
Exploring FPGA-specific Optimizations for
Irregular OpenCL Applications

Mohamed W. Hassan1, Ahmed E. Helal1, Peter M. Athanas1, Wu-Chun Feng1,2, and Yasser Y. Hanafy1

1Electrical & Computer Engineering, Virginia Tech, Blacksburg, VA, USA
2Computer Science, Virginia Tech, Blacksburg, VA, USA

{mwasfy,ammhelal,athanas,wfeng,yhanafy}@vt.edu

Abstract—OpenCL is emerging as a high-level hardware description
language to address the productivity challenges of developing applications
on FPGAs. Unlike traditional hardware description languages (HDLs),
OpenCL provides an abstract interface to facilitate high productivity,
enabling end users to rapidly describe the required computations,
including parallelism and data movement, to create custom hardware
accelerators for their applications. However, these OpenCL-realized
accelerators are unlikely to make efficient use of the reconfigurable
fabric without adopting FPGA-specific optimizations, particularly for
irregular OpenCL applications. Consequently, we explore the FPGA-
specific optimization space for OpenCL applications and present insights
on which optimization techniques improve application performance and
resource utilization. Exploring this optimization space will enable end
users to harness the computational potential of the FPGA.

While these optimizations are general and applicable to any applica-
tion, the expected performance gain and resource-utilization efficiency
vary depending on the application characteristics. Specifically, hardware
profilers are used to analyze the limitations of OpenCL application ker-
nels and to guide the development of FPGA-optimized implementations.
In particular, we pursue the more challenging problem of irregular
OpenCL applications, which suffer from workload imbalance, unpre-
dictable control flow, and irregular memory-access patterns. Experiments
using representative kernels from the graph traversal, combinational
logic, and sparse linear algebra application domains show that FPGA-
specific optimizations can improve the performance of irregular OpenCL
applications by up to 27-fold in comparison to the architecture-agnostic
OpenCL code from the OpenDwarfs benchmark suite.

Index Terms—FPGA, High-Level Synthesis, OpenCL, OpenDwarfs,
Irregular Applications, Performance Optimization, Hardware Profiling

I. INTRODUCTION

FPGAs have been used to accelerate a wide spectrum of appli-
cations, due to their superior power efficiency over general-purpose
architectures such as CPUs and GPUs. However, these performance
and power gains come at the cost of complex programming with
hardware description languages (HDLs). OpenCL compilers for FP-
GAs were introduced to address this problem [1], [2]. Unlike HDLs,
OpenCL provides an abstract machine model and high-level pro-
gramming approach for reconfigurable architectures [3], [4], making
it easier for end users to develop custom hardware accelerators for
their applications and benefit from the power efficiency of FPGAs.
Moreover, OpenCL employs a hierarchical memory structure with
strong support for parallel execution. Hence, the parallelism can
be specified at different granularity levels and data movement can
be easily manipulated, enabling OpenCL compilers to potentially
generate efficient hardware units and data paths on FPGAs.

The OpenCL programming model targets heterogeneous systems
with different types of accelerators, including CPUs, GPUs, In-
tel MICs, DSPs, and FPGAs. While OpenCL provides functional
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Fig. 1: Programmability vs. performance spectrum for FPGAs.

portability across these accelerators, performance portability is not
guaranteed. In particular, generic (architecture-agnostic) OpenCL
kernels are unlikely to make efficient use of the FPGA resources,
which leads to performance degradation. This has been shown for
multiple application domains such as dense linear algebra, structured
grid, unstructured grid, dynamic programming, and N-Body [5]–[12].
In addition, existing OpenCL code that targets CPUs and GPUs
is not directly applicable to FPGAs, due to the different hardware
capabilities and execution models.

Figure 1 illustrates the performance versus programmability spec-
trum and shows the design-space exploration and how FPGA-specific
optimizations can be used to enhance the performance with little
impact on OpenCL programmability. While the figure is not drawn
to scale, it shows the additional programmability overhead (in terms
of the average lines of code used to apply the optimization) with re-
spect to the expected performance gain. The optimization techniques
depicted in Figure 1 are explained later in Section III.

Irregular applications typically achieve a small fraction of the peak
performance on general-purpose architectures due to their workload
imbalance, unpredictable control flow, and irregular memory-access
patterns. As a consequence, they have the potential to benefit from
acceleration using custom hardware architectures. However, when
targeting irregular applications, identifying which optimization (or
combination of optimizations) to use to enhance the performance
and resource utilization on FPGAs is challenging. This study aims to
guide non-expert users to the appropriate FPGA-specific optimiza-
tions for irregular application domains, including graph traversal,
combinational logic, and sparse linear algebra.

Figure 2 demonstrates the benefits of applying such optimizations
to generate efficient accelerators on FPGA architectures. For a set of
irregular OpenCL kernels, our optimized FPGA realizations achieve978-1-7281-1968-7/18/$31.00 c©2018 IEEE
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Fig. 2: The performance of irregular OpenCL kernels on CPU and FPGA architectures. The optimized FPGA execution uses a deeply-
pipelined, compute unit running at 200-260 MHz, while the CPU platform consists of 16 compute units running at 3.5 GHz.

1.3-5.2× speedup over the corresponding parallel execution on a 16-
core CPU, while running at an order-of-magnitude slower frequency.

The following are the contributions of this work:
• Identification of and insight on the FPGA-specific optimizations

for OpenCL kernels. The identified optimizations apply to any
user application; however, the expected performance gain and
resource utilization depend on the characteristics of the appli-
cation kernels. Furthermore, end users need insight on which
optimizations to use for their target applications.

• Profiling and analyzing of the OpenCL kernels to identify the
execution bottlenecks and, in turn, guide the FPGA optimization
of irregular codes. We use Intel/Altera’s hardware profiler to
facilitate the analysis and optimization of irregular application
kernels from the OpenDwarfs benchmark suite.

• A detailed study of the FPGA-specific optimizations for repre-
sentative irregular applications, namely graph traversal, com-
binational logic, and sparse linear algebra applications. The
results show that the FPGA-specific optimizations improve
performance by an order of magnitude when compared to the
architecture-agnostic OpenCL code from OpenDwarfs.

II. RELATED WORK

Czajkowski et al. [3] demonstrated the Altera’s OpenCL compiler
using four well-known applications: Monte Carlo Black-Scholes
(MCBS), matrix multiplication (SGEMM), finite difference (FD), and
particle simulation (Particles). To enhance the performance of dy-
namic programming on FPGAs, Settle introduced OpenCL pipes [4],
which improves the performance by 1.5× and 9.9× in comparison
to the GPU and CPU implementations, respectively, while providing
energy savings of up to 26-fold. Both endeavors achieved high
utilization of FPGA resources with low clock frequency (less than 200
MHz). Moreover, the FPGA-specific implementations differed from
their GPU-based counterparts. While the GPU implementation used
SIMD-like parallelism, the FPGA implementation adopted a MIMD-
like execution where each thread executed a distinct operation on a
set of data items.

In [5], Zohouri et al. evaluated the performance of six regular
benchmarks from the Rodinia suite using the Altera OpenCL SDK on
a Stratix V FPGA. The original OpenCL implementations followed
the bulk synchronous parallel (BSP) execution model, targeting GPU-
like architectures with massive multi-threaded execution. Unfortu-
nately, this approach can degrade FPGA performance due to barrier
synchronization points that dictate flushing the pipeline, effectively
halving the pipeline throughput. The authors in [5] reached the
conclusion that FPGA-specific optimizations must be applied to

the OpenCL kernels to yield efficient, high-performance hardware
designs. In particular, they outlined five main FPGA-specific op-
timization techniques: compute unit replication, vectorization (or
”SIMD-iztion”), loop unrolling, shift registers, and sliding windows.
These optimizations improved the performance by up to two orders
of magnitude compared to the BSP OpenCL kernels and achieved
3.4× better power efficiency when compared to the NVIDIA K20c
GPU. While [5] focused on regular benchmark applications, our work
addresses irregular applications, which are more challenging.

The work published in [5] was extended in [12] to evaluate the
performance of three different design methodologies for FPGAs:
general-purpose manycore system (30 Nios II soft-core processors),
FSM-based architecture using LegUp HLS tool (MIMD architecture
with focus on lower latency), and Intel’s FPGA SDK for OpenCL
(deeply-pipelined architectures with focus on higher throughput). The
experiments showed that the FSM and soft-core implementations
have scalability issues that are mainly related to cache conflicts
and capacity misses. This issue was partially solved using a multi-
banked cache design. However, the OpenCL implementations still
outperformed both approaches across all the applications with up to
two orders-of-magnitude speedup.

Other work [6], [13] used the OpenDwarfs benchmark suite to
evaluate the performance of the OpenCL programming model on a
Stratix V FPGA using the Altera OpenCL SDK. Kernels from regular
application domains were tested, such as N-body methods, structured
grids, unstructured grids, and dense linear algebra. Unlike Rodinia,
the OpenDwarfs suite provides architecture-agnostic OpenCL kernels
rather than GPU-specific (i.e., GPU-biased) implementations. These
kernels were used as the baseline for comparison on the CPU, GPU,
Intel MIC, and FPGA architectures. The authors explored FPGA-
specific optimization techniques that exploit different parallelism
levels as well as minimizing data movement across the memory
hierarchy. It was also reported that the architecture-agnostic OpenCL
kernels yielded inefficient hardware designs, which further suggests
the need for FPGA-specific optimizations.

Static and dynamic analyses were used in [8] to build an analytical
performance model for the key architectural features of FPGAs
under the OpenCL programming model. This tool can predict the
performance of OpenCL kernels with different combinations of
FPGA-specific optimizations. This greatly helps in guiding the code-
tuning process for performance purposes. On the other hand, the
framework in [7] aims to achieve scalable execution of memory-
bound applications, such as AES encryption, on multiple FPGAs. In
particular, six Stratix V FPGAs were used to demonstrate the scal-
ability on a high-performance backplane. The authors reported that
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SIMD vectorization provided better FPGA resource utilization and
significantly less on-chip memory usage than the kernel-replication
approach. The authors reported three-fold improvement in throughput
per watt over the CPU implementation using a single FPGA, while
four FPGAs yielded a five-fold improvement.

Finally, XSBench, a proxy application for Monte Carlo simulation,
was used in [11] to evaluate the performance of OpenCL applications
with irregular memory access on FPGAs on an Intel Arria 10
FPGA platform. The authors applied three different optimizations
and evaluated their effect on performance. A fused multiply-add
unit was integrated into the design. The BRAMs were used to
implement a constant cache along with data pre-fetching and packing
techniques. The final optimization used vector data types and stored
them in private memory. Applying these optimizations delivered a
50% improvement in energy efficiency, while sacrificing 35% of the
performance compared to an Intel Xeon CPU with eight cores.

In summary, previous studies showed the need for applying FPGA-
specific optimizations to OpenCL kernels to generate efficient custom
hardware accelerators. However, the expected performance and effi-
ciency is highly dependent on the characteristics of the target applica-
tion. In addition, OpenCL kernels with BSP execution models, which
achieve high performance on GPUs, generate extremely inefficient
FPGA designs. While previous work focused on regular OpenCL
kernels, this paper attacks the problem of optimizing the irregular
OpenCL applications on FPGAs.

III. FPGA DESIGN-SPACE EXPLORATION

We categorize the FPGA-specific optimization space as follows: (1)
exploiting parallelism at different levels, (2) optimizing floating-point
operations, and (3) minimizing data movement across the memory
hierarchy. By default, FPGA OpenCL compilers exploit pipeline
parallelism, which, in turn, generally achieves higher throughput than
data parallelism or task parallelism, due to the limited resources on
FPGAs, which restrict the number of concurrently active work items.

A. Parallelism Optimizations

There are two main OpenCL execution models on FPGAs: multi-
threaded execution and single-task execution. Multi-threaded exe-
cution attempts to expose the maximum parallelism by executing
multiple threads concurrently, if possible. On the other hand, single-
task execution exploits pipeline parallelism and runs the work items
(i.e., units of computation) sequentially as a single task.

Loop Unrolling. Unrolling loops improves performance by decreas-
ing the number of loop iterations executed and, in turn, the number
of branches. However, there is a trade-off between the loop unrolling
factor and the extra hardware cost incurred.

Kernel Vectorization. Vectorization enables multiple work items to
execute in a single-instruction, multiple-data (SIMD) fashion. This
technique achieves higher computational throughput and automati-
cally performs memory coalescing. The SIMD approach vectorizes
the data path of the kernel while keeping a single control logic path
shared across the SIMD lanes. Therefore, backward branches with
thread ID dependencies prohibit this optimization technique, as they
can serialize the execution process.

Compute Unit Replication. Generating multiple compute units,
where data and control paths are replicated, fully parallelizes the
kernel execution. This optimization divides the workload on the
available compute units which can mitigate the limitations of the
SIMD approach, namely the thread ID dependency problem. How-
ever, compute unit replication uses more hardware resources than the
SIMD approach. It also increases the stress on the global memory

bandwidth, as more load/store units would be competing for accessing
the global memory.

B. Floating-Point Optimizations

The floating-point operations in a specific kernel may not be
balanced, leading to pipeline stalls and higher hardware cost [14].
The Altera OpenCL Compiler provides command-line options to
optimize the floating-point operations using balanced trees. Moreover,
removing the floating-point rounding operations and conversions,
whenever possible, introduces hardware savings.

Floating-Point Accumulator. The newer FPGA platforms, such as
Altera’s Arria 10, include a floating-point accumulator that performs
the accumulations in a single cycle; however, only single work-item
kernels that perform accumulation in a loop without branching can
leverage this feature. Modifications are required in the kernel code
for the compiler to infer the use of the accumulator structure.

C. Data Movement Optimizations

Shift Registers (SR) and Sliding Windows (SW). Several computa-
tional kernels, such as sparse matrix-vector multiplication (SPMV),
have loop-carried data dependencies. On FPGA architectures, cross-
iteration dependencies may increase the initiation interval of the loop,
where the next iteration is stalled until the dependency is resolved.
To relax this cross-iteration dependency, the loop body is modified
to employ shift registers with a sliding-window technique, which
resolves this problem by eliminating the pipeline stalls.

Data Compression (DC) and Bit Manipulation (BM). The OpenCL
standard instantiates Boolean variables as 32-bit integers. Program-
ming bitwise operations and masks allows single-bit on-chip memory
(BRAM/register) access by the OpenCL code.

IV. A CASE STUDY FOR IRREGULAR APPLICATIONS

In our experiments, we use the Intel FPGA Dynamic Profiler for
OpenCL to analyze the execution profile of the architecture-agnostic
(generic) OpenCL kernels from the OpenDwarfs suite [15]. Analyz-
ing the execution profile pinpoints the bottlenecks of the execution
pipeline. This study applies the above optimizations, both in isolation
and in combination, to the target OpenCL kernels and evaluates the
resulting performance, which typically outperforms the architecture-
agnostic and GPU-optimized OpenCL implementations on FPGA
architectures. The FPGA resource utilization is also considered in
evaluating the hardware cost of each optimization technique. Finally,
the performance analysis of the different optimizations provides key
insights into which optimizations to use for each target application
and how to apply such optimizations to address the execution bottle-
necks and to achieve the required performance gain. The optimized
kernels are available at https://github.com/vtsynergy/OpenDwarfs.

Test Platform. The experiments use an Altera Arria 10 1150-GX
FPGA connected to two 4-GB DDR3 memory with peak bandwidth
of 25 GB/s. The FPGA attaches to the host machine via PCIe 8x 3.0
interface. The host includes an Intel Xeon E5-2637 CPU and runs
Ubuntu 14.04 along with Altera OpenCL SDK version 16.0.

A. Graph Traversal

Breadth-first search (BFS) is used by the OpenDwarfs suite as a
representative kernel for the graph traversal dwarf. The target graphs
are undirected and unweighted in the form G = (V,E), where V
is the set of vertices or nodes and E is the set of edges connecting
them. To avoid processing a node more than once, a Boolean visited
array is used. As such, the graph is traversed in levels, where all
nodes at each level are explored before the next level is processed.
The final output is the cost C, which represents the shortest distance
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TABLE I: BFS optimizations and resource utilization.
[MT ]: Multi-Threaded, [ST ]: Single Task

Optimization Description Frequency Logic utilization BRAM

Generic Architecture agnostic OpenDwarfs kernel 248 MHz 29% 20%
MT-LU8 Loop unrolling factor 8 205 MHz 37% 37%
MT-PE2 Compute unit replication (2 PEs) 204 MHz 32% 24%
MT-PE4 Compute unit replication (4 PEs) 202 MHz 35% 42%

ST-Regular Simple conversion to single work item by inserting outer for-loop 201 MHz 28% 20%
ST-NoSync Eliminate host side synchronization by inserting outer while-loop 212 MHz 29% 20%

ST-Mem Use bit manipulation on integer arrays to implement Boolean arrays 160 MHz 27% 74%

from the source node to each visited node on the graph. The time
complexity is O(V + E).

The original OpenCL kernel (from OpenDwarfs) is multi-threaded,
executing each graph level update in a separate kernel launch. After
computing a level of the graph, synchronization with the host is
required, paired with a new kernel launch for the new graph level.
Our hardware profiling pinpointed two major bottlenecks. First, the
cross-iteration dependencies stalled the execution pipeline for more
than 800 clock cycles in each iteration. This high initiation interval of
the loop is caused by (a) the serial execution of the for-loop,where
loop pipelining optimization isn’t applied by default due to unrelieved
cross iteration dependency and (b) the host side synchronization
step between kernel invocations. Second, the global memory access
pattern for five different arrays is inefficient, lowering the bandwidth
efficiency of data transfer to an average of 13% of the peak mem-
ory bandwidth. Table I shows the different optimization techniques
employed to address these bottlenecks, along with their operating
frequency and logic utilization.

Fig. 3: The performance of BFS (nodes processed per second) across
different graph sizes for multiple optimization techniques.

1) Multi-Threaded Execution: The global memory access bottle-
neck and kernel launch overhead are the main reasons that none
of the multi-threaded optimization techniques yielded any significant
performance gains. Compute unit replication does not address the
memory access bottleneck or solve the pipeline stall problem. Hence,
the performance improvement was 6% at most, as shown in Figure
3. Loop unrolling enhanced the performance by a maximum of 14%,
due to memory coalescing which increases the bandwidth efficiency.
The combination of loop unrolling with compute unit replication is
unnecessary as neither have the potential to address the pinpointed
bottlenecks. The multi-threaded code does not leverage data-level
parallelism (vectorization), due to the loop-carried data dependencies
and the thread ID dependent branching in its inner and outer loop.
So, SIMD optimization was not applied to this application kernel.

2) Single Task Execution: In the single work-item execution
model, multiple optimizations were tested to enhance performance.
The ”ST-Regular” implementation fully pipelines the for-loop
without modifying the global synchronization scheme. On the other
hand, ”ST-NoSync” avoids synchronizing with the host, which was
on average 5% of the execution time, and moves all computations
to the device. The Altera OpenCL compiler was not able to pipeline
the outer while-loop in this implementation, as cross iteration
dependency is critical for functional correctness. Figure 3 shows a
slight decrease in performance for ”ST-Regular” and ”ST-NoSync”,
as these optimizations do not address the memory access bottleneck,
which has the most impact on performance.

Fig. 4: BFS speedup across the different optimization techniques. The
baseline is the OpenDwarfs, architecture-agnostic OpenCL code.

Fig. 5: Boolean array data compression.

The following step was to optimize the memory access operations
by moving the Boolean arrays to the local on-chip memory (BRAMs)
in ”ST-Mem”. The OpenCL standard supports Boolean variables;
however, they are treated as 32-bit integers with a constant value
of ”0” or ”1”, which wastes the on-chip memory. Therefore, integer
arrays are used, as shown in Figure 5, where each integer represents
32 Boolean flags that can be accessed through a series of bitwise
manipulations (shift, AND, OR and XOR operations). This imple-
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TABLE II: SPMV optimizations and resource utilization.
[MT ]: Multi-Threaded, [ST ]: Single Task

Optimization Description Frequency Logic utilization BRAM

Generic Architecture agnostic OpenDwarfs kernel 255 MHz 26% 21%
MT-LU16 Loop unrolling factor 16 225 MHz 33% 31%
MT-LU32 Loop unrolling factor 32 211 MHz 39% 46%
MT-PE2 Compute unit replication (2 PEs) 245 MHz 28% 25%
MT-PE4 Compute unit replication (4 PEs) 230 MHz 31% 36%

MT-PE2-LU16 Compute unit replication (2 PEs) + Loop unrolling factor 16 203 MHz 41% 47%
MT-PE2-LU32 Compute unit replication (2 PEs) + Loop unrolling factor 32 174 MHz 54% 77%
MT-PE4-LU16 Compute unit replication (4 PEs) + Loop unrolling factor 16 164 MHz 57% 80%
ST-PF-SR-LU8 Pre-fetching+SR and sliding window+Loop unrolling factor 8 205 MHz 41% 50%
ST-PF-SR-LU12 Pre-fetching+SR and sliding window+Loop unrolling factor 12 192 MHz 51% 66%

ST-PF-SR-LU8-LU4 Pre-fetching+SR and sliding window+LU8(outer loop)+LU4(inner loop) 166 MHz 57% 69%

Fig. 6: SPMV speedup for small and large matrix sizes.

mentation enables fast Boolean checking which yielded 4× speedup
as shown in Figure 4. However, due to the limited on-chip memory,
this approach can only support graphs of sizes up to 32M nodes.

For smaller graphs with size up to 512K nodes, the algorithmic
refactoring showed great performance. The kernel was modified to
use a local-memory queue instead of the Boolean mask. The new
unvisited nodes are inserted into the FIFO queue, and one node is
popped in each iteration, which greatly reduces the total number of
iterations. However, this evaluation targets large-scale graphs with at
least 1M vertices; hence, this approach was excluded from the results.

B. Sparse Linear Algebra

The OpenDwarfs suite includes SPMV (sparse matrix-vector mul-
tiplication) as a representative kernel of sparse linear algebra. While
computation across the rows of the input sparse matrix (outer loop)
are independent, the operations required to compute a single output
element (inner loop) have data dependencies. A series of memory
accesses are required by each iteration of the outer loop to retrieve
the indices of non-zero elements of each sparse row, and read the
respective values of these elements and the corresponding elements
of the input vector. On hardware architectures with limited memory
bandwidth, such memory operations introduce a global memory
bottleneck. The hardware profiler showed that bandwidth efficiency is
limited to 55% at the bottlenecked inner loop. Moreover, the number
of iterations in the inner loop is input dependent (i.e., depends on the
sparsity pattern of the input matrix).

1) Multi-Threaded Execution: The multi-threaded version of
SPMV exploits different parallelism levels: task-level (compute unit
replication), and instruction-level (loop unrolling). However, the
multi-threaded code does not leverage data-level parallelism (vec-
torization), due to the loop-carried data dependencies and the thread
ID dependent branching in the inner loop.

Figures 6 and 7 show the effect of the different optimizations on the
SPMV performance in comparison with the baseline OpenCL code,

Fig. 7: The performance of SPMV for the multi-threaded optimiza-
tions. The baseline is the OpenDwarfs, architecture-agnostic code.

while Table II shows the resource utilization of each implementation.
For the small input data, these optimizations showed a maximum
speedup of 6.8× (matrix size 4K in Figure 6). ”MT-LU32” provides
the best performance only with 13% more logic utilization than the
baseline kernel, but with double the on-chip memory usage. Compute
unit replication has limited performance improvement, it achieved at
most 1.7× speedup by ”MT-PE2” and ”MT-PE4”. This is mainly
due to the contention on the limited global memory bandwidth.
Combining both optimizations of multiple compute units and loop
unrolling shows comparable performance to simply just unrolling the
loop, but with much higher hardware cost. ”MT-PE4” increases the
logic utilization by 30% and the on-chip memory usage by 60%.

Figures 6 and 7 show the limited scalability of the multi-threaded
execution model for SPMV. Scaling up the input matrix puts the
multi-threaded SPMV at a great disadvantage, due to the limited
global memory bandwidth. In fact, these optimizations do not address
the issue of the bandwidth efficiency of the inner loop. So, as the
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matrix size increases these optimization add more stress to the global
memory access and the performance decreases and becomes slower
than the baseline code.

2) Single Task Execution: The single task (work item) execution
of SPMV throttles the parallelism (concurrent work items) to re-
duce the contention on the limited FPGA resources, specifically the
global memory bandwidth. However, due to the extra unused FPGA
resources, the single task code can leverage advanced techniques to
minimize the data movement across the memory hierarchy, such as
caching (pre-fetching), shift registers, and enhanced floating-point
units. The caching optimization pre-fetches the data into the private
memory (BRAM) and maximizes the data reuse. The shift register
(SR) optimization uses a sliding window technique to alleviate the
loop-carried dependencies in the SPMV inner loop, which enables
the compiler to efficiently pipeline the inner loop with successive
iterations initiated into the pipeline every clock cycle. Finally, the
code was modified to allow the compiler to infer floating-point
accumulator (see section III-B) to further enhance the performance
of the inner loop.

These techniques relieved the inner loop contention on global
memory access increasing the bandwidth efficiency to 100% (accord-
ing to the hardware profiler). However, the hardware profiler showed
that this execution model limits the efficiency of the store unit that
writes the final result at the end of each outer loop iteration to 20%.
Nevertheless, the effect of this limitation has much less impact on
performance, since the number of store operations is significantly less
than the number of load operations. The number of load operations
is O(NZE), where NZE is the (number of Non Zero Elements).
The number of store operations is O(R), where R is the (number of
matrix Rows).

Fig. 8: The performance of the single-task optimizations for SPMV.
The baseline is the OpenDwarfs, architecture-agnostic OpenCL code.

Figures 6 and 8 show the performance of the single task execution
compared to the baseline and the multi-threaded versions. Unrolling
the outer loop and minimizing the data movement in ”ST-PF-SR-
LU12” showed a speedup of 4× over the baseline kernel. More-
over, single task execution has scalable performance and sustainable
speedup, as depicted in Figure 8, with input matrix size up to
128K. Unrolling the inner loop in ”ST-PF-SR-LU8-LU4” didn’t
provide performance advantages, due to inefficient pipeline structure
in addition to the input dependent number of inner loop iterations
(loop bounds are not constants). The Altera OpenCL Compiler might
fail to meet scheduling because it cannot unroll this nested loop
structure easily, resulting in a high II (number of stall clock cycles
before issuing the next loop iteration) [2], [14]. In summary, the
results showed the importance of alleviating the contention on the
limited FPGA global memory bandwidth and inferring an efficient
pipeline structure to attain scalable performance.

C. Combinational Logic

The OpenDwarfs adopts cyclic redundancy check (CRC) as a
representative kernel of combinational logic applications, which rely
on bitwise logic operations. This application domain is amenable to
acceleration using FPGA architectures with fine-grain logic fabric.
The CRC kernel computes the 32-bit CRC code of a set of input
data pages (packets) using the ”Slice-By-8” algorithm developed by
Intel [16], [17]. The CRC32 generation process consists of a single
table lookup, bitwise and shift operations for each byte. The hardware
profiler showed that there is 67 clock cycles of stalls in the pipeline
execution for each loop iteration, due to inefficient loop structure.

Fig. 9: CRC speedup across different optimization techniques. The
baseline is the OpenDwarfs, architecture-agnostic OpenCL code.

1) Multi-Threaded Execution: Figure 9 shows the performance of
the different multi-threaded versions in comparison with the baseline,
architecture-agnostic code. The results show that fully-unrolled loops
in ”MT-LU8” yield around 2× speedup compared to the baseline with
minimal hardware cost (6% logic utilization increase).

Exploiting task-level parallelism in ”MT-PE2-LU8 and MT-PE4-
LU8” achieves 4-5× speedup with additional it hardware cost of
14%-30% for two and four processing elements (PEs). However,
Figure 9 shows that the compute unit replication approach does
not provide scalable speed up, due to the contention on the global
memory access. In particular, as the number of input data pages
increases, beyond 1K, the performance degrades and converges to
a consistent 2× speedup.

SIMD vectorization shows a speedup of 6× over the baseline in
”MT-SIMD2-LU8”; however, increasing the number of vector lanes
does not improve the performance over using two SIMD lanes, while
incurring up to 52% additional area overhead. The increased hardware
cost for using more vector lanes suggests that using two lanes would
be the best option. SIMD vectorization works well with this specific
kernel, as there is no thread ID dependent, backward branching.

Although the multi-threaded execution model shows some per-
formance gain, it can be noticed in Figure 10 that, as the input
size grows larger, the performance advantages degrade. The above
multi-threaded execution versions suffer from a major bottleneck: the
limited global memory bandwidth, where multiple threads in flight
are competing for global memory access. Therefore, as the size of
input data increases (more than 4K data pages), the performance takes
a severe hit and the speedup decreases to 1.5-2× over the baseline.

2) Single Task Execution: Moving to the single task execution
model alleviated the problem of having multiple threads competing
for the limited global memory bandwidth. Figure 9 shows that the
single task CRC versions achieved scalable speedup with the growing
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TABLE III: The CRC optimizations and their resource utilization.
[MT ]: Multi-Threaded, [ST ]: Single Task

Optimization Description Frequency Logic utilization BRAM

Generic Architecture agnostic OpenDwarfs kernel 270 MHz 26% 18%
MT-LU8 Loop unrolling factor 8 236 MHz 32% 23%

MT-PE2-LU8 Compute unit replication (2 PEs) + LU8 230 MHz 40% 31%
MT-PE4-LU8 Compute unit replication (4 PEs) + LU8 230 MHz 56% 47%

MT-SIMD2-LU8 SIMD (2 vector lanes) + LU8 227 MHz 39% 29%
MT-SIMD4-LU8 SIMD (4 vector lanes) + LU8 224 MHz 52% 44%
MT-SIMD8-LU8 SIMD (8 vector lanes) + LU8 203 MHz 78% 89%

ST-Regular Simple conversion to single work item by inserting outer for-loop 148 MHz 41% 30%
ST-PF-SW Pipelining for-loop by pre-fetching+relaxing cross iteration dependency 231 MHz 26% 18%

Fig. 10: The performance (words processed per second) of CRC
across different optimization techniques.

input size. Moreover, Figure 10 shows that ”ST-Regular” and ”ST-
PF-SW” process a constant number of words per second, that does
not decrease. The execution profile pulled from the hardware profiler
shows that the efficient pipeline execution with no stalls allows high
bandwidth efficiency for each loop iteration. Memory accesses are
pipelined and latency is efficiently hidden by the computation in each
loop iteration, sustaining scalable performance.

Hence, unlike the multi-threaded execution model, the single task
execution is scalable, i.e., its speedup improves as the input data
size increases. After inspecting the FPGA execution profile, further
advanced optimizations were not needed, as the computational loops
are efficiently pipelined with a loop iteration issued every two clock
cycles (according to the compiler optimization report).

D. Discussion

The results across three representative irregular OpenCL applica-
tions showed that the limited global memory bandwidth of the FPGA
architecture hinders the scalability of the multi-threaded OpenCL
execution model. When the input data set is small enough to not
increase the contention on the global memory access, the multi-
threaded execution model can provide significant gains (e.g., up to
6.8× performance gains in SPMV kernel). However, with larger
input data, the performance of the multi-threaded kernels is severely
affected which leads to saturated and limited speedup. On the other
hand, the single task execution model resolves the global memory
bottleneck and enables streamed memory access to/from the main
memory without competition between multiple threads.

Figure 2 shows the FPGA performance relative to the execution
on a multi-core CPU platform. The CPU platform includes an Intel
Xeon E5-2637 with 16 compute units running at 3.5 GHz, and it
has a memory bandwidth of 80 GB/s and a cache size of 15 MB.

The performance of the architecture-agnostic OpenCL kernels on
FPGA (Unoptimized FPGA) is an order of magnitude slower than
the CPU execution. Even though the significantly higher frequency
and larger number of compute units of the CPU platform put the
FPGA platform at a great disadvantage, applying the FPGA-specific
optimizations yields sustainable speedups over the CPU execution.
While the optimized FPGA implementation runs at a frequency range
of 200-260 MHz and uses a single deeply-pipelined compute unit, it
achieves 5.2×, 1.3× and 1.6× speedup for the CRC (ST-PF-SW),
SPMV (ST-PF-SR-LU12), and BFS (ST-Mem) kernels, respectively,
compared to the CPU execution.

The experiments show that applying FPGA-specific optimizations
to the architecture-agnostic OpenCL code can significantly enhance
the performance. Exploring the aforementioned optimization space,
code patterns were identified according to the hardware profiler
and the optimization reports. The effects of the optimizations on
these code patterns are analyzed aiming to help in two aspects.
First, providing guidelines and best practices for the development
of new OpenCL kernels with similar code patterns towards the
best performance. Second, guiding the future work of automating
the optimizations process of architecture-agnostic OpenCL kernels.
Below is a list of the identified code patterns along with their relative
FPGA-specific optimizations.

• OpenCL kernels with Boolean data structures that reside in
the global memory can be optimized using data compression
techniques and bit-mask arrays to reduce the memory usage and
to be able to place such arrays in on-chip BRAMs, allowing fast
Boolean array look up.

• Kernels that use conditional statements depending on a global
memory read transaction should be handled using pre-fetching
of the conditional variable to the on-chip local memory to enable
fast conditional checking.

• Using DEF-USE chain analysis, loop carried dependencies can
be detected, and then the performance can be improved by relax-
ation using shift registers and sliding window operation, or by
elimination using temporary on-chip storage before offloading
the results to the corresponding output.

• Floating-point accumulation can be easily detected in the code
and modified for optimization by balancing the floating-point
operations tree and/or inferring floating point accumulation
structures (see section III-B).

• Loop unrolling factor is critical for performance. The unrolling
factor should be closely coupled to the expected number of
iterations of the loop. Unrolling a loop with a higher than
necessary value would waste space (area) and time (frequency),
which might lead to performance degradation.
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V. CONCLUSION

In this paper, the FPGA-specific optimization space is explored
for the OpenCL programming model, with a specific focus on the
irregular applications that suffer from workload imbalance, fine-
grain bitwise operations, dynamic control flow, and scattered memory
access pattern. Applying such optimizations enables the OpenCL
kernels to deliver both functional and performance portability on the
FPGA architectures by synthesizing more efficient hardware designs.
In addition, hardware profiling was used to pinpoint the execution
bottlenecks and to guide the optimization process. A detailed analysis
of the FPGA-specific optimizations on the target application domains
is provided to guide the end users to extract high performance from
the energy-efficient reconfigurable architectures.

The experiments showed the potential of the single task execution
model to resolve the contention on the shared FPGA resources
and demonstrated scalable speedup on the three tested application
domains. Specifically, the Breadth first search (BFS), cyclic redun-
dancy check (CRC), and sparse matrix-vector multiplication (SPMV)
applications achieved up to 4.2×, 27×, and 6.8× speedup, respec-
tively, over the architecture-agnostic kernels from the OpenDwarfs
benchmarks suite.

While significant performance improvements were obtained using
the FPGA-specific optimizations of the original algorithms, previous
studies [18]–[20] showed that algorithmic refactoring can result in
multiplicative performance gain. As such, there are many oppor-
tunities to expand the current work by analyzing and modeling
the inherent characteristics of the different algorithms [21], [22]
to guide the algorithmic innovation and refactoring of the irregular
applications to better match the capabilities of the FPGA platforms.
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