executed at the peak frequency
and voltage. Note that the energy consumption is the overall
system energy usage, not just the microprocessor’s energy
usage. It can be seen that program energy savings of 0% to
28% can be achieved with performance degradation of 0%
to 4.7%. On average, the energy and energy-delay prod-
uct are saved 11% and 9%, respectively, with a performance
slowdown of 2.15%.

Furthermore, the energy savings of a benchmark using
our compiler algorithm correlates negatively with its CPU
boundness. Our algorithm is able to identify that bench-
mark fpppp is extremely CPU-bound (its βcpu = 1) and
therefore cannot be slowed down without significant perfor-
mance penalties. There is a big gap in terms of energy usage
at βcpu = 0.3. It indicates that if an application is CPU-
bound, our algorithm may not be able to reduce a consid-
erable amount of energy without increase the performance
tolerance. As we will see in Section 4.9, none of the DVS
algorithm is able to do so if βcpu is greater than 0.5 when
only 5% of performance slow-down is allowed.

Our DVS algorithm has introduced a region size con-
straint, Equation (3), which prefers large region to be se-
lected. In the experiments, this size constraint was set to
be 20% or more of the total execution time. If this con-
straint is dropped, our algorithm will select a different but

benchmark selection Tr (%) Er (%)

swim R/600 102.93 76.88
tomcatv R/800 101.18 72.05
hydro2d R/900 102.21 78.70

su2cor R/700 100.43 86.37
applu R/900 104.72 87.52

apsi R/1100 100.94 97.67
mgrid R/1100 101.13 98.67
wave5 R/1100 104.32 94.83

turb3d R/1100 103.65 97.19
fpppp P/1200 100.0 100.0

average 102.15 88.99

Table 5: The relative execution time and system en-
ergy usage for the SPECfp95 benchmarks using train-
ing input train.in.

benchmark std.in selection Tr

swim ref,900→45 P/700 101.10
tomcatv ref,750→62 same 101.18
hydro2d ref,200→6 same 102.21

su2cor ref,40→5 R/800 107.31
applu ref,300→5 R/900 103.61

apsi ref,960→6 R/900 105.00
mgrid test,40→4 R/1000 102.91
wave5 ref,40→10 R/800 102.33

turb3d ref,111→2 R/1100 106.16
fpppp train same 100.00

Table 6: The relative execution time and system en-
ergy usage for the SPECfp95 benchmarks using train-
ing input std.in.

smaller region for benchmark turb3d. Specifically, with the
constraint, 64% of time the benchmark is executed at 1100
MHz. In contrast, without the constraint, 31% of time the
benchmark is executed at 700 MHz. Both selections are
able to reduce the energy usage by 3%. However, the per-
formance penalty becomes 10% if such a size constraint is
not included. This particular case illustrates the importance
of introducing Equation (3).

4.8 Different Training Inputs
A common question for profile-based algorithms is how

much the quality of the results is affected by the different
training inputs. In this section, we evaluate such an impact
using another training data set std.in developed by Burger
[9]. For SPECfp95 benchmarks, since they all have a common
structure of an initialization phase followed by repetitions of
a computation phase, in most cases data set std.in uses the
same reference data set but reduces the number of repeti-
tions. Table 6 column “std.in” gives the definition of data
set std.in for SPECfp95 benchmarks. For example, data set
std.in for benchmark swim uses the same reference data set
but reduces the repetitions from 900 down to 45. Note that
benchmarks mgrid and fpppp do not use the reference data
set as input.

The column “selection” in Table 6 lists the slow-down
strategy our compiler finds if data set std.in is used as
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Figure 5: The relative energy usage of our compiler
approach using training inputs train.in and std.in

and the potential energy savings.

the training input. Except those benchmark rows marked
“same”, our compiler algorithm found different regions to
slow down at different speed if using std.in. However, as
shown in Figure 5, the quality of slow-down strategies using
different training inputs is quite similar in terms of energy
usage. Similar conclusion can be drawn for the energy-delay
product as well.

For benchmarks swim and su2cor, using data set std.in

as training input seems to produce better results. This is due
to the different CPU boundness values provided by the two
different data sets. For the reference data set of swim, the
CPU boundness βcpu is 0.04. In contrast, data set std.in

provides βcpu = 0.07 and data set train.in provides βcpu

= 0.19. Since data set std.in more closely models the CPU
boundness of the reference data set, our algorithm was able
to find a better slow-down strategy. Similarly, the reference
data set of su2cor provides βcpu = 0.17, while the data
sets std.in and train.in provides βcpu = 0.25 and 0.47,
respectively. As a result, our algorithm was able to exploit
more memory boundness of the benchmark and produced a
better energy-delay product value.

4.9 Comparison with Other Algorithms
A natural follow-up question is how effective our com-

piler algorithm is as compared to the other proposed DVS
algorithms. We would like to point out that many of the ex-
isting DVS algorithms have a set of parameters that can be
tuned. While it is possible to manipulate these parameters
to get better effectiveness of the algorithms, it is still an open
question how to do this in a systematic fashion. For exam-
ple, Grunwald et al. [15] studied several interval-based OS-
directed algorithms and found that the effectiveness of the
best algorithm they studied depends on the selected thresh-
old values which are data sensitive.

To avoid the complications due to different settings of
algorithm parameters, we have developed a methodology to
compute the potential energy savings any DVS algorithm
can generate [17]. Specifically, given the set of measured
execution time and system power { (Tf , Pf ) } at various
frequencies f , the minimum energy usage E∗

r can be derived

by solving the following linear programming problem.

E∗

r = min
tf

(
∑

f

Pf · tf )/(Pfmax · Tfmax)

subject to
∑

f

tf ≤ (1 + r) · Tfmax ,
∑

f
tf/Tf = 1, 0 ≤ tf

The optimal DVS algorithm { tf } determines the duration
(in seconds) at each frequency f such that the relative en-
ergy usage Er is minimized while the deadline is met and
the required workload is performed.

Figure 5 compares the energy usage derived by our DVS
algorithm and the theoretical lower bound. It can be seen
that in many cases our algorithm has energy reduction very
close to the lower bound, within 6%. In a few benchmarks,
the lower bounds are larger than those using our algorithm.
For example, the largest error occurs for benchmark su2cor

using data set std.in, which is 5% more. It is because
our algorithm does not guarantee that the performance con-
straint will always be satisfied. The main reason is that the
training input and the reference input may have different
behaviors in terms of CPU-boundness. In this case our al-
gorithm generated the performance slow-down. For bench-
mark su2cor, since our algorithm generates performance
slow-down of 7.3%, we can replace r = 5% by r = 7.3%
when computing E∗

r . As a result, the difference drops down
to 1.2%. We believe the inaccuracy of 1.2% comes from the
measurement errors when acquiring Tf and Pf experimen-
tally. Nevertheless, the difference in energy usage between
our algorithm and the theoretical optimum is never greater
than 2% for all tests we have done.

4.10 Multiple Region Extension
Our compiler algorithm assumes that only one region is

allowed to be slowed down. This can certainly be relaxed to
allow multiple regions to be slowed down. One way to do
so is to formulate the algorithm as solving a zero-one inte-
ger linear programming problem (ZILP), as follows. Given
a program P =

⋃
i
Ri, we are trying to find out the val-

ues for zero-one variables θ(Ri, f) that solves the following
minimization problem:

min
θ

∑

i,f

θ(Ri, f) · Pf · T (Ri, f) + Ptrans · Ntrans

subject to
∑

i,f θ(Ri, f) · T (Ri, f) + Ttrans · Ntrans ≤ (1 + r) · T (P, fmax)∑
f θ(Ri, f) = 1

where

Ntrans =
∑

i,j
N(Ri, Rj) ·

1

2
·
∑

f
|θ(Ri, f) − θ(Rj , f)|

Solution θ(Ri, f) = 1 means that region Ri is executed at
frequency f , 0 if not. Note that the total number of tran-
sitions Ntrans is 2 · N(R) in the single-region algorithm. In
the multi-region algorithm, it is replaced by a more com-
plex equation. The equation enumerates all pairs of re-
gions Ri and Rj and accumulates the number of transitions
from Ri to Rj , as indicated by N(Ri, Rj), if the two re-
gions are assigned with different frequencies, as indicated
by 1

2
·
∑

f |θ(Ri, f) − θ(Rj , f)|.



To estimate N(Ri, Rj) from the profile N(R), a transi-
tion graph is constructed through inter-procedural analy-
sis. A transition graph is a directed graph whose nodes
are regions Ri and edges are weighted by N(Ri, Rj). The
current prototype implements reaching definition analysis
and approximates the number of transitions between regions
N(Ri, Rj). More details can be found in [18]. Note that, the
problem formulation is new, which unfortunately introduces
more variables to solve due to the discreteness of the DVS
levels.

ZILP problems are in general considered hard problems
due to the combinatorial aspect of integer programming.
Experiences tell us that when the number of transitions ex-
ceeds over 50, the solver has a hard time to solve it effi-
ciently, i.e., within a reasonable time. In our experiments,
we set the reasonable time as an hour. Unfortunately, ex-
cept benchmarks swim and tomcatv, the rest of SPECfp95

benchmarks have the number of transitions more than 50
and cannot be solved efficiently. On one hand, techniques
need to be invented to reduce the problem size or approx-
imate the optimal solutions. On the other hand, as shown
in Section 4.9, single-region algorithm is not far from the
optimal DVS algorithm in terms of producing energy effi-
cient programs. There is not much room for improvement
because of multiple region flexibility. In general, this is good
news since the multi-region algorithm is more complicated
to implement and less efficient in terms of compilation time.

4.11 System Design Concerns
In this section we present an interesting comparison of

two commercial laptop systems. One system has a high-
performance processor with a more efficient memory subsys-
tem, and the other system has a low-power processor with
a less efficient memory subsystem. Both systems support
DVS using different DVS algorithms. We compare the two
systems for their energy efficiency.

The high-performance system is the Compaq Presario lap-
top, which is equipped with our DVS algorithm. The low-
power system is the Fujitsu LifeBook P2040 laptop, which
is operated by another DVS algorithm, the LongRun tech-
nology [11]. Table 7 compares the two systems, including
their DVS support and memory system performance. It can
be seen that the Presario computer is high-power and has a
worse power-performance efficiency (MIPS/W). The ratios
were computed by running the Dhrystone 2.1 benchmark
on the two systems. On the other hand, its memory system
performance is better. Both computers have similar memory
latency, but the memory bandwidth (MB/s) of the Presario
computer is larger. In addition, it provides more memory-
level parallelism (MLP), i.e., it allows multiple outstanding
cache misses. The memory bandwidth was computed us-
ing the STREAM benchmark [47]. The memory latency and
the memory-level parallelism ratio were derived using the
LMbench benchmark [26].

The comparison of the two systems is shown in Figure 6.
The baseline is the energy-delay product on the Presario
computer with our DVS algorithm disabled. The LongRun

technology is set to the economy mode with all five perfor-
mance levels available. It can be seen that in some bench-
marks such as swim and hydro2d, applying our DVS algo-
rithm on a less power-efficient system results in better en-
ergy efficiency. Furthermore, for CPU-bound applications
such as wave5 and fpppp, even the high-performance non-

Compaq Fujitsu
spec Presario 715US LifeBook P2040

AMD Transmeta
CPU mobile Athlon 4 Crusoe TM5800

RISC VLIW
out-of-order in-order

cache 384KB 512KB
f 600-1200 MHz 300-800 MHz
V 1.15-1.45 V 1.0-1.3 V

levels 7 5
Pdhry 52.79 W 13.65 W

MIPS/W 29.24 45.47
lmem (ns) 210.6 195.7

MLP 2.5 1.0
MB/s 436.4 347.1

Table 7: The DVS support and power breakdown of
the two laptops we tested.
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Figure 6: The relative energy-delay product of our
compiler approach and the LongRun technology with
respect to the Presario notebook without DVS. The
energy is the entire system energy.

DVS system has much smaller energy-delay products. On
average, the high-performance Presario computer together
with our DVS algorithm reduces the energy-delay product
by 9%. In contrast, the low-power LifeBook computer with
the LongRun technology is 4% more than the Presario com-
puter without any DVS algorithm enabled.

There are at least two reasons why the high-performance
high-power system performs better in some cases. First of
all, the high-performance features of the system pays off by
reducing the total execution time significantly, though the
power dissipation (i.e., energy usage per second) is higher
due to the implementation of these features. Secondly, the
energy usage of the processor in the Presario computer is
significant. At the peak performance level, 64% of the total
system power can be attributed to the processor for the Pre-
sario computer. In contrast, the processor of the LifeBook
computer only contributes 27%.

Although AMD has an on-line DVS algorithm as part of



the PowerNow! technique we are not able to compare it
against our DVS algorithm since the software is only exe-
cuted on the Microsoft Windows system.

5. CONCLUSIONS AND FUTURE WORK
In this paper we have discussed a novel compiler algorithm

that effectively utilizes dynamic voltage scaling to save en-
ergy. The algorithm picks a single region to be executed at a
lower performance level without introducing serious perfor-
mance degradation. A prototype implementation based on
the SUIF2 compiler infrastructure was used to evaluate the
algorithm on the SPECfp95 benchmarks. Physical measure-
ments showed that significant energy savings in the range
of 0% to 28% can be achieved with performance penalties
between 0% and 4.7% for the SPECfp95 benchmarks. On av-
erage, the energy and energy-delay product are reduced by
11% and 9%, respectively, with a performance slowdown of
2.15%. To the best of our knowledge, this work presents one
of the first working implementation of DVS algorithms and
one of the first to evaluate DVS algorithms through physical
measurements.

We plan to study the impact of locality optimizations on
the effectiveness of our DVS algorithm. Most advanced lo-
cality optimizations try to reduce the memory stalls to im-
prove performance while our DVS algorithm exploits mem-
ory stalls for energy reduction. An early work [16] has shown
that there are still plenty of opportunities to apply our DVS
algorithm to the highly optimized codes. It is also observed
that in some cases the less successful optimization lead to
higher energy savings. We plan to perform a similar study
on real systems to see whether these observations still hold.
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