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Abstract. Cluster end-users and administrators have become more cog-
nizant of the fact that large-scale commodity clusters fail quite fre-
quently, and the main source of these failures is hardware (e.g., pro-
cessors) with the primary cause being heat. This situation is expected to
worsen with even larger-scale clusters powered by faster (and/or multi-
core) processors. In this paper, we propose a power-management algo-
rithm that addresses heat-related reliability for processors by control-
ling their clock speeds in a performance-aware manner. This approach is
complementary to existing approaches such as exotic cooling and fault-
tolerant technologies in that it proactively deals with power and cooling
issues before they become a problem. Our preliminary experimental work
demonstrates that our approach can easily be applied commodity pro-
cessors and can reduce heat generation by 30% on average with minimal
effect on performance when running the SPEC benchmarks.

1 Introduction

Though the high-performance computing (HPC) community continues to pro-
vide better and better support for Linux-based commodity clusters, cluster end-
users and administrators have become more cognizant of the fact that large-scale
commodity clusters fail quite frequently. For example, the mean time between
failure for the ASCI Q constellation at Los Alamos National Laboratory (LANL)
is less than 6.5 hours, i.e., 114 unplanned outages per month [15]. The low re-
liability is largely due to hardware failures, and we argue that one of the main
reasons for these hardware failures is due to heat. As noted by the CEO of
Google, Eric Schmidt, the primary contributor to unreliability in their data cen-
ters is heat [12]. The empirical data from our 128-processor Little Blue Penguin
(LBP) Beowulf cluster, located in a dusty and hot warehouse, also confirms that
heat has an adverse effect on cluster reliability. In the winter when the tempera-
ture inside the warehouse was around 70-75◦F, the cluster failed once a week; in
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the summer when the temperature was 85-90◦F, the cluster failed twice a week.
Thus, reducing heat-related failures will improve system reliability. This paper
shows how heat reduction can be achieved by decreasing the power draw of the
processor while simultaneously minimizing impact on performance.

Because of the dual goals of improving performance and reducing power draw
in order to enhance system reliability, the focus of this paper is on improving
the performance-power ratio of processors (that are used in commodity clusters)
in a way that is transparent to HPC applications. Specifically, we propose an
automatically-adapting, power-management algorithm that intelligently sets the
frequency and voltage of a processor at run time in order to minimize processor’s
power draw with little effect to system performance. The novelty of our approach
is in its proactive nature, i,e., we address the likely power and cooling issues before

they become a problem. This is in contrast with (and complementary to) the
common approaches that reactively handle thermal emergencies with on-chip
thermal protection and software-based fault tolerance.

The algorithm is based on the observation that a processor oftentimes cannot
execute instructions at its maximum clock rate due to performance bottlenecks
in the memory, I/O, or network subsystems; thus, its clock speed can be re-
duced to save power without having a major effect on the overall speed of the
computation. The algorithm uses a mechanism called dynamic voltage and fre-
quency scaling (DVS) that has been supported by commodity processors such
as Intel’s Nocona, AMD’s Opteron, and IBM’s PowerPC-970, and by the Linux
community through a standardized kernel interface called cpufreq. Via real ex-
perimental measurements, preliminary research and evaluation shows that our
software-based heat-reduction approach can improve the performance-power ra-
tio of commodity processors by as much as 35% on SPEC benchmarks.

The rest of the paper is organized as follows. Section 2 provides background
information on current approaches towards reducing heat-related failures. Then
we present a software-based algorithm that can reduce heat generation in a
performance-controlled manner in Section 3. Section 4 describes the experimen-
tal set-up, the implemented DVS algorithms, and the experimental results. Fi-
nally, Section 5 concludes the paper.

2 Background

Overheating-induced system failures can be reduced reactively through effective
cooling or proactively through less heat generation. The most common reactive

approach to reduce overheating-induced failures is to install extra cooling capac-
ity. Unfortunately, this approach can be disastrous because if the cooling pushes
the air under the floors too quickly, a Venturi effect can occur. This causes air
to be sucked down into the floor rather than pushing it up into the “cold” aisle,
and air from the “hot” aisle then flows over the top of the racks and re-circulates
through the equipment, thus resulting in overheating. In other words, certain lay-
outs of computing resources and cooling equipment may lessen power demand
and keep key areas cool, while other layouts have the opposite effect. The “op-
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timal” layout of computing resources and cooling equipment is a complex task;
it has to consider all the variables in a machine room, model how the air moves,
and determine what changes can be made to optimize the use of cooling capacity
and reduce operating costs. Because of this level of the complexity, HP Labs, for
example, resorts to computational fluid dynamics to create a three-dimensional
airflow simulation model [13]. Furthermore, the power required to operate heat
removal and/or cooling facilities increases the total cost of ownership for HPC
systems. And in many cases, institutions that utilize HPC must spend millions
to tens of millions of dollars simply to build the appropriate infrastructure to
house their HPC systems. For the above reasons, this paper examines approaches
for reducing the amount of heat generated by a HPC system.

A proactive approach to prevent overheating is to not generate heat to begin
with (or at least decrease its generation). The reduction of heat generation can
be achieved in two ways: via hardware/architecture design or via software-based
optimization. IBM’s Blue Gene/L [2, 4] and LANL’s Green Destiny [5, 6, 17] are
two representative examples of reducing heat via hardware/architecture design.
These systems employ low-power, low-speed processors for heat reduction and
oftentimes rely on customized components to achieve the dual goals of improv-
ing performance and reducing power draw. For example, Blue Gene/L is based
on a stripped-down version of the 700-MHz PowerPC 440 embedded processor.
In contrast, Green Destiny is based on Transmeta’s 1-GHz commodity mobile
processors powered by a high-performance version of Transmeta’s proprietary
code morphing software. However, we argue that the above approaches are not
commodity-oriented, thus forcing one to select a particular hardware platform
or a specific vendor.

Another way to reduce heat generation is via software-based optimization.
Over the past few years, there has emerged an effective power-reduction mech-
anism called dynamic voltage and frequency scaling (DVS). At a high level, a
DVS system exports a set of operating points that provide various performance-
power tradeoffs and allows the software to switch between these operating points
in pseudo-real-time (10-100 µs) during program execution. In general, the faster a
CPU runs, the better performance it can deliver but the more power it will draw.
Despite the fact that the DVS mechanism was first introduced for mobile systems
and many DVS-based power-management algorithms (e.g., [7, 10, 11, 16]) were
proposed to prolong the battery life of these systems, the use of DVS in HPC is
virtually non-existent. Furthermore, the existing DVS-based power-management
algorithms for mobile systems are ineffective on HPC systems because user in-
teraction (e.g., editing a Microsoft Word document on a laptop) is assumed in
these algorithms in order to determine system power-usage patterns, something
that is non-existent in HPC.

For example, Intel has developed a DVS-based power-management algorithm
for their Pentium-M mobile processors, part of the so-called enhanced Intel Speed-

Step technique. The algorithm uses Linux’s kernel interface cpufreq to switch
between operating points and uses CPU utilization to guide the selection. Specif-
ically, the algorithm periodically polls the current CPU utilization, defined as
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the fraction of time that the CPU spends non-idle. If the utilization passes above
a threshold value, the algorithm will select the operating point with the maxi-
mum clock speed. On the other hand, if the utilization falls below a threshold
value, the algorithm will scale down the clock speed to the next available level.

The above algorithm has two problems for HPC. First, CPU utilization by
itself does not provide enough information about system timing requirements;
DVS-based algorithms based on such information can only provide loose control
over DVS-induced performance loss. Second, the CPU utilization for HPC ap-
plications tends to be high during the entirety of their executions; as a result,
Intel’s SpeedStep power-management algorithm will always set the CPU to run
at the maximum speed and does not use DVS at all.

Consequently, Hsu and Kremer recently demonstrated how to apply DVS
to scientific codes [9]. Unfortunately, this earlier solution is based on profile-
driven, off-line, compiler analysis. In this paper, we seek a run-time solution
that can automatically adapt to various situations without any prior knowledge
of a scientific application or its run-time behavior.

3 Lightweight Adaptive DVS

We propose a power-management algorithm that maximizes CPU power reduc-
tion while minimizing performance impact and does so by exploiting sub-linear
performance scaling in memory-bound and I/O-bound programs. To explain
sub-linear performance scaling, consider a program with a high cache-miss ratio.
Such a program will likely be limited by memory bandwidth rather than CPU
speed. Since memory performance is not affected by CPU speed, increasing or
decreasing the CPU frequency will have little effect on the performance of the
program. We can take advantage of this type of sub-linear performance scal-
ing and lower the CPU speed with negligible impact on performance, thereby
reducing the CPU power requirements significantly. For a DVS-enabled Intel
Pentium-M processor, this can translate into a 76% reduction in CPU power
draw.

Though sub-linear performance scaling occurs in memory-bound or I/O-
bound programs, simply slowing down the CPU speed during any memory or
I/O operation will result in both significant performance slowdown as well as
increased energy consumption. (This is due in large part to the non-negligible
amount of time needed to scale to a new voltage and frequency.) Therefore, we
first develop an accurate model that relates a program’s performance to CPU
frequency in order to minimize DVS-induced performance loss when switching
to a slower CPU speed. This model is critical to a power-management algorithm
as different memory-bound programs will experience different performance im-
pacts when running at the slowest CPU speed. Next, we must then be able to
construct the model at run-time because the model’s parameter values will be
affected by the hardware platform, the program source code, and the data input.

Many workloads spend considerable time on memory accesses, e.g., SPEC
CPU2000, BAPCo SysMark2000, and Quake3, and their performance can be
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accurately predicted using the following simple model [3, 14]:

T (f) = i ·
1

f
+ m · l (1)

This model decomposes the total execution time T (f) of a program running
entirely at frequency f into two parts. The first part models on-chip workload
in terms of CPU cycles, where i captures the ideal number of cycles required
(assuming perfect caches). The second part models off-chip workload, where
m counts the number of off-chip accesses and l represents the memory-access
latency in seconds. Because f only appears in the first part, changing the CPU
speed only affects the performance of executing the on-chip workload and results
in a sub-linear performance impact.

Once we know of the values of i, m, and l, we can construct a power-optimal
CPU speed schedule with respect to a deadline D — running the entire program
at a CPU speed f∗ which solves the following optimization problem:

min{P (f) : T (f) ≤ D}

= min

{

P (f) : i ·
1

f
+ m · l ≤ D

}

= min

{

P (f) : f ≥
i

D − m · l

}

(2)

where P (f) is the power consumption of a DVS-enabled processor running at
the clock frequency f . If P (f) is an increasing function, then Equation (2) sim-
ply says that running at the lowest possible CPU speed without violating the
performance constraint will minimize the CPU power consumption. In general,
the power function P (f) is an increasing function since the faster a CPU runs,
the more power it consumes.

However, for this scheduling technique to be effective, it requires knowing the
values of i, m, and l which are difficult to derive since the values, in particular i
and m, vary with different data inputs. Hence, in order to automatically adapt to
various data inputs without any prior knowledge, the values of i and m should not
be explicitly used. Knowing that the values of i and m are fixed for a particular
data input as is their impact to program performance, we can simply concentrate
on the performance sensitivity to changes in CPU speed, thus minimizing the
dependence on i and m.

The sensitivity of a program’s performance to changes in CPU speed is for-
mally defined as the relative performance slowdown with respect to the program

running at the maximum CPU speed, i.e., T (f)
T (fmax) . where fmax is the maxi-

mum CPU speed. Using Equation (1), we can re-write the relative performance
slowdown in a form based on a coefficient called β.

T (f)

T (fmax)
=

i · 1
f

+ m · l

i · 1
fmax

+ m · l
=

i · fmax

f
+ m · l · fmax

i + m · l · fmax
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=
i

i + m · l · fmax

·
fmax

f
+

(

1 −
i

i + m · l · fmax

)

= β ·
fmax

f
+ (1 − β) (3)

with

β =
i

i + m · l · fmax

(4)

The coefficient β is, by definition, a value between 0 and 1. The metric
represents the fraction of the program workload that scales linearly with the
CPU frequency (much like the parallelizable part in Amdahl’s Law). If a program
has β = 1, it means the execution time of the program will double when the
CPU speed is halved. In contrast, memory-bound and I/O-bound programs have
β ≈ 0.

Given the value of β, we can compute the desired frequency f∗ with respect
to a performance criterion δ (a relative performance slowdown compared to the
program running entirely at the full speed, e.g., 5%). This desired frequency is
in fact the solution of the following optimization problem:

min

{

P (f) :
T (f)

T (fmax)
≤ 1 + δ

}

= min

{

P (f) : β ·
fmax

f
+ (1 − β) ≤ 1 + δ

}

= min

{

P (f) : f ≥
fmax

1 + δ/β

}

(5)

If the power function P (f) is an increasing function, which is in practice, then
we can describe the desired frequency f∗ in a closed form, as follows.

f∗ = max

(

fmin,
fmax

1 + δ/β

)

(6)

With Equation (6) in place, we propose a power-management algorithm called
β-adaptation.

The β-adaptation algorithm consists of two phases that are executed in se-
quence at fixed-length time intervals. The first phase uses Equation (3) and a
regression method to compute β up to the current interval. The second phase
uses Equation (6) to compute the desired frequency f∗ to use in the next interval.
These two phases are shown as steps 1 and 2 in Figure 1.

Unfortunately, today’s DVS-enabled processors may not be able to gener-
ate the desired frequency f∗ that is calculated in step 2. For example, Intel’s
Pentium-M processor only allows the software to specify the target speed and
voltage in multiples of 100 MHz and 16 mV, respectively. For AMD’s Opteron
processor, the target frequency and voltage can only be specified in multiples of
200 MHz and 25 mV, respectively. In order for our β-adaptation algorithm to
work on these processors, we emulate the desired frequency using available clock



Reducing Overheating-Induced Failures 7

For every I seconds, do the following:

1. Compute coefficient β.

β =

∑

i
( fmax

fi

− 1)(
mips(fmax)

mips(fi)
− 1)

∑

i
( fmax

fi

− 1)2

2. Compute the desired frequency f∗.

f∗ = max

(

fmin,
fmax

1 + δ/β

)

3. Figure out fj and fj+1.

fj ≤ f∗ < fj+1

4. Compute the ratio r.

r =
(1 + δ/β)/fmax − 1/fj+1

1/fj − 1/fj+1

5. Run r · I seconds at frequency fj .
6. Run (1 − r) · I seconds at frequency fj+1.
7. Update mips(fj) and mips(fj+1).

Fig. 1. The β-adaptation Algorithm. δ is a relative performance slowdown criterion, I
is the length of an interval in seconds, and mips(f) is the average MIPS rate for CPU
frequency f . This algorithm assumes that a DVS processor only exports n available
frequencies fmin = f1 < · · · < fn = fmax.
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frequencies. For example, since the 500-MHz speed is not directly supported by
Athlon 64 processor, we emulate the speed by running half of the time at the
400-MHz and half the time at the 600-MHz speed. This emulation process is
described as steps 3-6 of Figure 1.

In fact, the frequency emulation of the β-adaptation algorithm is a theoretically-
based heuristic that is based on a characterization of an energy-optimal DVS
scheduling problem originally proposed in [9]. According to that characterization,
the emulation of the desired frequency using the two immediately-neighboring
settings will result in an energy-optimal DVS schedule; this is what step 3 does.
In other words, to emulate the 500-MHz speed, using the 400-MHz and 600-
MHz pairs will result in a lower power consumption than using the 200-MHz
and 800-MHz pairs. The characterization has its own merit in that it generalizes
previous theoretical results. We refer the readers to our workshop paper [8] for
more details.

4 Experiments

The β-adaptation algorithm can be easily implemented on any commodity DVS-
enabled processor. To demonstrate its simplicity and effectiveness, we imple-
mented the algorithm on two commodity processors found in HPC blades and
servers, respectively: an AMD Athlon XP-M and an AMD Athlon 64 3200+, as
shown in Table 1. The Athlon XP-M processor has a 256-KB level-two cache and
256-MB DDR-266 memory while the Athlon 64 processor has a 1-MB level-two
cache and 1-GB DDR-400 memory. In terms of DVS operating points, the Athlon
XP-M possesses five frequency-voltage settings with the frequency ranging from
1067-MHz to 1800-MHz and the voltage from 1.15V to 1.45V; the Athlon 64 has
four such settings running from 800-MHz to 2000-MHz at 1.0V to 1.55V. For
both processors, the time to transition from one setting to another is roughly
100 µs.

Table 1. The tested system configurations

CPU Athlon XP-M Athlon 64
2200+ 3200+

L1 cache 128KB 128KB
L2 cache 256KB 1024KB

f (MHz) 1067-1800 800-2000
V 1.15-1.45 V 1.10-1.55 V

levels 5 4

memory 256MB 1024MB
DDR266 DDR400
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Fig. 2. The measurement set-up.

We evaluated the β-adaptation algorithm in the context of the SPEC CPU
benchmarks and utilized a highly accurate, industrial-strength power meter to
collect power-consumption numbers. The benchmarks were compiled with the
GNU compilers at the same optimization level, i.e., -O2. The power meter is
Yokogawa’s WT210 digital power meter, which constantly samples the instanta-
neous wattage at a rate of 50 kHz (i.e., every 20 µs). The SPEC CPU benchmarks
emphasize the performance of the CPU and memory, but not I/O. We elected to
use the SPEC benchmarks because they demonstrate a range of performance sen-
sitivity to CPU-frequency changes [9]. All the experimental data was collected
by running these SPEC benchmarks with the reference data input. Note that
this experimental setup included the non-negligible amount of time and energy
needed to scale a voltage and frequency, plus the time and energy used to execute
the β-adaptation algorithm on top of the execution of a SPEC benchmark.

As seen in Figure 3, our preliminary evaluation shows that the β-adaptation

algorithm improves the SPEC/W ratio (i.e., performance/watt) of the CFP95,
CINT95, and CFP2000 benchmark suites by 26%, 12%, and 17%, respectively,
on the Athlon XP-M system and by 30%, 22%, and 35%, respectively, on the
Athlon 64 system. The algorithm saves as much as 54% on CPU energy while
impacting peak performance by less than 2% when running a SPEC CPU bench-
mark. Finally, in comparison with a 2.4-GHz Pentium 4 desktop, the β-adaptation

algorithm improves the SPEC/W ratio by another 50% beyond the 50% improve-
ment when the algorithm is run on the Athlon 64 architecture.

We also recently applied our β-adaptation algorithm to a four-way Opteron-
based SMP machine running Linux 2.6. The Mop/s/W ratio for NAS Parallel
Benchmarks [1] on class B is 34% better when using the β-adaptation algorithm.
The power draw of the SP benchmark is reduced by 34% with an impact on peak
performance of less than 1%.

In summary, the β-adaptation algorithm is a theoretically-based lightweight
effective heuristic. Our preliminary work demonstrates (via physical measure-
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Fig. 3. The effectiveness of the β-adaptation algorithm.

ments) that this proactive approach can improve the power efficiency (in terms
of the performance-power ratio) of commodity high-end processors by as much
as 35% on SPEC benchmarks as well as on NAS Parallel Benchmarks.

5 Concluding Remarks

As both end users and administrators of Linux-based commodity clusters, we
have identified two primary roadblocks that prevent such clusters from marching
into the HPC mainstream: (1) unreliability and (2) poor ease of use. In this
paper, we specifically addressed the former. The latter issue is dealt with by
research projects such as Clustermatic (http://www.clustermatic.org/) and a
host of others.

We argued that one of the main reasons for unreliability in commodity clus-
ters is hardware failure due to overheating and that of all the components in a
typical commodity cluster node, the microprocessor consumes the largest amount
of power and dissipates the most heat. As a result, HPC integrators of commodity
systems have resorted to more exotic technologies to dissipate the heat gener-
ated by a microprocessor (i.e., from heating plates to heat sinks to heat pipes,
and now, even to spray or liquid cooling) and have installed thermal sensors and
thermal management software as a secondary prevention mechanism.

In contrast, we took a complementary approach in this paper, one that proac-
tively tackled the overheating issue by reducing the heat generation from mi-
croprocessors before it even becomes a problem. By leveraging the “dynamic
voltage and frequency scaling” (DVS) mechanism commonly found in high-end
commodity processors, we applied DVS wisely so that the heat generation by
processors can be minimized with little effect on system performance. The re-
sult was our DVS-based, β-adaptation algorithm, which automatically adapts
to the application without any prior knowledge of the application itself. The
preliminary experimental results demonstrate that our proactive β-adaptation

algorithm can reduce power consumption by 30% on average with minimal ef-
fect on performance when running the SPEC benchmarks and NAS Parallel
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Benchmarks. With respect to power efficiency, our technique can increase the
performance-power ratio by as much as 35%.

In closing, since productivity is oftentimes quantified as the ratio of the num-
ber of jobs a HPC system will run over the total amount of resources that go into
buying and running the system, the work proposed in this paper will improve
reliability and availability, thus increasing productivity and reducing total cost
of ownership.
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