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Abstract—The continued growth in the width of vector registers and the evolving library of intrinsics on the modern x86 processors
make manual optimizations for data-level parallelism tedious and error-prone. In this paper, we focus on parallel sorting, a building
block for many higher-level applications, and propose a framework for the Automatic SIMDization of Parallel Sorting (ASPaS) on
x86-based multi- and many-core processors. That is, ASPaS takes any sorting network and a given instruction set architecture (ISA) as
inputs and automatically generates vector code for that sorting network. After formalizing the sort function as a sequence of
comparators and the transpose and merge functions as sequences of vector-matrix multiplications, ASPaS can map these functions to
operations from a selected “pattern pool” that is based on the characteristics of parallel sorting, and then generate the vector code with
the real ISA intrinsics. The performance evaluation on the Intel Ivy Bridge and Haswell CPUs, and Knights Corner MIC illustrates that
automatically generated sorting codes from ASPaS can outperform the widely used sorting tools, achieving up to 5.2x speedup over
the single-threaded implementations from STL and Boost and up to 6.7x speedup over the multi-threaded parallel sort from Intel TBB.

Index Terms—SIMD, IMCI, AVX2, Xeon Phi, sorting networks, merging networks, code-generation.
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1 INTRODUCTION

Increasing processor frequency to improve performance
is no longer a viable approach due to its exponential power
consumption and heat generation. Therefore, modern pro-
cessors integrate multiple cores onto a single die to increase
inter-core parallelism. Furthermore, the vector processing
unit (VPU) associated with each core can enable more fine-
grained intra-core parallelism. Execution on a VPU follows
the “single instruction, multiple data” (SIMD) paradigm
by performing a “lock-step” operation over packed data.
Though many regular codes can be auto-vectorized by the
modern compilers, some complex loop patterns prevent per-
formant auto-vectorization, due to the lack of accurate com-
piler analysis and effective compiler transformations [1].
Thus, the burden falls on programmers to implement the
manual vectorization using intrinsics or even assembly
code.

Writing efficient vectorized (SIMD) code by hand is a
time-consuming and error-prone activity. First, vectorizing
existing (complex) codes requires expert knowledge in re-
structuring algorithms to exploit SIMDization potentials.
Second, a comprehensive understanding of the actual vector
intrinsics is needed. The intrinsics for data management and
movement are equally important as those for computation
because programmers often need to rearrange data in the
vector units before sending them to the ALU. Unfortunately,
the flexibility of the data-reordering intrinsics is restricted,
as directly supporting an arbitrary permutation is imprac-
tical [2]. As a consequence, programmers must resort to a
combination of data-reordering intrinsics to attain a desired
computational pattern. Third, the vector instruction set ar-
chitectures (ISA) continue to evolve and expand, which in
turn, lead to potential portability issues. For example, to
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port codes from the Advanced Vector Extensions (AVX) on
the CPU to the codes of the Initial Many Core Instructions
(IMCI) on the Many Integrated Core (MIC), we either need
to identify the instructions with equivalent functionalities
or rewrite and tune the codes using alternative instructions.
While library-based optimizations [3] can hide the details
of vectorization from the end user, these challenges are still
encountered during the design and implementation of the
libraries themselves.

One alternate solution to relieve application program-
mers from writing low-level code is to let them focus only
on domain-specific applications at a high level, help them
to abstract the computational and communication patterns
with potential parallelization opportunities, and leverage
modern compiler techniques to automatically generate the
vectorization codes that fit in the parallel architectures of
given accelerators. For example, McFarlin et al. [4] abstract
the data-reordering patterns used in the Fast Fourier Trans-
form (FFT) and generate the corresponding SIMD codes for
CPUs. Mint and Physis [5], [6] capture stencil computation
on GPUs, i.e., computational and communication patterns
across a structured grid. Benson et al. [7] focus on ab-
stracting the different algorithms of matrix multiplication
by using mathematic symbols and automatically generating
sequential and parallel codes for the CPU.

In this paper, we focus on the sorting primitive and
propose a framework – Automatic SIMDization of Parallel
Sorting (a.k.a ASPaS) – to automatically generate efficient
SIMD codes for parallel sorting on x86-based multicore
and manycore processors, including CPUs and MIC, re-
spectively. ASPaS takes any sorting network and a given
ISA as inputs and automatically produces vectorized sorting
code as the output. The code adopts a bottom-up approach
to sort and merge segmented data. Since the vectorized
sort function puts partially sorted data across different
segments, ASPaS gathers the sorted data into contiguous
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regions through a transpose function before the merge
stage. Considering the variety of sorting and merging net-
works1 [8] that correspond to different sorting algorithms
(such as Odd-Even [9], Bitonic [9], Hibbard [10], and Bose-
Nelson [11]) and the continuing evolution of instruction
sets (such as SSE, AVX, AVX2, and IMCI), it is imperative
to provide such a framework to hide the instruction-level
details of sorting and allow programmers to focus on the
use of the sorting algorithms instead.

ASPaS consists of four major modules: (1) Sorter, (2)
Transposer, (3) Merger, and (4) Code Generator. The SIMD
Sorter takes a sorting network as input and generates a
sequence of comparators for the sort function. The SIMD
Transposer and SIMD Merger formalize the data-reordering
operations in the transpose and merge functions as se-
quences of vector-matrix multiplications. The SIMD Code
Generator creates an ISA-friendly pattern pool containing the
requisite data-comparing and reordering primitives, builds
those sequences with primitives, and then translates them
to the real ISA intrinsics according to the platforms.

We make the following contributions in this paper.
First, for portability, we propose the ASPaS framework to
automatically generate the cross-platform parallel sorting
codes using architecture-specific SIMD instructions, includ-
ing AVX, AVX2, and IMCI. Second, for functionality, using
ASPaS, we can generate various parallel sorting codes for
the combinations of five sorting networks, two merging
networks, and three datatypes (integer, float, double) on
Intel Ivy Bridge, Haswell CPUs, and Intel Knights Corner
MIC. In addition, ASPaS generates the vectorization codes
not only for the sorting of array, but also for the sorting of
{key,data} pairs, which is a requisite functionality to sort the
real-world workloads. Third, for performance, we conduct
a series of rigorous evaluations to demonstrate how the
ASPaS-generated codes can yield performance benefits by
efficiently using the vector units and computing cores on
different hardware architectures.

For the one-word type,2 our SIMD codes on CPUs can
deliver speedups of up to 4.1x and 6.5x (10.5x and 7.6x on
MIC) over the serial sort and merge kernels, respectively.
For the two-word type, the corresponding speedups are
1.2x and 2x on CPUs (6.0x and 3.2x on MIC), respectively.
Compared with other single-threaded sort implementations,
including qsort and sort from STL [12] and sort from
Boost [13], our SIMD codes on CPUs deliver a range of
speedups from 2.1x to 5.2x (2.5x to 5.1x on MIC) for the
one-word type and 1.7x to 3.8x (1.3x to 3.1x on MIC) for
the two-word type. Our ASPaS framework also improves
the memory access pattern and thread-level parallelism.
That is, we leverage the ASPaS-generated SIMD kernels as
building blocks to create a multi-threaded sort (via multi-
way merging). Compared with the parallel_sort from
Intel TBB [14], ASPaS delivers speedups of up to 2.5x and
1.7x on CPUs (6.7x and 5.0x on MIC) for the one-word type
and the two-word type, respectively.

Our previous research [15] first proposes the ASPaS
framework to generate the vectorization codes of parallel

1. In this paper, we distinguish the sorting network and the merging network.
2. We use the 32-bit Integer datatype as the representative of the one-word

type, and the 64-bit Double datatype for the two-word type.

sorting on Intel MIC. This work extends our previous re-
search in three directions: (1) for portability, we extend the
ASPaS framework to support AVX and AVX2 CPUs, e.g.,
Intel Ivy Bridge and Haswell, respectively; (2) for function-
ality, we extend ASPaS to vectorize parallel sorting codes for
{key, data} pairs required by many real-world applications;
(3) for performance, we further optimize our implemen-
tations of the code generation by using a cache-friendly
organization of generated kernels and an improved multi-
threading strategy. Finally, we conduct a series of new eval-
uations on three hardware architectures and demonstrate
the significant performance benefits compared to existing
parallel sorting tools.

2 BACKGROUND

This section presents (1) a brief overview of the vector ISAs
on modern x86-based systems, including the AVX, AVX2,
and IMCI. (2) a domain-specific language (DSL) to formalize
the data-reordering patterns in our framework, and (3) a
sorting and merging network.

2.1 Intel Vector ISAs

The VPUs equipped in the modern x86-based processors
are designed to perform one single operation over multiple
data items simultaneously. The width of the vectors and
richness of the instruction sets are continuously expanding
and evolving, thereby forming the AVX, AVX2, and IMCI.

AVX/AVX2 on CPU: The AVX is first supported by
Intel’s Sandy Bridge processors and each of their 16 256-bit
registers contains two 128-bit lanes (lane B and A in Fig. 1a),
together holding 8 floats or 4 doubles. The three-operands
in AVX use a non-destructive form to preserve the two
source operands. The AVX2 is available since the Haswell
processors and it expands the integer instructions in SSE
and AVX and supports variable-length integers. Moreover,
AVX2 increases the instructional functionalities by adding,
for example, gather support to load non-contiguous memory
locations and per-element shift instructions. In both AVX
and AVX2, the data-reordering operations contain permu-
tation within each 128-bit lane and cross the two lanes.
The latter is considered more expensive. Fig. 1a shows an
example of rearranging data in the same vector. We first
exchange the two lanes B and A and then conduct the in-lane
permutation by swapping the middle two elements. Fig. 1b
illustrates an another example of using the unpacklo in-
struction to interleave the odd numbers from two input
vectors. The specific instructions used in AVX and AVX2
might be different from one another.

IMCI on MIC: The MIC coprocessor consists of up to 61
in-order cores, each of which is outfitted with a new VPU.
The VPU state for each thread contains 32 512-bit general
registers, eight 16-bit mask registers, and a status register.
The IMCI is introduced in accordance with the new VPU.
Previous SIMD ISAs, e.g. SSE and AVX, are not supported
by the vector architecture of MIC, due to the issues from the
wider vector, transcendental instructions, etc. [16].

On MIC, each 512-bit vector is subdivided into four lanes
and each lane contains four 32-bit elements. Both of the
lanes and elements are ordered as DCBA. Fig. 1c illustrates
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(a) CPU: Reorder data within one vector

(b) CPU: Reorder data between two vectors

(c) MIC: Reorder data within one vector

(d) MIC: Reorder data between two vectors
Fig. 1: Rearrange data on Intel CPU and MIC from: (a,c) the same vector register
with the permute and shuffle instructions; (b,d) two vector registers with the
specific unpack instructions on CPU or masked swizzle instructions on MIC

the data rearrangement in the same vector register with the
shuffle and permute intrinsics. The permute intrinsic using
_MM_PERM_DBCA is for cross-lane rearrangement, which ex-
changes data in lanes C and B. The shuffle intrinsic conducts
the same operation but on the element-level within each
lane. Because the permute and shuffle intrinsics are executed
by different components of the hardware, it is possible to
overlap the permute and shuffle intrinsics with a pipeline
mode [2]. In the design of ASPaS, we use this characteristic
to obtain instruction-level overlapping. Fig. 1d shows pick-
ing data from two vector registers with the masked swizzle
intrinsics. To that end, we use the mask m1 to select elements
from either the swizzled vector of v1 or the vector v0, and
then store the result to a blended vector v2. The behavior of
the mask in Intel MIC is non-destructive, in that no element
in source v0 has been changed if the corresponding mask
bit is 0.

2.2 DSL for Data-Reordering Operations
To better describe the data-reordering operations, we adopt
the representation of a domain-specific language (DSL)
from [17], [18] but with some modification. In the DSL,
the first-order operators are adopted to define operations of
basic data-reordering patterns, while the high-order opera-
tors connect such basic operations into complex ones. Those
operators are described as below.
First-order operators (x is an input vector):
S2 (x0, x1) 7→ (min(x0, x1),max(x0, x1)). The comparing

operator resembles the comparator which accepts two

arbitrary values and outputs the sorted data. It can
also accept two indexes explicitly written in following
parentheses.

An xi 7→ xj , 0 6 i, j < n, iff Aij = 1. An represents an
arbitrary permutation operators denoted as a permuta-
tion matrix which has exactly one “1” in each row and
column.

In xi 7→ xi, 0 6 i < n. In is the identity operator and
outputs the data unchanged as its inputs. Essentially, In
is a diagonal matrix denoted as In = diag(1, 1, · · · , 1).

Lkm
m xik+j 7→ xjm+i, 0 6 i < m, 0 6 j < k. Lkm

m is a
special permutation operator, performing a stride-by-m
permutation on the input vector of size km.

High-order operators (A, B are two permutation operators):
(◦) The composition operator is used to describe a data

flow. An ◦ Bn means a n-element input vector is first
processed by An and then the result vector is processed
by Bn. The product symbol

∏
represents the iterative

composition.
(⊕) The direct sum operator is served to merge two oper-

ators. An ⊕ Bm indicates that the first n elements of
the input vector is processed by An, while the rest m
elements follow Bm.

(⊗) The tensor product we used in the paper will appear
like Im⊗An, which equals to An⊕· · ·⊕An. This means
the input vector is divided into m segments, each of
which is mapped to An.

With the DSL, a sequence of data comparing and re-
ordering patterns can be formalized and implemented by
a sequence of vector-matrix multiplications. Note that we
only use the DSL to describe the data-comparing and data-
reordering patterns instead of creating a new DSL.

2.3 Sorting and Merging Network

The sorting network is designed to sort the input data by
using a sequence of comparisons, which are planned out
in advance regardless of the value of the input data. The
sorting network may depend on the merging network to
merge pairs of sorted subarrays. Fig. 2a exhibits the Knuth
diagram [8] of two identical bitonic sorting networks. Each
4-key sort network accepts 4 input elements. The paired
dots represent the comparators that put the two inputs
into the ascending order. After threaded through the wires
of the network, these 4 elements are sorted. Fig. 2b is a
merging network to merge two sorted 4-key vectors to an
entirely sorted 8-key vector. Although sorting and merging
networks are usually adopted in the circuit designs, it is also
suitable for SIMD implementation thanks to the absence of
unpredictable branches.

(a) sorting networks (b) merging network
Fig. 2: Bitonic sorting and merging networks (a) Two 4-key sorting networks (b)
One 8-key merging network
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In this paper, the sorting and merging networks are rep-
resented by a list of comparators, each of which is denoted
as CMP(x, y) that indicates a comparison operation between
x-th and y-th elements of the input data.

3 FRAMEWORK AND GENERALIZED PATTERNS

The ASPaS parallel sorting uses an iterative bottom-up
scheme to sort and merge segmented data. Alg. 1 illustrates
the scheme: First, the input data are divided into contigu-
ous segments, each of whose size equals to the built-in
SIMD width to the power of 2. Second, these segments are
loaded into vector registers for sorting with the functions
of aspas_sort and aspas_transpose (the sort stage in
loop of ln. 3). Third, the algorithm will merge neighbor-
ing sorted segments to generate the output by iteratively
calling the function of aspas_merge (the merge stage in
loop of ln. 9). The functions of load, store, aspas_sort,
aspas_transpose, and aspas_merge will be generated
by ASPaS using the platform-specific intrinsics. Since the
load and store can be directly translated to the intrinsics
once the ISA is given, we focus on other three kernel
functions with the prefix aspas_ in the remaining sections.

Algorithm 1: ASPaS Parallel Sorting Structure

/* w is the SIMD width */
1 Function aspas::sort(Array a)
2 Vector v1, ..., vw;
3 foreach Segment seg in a do
4 // load seg to v1, ..., vw
5 aspas sort(v1, ..., vw);
6 aspas transpose(v1, ..., vw);
7 // store v1, ..., vw to seg
8 Array b← new Array[a.size];
9 for s←w; s < a.size; s*=2 do

10 for i←0; i < a.size; i+=2*s do
11 // merge subarrays a + i and a + i + s
12 // to b + i by calling Function aspas::merge()
13 // copy b to a
14 return;
15 Function aspas::merge(Array a, Array b, Array out)
16 Vector v, u;
17 // i0, i1, i2 are offset pointers on a, b, out
18 // load w numbers from a to v
19 // load w numbers from b to u
20 aspas merge(v, u);
21 // store v to out and update i0, i1, i2
22 while i0 6 a.size and i1 6 b.size do
23 if a[i0]6 b[i1] then
24 // load w numbers from a + i0 to v
25 else
26 // load w numbers from b + i1 to v
27 aspas merge(v, u);
28 // store v to out + i2 and update i0, i1, i2
29 // process the remaining elements in a or b
30 return;

Fig. 3 depicts the structure of the ASPaS framework to
generate the sort function. Three modules —SIMD Sorter,
SIMD Transposer, and SIMD Merger — are responsible for
building the sequences of comparing and data-reordering
operations for the aforementioned kernel functions. Then,
these sequences are mapped to the real SIMD intrinsics
through the module of SIMD Code Generator, and the codes
will be further optimized from the perspectives of memory
access pattern and thread-level parallelism (in Sec. 4).

3.1 SIMD Sorter
The operations of aspas_sort are taken care by the SIMD
Sorter. As shown in Fig. 4, aspas_sort loads n-by-n ele-
ments into n n-wide vectors and threads them through the

Fig. 3: The structure of ASPaS and the generated sort

given sorting network, leading to the data sorted for the
aligned positions across vectors. Fig. 5 presents an example
of a 4-by-4 data matrix stored in vectors and a 4-key sorting
network (including its original input macros). Here, each
dot represents one vector and each vertical line indicates
a vector comparison. The six comparisons rearrange the
original data in ascending order in each column. Fig. 5
also shows the data dependency between these compara-
tors. For example, CMP(0,1) and CMP(2,3) can be issued
simultaneously, while CMP(0,3) can occur only after these
two. It is natural to form three groups of comparators for
this sorting network. We also have an optimized grouping
mechanism to minimize the number of groups for other
more complicated sorting networks. For more details, please
refer to the original paper [15].

Fig. 4: Mechanism of the sort stage: operations generated by SIMD Sorter and
SIMD Transposer

Fig. 5: Four 4-element vectors go through the 4-key sorting network. Afterwards
data is sorted in each column of the matrix.

Since we have the groups of comparators, we can gen-
erate the vector codes for the aspas_sort by keep two
sets of vector variables a and b. All the initial data are
stored in the vectors of set a. Then, we jump to the first
group of the sorting network. For each comparator in the
current group, we generate the vector operations to compare
relevant vector variables, and store the results to the vectors
in set b. The unused vectors are directly copied to set
b. For the next group, we flip the identities of a and b.
Therefore, the set b becomes the input, and the results will
be stored back to a. This process continues until all groups
of the sorting network have been handled. All the vector
operations in the aspas_sort will be mapped to the ISA-
specific intrinsics (e.g., _mm256_max and _mm256_min on
CPUs) later by the SIMD Code Generator. At this point, the
data is partially sorted but stored in column-major order.
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3.2 SIMD Transposer

As illustrated in Fig. 4, the aspas_sort function has
scattered the sorted data across different vectors. The next
task is to gather them into the same vectors (i.e., rows)
for further operations. There are two alternative ways to
achieve the gathering: one directly uses the gather/scatter
SIMD intrinsics; and the other uses the in-register matrix
transpose over loaded vectors. The first scheme provides
a convenient means to handle the non-contiguous data in
memory, but with the penalty of high latency of accessing
scattered locations. The second one avoids latency penalty
at the expense of using complicated data-reordering oper-
ations. Considering the high latency of the gather/scatter
intrinsics and the incompatibility with architectures that do
not support gather/scatter intrinsics, we adopt the second
scheme in the SIMD Transposer. To decouple the binding be-
tween the operations of matrix transpose and the dedicated
intrinsics with various SIMD widths, we formalize the data-
reordering operations using the sequence of permutation
operators. Subsequently, the sequence will be handed over
to the SIMD Code Generator to generate the platform-specific
SIMD codes for the aspas_transpose function.

∏t−1
j=1(L2t

2 ◦ (I2t−j−1 ⊗ L2j+1

2j ) ◦ (I2t−j ⊗ L2j

2 ) ◦ L2t

2t−1 [vid, vid+2j−1 ]) (1)

Eq. 1 gives the operations performed on the preloaded
vectors for the matrix transpose, where w is the SIMD width,
t = log(2w), and for each j, id ∈ {i · 2j + n|0 6 i <
w
2j , 0 6 n < 2j−1}, which will form w

2j · 2
j−1 = w

2 pairs
of operand vectors. The sequence of permutation operators
preceded each operand pair will be applied on them. The
square brackets wrap these pairs of vectors.

4
22 LI 2

24 LI

4
22 LI 2

24 LI

8
41 LI 4

22 LI

8
41 LI 4

22 LI

8
4L

8
4L

8
4L

8
4L

8
2L

8
2L

8
2L

8
2L

Fig. 6: Four 4-element vectors transpose with the formalized permutation opera-
tors of DSL.

Fig. 6 illustrates an example of in-register transpose with
w = 4. The elements are preloaded into vectors v0, v1, v2,
and v3 and have been already sorted vertically. t − 1 = 2
indicates that there are 2 steps denoted as 1© and 2© in the
figure. For the step j = 1, the permutation operators are
applied on the pairs [v0, v1] and [v2, v3]; and for j = 2, the
operations are on the pairs [v0, v2] and [v1, v3]. After the
the vectors go through the two steps accordingly, the matrix
is transposed, and the elements are gathered in the same
vectors.

3.3 SIMD Merger

For now, the data have been sorted in each segment thanks
to the aspas_sort and aspas_transpose. Then, we use
the aspas_merge to combine pairs of sorted data into a
larger sequence iteratively. The SIMD Merger is responsible
for its comparison and data-reordering operations accord-
ing to given merging networks, e.g., odd-even and bitonic
networks. In ASPaS, we select the bitonic merging network
for three reasons: (1) the bitonic merging network can be
easily scaled to any 2n-sized keys; (2) there is no idle
element in the input vectors for each comparison step; and
(3) symmetric operations can facilitate the vector instruction
selection (discussed in Sec. 4.1). As a result, it is much easier
to vectorize the bitonic merging network than others. In
terms of implementation, we have provided two variants
of the bitonic merging networks [18] to achieve the same
functionality. Their data-reordering operations can be for-
malized, as shown below.

∏t
j=1(I2j−1 ⊗ L2t−j+1

2 ) ◦ (I2t−1 ⊗ S2) ◦ (I2j−1 ⊗ L2t−j+1

2t−j )[v, u] (2)

∏t
j=1 L

2t

2 ◦ (I2t−1 ⊗ S2)[v, u] (3)

Similar with Sec. 3.2, t = log(2w) and w is the SIMD
width. The operand vectors v and u represent two sorted
sequences (the elements of vector u are inversely stored
in advance). In Eq. 2, the data-reordering operations are
controlled by the variable j and varies in each step, while
in Eq. 3, the permutation operators are independent with j,
thereby leading to the uniform permutation patterns in each
step. Hence, we label the pattern in Eq. 2 as the inconsistent
and that in Eq. 3 as the consistent. These patterns will be
transmitted to and processed by the SIMD Code Generator
to generate the aspas_merge function. We will present the
performance comparison of these two patterns in Sec. 5.

8
2L 8

2L 8
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S2

S2

S2

S2

S2

S2

S2

S2

S2

S2
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S2
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S2

S2

S2

S2

S2

S2

S2

8
21 LI 8

41 LI 4
22 LI 4

22 LI 2
24 LI 2

11 LI

Fig. 7: Two formalized variants of bitonic merging networks: the inconsistent
pattern and the consistent pattern. All elements in vector v and u are sorted, but
inversed in vector u.

Fig. 7 presents an example of the two variants of bitonic
merging networks under the condition of w = 4. The data-
reordering operations from the inconsistent pattern keep
changing for each step, while those from the consistent one
stay identical. Though the data-reordering operations of the
two variants are quite different, both are able to successfully
achieve the same merging functionality within the same
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number of steps, which is actually determined by the SIMD
width w.

4 CODE GENERATION AND OPTIMIZATION

In the section, we will first show the searching mechanism
of ASPaS framework to find out the most efficient SIMD
instructions. Then, the generated codes will be optimized to
take advantage of memory hierarchy and multi/manycore
resources of x86-based systems.

4.1 SIMD Code Generator

This module in ASPaS accepts the comparison operations
from SIMD Sorter and the data-reordering operations from
SIMD Transposer and SIMD Merger in order to generate the
real ISA-specific vector codes. We will put emphasis on
finding the most efficient intrinsics for the data-reordering
operations, since mapping comparison operations to SIMD
intrinsics is straightforward. In the module, we first define
a SIMD-friendly primitive pool based on the characteristics
of the data-ordering operations, then dynamically build the
primitive sequences according to the matching score between
what we have achieved on the way and the target pattern,
and finally translate the selected primitives into the real
intrinsics for different platforms.

4.1.1 Primitive Pool Building
Some previous research, e.g., the automatic Fast Fourier
transform (FFT) vectorization [4], uses the exhaustive and
heuristic search on all possible intrinsics combinations,
which is time-consuming, especially for the richer instruc-
tion sets, such as IMCI. To circumvent the limitation, we
first build a primitive pool to prune the search space and
the primitives are supposed to be SIMD-friendly. The most
notable feature of the data-reordering operations for the
transpose and merge is the symmetry: all the operations
applied on the first half of input are equivalent with those
on the second half in a mirror style. We assume that all the
components of the sequences to achieve these operations
are also symmetric. We categorize these components as (1)
the primitives for the symmetric permute operations on the
same vector and (2) the primitives for the blend operations
across two vectors.

Permute Primitives: Considering 4 elements per lane (e.g.,
Integer or Float) or 4 lanes per register (e.g., IMCI register),
there are 44 = 256 possibilities for either intra-lane or inter-
lane permute operations. However, only those permutations
without duplicated values are useful in our case, reducing
the possibilities to 4! = 24. Among them, merely 8 sym-
metric data-reordering patterns will be selected, i.e. DCBA
(original order), DBCA, CDAB, BDAC, BADC, CADB, ACBD, and
ABCD, in which each letter denotes an element or a lane. If
we are working on 2 elements per lane (e.g., Double) or 2
lanes per register (e.g., AVX register), there are two sym-
metric patterns without duplicated values, i.e. BA (original
order) and AB.

Blend Primitives: While blending two vectors into one,
the elements are supposed to be equally and symmetrically
distributed from the two input vectors. Hence, we can
boil down the numerous mask modifiers to only a few.

We define a pair of blend patterns (0 2i, 2i 2i), where
0 6 i < log(w) and w is the vector width. Each blend
pattern in the pair represents a 2i+1-bit stream. The first
number 0 or 2i denotes the offset of the first set bit, and
the second number 2i is the number of consecutive set bits.
All the other bits are filled with clear bits. The bit streams
need to be extended to the vector width by duplicating
themselves w

2i+1 times. For example, if the w equal to 16,
there are 4 possible pairs of patterns: (0 1, 1 1), (0 2, 2 2),
(0 4, 4 4), and (0 8, 8 8). Among them, the pair (0 2, 2 2)
corresponds to i = 1, representing the bit streams (1100)4
and (0011)4 (The subscript 4 means the repetition times).

Now, we further categorize the primitives into 4 types
based on permute or blend and intra-lane or inter-lane.
Tab. 1 illustrates the categories and associative exemplar
operations, where the vector width w is set to 8 (2 lanes)
for clarity.

TABLE 1: Primitive Types

Type # Type Example (vector width=8)

0 intra-lane-permute ABCDEFGH→BADCFEHG (cdab)
1 inter-lane-permute ABCDEFGH→EFGHABCD (--ab)
2 intra-lane-blend ABCDEFGH | IJKLMNOP→ABKLEFOP (2 2)
3 inter-lane-blend ABCDEFGH | IJKLMNOP→IJKLEFGH (0 4)

The primitives are materialized into permutation matri-
ces in ASPaS. Since the blend primitives always operate on
two vectors (concatenated as one 2w vector), the dimensions
of the blend permutation matrices are expanded to 2w by
2w as well. Accordingly, for the permute primitives, we pair
an empty vector to the single input vector and specify the
primitive works on the first vector v or the second vector
u. Therefore, for example, if w = 16, there are 32=8(per-
mute primitives)∗2(intra-lane or inter-lane)∗2(operating on
v or u) and 8(4 pairs of the blend primitives) permutation
matrices. Fig. 8 illustrates examples of the permutation ma-
trices. The matrix “shuffle cdab v” and “shuffle cdab u”
correspond to the same permute primitive on the halves
of the concatenated vectors. The matrix “blend 0 1 v” and
“blend 1 1 u” correspond to one pair of blend primitives
(0 1, 1 1). So far, 4 sub-pools of permutation matrices are
created according to the 4 primitive types.
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0000
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0000
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0 b
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Fig. 8: Permute matrix representations and the pairing rules

4.1.2 Sequence Building

Two rules are used in the module to facilitate the search-
ing process. They are based on two observations from the
formalized data-reordering operations illustrated in Eq. 1,
Eq. 2, and Eq. 3. Obs.1 The same data-reordering operations
are always conducted on two input vectors. Obs.2 The
permute operations always accompany the blend operations
to keep the symmetric pattern. Fig. 9 exhibits the symmetric
patterns, which are essentially the first step in Fig. 6. The
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default blend is limited to pick elements from aligned posi-
tions of two input vectors, while the symmetric blend can
achieve an interleaving mode by coupling permute primi-
tives with blend primitives, as the figure shown. Hence, the
usage of the two rules in the sequence building algorithm
are described as below.
Rule 1: when a primitive is selected for one vector v, pair the
corresponding primitive for the other vector u. For a per-
mute primitive, the corresponding permute has the totally
same pattern; while for a blend primitive, the corresponding
blend has the complementary blend pattern (i.e. the bit
stream, which has already been paired).
Rule 2: when a blend primitive is selected, pair it with
the corresponding permute primitive: pair the intra-lane-
permute of swapping adjacent elements (CDAB) for (0 1,
1 1) blend, the intra-lane-permute of swapping adjacent
two elements (BADC) for (0 2, 2 2), the inter-lane-permute
of swapping adjacent lanes (CDAB) for (0 4, 4 4), and the
inter-lane-permute of swapping adjacent two lanes (BADC)
for (0 8, 8 8).

(a) sym-blend (b) sym-blend(details)
Fig. 9: Symmetric blend operation and its pairing details

The sequence building algorithm targets at generating
sequences of primitives to achieve given data-reordering
patterns for Eq. 1, Eq. 2, and Eq. 3. Two w-sized input
vectors of v and u are used and concatenated into the vecinp.
Its initial elements are set to the default indices (from 1 to
2w). The vectrg is the target derived by applying the given
data-reordering operators on the vecinp. Then, the building
algorithm will select the permutation matrices from the
primitive pool, do the vector-matrix multiplications over
the vecinp, and check whether the intermediate result vecim
approximates the vectrg by using our defined two matching
scores:

l-score lane-level matching score, accumulate by one when
the corresponding lanes have exactly same elements (no
matter orders).

e-score element-level matching score, increase by one when
the element matches its counterpart in the vectrg.

Suppose we have a vector of w (vector width) and e
(number of elements per lane), the maximum l-score equals
to 2w/e when all the aligned lanes from two vectors match,
while the maximum e-score is 2w when all the aligned
elements match. With the matching scores, the process of
sequence building is transformed to finding the maximum
scores. For example, if we have the input “AB|CD|EF|GH”
and the output “HG|DC|FE|BA” (assuming four lanes and
two elements per lane), we first search primitives for
the inter-lane reordering, e.g, from “AB|CD|EF|GH” to
“GH|CD|EF|AB”, and then search primitives for the intra-
lane reordering and reach to, e.g., from “GH|CD|EF|AB” to
“HG|DC|FE|BA”. By checking the primitives hierarchically,

we add those primitives increasing l-score or e-score and
thus approximate to the desired output pattern.

Alg. 2 shows the pseudocode of the sequence building
algorithm. The input contains the aforementioned vecinp and
vectrg. The output seqsret is a container to hold the built
sequences of primitives, which will be translated to the
real ISA intrinsics soon. The seqscand is to store candidate
sequences and initialized to contain a ø sequence. First, the
algorithm checks the initial vecinp with the vectrg and get the
l-score. If it equals to 2w/e, meaning aligned lanes have al-
ready matched, we only need to select “intra-lane-permute”
primitives (ln. 4) to improve the e-score. Otherwise, we will
work on the sub-pools of type 1, 2, or 3 in a round-robin
manner. In the while loop, for each sequence in seqscand,
we first calculate the l scoreold, and then we will calculate
the l scorenew by tentatively adding primitives one by one
from the current sub-pool. If the primitive prim comes from
the “inter-lane-permute”, we produce the paired permute
primitive primprd based on the Rule 1 (ln. 14). If prim is
from the blend types, we produce the paired blend primitive
primprd based on the Rule 1 and then find their paired
permute primitives perm0 and perm1 based on the Rule
2 (ln. 18-20). The two rules help to form the symmetric
operations.

After the selected primitives have been applied, which
corresponds to several vector-matrix multiplications, we can
get a vecupd, leading to a new l-score l scorenew compared
to vectrg (ln. 25). If the l-score is increased, we add the
sequence of the selected primitives to seqscand for further
improvement. The threshold (ln. 7) is a configuration param-
eter to control the upper bound of how many iterations the
algorithm can tolerate, e.g., we set it to 9 in the evaluation
in order to find the sequences as many as possible. Finally,
we use PickLaneMatched to select those sequences that
can make l-score equal to 2w/e, and go to the “intra-
lane-permute” selection (ln. 32), which can ensure us the
complete sequences of primitives.

4.1.3 Primitives Translation

Now, we can map the sequences from the seqsret to the real
ISA intrinsics. Although the vector ISAs from CPU or MIC
platforms are distinct from one another, we can still find
desired intrinsics thanks to the SIMD-friendly primitives. If
there are multiple selections to achieve same primitive, we
always prefer the selection having least intrinsics.

On MIC: if there are multiple shortest solutions ex-
ist, we use the interleaved style of inter-lane and intra-
lane primitives, which could be executed with a pipeline
mode on MIC as discussed in Sec. 2.1. For the primitives
from “intra-lane-permute” and “inter-lane-permute”, we di-
rectly map them into vector intrinsics of _mm512_shuffle
and _mm512_permute4f128 with appropriate permute
parameters. For the primitives from “intra-lane-blend” and
“inter-lane-blend”, we map them to the masked vari-
ants of permute intrinsics _mm512_mask_shuffle and
_mm512_mask_permute4f128. The masks are derived
from their blend patterns. Furthermore, when a primitive
is from “intra-lane” and its parameter is supported by the
swizzle intrinsics, we will use the light-weighted swizzle
intrinsics to optimize the performance.
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Algorithm 2: Sequence Building Algorithm

Input: vecinp, vectrg
Output: seqsret

1 Sequences seqscand ← new Sequences(∅); // put an null
sequence

2 Int l scoreinit ←LaneCmp(vecinp, vectrg);
3 if l scoreinit=2w/e then
4 seqsret ← InstSelector(seqscand,Type[0]);
5 else
6 i←1;
7 while not Threshold() do
8 ty ←Type[i];
9 foreach Sequence seq in seqscand do

10 vecim ←Apply(vecinp, seq);
11 l scoreold ←LaneCmp(vecim, vectrg);
12 foreach Primitive prim in ty do
13 if n=1 then
14 primprd ←Pair(prim, RULE1);
15 vecupd ←Apply(vecim, prim + primprd);
16 seqext ←prim + primprd;
17 else
18 primprd ←Pair(prim, RULE1);
19 perm0 ←Pair(prim, RULE2);
20 perm1 ←Pair(primprd, RULE2);
21 vecupd0 ←Apply(vecim, perm0 + prim);
22 vecupd1 ←Apply(vecim, perm1 + primprd);
23 vecupd ←Combine(vecupd0, vecupd1);
24 seqext ←perm0 + prim + perm1 + primprd;
25 l scorenew ←LaneCmp(vecupd, vectrg);
26 if l scorenew > l scoreold then
27 seqsbuf.add(seq + seqext);
28 seqscand.append(seqsbuf);
29 seqsbuf.clear();
30 i←((++i)-1)%3+1;
31 seqssel ←PickLaneMatchedSeqs(seqscand);
32 seqsret ← InstSelector(seqssel,Type[0]);
33 Function InstSelector(Sequences seqscand,Type ty)
34 foreach Sequence seq in seqscand do
35 vecim ←Apply(vecinp, seq);
36 foreach Primitive prim in ty do
37 primprd ←Pair(prim, RULE1);
38 vecupd ←Apply(vecim, prim + primprd);
39 e score←ElemCmp(vecupd, vectrg);
40 if e score=2w then
41 seqsret.add(seq + prim + primprd);
42 return seqsret;

On CPU: for the primitives from “intra-lane-permute”
and “inter-lane-permute”, we map them into vec-
tor intrinsics of AVX’s _mm256_permute (or AVX2’s
_mm256_shuffle3) and _mm256_permute2f128 with
appropriate permute parameters. For the primitives of blend
primitives, we need to find specific combinations of intrin-
sics, since there are no similar mask mechanisms in AVX
or AVX2 as IMCI. For “intra-lane-blend” primitives, if the
blend pattern is picking interleaved numbers from two vec-
tors, e.g., 0101 or 1010, we use the _mm256_unpacklo and
_mm256_unpackhi to unpack and interleave the neigh-
boring elements. In contrast, for the patterns that select
neighboring two elements, e.g., 0011 or 1100, we use AVX’s
_mm256_shuffle, which can take two vectors as input and
pick every two elements from each input. For the “inter-
lane-blend” primitives, we use _mm256_permute2f128.
Note that, since many intrinsics in AVX only support op-
erations on floating point elements, we have to cast the
datatypes if we are working on integers; while on AVX2, we
can directly use intrinsics handling integers without casting.
As a result, for parallel sorting on integers, the generated
codes on AVX2 may use much less intrinsics than those on
AVX.

3. AVX’s _mm256_shuffle is different from AVX2’s and it reorders data from
two input vectors

4.2 Organization of the ASPaS Kernels
So far, we have generated three building kernels
in ASPaS: aspas_sort(), aspas_transpose(), and
aspas_merge(). As shown in Fig. 10, we carefully orga-
nize these kernels to form the aspas::sort as illustrated
in Alg. 1. Note that this figure shows the sort, transpose, and
merge stages on each thread and the multithreaded imple-
mentation will be discussed in the next subsection. First, the
aspas_sort() and aspas_transpose() are performed
on every segment of the input to create a partially sorted
array. Second, we enter the merge stage. Rather than directly
merging the sorted segments level by level in our previous
research [15], we adopt the multiway merge [19], [20]: merge
the sorted segments for multiple levels in each block, the
cache-sized trunk, to fully utilize the data in the cache until
we move to the next block. This strategy is cache-friendly,
since it avoids frequently swapping data in and out the
cache. When the merged segments are small enough to
fit into the LLC, which is usual in first several levels, we
take this multiway merge strategy. For the large segments
in the later levels, we fall back to the two-way merge.
Similar to existing libraries, e.g., STL, Boost, and TBB, we
also provide the merge functionality for programmers as a
separate interface. The interface aspas::merge is similarly
organized as aspas::sort shown in the figure but only
uses aspas_merge().

Fig. 10: The organization of ASPaS kernels for the single-threaded aspas::sort

4.3 Thread-level Parallelism
In order to maximize the utilization of multiple cores of
modern x86-based systems, we integrate the aspas::sort
and aspas::merge with the thread-level parallelism using
Pthreads. Initially, we split the input data into separate
parts, each of which is assigned to one thread. All the
threads can sort their own parts using the aspas::sort
independently. Then, we merge each thread’s sorted part
together. The simplest way might be assigning half of the
threads to merge two neighboring sorted parts into one by
iteratively calling the aspas::merge until there is only
one thread left. However, this method significantly under-
utilizes the computing resources. For example, in the last
level of merging, there is only one thread merging two
trunks but all the other threads are idle. Therefore, for the
last several levels of merging, we adopt MergePath [21] to
let multiple threads merge two segments. Assume for each
two sorted segments with the lengths of m and n, we have
k threads working on them. First, each thread calculates the
i/k-th value in the imagined merged array without actually
merging the inputs, where the i is the thread index. This step
can be done in O(log(m+n)). Second, we split the workloads
into k exclusive and balanced portions according to the k
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splitting values. Finally, each thread can merge their as-
signed portions independently. Note, this strategy is capable
of minimizing the data access overhead on remote memory
bank of NUMA architecture, since the array is equally split
and stored in each memory bank and a thread will first
merge data in the local memory region, and then on demand
access remote data in a serial mode [19]. In the evaluation,
our multithreaded version adopts this optimized design.

4.4 Sorting of {key,data} Pairs

In many real-world applications, sorting is widely used to
reorder some specific data structures based on their keys. To
that end, we extend ASPaS with this functionality: generate
the vectorization codes to sort {key, data} pairs, where the
key represents the target for sorting and the data is the ad-
dress to the data structures containing that key. The research
work [20] proposes two strategies to sort {key, data} pairs.
The first strategy to sort {key, data} pairs is to pack the
relative key and data into a single entry. Then, sorting the
entries is equivalent to sorting the keys, since the keys are
placed in the high bits. However, if the sum of lengths of key
and data exceeds the maximum length of the built-in data
types, it is non-trivial to carry this strategy out. The second
strategy is to put the keys and data into two separate arrays.
While sorting the keys, the comparison results are stored as
masks that will be used to control the data-reordering of
associative data. In this paper, we use the second method.
Differed from [20], which focuses on the 32-bit key and data,
ASPaS is able to handle different combinations of 32/64-bit
keys and 32/64-bit data and their varied data-reordering
patterns accordingly.

For implementation, ASPaS uses compare intrinsics rather
than max/min intrinsics to get appropriate masks. The masks
may need be stretched or split depending on the differences
between the lengths of keys and data. With the masks, we
use blend intrinsics on both key vectors and data vectors to
reorder elements. Tab. 2 shows how the building modules
are used to find the desired intrinsics for key and data
vectors, respectively.

In the table, w represents the number of keys the built-
in vector can hold. The modules are in the format of mod-
Name[count](vlist), which means generating the modName
data-reordering intrinsics for vectors in vlist and each vector
contains count elements. There are three possible combina-
tions for different keys and data: (1) When the key and data
has the same length, we use the totally same data-reordering
intrinsics on the key and data vectors. (2) When the data
length doubles the key length, we correspondingly double
the number of vectors to hold the enlarged data values.
Then, the building modules are performed on halves of the
input data vectors as shown in the table: for transpose, we
need to use four times intrinsics on data vectors than key
vectors to transpose four blocks of data vectors, and change
the layout of data vectors from [00, 01, 10, 11] to [00, 10,
01, 11]; for merge, we need to double the intrinsics on data
vectors than key vectors since the input vectors are doubled.
(3) When the key length exceeds the data length, we take
distinct strategies according to the platforms. On CPU, we
simply use the SSE vector ISA, because of the backward
compatibility of AVX. On MIC, since the platform doesn’t

support previous vector ISA, we keep the effective values
always in the first halves of each 512-bit vectors.

One may wonder why we need to reorder the data along
with the key in each step rather than do it only in the
final step. The reason is that this alternative requires an
additional “index” vector to keep track of key movement,
which occurs during each step of reordering of the keys.
Thus, it is same to our strategy because the data in our
method is the address to the real data structure. Moreover,
the reordering of data in our method has adopted ISA intrin-
sics for vectorization, which can avoid the irregular memory
access. In the perspective of performance, the execution time
of sorting {key,data} pairs grows asymptotically compared
to sorting the pure key array. Henceforth, we will focus on
the performance analysis of sorting pure key array in the
evaluation section.

5 PERFORMANCE ANALYSIS

ASPaS supports major built-in data types, i.e., integers,
single and double precision floating point numbers. In our
evaluation, we use the Integer for the one-word type (32-bit)
and the Double for the two-word type (64-bit). Our codes
use different ISA intrinsics according to the different plat-
forms. Tab. 3 shows the configurations of the three platforms
with Intel Ivy Bridge (IVB), Haswell (HSW), and Knights
Corner (KNC), respectively. The ASPaS programs are im-
plemented in C++11 and compiled using Intel compiler icpc
15.3 for HSW and KNC and icpc 13.1 for IVB. On CPUs,
we use the compiler options of -xavx and -xCORE-AVX2 to
enable AVX and AVX2, respectively. On MIC, we run the
experiments using the native mode and compile the codes
with -mmic. All codes in our evaluations are optimized in
the level of -O3. All the input data are generated randomly
ranging from 0 to the data size, except in Sec. 5.5. This
paper focuses on the efficiency of vectorization; and we
show detailed performance analysis on a single thread in
most sections, while Sec. 5.4 evaluates the best vectorized
codes in a multi-core design.

5.1 Performance of Different Sorting Networks

We first test the performance of the aspas_sort and
aspas_merge kernels, whose implementation depends on
the input sorting and merging networks. For brevity, we
only show the graphical results of Integer datatype. We
repeat the execution of the kernels for 10 million times and
report the total seconds in Fig. 11.

In the sort stage, ASPaS can accept any type of sorting
networks and generate the aspas_sort function. We use
five sorting networks, including Hibbard (HI) [10], Odd-
Even (OE) [9], Green (GR) [22], Bose-Nelson (BN) [11], and
Bitonic (BI) [9]. In Fig. 11, since GR cannot take 8 elements
as input, the performance for it on CPUs is not available.
The labels of x-axis also indicate how many comparators
and groups of comparators in each sorting network are.
On CPUs, the sorting networks have same number of com-
parators except the BI sort, thereby yielding negligible time
difference with a slight advantage to BN sort on IVB. On
MIC, GR sort has the best performance that stems from
the less comparators and groups, i.e., (60, 10). Although
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TABLE 2: The building modules to handle the data-reordering for {key,data} pairs in ASPaS

{key,data} Input (key) Building Modules (key) Input (data) Building Modules (data)
32-bit, 32-bit v0,v1,...,vw−1 Transpose[w](v0,v1,...,vw−1) v,

0,v,
1,...,v,

w−1 Transpose[w](v,
0,v,

1,...,v,
w−1)

64-bit, 64-bit v,u Merge Reorder[w](v,u) v,,u, Merge Reorder[w](v,,u,)

32-bit, 64-bit v0,v1,...,vw−1 Transpose[w](v0,v1,...,vw−1) v,
0,v,

1,v,
2,v,

3,
[

Transpose[w/2](v,
0,v,

2,...,v,
w−2), Transpose[w/2](v,

w+0,v,
w+2,...,v,

2w−2)
]

...,v,
2w−2,v,

2w−1 Transpose[w/2](v,
1,v,

3,...,v,
w−1), Transpose[w/2](v,

w+1,v,
w+3,...,v,

2w−1)
v,u Merge Reorder[w](v,u) v,

0,v,
1,u,

0,u,
1 Merge Reorder[w/2](v,

0,u,
0); Merge Reorder[w/2](v,

1,u,
1)

64-bit, 32-bit v0,v1,...,vw−1 Transpose[w](v0,v1,...,vw−1) v,
0,v,

1,...,v,
w−1† Transpose[w](v,

0,v,
1,...,v,

w−1)
v,u Merge Reorder[w](v,u) v,,u,† Merge Reorder[w](v,,u,)

†: On MIC, only the first halves of each vector are effective; On CPU, SSE vectors are adopted.

TABLE 3: Testbeds for ASPaS

Model Intel Xeon CPU Intel Xeon CPU Intel Xeon Phi
E5-2697 v2 E5-2680 v3 5110P

Codename Ivy Bridge Haswell Knights Corner
Frequency 2.70GHz 2.50GHz 1.05GHz
Cores 24 24 60
Threads/Core 2 1 4
Sockets 2 2 -
L1/L2/L3 32kb/256kb/30mb 32kb/256kb/30mb 32kb/512kb/-
Vector ISA AVX AVX2 IMCI
Memory 64GB 128GB 8GB
Mem Type DDR3 DDR3 GDDR5

BI sort follows a balanced way to compare all elements
in each step and is usually considered as a candidate for
better performance, it uses more comparators, leading to
the relatively weak performance for the sort stage. Base on
the results, in the remaining experiments, we choose the BN,
OE, and GR sorts for the Integer datatype on IVB, HSW, and
KNC, respectively. For the Double datatype, we also choose
the best one, i.e., OE sort, for the rest of the experiments.

(a) IVB (b) HSW (c) KNC

Fig. 11: Performance comparison of aspas_sort and aspas_merge with differ-
ent sorting and merging networks. The kernels are repeated by 10 million times
over a built-in vector-length array and total times are reported. The numbers of
comparators and groups are given in parenthesis for sorting networks.

In the merge stage, we set two variants of bitonic merging
networks (Eq. 2 and Eq. 3 in Sec. 3.3) as the input of ASPaS.
Fig. 11 also presents the performance comparisons for these
two variants. The inconsistent merging can outperform the
consistent one by 12.3%, 20.5%, and 43.3% on IVB, HSW,
and KNC, respectively. Although the consistent merging
has uniform data-reordering operations in each step as
shown in Fig. 7, the operations are not ISA-friendly and
thus requires a longer sequence of intrinsics. For example,
based on Eq. 3, the consistent merging uses 5 times of
the L32

2 data reordering operations on MIC, each of which
needs 8 permute/shuffle IMCI intrinsics. In contrast, the
inconsistent merging only uses L32

2 once and compensate
it with much lighter operations (e.g., I1⊗L32

16 ◦ I2⊗L16
2 and

I2⊗L16
8 ◦ I4⊗L8

2, each of which can be implemented by an
average of 2 IMCI intrinsics). On CPUs, the L16

2 operation in
the consistent variant only needs 4 AVX intrinsics, leading
to the smaller disparity. But, in all cases, the inconsistent
bitonic merge provides the best performance. The Double

datatype exhibits similar behaviors. Thus we will adopt the
inconsistent merging in the remaining experiments.

5.2 Speedups from the ASPaS Framework
In this section, we compare the ASPaS sort and merge
stages with their serial counterparts. The counterparts of
aspas_sort and aspas_merge are serial sorting and
merging networks (one comparison and exchange at a time)
respectively. Note, in the sort stage, the aspas_transpose
is not required in the serial version, since the partially sorted
data can be stored directly in a consecutive manner. Ideally,
the speedups from the ASPaS should approximate the built-
in vector width; though this is impractical because of the
extra and required data reordering instructions. By default,
the compiler will auto-vectorize the serial codes4, which is
denoted as “compiler-vec”. Besides, we explicitly turn off
the auto-vectorization, which is shown as “no-vec”.

(a) IVB (integer) (b) IVB (double)

(c) HSW (integer) (d) HSW (double)

(e) KNC (integer) (f) KNC (double)

Fig. 12: ASPaS vs. icpc optimized (“compiler-vec”) and serial (“no-vec”) codes.
For the merge stages, the lines of “compiler-vec” and “no-vec” usually overlap.

For the sort stages with Integer datatype on CPUs in
Fig. 12 (a,c), the ASPaS codes can deliver more performance
improvements on HSW over IVB, since the AVX on IVB
does not support native integer operations as in AVX2.
Thus, we have to split the AVX vector to two SSE vectors
before resorting to the SSE ISA for comparisons. For the sort

4. We also use the SIMD pragma pragma vector always on the target loops
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stages with Double in Fig. 12 (b,d), the ASPaS codes exhibit
similar performance gains over “no-vec”, achieving slight
1.1˜1.2x speedups. The vectorization benefits of Double drop
down because less elements in each vector than Integer,
leading to relatively higher data reordering overhead. On
KNC, ASPaS Integer and Double sort codes in Fig. 12 (e,f)
outperform the “no-vec” counterparts up to 10.5x and 6.0x.
In addition, the ASPaS codes can also achieve better per-
formance than the “compiler-vec” versions in most cases.
By analyzing the generated assembly codes in “compiler-
vec”, we find: on IVB, the compiler uses multiple insert
instructions to construct vectors slot by slot from non-
contiguous memory locations; instead, the gather instruc-
tions are used on HSW and KNC. However, neither can
mitigate the high latency of non-contiguous memory access.
The ASPaS codes, in contrast, can outperform the “compiler-
vec” by using the load/store on the contiguous data and
the shuffle/permute for the transpose in registers. We
also observe that in Fig. 12 (d) the “compiler-vec” of sort
stage slowdowns the execution compared to the “no-vec”.
This may stem from the fact that the HSW supports vec-
tor gather but no equivalent vector scatter operations.
The asymmetric load-and-store fashion on non-contiguous
data with larger memory footprint (Double) causes negative
impacts on the performance [1].

The merge stages in Fig. 12 on the three platforms show
that the “compiler-vec” versions have the similar perfor-
mance with the “no-vec”. This demonstrates that even with
the most aggressive vectorization pragma, the compiler
fails to vectorize the merge codes due to the complex data
dependency within the loops.

5.3 Comparison to Previous SIMD Kernels
In this section, we compare our generated kernels with

those manually optimized kernels proposed in previous
research. These existing vector codes also focus on using
vector instructions and sorting networks to sort small arrays
with sizes of multiple of SIMD-vector’s length. The reasons
for comparing kernels with smaller data sizes rather than
any large data size are following: (1) the kernels for sorting
small arrays are usually adopted to construct efficient par-
allel sort algorithms in a divide-and-conquer manner (e.g.,
quick-sort [23], [24], merge-sort [20], [25]), where input data
is split into small chunks each of which fits into registers, the
sort kernel is applied on each chunk, and the merge kernel
is called iteratively to merge chunks until there is only one
chunk left. Under this circumstance, the overall performance
significantly depends on the vectorization kernels [23]; (2)
Our major motivation of this paper is to efficiently generate
combinations of permutation instructions instead of propos-
ing a new divide-and-conquer strategy for any large data
size. As a result, we compare vector codes from Chhugani
et al. (CH) [20] and Inoue et al. (IN) [19] on CPUs; while
on MICs, we compare vector codes from Xiaochen et al.
(XI) [26] and Bramas (BR) [24]. The datatype in this ex-
periment is the 32-bit integer5. We use one core (vector

5. The BR paper [24] only provides AVX-512 codes for Knights Land-
ing (KNL). Therefore, we have to port the codes using corresponding
IMCI instructions on KNC, e.g., replacing permutexvar_pd with
permutevar_epi32 and correct parameters.

unit) to process randomly-generated data in the segment
of 8x8=64 integers for CPUs and of 16x16=256 integers
for MICs, respectively. The experiments are repeated for 1
million times and we report the total execution time.

Fig. 13: ASPaS kernels vs. Previous manual approaches. We repeatedly (1 million
times) sort 8x8=64 integers for CPUs and 16x16=256 integers for MICs, respec-
tively. The time on data load from memory to registers and store from registers
to memory are included with the sort and merge in registers.

Fig. 13 shows the performance comparison. On CPUs,
both CH and IN methods use SSE instructions to handle
intra-lane data-reordering, leading to extra instructions used
to process inter-lane communications. Compared to our
generated codes using AVX/AVX2 instructions, these solu-
tions are relatively easier to implement, because they only
need to process vector lanes one by one and there are always
one unused lane for every operation, thus delivering sub-
optimal performance. To use the AVX/AVX2 instructions,
one has to redesign their method and consider the different
register length and corresponding instructions. In contrast,
our solution automatically looks for the architecture-specific
instructions to handle both intra- and inter-lane communi-
cations and deliver up to 3.4x speedups over these manual
approaches. On MICs, the XI method adopts mask instruc-
tions to disable some elements for each min/max operation.
These unused slots inevitably under-utilize the vector re-
sources. The BR method, on the other hand, directly uses
the expensive permutexvar instructions to conduct the
global data-reordering. As a contrast, our code generation
framework can satisfy the underlying architectures, e.g.,
preferring lightweight intra-lane and swizzle instructions
when making the code generation. Therefore, on the KNC
platform, our codes can provide up to 1.7x performance
improvements over the manually optimized methods.

5.4 Comparison to Sorting from Libraries

In the section, we will evaluate the single-threaded as-
pas::sort and multi-threaded aspas::parallel_sort
by comparing them with their related mergesorts and vari-
ous sorting tools from existing libraries.

Single-threaded ASPaS: ASPaS is essentially based on
the bottom-up mergesort as the partition strategy. We
first compare the single-threaded aspas::sort with two
mergesort variants: top-down and bottom-up. The top-
down mergesort recursively splits the input array until
the split segments only have one element. Subsequently,
the segments are merged together. As a contrast, the
bottom-up mergesort, which directly works on the ele-
ments in the input array and iteratively merge them into
sorted segments. For their implementation, we use the
std::inplace_merge as the kernel to conduct the actual
merging operations. Fig. 14 (a,b,c) illustrate the correspond-
ing performance comparison on IVB, HSW, and KNC. The
bottom-up mergesort can outperform the top-down slightly
due to the recursion overhead in the top-down method.
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The ASPaS of Integer datatype outperforms the bottom-
up mergesorts by 4.3x to 5.6x, while the Double datatype
provides 3.1x to 3.8x speedups.

ASPaS can efficiently vectorize the merge stage, even
though the complexity of ASPaS merging is higher than
the std::inplace_merge used in the bottom-up merge-
sort. In ASPaS, when merging each pair of two sorted
segments, we fetch w elements into a buffer from each
segment and then merge these 2w elements using the 2w-
way bitonic merging. After that, we store the first half of
merged 2w elements back to the result, and load w elements
from the segment with the smaller first element into the
buffer; and then, the next round of bitonic merge will
occur (ln. 18-28 in Alg. 1). Since the 2w-way bitonic merg-
ing network contains 2log(2w)2log(2w)−2 comparators [9],
for every w elements, the total number of comparisons is
(N/w) ∗ 2log(2w)2log(2w)−2 = log(2w)N . As a contrast, the
std::inplace_merge conducts exactly N-1 comparisons
if enough additional memory is available. Therefore, the
comparisons in the bottom-up mergesort are considerably
less than what we use in Alg. 1. However, because our code
carries out better memory access pattern: fetching multiple
contiguous data from the memory and then conducting the
comparisons in registers with a cache-friendly manner, we
observe better performance of aspas::sort over any of
the bottom-up mergesort on all three platforms in Fig. 14
(a,b,c).

(a) IVB (mergesort) (b) HSW (mergesort)

(c) KNC (mergesort) (d) IVB (tbb’s sort)

(e) HSW (tbb’s sort) (f) KNC (tbb’s sort)

Fig. 14: (a,b,c): aspas::sort vs. the top-down and bottom-up mergesorts; (d,e,f):
aspas::parallel_sort vs. the Intel TBB parallel sort.

Then, we compare the aspas::sort with other exist-
ing sorting tools from widely-used libraries, including the
qsort and sort from STL (libstdc++.so.6.0.19), sort from
Boost (v.1.55), and parallel_sort from Intel TBB (v.4.1)
(using a single thread). Fig. 15 presents that the ASPaS codes
can provide the highest performance over the other four

sorts. The aspas::sort on the Integer array can achieve
4.2x, 5.2x, and 5.1x speedups over the qsort on IVB, HSW,
and KNC, respectively (qsort is also notorious about its
function callback for every comparison.). Over the other
sorting tools, it can still provide up to 2.1x, 3.0x, and 2.5x
speedups. For Double datatype, the performance benefits of
aspas::sort become 3.8x, 2.9x, and 3.1x speedups over
the qsort, and 1.8x, 1.7x, 1.3x speedups over others on the
three platforms correspondingly.

(a) IVB (general sorts) (b) HSW (general sorts)

(c) KNC (general sorts) (d) Legends

Fig. 15: aspas::sort vs. library sorting tools.

Multi-threaded ASPaS: In Fig. 14 (d,e,f), we com-
pare the multi-threaded ASPaS to the Intel TBB’s par-
allel_sort for a larger dataset from 12.5 to 400 mil-
lion Integer and Double elements. We configure the thread
numbers to the integral multiples of cores and select the
one that can provide the best performance. On the three
platforms, our aspas::parallel_sort can outperform
the tbb::parallel_sort by up to 2.5x, 2.3x, and 6.7x
speedups for the Integer datatype and 1.2x, 1.7x, and 5.0x
speedups for the Double datatype.

5.5 Sorting Different Input Patterns
Finally, we evaluate the aspas::sort using different

input patterns. As shown in Fig. 16 (d), we use five input
patterns defined in the previous research [23], including
random, even/odd, pipe organ, sorted, and push front
input. With these input patterns, we can further evaluate
the performance of our generated vector codes with existing
methods from widely used libraries.

In Fig. 16 (d), we can find that the sorting tools from
modern libraries can provide better performance than our
generated codes for the almost sorted inputs, i.e., “sorted”
and “push front”. That is because these libraries can be
adaptive to different patterns by using multiple sorting
algorithms. For example, std::sort uses a combination
of quick sort and insertion sort. For an almost sorted input
array, std::sort switches from the partition of the quick
sort to the insertion sort, which is good at handling the
sorted input within O(n). As a contrast, our work focuses on
automatically generating efficient sorting kernels for more
general cases, e.g., random, even/odd, and pipe organ. At
these cases, our sorting codes can yield superior perfor-
mance.
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(a) IVB (b) HSW

(c) KNC

Random

Even/Odd

Pipe Organ

Sorted

Push Front

(d) Legends and Input Patterns

Fig. 16: Performance of ASPaS sorting different input patterns.

6 RELATED WORK

Sorting is a widely-used algorithm in a plethora of appli-
cations. Many research efforts have been made to modify
and optimize sorting algorithms on such modern hardware
architectures. The early research done by Levin [27] has
adapted sorting algorithms on vector computers by fully
vectorizing both partition and base cases of quick sort on
Cray and Convex. The sss-sort [28] and the sort by Codish
et al. [23] focus on eliminating conditional branches in
the generalized quick sort and facilitate the instruction-
level parallelism. The cpp-sort [29] provides a set of fixed-
size sorters for users to synthesize sorting algorithms. The
sorters are based on sorting network but not explicitly using
vector instructions.

Satish et al. [25], [30] compare and analyze the radix sort
and merge sort on modern accelerators, including CPUs and
GPUs, and point out that the merge sort is superior, since it
can benefit more from the efficient SIMD operations in mod-
ern accelerators. Furtak et al. [31] use SIMD optimizations to
solve the base cases of recursive sorting algorithms. The AA-
sort [32] is a two-phase sorting algorithm with vectorized
combsort and odd-even merge on CPUs. Chhugani et al. [20]
devise another SIMD-friendly mergesort algorithm by using
the odd-even and bitonic sorting networks. Their solution
provides an architecture-specific and hard-coded solution
of SSE and Larrabee ISAs but not revealing many details
on how the parameters are selected and how to deal with
data across vector lanes (e.g., on Larrabee). Inoue et al. [19]
propose a stable sorting SIMD algorithm to rearrange the
actual database records. On MICs, Bramas [24] proposes
an efficient partition solution for quicksort by using “store
some” instructions in AVX-512. Xiaochen et al. [26] studies
the bitonic merge sort using both mask and permute IMCI
instructions. These existing studies have to explicitly use
SIMD intrinsics to handle the tricky data-reordering opera-
tions required by different sorting and merging algorithms;
while our work, in contrast, formalizes the patterns of sort-
ing networks and vector ISAs to facilitate the automatic code
generation of efficient and “cross-platform” vector codes.

There are also existing SIMD-friendly programming
techniques from compilers, e.g. ISPC [33] and Clang 6.0 [34],
where the vector operations are usually simplified to the
array operations (treating vectors as arrays). However, be-
cause not revealing the details of the actual vector instruc-

tions being used, the performance of these frameworks is
not well-understood. Furthermore, programmers still need
to explicitly point out the correct permute parameters when
using these tools.

For certain specific applications, whose computation and
communication patterns can be formalized, frameworks are
proposed to automatically generate parallel codes. With
emphasis on using the intra-core resources, Ren et al. [35]
present a SIMD optimization engine for irregular data-
traversal applications. AAlign [36] presents an automa-
tion method to transform sequential alignment algorithms
to vector operations. Mint [5], Physis [6], Zhang and
Mueller [37] can generate effective GPU codes for stencil ap-
plications. McFarlin et al. [4] demonstrate another superop-
timizer to conduct a guided search of the shortest sequence
of SIMD instructions over a large candidate pool. Ren et
al. [38] provide an approach to optimize the SIMD code
generation for generic permutations. In the code searching
part, they select correct elements to approximate the target
vectors, and try to minimize the number of data movements
as what we are doing in this work. However, this method
is based on an assumption that any data movements can be
directly translated by the SSE’s shufps instruction, which
is reasonable since SSE only contains one lane and the
translation part could be rather straightforward. In contrast,
the modern SIMD units of AVX/AVX2/AVX512 contain
more lanes and more reordering instructions, thereby in-
creasing the complexity of efficient code selection. The direct
mapping method that was fine for SSE instructions becomes
inefficient. In this work, we select a small number of efficient
data-reordering patterns, e.g., the symmetric patterns for-
malized in Sec. 4.1, and use a searching algorithm to explore
the best combinations to achieve optimal performance, e.g.,
preferring lightweight intra-lane and swizzle instructions,
for different platforms.

7 CONCLUSION

In this paper, we propose the ASPaS framework to auto-
matically generate vectorized sorting code for x86-based
multicore and manycore processors. ASPaS can formalize
the sorting and merging networks to the sequences of
comparing and reordering operators of DSL. Based on the
characteristics of such operators, ASPaS first creates an ISA-
friendly pool to contain the requisite data comparing and
reordering primitives, then builds those sequences with
primitives, and finally maps them to the real ISA intrinsics.
Besides, the ASPaS codes can exhibit a efficient memory
access pattern and thread-level parallelism. The ASPaS-
generated codes can outperform the compiler-optimized
ones and meanwhile yield highest performance over multi-
ple library sorting tools on Ivy Bridge, Haswell, and Knights
Corner architectures.

With the emerge of Skylake and Knights Landing archi-
tecture, our work can be easily ported to AVX-512, since
the ISA subset AVX-512F contains all the permute/shuffle
instructions we need for sorting. For GPUs, we will also
extend ASPaS to search shuffle instructions to support fast
data permutation at register level.
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