(© Copyright by Mark K. Gardner, 1999

PROBABILISTIC ANALYSIS AND SCHEDULING
OF CRITICAL SOFT REAL-TIME SYSTEMS

BY

MARK K. GARDNER

B.S., Brigham Young University, 1986
M.S., Brigham Young University, 1994

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Computer Science
in the Graduate College of the
University of lllinois at Urbana-Champaign, 1999

Urbana, Illinois

PROBABILISTIC ANALYSIS AND SCHEDULING
OF CRITICAL SOFT REAL-TIME SYSTEMS

Mark K. Gardner, Ph.D.
Department of Computer Science
University of lllinois at Urbana-Champaign, 1999
Jane W.S. Liu, Advisor

In addition to correctness requirements, a real-time system must also meet
its temporal constraints, often expressed as deadlines. We call safety or mission
critical real-time systems which may miss some deadloréial soft real-time
systemso distinguish them from hard real-time systems, where all deadlines must
be met, and from soft real-time systems which are not safety or mission critical.
The performance of a critical soft real-time system is acceptable as long as the
deadline miss rate is below an application specific threshold.

Architectural features of computer systems, such as caches and branch pre-
diction hardware, are designed to improve average performance. Deterministic
real-time design and analysis approaches require that such features be disabled
to increase predictability. Alternatively, allowances must be made for for their
effects by designing for the worst case. Either approach leads to a decrease in
average performance. Since critical soft real-time systems do not require that all
deadlines be met, average performance can be improved by adopting a probabili-
tistic approach. In order to allow a trade-off between deadlines met and average
performance, we have developed a probabilistic analysis technique, call Stochas-

tic Time Demand Analysis, for determining a lower bound on the rate at which

deadlines are met in fixed priority systems.

Allowing a real-time system to miss some deadlines in exchange for better av-
erage performance increases the possibility of overload. While overload in real-
time systems has been studied, the emphasis has been on hard real-time systems in
which overload is an exception whose occurrence is to be minimized. In contrast,
critical soft real-time systems can be repeatedly overloaded during normal opera-
tion. Therefore, we have evaluated the performance of various real-time schedul-
ing algorithms for critical soft real-time systems, including two new classes of
algorithms, on workloads with execution and inter-release time variations, both

with and without dependencies.

[V}

To my parents, Mark and Wilma,
who made it possible.

To my children, Melanie, Diane and Stephanie,
who made it fun.

But most of all to my wife, Laurinda,
who makes it all worth while.

\/

Acknowledgements

| am grateful to my advisor, Jane W.S. Liu, for her patience, encouragement and
support. Not only has she taught me to be thorough and methodical, but she has
pushed me to do more than my best. | am especially indebted to her for teaching
me the research process and opening my eyes to its human element. | would also
like to thank Lui Sha, Klara Nahrstedt, and Geneva Belford for kindly agreeing to
be the other members of my committee. My work has been made better by their
clear insight and helpful criticisms.

| would like to thank my colleagues in the Real-Time Systems Laboratory,
especially Wu-chun Feng who taught me the ropes and served as a mentor, David
Hull who always seemed to know the answers to all my questions about Unix and
its software, and Mallikarjun (Arjun) Shankar for encouragement and for many
pleasant conversations. | would also like to thank Scott Pakin and Geetanjali
(Geta) Sampemane in the Concurrent Systems Architecture Group who loaning
me the hardware to build my “simulation cluster” and for enlightening me on
some of the more obscure aspects of Linux. | would also like to thank Steve
Cvetko for loaning me needed computer parts. With out the help of my friends, |
would have accomplished much less while taking longer to do it.

Next, | would like the thank the staff of the Department of Computer Science
for their administrative and technical help. | would especially like to thank Molly
Flesner, our secretary, for service above and beyond the call of duty. | would also
like to thank Barb Cicone, Julie Legg, Kay Tomlin and Felice Long in the aca-
demic office. Their smiling faces and restorative powers helped me recover from
the many times | did not follow proper protocol. | also owe Rich Myers, Sandra
and Chuck Thompson, Lawrence Bowie and Amanda (Andy) Coyle of the Com-
puting Resources Laboratory a debt of gratitude for maintaining the hardware and
software | used to do my work and for tolerating my almost incessant pesterings.

Finally, I would like to thank my family for foregoing many of the comforts
of life and allowing me to return to school. | hope they will fondly remember the
experiences we have shared. | am especially grateful to my loving companion,
Laurinda, without whose support this achievement would not be so sweet. Last
of all, I must thank my Creator for the beauties and intricacies of life that make
living so much fun.

Table of Contents

Chapter 1 Introduction 1
1.1 Motivation 2
1.2 Objectives and Contributions 3
1.3 Organization. e 4

Chapter2 RelatedWork 6
2.1 Periodic TaskModel 6
2.2 Deterministic Schedulability Analysis 8
2.3 Probabilistic Schedulability Analysis 13
2.4 OverloadHandling 14
25 QueueingTheory 18

Chapter 3 Extended Periodic Task Model 21

Chapter 4 Stochastic Time Demand Analysis 23
4.1 ComputingLowerBounds, 23

4.1.1 Computing Response Time Distributions 24
4.1.2 Determining End of Busy Interval 25
4.1.3 Computing Bounds for a Simple System 26
4.1.4 Determining WorstCasePhase 31
415 Comparing STDAto SimulationResults 42
4.2 Extending STDA to Handle Mutual Exclusion 43
4.3 Applying STDA to Distributed Systems 46
4.4 SUMMANY e e e e 49

Chapter5 SchedulingOverruns 51

5.1 Algorithms for SchedulingOverruns 51
5.1.1 Overrun ServerMethod 52
5.1.2 Isolation Server Method 54

5.2 Comparison Methodology 55
5.2.1 Performance Criteria 55
5.2.2 Workload Generation, 56

53 Baseline 58

5.4 Overrun ServerMethod 58
5.4.1 NumberofServers 62

5.4.2 Deadline Monotonic 62

5.4.3 EarliestDeadlineFirst 63
5.4.4 Performance of OSMvs.Baseline 69
5.45 Performance of OSM-EDF vs. OSM-DMandDM 73
5.5 Isolation ServerMethod 73
5.5.1 Performance ofISMvs. Baseline 79
5.5.2 Performance of ISM-EDF vs. ISM-DMand DM 79
5.6 Realistic Dependencies, 84
5.6.1 Workload Generation 90
5.6.2 Performance 90
5.7 Summary e e 91
Chapter 6 Scheduling Jittered Releases 97
6.1 Effectof Release TimelJitter 97
6.2 FairnessinScheduling 100
6.3 Comparison Methodology 108
6.4 Baseline 109
6.5 Isolation ServerMethod 110
6.5.1 Comparisonof WFQSandTBS 110
6.5.2 Performance of ISMvs.Baseline 115
6.5.3 Performance of ISM-EDF vs. ISM-DM and DM 116
6.5.4 Effect of Maximum PeriodRatio. 125
6.6 Execution and Release Time Variations 125
6.6.1 Performanceof EDFvs.DM 129
6.6.2 Performance of OSMvs.Baseline 129
6.6.3 Performance ofISMvs.Baseline 136
6.7 Summary e e e 145
Chapter7 Conclusions. 151
7.1 Extended Periodic TaskModel 151
7.2 Stochastic Time Demand Analysis 152
7.3 Scheduling Overrunand Jitter 154
7.4 FutureWork e 157
Appendix A Simulation Environment 159
A.1 Simulation Framework 159
A2 Hardware e e 162
A.3 SimulationTimes e 164
A4 Lessonslearned 164
Appendix B MPEG VideoDecoding 168
B.1 Trace Acquisition 169
B.2 TheIncredible MuseumVideo 170
B.3 “ACloseShave”Video 173
B.4 “Red’s Nightmare”Video 175

VT

B.5 MPEGModels 177

Appendix C Adaptive Statistical Characterization 178
Appendix D Sums of Random Variables 182
D.1 Chebyshevinequality 182
D.2 Bennettlnequality 182
D.3 Bernsteinlnequality 183
D.4 Berry-Esseenlnequality 183
D.5 HoeffdingInequality 184
Appendix E Implementing STDA L. 185
References 188
Vita . . e 196

Chapter 1

Introduction

The fundamental difference between real-time and non-real-time computer sys-
tems is the requirement that a system meet its temporal constraints. The most
common form of constraint is the deadline; each job (e.g., computation, data
transmission or file block retrieval) must complete its execution by its deadline
to have met its temporal constraints.

Traditionally, safety and mission critical real-time systems are designed to
ensure that there are no missed deadlines because there are no techniques for ac-
curately determining the probabilities that deadlines will be missed. For many
systems, meeting all deadlines is an overly stringent requirement resulting in low
resource utilization and poor average performance. We call safety or mission crit-
ical systems which may miss some deadligatical soft real-time systemt
distinguish them from hard real-time systems, where all deadlines must be met,
and from soft real-time systems which are not safety or mission critical. Examples
of critical soft real-time systems are found in the telecommunication, signal pro-
cessing, and process control domains. As long as the rate at which deadlines are
missed is below a threshold, the real-time performance of a critical soft real-time
system is considered acceptable.

Critical soft real-time systems cannot be analyzed with existing (determin-
istic) real-time analysis techniques because the techniques indicate whether or
not deadlines will be missed, not the frequency of missed deadlines. Queueing
theoretic approaches used to analyze time-share systems compute the mean and
variance of performance not the probability of a missed deadline. While sim-
ulations or measurements can provide the desired performance characterization,
they are expensive and adequate coverage is difficult to ensure, particularly when
the expected miss rate is small. Thus, techniques for bounding the probability of

a missed deadline in critical soft real-time systems must be developed to allow
systems to meet their temporal constraints while improving average performance.

Allowing a real-time system to miss some deadlines in exchange for better
average performance increases the possibility of overload. A real-time system is
overloaded when insufficient processing time is available to complete all jobs by
their deadlines. The goal for critical soft real-time systems in overload is to meet
as many deadlines as possible while minimizing response times. While overload
in real-time systems has been studied, the emphasis has been on hard real-time
systems in which overload is an exception whose occurrence is to be minitized.
In contrast, critical soft real-time systems by definition will be repeatedly over-
loaded during normal operation. Therefore, the performance of various real-time
scheduling algorithms needs to be evaluated and compared specifically for critical
soft real-time systems.

1.1 Motivation

Modern computer systems incorporate many architectural features designed to im-
prove average performance. For example, it is common for CPUs to contain mul-
tiple functional units, multi-level branch prediction, and out-of-order pipelined
execution. Multiple levels of caches are routinely used to reduce memory access
delays. Network requests from many connections are aggregated on a shared link
to maximize link utilization and minimize cost. In each of these cases, increases
in average performance come at the expense of predictability and worst-case per-
formance.

Traditional real-time design and analysis approaches require that these fea-
tures (e.g., caching) be disabled to increase predictability or allowances be made
for increased variation (e.g., by using worst-case memory access times). Either
approach leads to a decrease in average performance. Since many safety or mis-
sion critical real-time systems do not require that all deadlines be met, average
performance can be improved by adopting a probabilistic approach which accom-
modates the variability of modern architectural features.

As an example of the usefulness of a probabilistic analysis approach, consider
the design of an automotive engine management system. One of the important

LA real-time system designed to meet all deadlines may still become overloaded due to unfore-
seen events. Rather than uncovering a flaw in the design, this indicates an error in the specification
or a bug in the implementation.

functions of the system is to compute the duration of fuel injection pulses at each
intake port from sensor readings of air flow rate and fuel pressure. To be of use, a
duration must be available before the beginning of the appropriate intake stroke.
However, some computations can miss their deadlines without adverse effects be-
cause the amount of fuel an engine requires changes slowly from one cycle to
the next. Suppose that a deterministic real-time analysis of the engine manage-
ment system shows that some of the duration computations miss their deadlines
on a target processor. Based on the analysis, a faster processor must be selected
to ensure the proper operation of the engine because insufficient information is
available to decide otherwise. In contrast, suppose that it can be ascertained that
the computation will meet its deadline at least 99% of the time when executed on
the target processor. Itis likely that missing a deadline one percent of the time will
have little effect on the performance of the engine. Hence the target processor can
be used. To enable such trade-offs, probabilistic analysis techniques need to be
developed.

Designing a system for good average utilization causes the potential for over-
load. It is well known that tasks in an overloaded system miss deadlines in a pre-
dictable manner when scheduled on a fixed priority basis. In contrast, deadline-
driven systems behave unpredictably when overloaded. It would appear that fixed
priority scheduling is preferable to deadline-driven scheduling except for the fact
that the maximum schedulable utilization of a deadline-driven system is 100%
while the maximum schedulable utilization of a fixed priority system can be sig-
nificantly less. To facilitate the design of critical soft real-time systems which
experience repeated overload due to execution or inter-release time variations, the
performance of various schedulers under overload needs to be characterized.

1.2 Obijectives and Contributions

The objective of this thesis is to develop techniques for analyzing and scheduling
critical soft real-time systems. Specifically, this work

1. extends the periodic task model [1] to describe systems of hard, soft and
non-real-time tasks in a uniform manner,

2. develops an analysis method for bounding the frequency of missed dead-
lines for three classes of fixed priority systems: 1) uniprocessor systems

with independent tasks, 2) uniprocessor systems with shared resources, and
3) distributed systems of independent tasks with end-to-end deadlines,

3. proposes two classes of algorithms for scheduling job overruns and evalu-
ates their performance by comparison with the class of existing hard real-
time scheduling algorithms on workloads with and without dependencies,

4. evaluates the performance of the previous two classes of scheduling algo-
rithms in relation to the algorithms in the base class on workloads with
release time jitter and execution time variations, both with and without de-
pendencies.

The extended periodic task model allows systems of hard, soft and non-real-
time tasks to be described in a uniform and seamless manner. It provides a frame-
work for developing analysis and scheduling techniques for heterogeneous sys-
tems. The new method allows fixed priority critical soft real-time systems to be
designed with good resource utilization and average performance. It allows the
effect of performance enhancing features, such as multi-level memory hierarchies
in processors or statistical multiplexing in networks, to be accounted for in deter-
mining the probability that jobs of a task will meet their deadlines. Finally, the
information obtained through the evaluation of various real-time scheduling algo-
rithms aids designers of critical soft real-time systems in selecting the appropriate
scheduling algorithm for the best performance.

1.3 Organization

The remainder of this thesis is organized as follows. Chapter 2 presents related
work and discusses background material concerning the analysis and scheduling
of real-time systems. In particular, the chapter summarizes deterministic real-
time analysis and scheduling techniques and their applicability in the context of
critical soft real-time systems. Building upon the periodic task model, Chapter 3
presents an extended model of real-time systems which allows hard, soft and non-
real-time computations to be described in a uniform and convenient manner. The
extended periodic task model is the basis for the analysis and scheduling results
in subsequent chapters.

Chapter 4 presents a statistical analysis technique for bounding the frequency
of missed deadlines in fixed-priority systems. The technique, c&tedhastic

N

Time Demand Analysiss first developed for systems of independent tasks on
a single processor. It is then extended to systems in which tasks access shared
resources within non-preemptable critical sections. Finally, it is applied to dis-
tributed systems with end-to-end deadlines.

In Chapter 5, the performance of three classes of algorithms for scheduling
real-time systems in which jobs overrun are compared for workloads in which
the execution times of jobs in a task are independent. The performance of the
algorithms on workloads in which the execution times of jobs in a task exhibit
dependencies is also presented.

In Chapter 6, we initially consider the effect of release time variations with
execution times held constant. Then we look at the performance of scheduling
algorithms in the presence of both release time variations and overrun.

Finally, Chapter 7 summarizes the contributions of this work and points to
directions of future research.

Chapter 2
Related Work

Substantial work has been done on deterministic models for the analysis of hard
real-time systems. This work is summarized in Sections 2.1 and 2.2. Section 2.3
summarizes existing probabilistic analysis techniques. Section 2.4 discusses ap-
proaches for the scheduling of overloaded systems. Since the behavior of real-
time systems can also be described using queueing theory, Section 2.5 presents
applicable queueing theoretic results and discusses why we have chosen to extend
deterministic real-time results rather than taking a queueing theoretic approach to
the analysis of real-time systems.

2.1 Periodic Task Model

The periodic task mode]1], with various extensions [2—29], is the foundation
for state-of-the-art techniques for characterizing the behavior of hard real-time
systems. According to the periodic task model, a real-time system consists of a
set oftasks each of which is a stream of computations or communications called
jobs We denote theth task of the system by; and thejth job of the task (or

the jth job since some time instant) by ;. The execution time of a job is the
amount of time the job takes to complete if it executes alone. All the jobs in
a task have common minimum and maximum execution times dergtednd

E;". We will refer to the actual execution time df ; ase; ;. Jobs in a task are
released for execution (i.e., arrive) with a common minimum inter-release time.
The minimum inter-release time (or inter-arrival time) is greater than zero and is
called theperiod of the task,P;". A job J; ; becomes ready for execution at its
release timey; ;. It must complete execution by its absolute deadlifye, or it is

said to have missed its deadline. Figure 2.1 shows these quantities in the context

J|,J

T NN
ri,j Ci,j

J

<—Di—>

Figure 2.1: Time-line for Task;.

of a time-line. The length of tim&),; = d, ; — r, ; between the release time and
absolute deadline of every job in each tdsks called therelative deadlineof the
task. The completion time of; ; is ¢; ; and the response timejs; = ¢; ; — 7, ;.

The maximum utilizatiorU;" of a task is the ratio of the maximum execution
time to the minimum inter-release time (period), i.e.,

U—I—_E:—
z‘_Pi—

The maximum utilization of a system aftasks is

Ut=> Ut

1<i<n

In a similar manner, the average utilization of the systéis defined as

Finally, the release time of the first job in a task is calledghaseof the task. We
say that tasks arna-phasewhen they have identical phases.

In modern real-time systems, tasks are scheduled in a priority driven manner.
At any point in time, the ready job with the highest priority executes. Most sys-
tems use a fixed priority assignment according to which all jobs in a task have the
same priority. The priority of task; is denotedp;. For convenience and without
loss of generality, we assume that priorities are distinct in a fixed priority system
and arrange the tasks in order of non-increasing pridfjty< 7;,; such thatr;
has a higher priority thaff;; for all i. Examples of fixed priority policies are
Rate MonotonidRM) [1] or Deadline MonotonidDM) [30]. The priority of a
task under RM is inversely proportional to the period of the task. The priority of a

-

task under DM is inversely proportional to the relative deadline of the task. Prior-
ities may also be assigned dynamically in the which case the priority of;jpls

¢i ;. The most common dynamic priority scheduling policyEiarliest Deadline
First [1] (EDF) which assigns priorities to jobs in order of their absolute deadlines,
i.e. the earlier the deadline the higher the priority.

2.2 Deterministic Schedulability Analysis

A task in a system is said to bschedulablaf all jobs in the task meet their
deadlines. A system of tasks is schedulable if all the tasks in the system are
schedulable. Deterministic real-time theory determines the schedulability of a
system based on the maximum execution times and minimum inter-release times
of its tasks. In order to be schedulable, each task is allocated a portion of the
processor bandwidth equal to its maximum utilization. In other words, the system
is designed with sufficient capacity to enable it to meet the peak time demand of
all tasks simultaneously. The maximum utilization for which a specific scheduling
algorithm is guaranteed to schedule all jobs of an arbitrary system without missing
a deadline is called thechedulable utilizationf the scheduling algorithm.

It was shown by Liu and Layland in [1] that a systermafasks scheduled on
a RM basis is schedulable if the maximum utilization of the system satisfies the
inequality

U+§n(2%—1>

The expression on the right hand side of the inequality is often called the Liu and
Layland bound. In the limit, the Liu and Layland bound approa¢h&sx 0.693.

Thus the schedulable utilization of RMIis2. We note that the Liu and Layland
bound is a sufficient condition. A system may be schedulable according to the
RM priority assignment policy even though its maximum utilization exceeds the
Liu and Layland bound.

Consider the system of three fixed priority tasks in Table 2.1. The tasks are
arranged in order of decreasing RM priority. The Liu and Layland bound is com-
puted for taskl; by considering the set of tasks with priority equal to or higher
thanT;. In the example, the maximum utilization of the set of tasks consisting of
{T'} is less than the Liu and Layland bound, hence thsis schedulable. Like-
wise, taskT; is schedulable because the maximum utilization of the set of tasks

Table 2.1: Parameters of the Tasks.

P~ Ef D, U Ut n@2i—1)

1

i

77 1 300 100 300 0.333 0.333 1.000
2
3

400 100 400 0.250 0.583 0.828
600 200 600 0.333 0.917 0.780

{T,T,} is less than the Liu and Layland bound. However, the Liu and Layland
bound does not allow us to determine if tagkis schedulable when executed with
the other two tasks.

One of the limitations of the Liu and Layland bound is that it assumes the
worst-case execution time for every job in a task and hence may be overly pes-
simistic when execution times vary widely. In their paper on the Multiframe
Model [31], Mok and Chien observed that the execution times of jobs in many
tasks vary according to a fixed repeating pattern. For example, a task which de-
codes a MPEG video stream executes longer to de¢ddmmes than it does to
decodeP or B frames. Because the frames in a video stream follow a fixed pat-
tern, e.g.,[-B-P-B, the execution times of jobs in the task vary according to the
same pattern. For each position in the pattern, the worst-case execution time of
jobs in that position is determined. In general, a tAskas a sequence of worst-
case execution time§E;,, ... , E;’y } of length ;. In the example above, the
first element of the sequence is the worst-case execution time éffedimes.

Mok and Chien derived the following schedulability bound when each ofhthe
tasks in the system has a fixed sequence of worst-case execution times and the
first execution time in the sequence is larger than the others

U+§rn(<r+1)n—1>
T

wherer = min}, (E;; /E},) is the smallest of the ratios of the first two worst-
case execution times of the tasks. In systems with a pattern of lengthr ae,
one, and the multiframe bound reduces to the Liu and Layland bound. In spite
of the increased precision the technique affords, we still cannot determine the
schedulability of a task if the total utilization of the task and higher priority tasks
is greater than the multiframe bound. In addition, some systems do not have a
fixed pattern of worst-case execution times.

The Time Demand Analysis (TDA) method [9] provides a more accurate and

general characterization of the schedulability of arbitrary fixed-priority systems
than the Liu and Layland bound. For a system of independent periodic tasks in
which the tasks are scheduled preemptively on a fixed-priority basis and every job
completes before the next job in the task is released, the worst-case response time
of a the task occurs when one of its jobs is released along with a job from every
task of equal or higher priority [1]. The release time of such a job is called a
critical instantof 7;. To determine if all jobs iff; meet their deadlines, it suffices

for us to look at a job irY; that is released at a critical instant. We call this jpb.
Thetime demand functioof 7;, denotedw;(t), is the maximum processor time
demanded by ;, as well as all the jobs that complete befdye, as a function of
time ¢ since the release of ;

— t +
w;(t) 1;}{@ ’VPk—‘ E;
It is a function which increases by the maximum execution tifijeevery time a
higher priority job.J,; is released. If there is sufficient time before the deadline of
J;1 such thatw;(t) < tis satisfied, then no job i#; will miss its deadline.

Figure 2.2 shows the time demand function for each of the tasks in Example 1.
There is sufficient time for tasks,, T, andT3 to complete by 100, 200 and 600
respectively. Thus the system is schedulable in spite of the fact that the maximum
utilization of the system is greater than the Liu and Layland bound. A schedule of
the system with the initial job in each task released at a critical instant is shown
in Fig. 2.3. Even though the processor is idle from 1100-1200, it is clear that
increasing the maximum execution time of any task will result in the potential for
J31 to miss its deadline at 600.

The description of TDA given above works only when all jobs complete by
the release of the next job in the task, which is the case for the example. To
determine whether all jobs ifi; meet their deadlines when a job in some task
of the set{71,T5,... ,T;} may be released before the previous job in the same
task completes, we must compute the worst-case bounds on the response times of
all jobs inT; executed in @-phase levels; busy intervakhat begins at an instant
when a jobJ; ; in 7} is released at the same time with a job in every higher priority
task! A level-¢; busy interval is an interval of time which begins the instant when

1This instant is still called a critical instant in the literature even tholighmay not have the
worst-case response time among all job&in

10N

[}
5)
5 500 i w
() 1 B s
Q i
£ _ - _ o w(t)
= | Y

O I I I I | I I el
0 500
Time Supply

Figure 2.2: Time Demand Analysis of the Example System.

)
2
)
/)

0 500 1000

Figure 2.3: Schedule of the Example System.

11

ajob inT; or a higher priority task is released and immediately prior to the instant
no job in those tasks is ready for execution. It ends at the first time instnt
which all jobs inT; and higher priority tasks released befoteave completed.

Analogous to the critical instant analysis in [1], it has been shown in [10] that it
suffices for us to consider only an in-phase lewgbusy interval for the following
reasons.

1. IfajobinT;is ever released at the same time as a job in every higher priority
task, that instant is the beginning of an in-phase leydiusy interval (i.e.,
the system has no backlog at that instant).

2. The length of an in-phase level-busy interval is longer than a level-
busy interval that is not in-phase and hence more jolds are released in
an in-phase levep; busy interval.

3. The response time of every job in a leyglbusy interval that is not in phase
is no greater than the response time of the corresponding job in an in-phase
level-p; busy interval.

For these reasons, if all jobs in an in-phase lekdbusy interval meet their dead-
lines, the task is schedulable [10]. We call this Generalized Time Demand Analy-
sis (GTDA).

We know from TDA that the system of tasks in Table 2.1 is schedulable. How-
ever, suppose that a significantly less expensive processor is available which is
half as fast. Just as in the automotive engine management system example in Sec-
tion 1.1, the profitability of the product would be greatly enhanced if the slower
processor could be used. Using the slower processor, the execution time doubles
but the periods do not change because they are determined by the environment.
Thus the system utilization is doubled, as shown in Table 2.4. The deterministic
analysis techniques discussed earlier can only tell us thatitaskschedulable
and that taskd; and73 are not. They cannot tell us how often deadlines will

Figure 2.4: Tasks of Example 1 on Slower Processor.

T, ¢ PC Bf D Uf U" n@2s-1)
7, 1 300 200 300 0.67 0.67 1.00
T, 2 400 200 400 050 1.17 0.83

75 3 600 400 600 0.67 1.83 0.78

19

be missed. Although we may be willing to trade occasional missed deadlines for
the use of the slower processor, we are unable to do so based on the information
obtained from deterministic real-time techniques.

Our work is based on an extension of the periodic task model in which a guar-
anteed execution time, which may differ from the maximum execution time, is
specified for each task in the system. Likewise, the guaranteed inter-release time
specified for a task may differ from the minimum inter-release time of task. Un-
like the Liu and Layland or Multiframe bounds, the objective of the Stochastic
Time Demand Analysis (STDA) described in Chapter 4 is to derive a lower bound
on the percentage of jobs in a task that meet their deadlines. While the bound
obtained by STDA can be used to determine the schedulability a system, it also
allows us to determine if the frequency of missed deadlines is acceptable when the
system is not schedulable. STDA is similar to Generalized Time Demand Analy-
sis in that it also considers the jobs of an in-phase leyddusy interval. Unlike
GTDA, itis not restricted to systems in which the maximum utilization is less than
1.0. It does this by taking a probabilistic rather than a deterministic approach.

2.3 Probabilistic Schedulability Analysis

There are only two other real-time techniques that exploit information about the
statistical behavior of periodic tasks to analyze real-time systems: Probabilistic
Time Demand Analysis (PTDA) [32] and Statistical Rate Monotonic Scheduling
(SRMS) [33].

Like the method proposed in Chapter 4, PTDA attempts to provide a lower
bound on the probability that jobs in a task will complete in time. It is a straight
forward extension to TDA in which the time demand is computed by convolving
the probability density functions of the execution times instead of summing the
maximum execution times. PTDA assumes that the relative deadline of all tasks
are less than or equal to their periods and computes a lower bound on the proba-
bility that jobs in a task complete in time by determining the probability that the
time supply equals or exceeds the time demand at the deadline of the first job in
the task. The assumption is not valid when the average utilization of the system
approaches one and hence Stochastic Time Demand Analysis was developed.

SRMS is an extension to classical Rate Monotonic scheduling. Its primary
goal is to schedule tasks with highly variable execution times in such a way that

12

the portion of the processor time allocated to each task is met on the average.
Variable execution times are “smoothed” by aggregating the executions of several
jobs in a task and allocating an execution time budget for the aggregate (which
may be proportional to the original). A job is released only if its task contains
sufficient budget to complete in time and if higher priority jobs will not prevent its
timely completion. All other jobs are dropped. The analysis given in [33] can only
be used to compute the percentage of jobs in each task that will be released for
execution (and hence complete in time). Moreover, it is applicable only when the
periods of the tasks are related in a harmonic way, i.e., each larger geriosl

an integer multiple of every smaller peridti . Recent extensions [34] generalize
SRMS to non-harmonic systems. The STDA method presented in Chapter 4 seeks
to provide a lower bound on the percentage of jobs which meet their deadlines
when all jobs are released, and it is not restricted to the RM scheduling policy.

2.4 Overload Handling

Since processor bandwidth allocations in a critical soft real-time system are of-
ten less than the amount necessary to guarantee that the system is schedulable,
the scheduler must be able to accommodate overload. The scheduling of over-
load systems was considered by €iaal.[32] who proposed the Task Transform
Method (TTM). The Overrun Server Method (OSM) proposed in Chapter 5 is
both a simplification and an extension of the TTM. Like the TTM, the OSM also
transforms a job into a mandatory periodic task, whose maximum execution time
is the guaranteed execution time in our model, and a request to a server for the ex-
ecution of the remaining portion. Under fixed priority scheduling, OSM and TTM
both execute the remaining portion by a Sporadic Server [20]. Under an EDF
scheduler, OSM executes requests by either a Constant Utilization Server [35] or
a Total Bandwidth Server [21] rather than a Slack Stealer [11] as is the case with
TTM.

The Overload Server Method is also similar to the work by Chetra. [36];
the main difference being that the remaining portions of all jobs execute to com-
pletion under OSM instead of being terminated when deadlines cannot be met.
Chung also investigated several policies for assigning priorities to remaining por-
tions and compared how well the policies minimized the average error of the sys-
tem based on a simple non-linear error function. (The error in the result computed

1A

by a job is a function of the difference between the result obtained by executing
for less than the required time and the result obtained by executing to comple-
tion.) They found that assigning priorities to the remaining portions on the basis

of the deadlines of the jobs generally resulted in a lower average error. Our results
also suggest that deadline-driven scheduling of the remaining portions gives bet-
ter performance even though we used the average deadlines met and the average
response times as our metrics instead of average error.

The Isolation Server Method (ISM), proposed in Chapter 5, is similar to the
Proportional Share Resource Allocation algorithm (PSRA) [37]. Both assign a
portion of the processor bandwidth to a task. Whereas the PSRA algorithm allo-
cates the assigned portion to jobs in discrete-sized time quanta, the ISM allocates
the portion in variable sized chunks. The difference between the portion of proces-
sor bandwidth a task receives under the PSRA algorithm and the ideal is bounded
by a constant equal to the quantum size. The ISM provides the ideal portion pre-
cisely. Both algorithms allow the integration of real and non-real-time processing,
are easy to implement and prevent ill-effects of overrunning jobs on jobs in other
tasks.

Both the Overrun Server Method and the Isolation Server Method require tasks
to be assigned to servers. For the fixed priority case, Katthai: [38] consider
the problem of assigning fixed priority tasks ton servers, wheren < n and
give an exponential time algorithm for determining the assignment that gives the
smallest response time while ensuring that the system remains schedulable, if such
an assignment exists. However, the systems under consideration in this thesis are,
for the most part, not schedulable according to deterministic real-time scheduling
theory. In addition, we relax the assumption that jobs are served first-come-first-
served and consider the behavior of Sporadic Servers with a fixed priority queue
discipline (DM) and a queue discipline designed to minimize response times. We
also consider the assignment of tasks to servers under EDF scheduling. As will
be shown in Chapter 5, our results indicate that the behavior of a system with
multiple servers is bounded by the assignment of all tasks to a single server and
the assignment of each task to its own server.

In [6], Ghazalie and Baker consider the performance of several aperiodic
servers in a deadline-driven environment. Their focus is on scheduling aperiodic
tasks while our focus is on scheduling overruns using servers. One of the servers
they consider is a variation of the Sporadic Server, adapted to a dynamic prior-
ity environment, while we use Sporadic Servers for fixed priority scheduling and

15

Constant Utilization Servers [35], Total Bandwidth Servers [21] or Weighted Fair
Queueing Servers [39] (also called Packet-by-Packet Generalized Processor Shar-
ing [40]) for dynamic priority scheduling. They observe that the average response
time of an aperiodic task decreases with increases in Sporadic Server server period
while we observe that increasing the server period can either increase or decrease
the average response time depending on the execution time distributions involved.
Some of the difference may be due to fixed versus dynamic priority, but it is also
likely that the difference comes from averaging the behavior of many systems
instead of observing the behavior of a single system. We also consider three dis-
ciplines for prioritizing the server ready queue while it appears that their server
executes requests in order of arrival. Finally, we also consider dependencies be-
tween the execution times of consecutive jobs.

A complimentary work to ours is the Open Systems Environment (OSE) de-
scribed in [35]. Similar to the deadline-driven version of the ISM with a server
per task, the OSE ensures that the behavior of a task does not interfere with the
ability of other tasks to meet their deadlines. The primary motivation of the OSE
is to allow real-time applications to be developed and validated independently by
assuming that each application runs alone on a slow processor and then are exe-
cuted together on a fast processor without causing missed deadlines. The primary
motivation of the OSM and the ISM is to accommodate overrun. Thus, the OSM
and the ISM are complimentary to the OSE.

Ramanathan [41] reduces the load on an overloaded system by selectively
discarding jobs in a task according to the, k)-firm deadline model of [42].
According to the approach, the stream of jobs from a task is partitioned into se-
guences ok consecutive jobs. Out of theconsecutive jobsy jobs in a sequence
are declared mandatory and are scheduled at their nominal priority while the re-
maining jobs are declared optional and given a priority lower than any real-time
task. Thus, optional jobs are only scheduled if sufficient time is available and
at leastm out of k£ consecutive jobs in each task are guaranteed to meet their
deadlines. The error introduced by discarding jobs can be compensated for by
modifying the control law computation [41]. The approach assumes that priori-
ties are fixed and that some jobs can be dropped. It also assumes that jobs can be
complete out of order since optional jobs may complete after subsequent manda-
tory jobs due to being given a lower priority. Our work assumes that all jobs must
be executed and they must complete in order. We allow either fixed or dynamic
priority assignments.

1R

The work by Chu and Nahrstedt on the Dynamic Soft Real-Time scheduling
framework (DSRT) [43,44] is also closely related. Their middleware, which re-
quires conformance to the POSIX 1003.1b standard for real-time support, requires
no modifications to the kernel in order to co-schedule hard, soft, and aperiodic
real-time workloads (along with time-share workloads) on a set of processors.
Under DSRT, the processing capacity of a system is divided into fixed sized real-
time, overrun and time-share partitions. The scheduler task which chooses the
next job to execute based on an EDF policy is given the highest priority in DSRT.
The selected job is assigned a real-time priority below the scheduler priority so
that it will run when the scheduler finishes. In this way, DSRT implements EDF
scheduling using fixed priority services which conform to the POSIX real-time
standard. Each real-time task submits a reservation for processor bandwidth, with
DSRT performing admission control to prevent hard real-time jobs from miss-
ing their deadlines. To assist the user in deciding upon an appropriate bandwidth
reservation for a task, the framework provides a “smart probing” feature which
executes a specified number of jobs in the task without real-time guarantees and
returns a suggested reservation based upon the processor usage of the jobs. As
part of the reservation, the task can specify an adaptation policy which allows
the system to modify the reservation as the required bandwidth of the jobs in the
task change. If a job overruns, the remainder of its execution will take place in
the overrun patrtition. In this respect, the scheduling of overrunning jobs most re-
sembles our Overrun Server Method with a single server for all tasks scheduled
according to the EDF algorithm.

Most of the differences between DSRT and the overload scheduling techniques
we present stem from differences in purpose and scope. DSRT is designed as a
complete solution for supporting soft real-time workloads on general purpose op-
erating systems and therefore contains mechanisms and policies, such as adapta-
tion, which are useful in that environment. We focus on issues related to overrun
scheduling in support of critical soft real-time systems where real-time perfor-
mance is of primary importance. In spite of the different goals, there are many
similarities. Like DSRT, the OSM partitions the processor bandwidth. However,
the partitions in OSM are sized dynamically based on the requirements of the
admitted tasks rather than being statically determined by an administrator. Fur-
thermore, the processor bandwidth in OSM is not allocated in discrete-sized time
guanta as it is in DSRT. Instead of treating all overrunning jobs equally as the
OSM does, DSRT classifies overrunning jobs into one of two categories based on

17

the amount and frequency of overruns and schedules the jobs accordingly. Our
approach does not preclude a multi-level overrun classification policy from being
implemented but the policy implemented in DSRT is undesirable for schedul-
ing critical real-time systems because of its emphasis on fairness at the expense
of meeting deadlines. We note that DSRT can approximate the Isolation Server
Method by letting the guaranteed execution times of tasks (execution time reser-
vations) be zero and setting the burst tolerances appropriately. However, DSRT
uses round robin scheduling within an overrun class to ensure fairness whereas
the OSM uses priority-based scheduling to achieve better real-time performance.
The adaptive statistical characterization in Appendix C is similar to the “smart
probing” feature of DSRT with the primary difference being that we are after dis-
tributions while [43, 44] seeks some simple descriptive statistics in order to form
reservations. Finally, as mentioned earlier, DSRT provides support for adapting
the resource reservation of a task to accommodate changing processor demands
while OSM does not. Adaptation is not required in most critical soft real-time
systems.

The work described in this thesis differs from recent approaches (such as [45])
by relaxing hard real-time constraints in a controlled manner rather than attempt-
ing to add support for real-time tasks to time-shared operating systems without
compromising fairness. The latter is unable to provide any form of hard real-time
guarantee under overload by virtue of an insistence on being fair. In contrast, the
baseline and OSM algorithms discussed in this thesis are able to make real-time
guarantees and thereby may sacrifice the ability to be fair to all tasks. However,
fairness within non-real-time tasks can achieved without sacrificing the ability to
make guarantees by executing non-real-time tasks within a server which imple-
ments a traditional time-share scheduler. Thus the baseline and OSM algorithms
described in this thesis are able to guarantee the deadlines of hard real-time tasks
(and critical soft real-time tasks whose jobs do not exceed the guaranteed exe-
cution time) while scheduling non-real-time tasks fairly within the portion of the
processing time allocated for them.

2.5 Queueing Theory

The statistical analysis of real-time systems described in Chapter 4 is similar to the
analysis of queueing systems in many ways. Indeed, real-time systems can be de-

1Q

scribed by a queuing theoretic model rather than a periodic task model. However,
a very simple real-time system is still a complex queueing system.

A key assumption underlying most analytical results in queueing is the “mem-
oryless property” of the arrival time and/or execution time distributions. For ex-
ample, M/M/1 and M/G/1 queues have Poisson arrivals; M/M/1 and G/M/1 queues
have exponential execution times [46, 47]. The memoryless property makes the
analysis of otherwise complex queueing systems tractable. On the other hand,
jobs of a real-time task arrive more or less periodically, implying an arbitrary
inter-arrival time distribution. Likewise, the execution times of jobs in a task are
likely from distributions for which there are no elegant mathematical description.
To further complicate attempts to achieve an analytical solution, real-time sys-
tems are scheduled preemptively according to priority. Although queueing theo-
retic analysis techniques exist for priority scheduled systems (see [47] Chapter 3),
combining priority scheduling with general inter-arrival time and execution time
distributions that do not have the memoryless property makes analytical solutions
of average performance difficult.

Recently, Lehoczky has developed a queuing theoretic technique called Real-
Time Queueing Theory which is better suited to real-time systems [48-50]. Given
a scheduling algorithm and a distribution of the deadlines of jobs, analytical ex-
pressions for the lead-time distribution of jobs in each task are derived as a func-
tion of the average number of jobs in the queue for the FIFO, EDF and processor
sharing scheduling algorithms. (The lead-time of a job is the time remaining un-
til its deadline.) The formulation for the lead-time distributions of tasks is based
upon the assumption of a high system load in order to approximate the behavior
of the system by a diffusion process.

While the technique shows promise, results published to date have been lim-
ited to the above mentioned scheduling algorithms and tasks with either Poisson
arrivals or exponential execution times. Besides the lack of expressions for fixed-
priority schedulers with arbitrary execution time and inter-arrival time distribu-
tions, Real-Time Queueing Theory yields the average number of deadlines met
rather than a lower bound on the percentage of deadlines met, the latter being
more important for critical soft real-time systems. In addition, the diffusion ap-
proximation upon which the approach is based requires the average number of
jobs in the queue to be large in order to be accurate. (The results for a 95% aver-
age system utilization and uniformly distributed execution times reported in [48]
were obtained with an average queue length of 50 jobs. In contrast, the system

10

of three tasks scheduled by a Total Bandwidth Server discussed in Figure 5.8 of
Chapter 5 has a maximum queue length of two.) Because of these difficulties, the
approach taken in this thesis is to extend real-time system results through a sta-
tistical treatment rather than extending queueing theory to account for real-time

constraints.

It should be noted that any statistical approach, based on either real-time or
gueueing theory, must deal with the practical problem of summing random vari-
ables. The primary difficulty is in computing the resulting probability density
function from the density functions of the summands. Analytical results for sums
of random variables exist only for certain special cases. In the general case, the
probability density function of the sum must be computed by convolution. Con-
volution, however, has remained computationally expensive in spite of efforts to
reduce its cost. (See [51], for example). The fastest known method for perform-
ing convolution is to compute the Fast Fourier Transforms of the density functions,
multiply, and and compute the inverse transform. This is still an expensive opera-
tion, however. It is natural to wonder if the effort required to compute the proba-
bility distribution of a sum of random variables can be reduced by approximations
derived from well known mathematical or statistical results (see Appendix D).
Sadly, the bounds obtained by this approach are so loose as to completely dis-
courage their use in analyzing real-time systems. Because of this, we compute
probability distributions via convolution in this work.

29N

Chapter 3
Extended Periodic Task Model

Deterministic real-time theory determines the schedulability of a system based on
the maximum execution times and minimum inter-release times of tasks in the
system. In order to ensure that the system is schedulable, the processor bandwidth
set aside for each task is equal to its maximum utilization. Because the execution
times or inter-release times of jobs in many real-time systems vary widely, de-
signing a critical soft real-time system using deterministic real-time theory often
yields a system whose average utilization is unacceptably low.

In systems where the execution time varies, we require tgatsanteed exe-
cution time £, be specified for each task instead of a maximum execution time
as in the original periodic task model. The guaranteed execution time of a task
is zero for non-real-time tasks, equal to the maximum execution time of any job
of the task for hard real-time tasks, and somewhere in between for soft real-time
tasks. To account for inter-release time variations, we require tgaaeanteed
inter-release timeP;" > 0, be specified for each task instead of a minimum inter-
release time. The guaranteed inter-release time of a task is infinite for non-real-
time tasks, equal to the minimum inter-release time of any job in the task for hard
real-time tasks, and somewhere in between for soft real-time tasks. (We define
the guaranteed utilizationn the expected way,/" = E}/P?.) We require that
systems be schedulable according to deterministic real-time theory on the basis of
the guaranteed execution and inter-release times of tasks. Modifying the periodic
task model in this manner allows systems containing hard, soft and non-real-time
tasks to be described and treated in a simple, unified manner.

Allowing the guaranteed execution time of a task to be less than its maximum
execution time increases the potential for jobs to miss their deadlines. A job is
said tooverrunwhen it executes for more than its guaranteed execution time.

91

Depending on the amount of time available, a system may be able to schedule
the remaining portion of an overrunning job so that it completes by its deadline.
Likewise, allowing the guaranteed inter-release time of a task to be greater than its
minimum inter-release time increases the potential for jobs to miss their deadlines.
We say that a job hasjdtered releasavhen the time between its release and the
release of its predecessor differs from the guaranteed inter-release time. A system
may be able to schedule a job with jittered release so that no deadlines are missed,
depending upon the load on the system.

We say that a system mverloadedwhen it is not schedulable according to
deterministic real-time theory on the basis of maximum execution times and min-
imum inter-release times and hence some jobs may miss their deadlines. Jobs in a
system may overrun or have jittered releases without the system being overloaded.
However, an overloaded system implies that a job will overrun or that some re-
lease was jittered. In Chapter 5, we consider ways to schedule systems in which
jobs overrun so as to guarantee that jobs which do not overrun will meet their
deadlines. For jobs with execution times in excess of their guaranteed execution
times, the objective is to minimize the response times of the jobs. In Chapter 6,
we consider the scheduling of systems in which the release times of jobs are jit-
tered, both with and without overrun. For jobs with inter-release times less than
their guaranteed inter-release times, the objective is also to maximize the number
of deadlines met and minimize response time.

We note that specifying an execution time for a task less than the maximum
is not new. Under the Processor Capacity Reserve model of Metedr[52],

a task is guaranteed to execute for at least its guaranteed execution time each
period. However, we appear to be the first to use the specification of a guaran-
teed execution time equal to or less than the maximum to characterize hard, soft
and non-real-time tasks in a uniform manner. In contrast, we know of no study
in which the guaranteed inter-release time of a task is purposefully specified as
greater than the minimum inter-release time.

Lok]

Chapter 4

Stochastic Time Demand Analysis

This chapter presents tl&tochastic Time Demand Analysechnique (STDA)

for computing a lower bound on the percentage of deadlines that a fixed priority
periodic task meets in the presence of execution time variations. We compute a
lower bound on the probability that deadlines are met by jobs in a simple sys-
tem and compare the bounds with the percentage of deadlines met obtained by
simulation. We then extend the technique to account for blocking caused by non-
preemptability. We also apply STDA to computing the probability of meeting
end-to-end deadlines in distributed systems.

4.1 Computing Lower Bounds

We now focus on a task; in the system. Let/; ; be thejth job inT; released in

a level, busy interval. To simplify the discussion and without loss of generality,
we take as the time origin the beginning of the busy interval. The response time
pi.; of job J; ; is a function of the execution times of all jobs which can execute in
the interval(r; ;, ¢; ;]. Since the execution times of jobs are random variables, the
response times of jobs are also random variables. Our analysis assumes that the
execution timef; of a job inT; is statistically independent of other jobsihand

of jobs in other tasks. We further assume that the variations in inter-release times
are negligible and use the minimum inter-release time in our analysis. Because a
job may not complete by the release of a subsequent job in the same task, we must
consider all jobs in a leveb, busy interval. The length of a level-busy interval

is also a random variable. Determining when busy intervals end is key to STDA.
First we show how to compute the response time distribution of jobs inftask

tole]

4.1.1 Computing Response Time Distributions

Let w; ;(t) denote the time demand of all jobs that execute in the intg¢ryalt].
Job J; ; completes when there is sufficient time to meet the deman¢) = ¢.
Let W, ;(t) = Plw;;(t) < t] denote the probability that the time demand up to
is met byt, given that the busy interval has not endéd; ;(¢) is the probability
that the response time of ; is less than or equal to The probability that/; ;
meets its deadline is therefore at leHst; (d; ;).

We now turn our attention to computiri@y; ;(¢). The response time distribu-
tion W; ;(t) is computed by conditioning on whether or not a backlog of work
from equal or higher priority tasks exists wheh; is released. If no backlog
exists, a level; busy interval starts at the release.Bf;, which we relabelJ; ,,
and

If backlog exists, the response time distributions for the subsequent jaysrof
the busy interval are computed in order of their release by

Wi;(t) = Plwij(t) <t |wija(riz) > 1 (4.2)

For the highest priority task, the response time distribution of the first job in a
busy interval is the same as its execution time distribution. The response time
distribution of the subsequent job in the busy interval is computed by convolving
the execution time distribution of the task with the distribution of the backlog
obtained by conditioning. This process continues until the end of the busy interval.
We now computéV; ;(¢) for j > 1. Clearly jobs with a priority higher than
¢; can execute in the intervét; ;, ¢; ;]. Jobs amond; 1, J; o, ... , J; j_1 that com-
plete afterr; ;, as well asJ; ;, also execute in this interval. The effect of jobs
which are eligible for execution at ; is already taken into account in the con-
ditioning process. To computé’; ;(t), we must still take into account the time
demand of jobs of higher priority tasks released in the intefnugl ¢; ;]. This is
done by dividing(r; ;, ¢; ;] into sub-intervals separated by releases of higher pri-
ority jobs and conditioning on whether a backlog of work exists at the start of
each sub-interval. For example, suppose that only one higher priority;jols
released in the intervat, ;, ¢; ;. Its release time,,; divides the interval into two
sub-intervals(r; ;, ;] and(ry, ¢; ;]. The probability that/; ; completes by time

9N

t in the first sub-interva(ry, 1] is
Wij(t) = Plw;;(t) <t | w;j1(riz) > 1i] (4.3)
and completes by timein the second sub-intervét;, ;, 7; ;1) is

Wij(t) = Plwii(t) <t wij1(rig) > rig,wij(rey) > reg] (4.4)

Plw; j(rri) > k]

The probability that a job completes by its deadline is determined by systemat-
ically computingW; ;(¢) for ¢ in successive sub-intervals until the sub-interval
containingd; ; has been considered.

Equations 4.1 and 4.2 allow the response time distributions of jobs in a level-
¢; busy interval to be computed for any combination of initial release times. In
order to compute a lower bound on the probability that jobs complete by their
deadlines, the worst-case combination of release times needs to be identified. As
discussed previously, an upper bound on the response time of jobsTirasn
obtained by computing the response times of jobs executed in an in-phase;level-
busy interval according to deterministic TDA. Sadly, we note that it is not longer
sufficient for us to consider an in-phase busy interval in general. The proof that no
backlog exists at the instant when a job is released simultaneously with the release
of a job of every higher priority task requires that the maximum total utilization
of the system is no greater than one, as assumed by deterministic TDA. STDA
requires only that the average utilization of the system is less than one hence some
systems may not meet the condition. It is not clear what relationship between the
release times of the first jobs in a levglbusy interval causes some jobdhto
have the maximum possible response time and hence the smallest probability of
completing in time. For now, we assume that the first jobs in all tasks are released
in-phase and discuss the rationale for this assumption later.

4.1.2 Determining End of Busy Interval

We now turn our attention to the matter of determining when a busy interval
ends. We note that since there is a single task per priority level, adg\rlsy
interval ends if some joly; ; in T; completes before the next joh ;. is re-
leased. Thus we know that the busy interval has surely ended if, for gome

Lo] =

Plw; ;(1ij+1) < 1ij41] = 1.0. (When multiple tasks have the same priority, jobs
from the same priority level must have their response time distributions computed
in order of increasing release times. The busy interval will have ended if all jobs
with equal or higher priority released before timdave completed by with
probability 1.0.)

For systems with a maximum utilization greater than 1.0, the probability that
J;; completes beforel; ;;, is released may be strictly less than 1.0. In other
words, the probability that a level; busy interval ends is less than 100%. Even
though a busy interval may not end, the lower bound on the minimum probability
that jobs fromT; will meet their deadlines as computed according to STDA is a
correct lower bound. To see this, Igf; 1, J; o, ... J;,,} be the sequence of jobs
of T; in the levele; busy interval and le{P; 1, P; ., ... P;»} be the sequence of
probabilities that the corresponding jobsGfin the busy interval complete by
their deadlines, as computed by the process in Section 4.1.1. The monotonically
non-increasing functiol(n) = min{P; 1, P, ... ,Pi,} represents the devel-
opment of the lower bound on the probability that jobs{if;, J;, ... , Jin}
complete by their deadlines, as computed by STDA. When the busy interval never
ends,L(oc0) is at least zero since the probability that a job completes by its dead-
line lies in the rangé0, 1]. Clearly, a lower bound of zero is a correct lower bound
on the minimum probability that jobs if; meet their deadlines. The tightness of
the lower bound computed by STDA depends on the maximum utilization of the
system. For maximum utilizations less than 1.0, the bound is quite good. As the
maximum utilization becomes increasingly greater than 1.0, the bound becomes
increasingly conservative.

As a practical matter, the process of computit{g) asn — oo can be termi-
nated when the change between two successive values becomes acceptably small.
We have found that the computation converges quite rapidly, with the rate of con-
vergence depending on the maximum utilization of the system.

4.1.3 Computing Bounds for a Simple System

As an example, we now use STDA to bound the percentage of deadlines met
in a system of two tasks shown in Table 4.1. The execution time of each task
is uniformly distributed with parameters chosen to accentuate the potential for
missed deadlines. The worst-case utilization of the system is 1.41 and the mean
utilization of the system is 0.71. Consequently, we would expect that some jobs

YR

Table 4.1: Parameters of the Tasks.

T; P- D E. E; Ef U~ U, Uf

T 300 300 1 100 199 0.0033 0.333 0.663
Ty 400 400 1 150 299 0.0025 0.375 0.748
Total 0.0058 0.708 1.411

will miss their deadlines. To determine the probability of jobs in each of the
tasks missing their deadlines, we apply the procedure outlined above. Because its
maximum utilization is less than 1.0, we know tliatwill not miss any deadlines.
Therefore we begin the analysis with.

It is apparent that the maximum time demandIéfin the interval(0, 400]
exceeds the time supply because the sum of the maximum utilizations of the two
tasks exceeds one. Becaubg may not have complete by the timg is re-
leased, the response time &f, may be greater than that of;. At the very
least we need to compute the response time distributiongsforand J, 5. To
compute the probability that, ; completes by its deadline, the interval 400]
is divided into sub-interval§0, 300] and (300, 400] by the release time of, , at
300. In the first interval, the time demand includes only the execution times of
J11 andJ, ;. The time demand of the second interval includes the execution time
of J; », as well as the work remaining from the first interval. The probability that
the time demand is no greater than a particular value is conditioned on whether or
not J,; completes beford, , is released. We first consider the inter¢@l300].

The probability that/, ; will finish by 300 isP[w,(300) < 300], wherew, ; (t)
for 0 <t < 300 is the sumFE; + E5 and has the density function and distribution
shown in Fig. 4.1. The probability that ; completes by 300 is 0.669.

We now computeP[w, 1(400) < 400 | wo1(300) > 300] for ¢ in the interval
(300, 400]. Because/, ; may not have completed by time 300, there are between
0 and 198 time units of work remaining whél, is released. The density func-
tion for the backlog is the density function of Fig. 4.1(a) in the range 300—-498,
normalized so that the cumulative probability is 1.0 at time 498 as is implied by
statistical conditioning. The random variable for the backlog is then added to the
random variable for the execution time.6f,. The resulting density and distribu-
tion are given in Fig. 4.2. The probability th#t, completes by 400, given that it
did not complete by 300, is 0.209 as shown in Fig. 4.2(b).

Combining the results of analyzing the two sub-intervals gives us the distri-

7

Probability

Probability

0.010

0.008

0.006

0.004

0.002

0.000

50 100

150 200 250 300 350 400 450 500

Time Demand

(a) Density

1.0

06

04t

02 r

0.0
0

50 100 150 200 250 300 350 400 450 500

Time Demand

(b) Distribution

Figure 4.1: Time demand ok ; over interval(0, 300].

7Q

Probability

Probability

0.010 . .

0.008 t i
0.006 1
0.004 _
0.002 1
0.000 1 1 1 1 1 1 1
300 350 400 450 500 550 600 650 700
Time Demand
(a) Density
0-0 1 | 1 1 1 1 1
300 350 400 450 500 550 600 650 700

Figure 4.2: Time demand ok, ; over interval(300, 400].

Time Demand

(b) Distribution

270

Probability

Probability

0.010 .

0.008

0.006

0.004 -

0.002

0.000 :
0 100

200 300 400 500 600 700
Time Demand

(a) Density

0.0 :

200 300 400 500 600 700
Time Demand

(b) Distribution

Figure 4.3: Time demand ok, ; over interval(0, 400].

2N

bution of the response time dt ; and thus the probability that, ; completes by
400 and meets its deadline

Pws.1(400) < 400] = (0.669) + (0.209)(0.331) = 0.738 (4.5)

The density and distribution functions of the response timg,@fover the entire
interval (0, 400] are given in Fig. 4.3.

We note that the probability that ; will not complete before, 5 is 0.262 so
it is also necessary to compute the probability that completes by its deadline.

The analysis proceeds following the same pattern until the busy interval ends or
the lower bound converges to the final value. Figure 4.4(a) shows the convergence
history for this heavily loaded system. The data points indicate the probability of
timely completion of jobs ifl; as computed by STDA while the line indicates

the minimum probability of timely completion. For this system, the lower bound

is 73.8% after the first job, 43.4% after 10 jobs, 40.2% after 22 jobs, and 39.2%
after 34 jobs. Based on these results, we let the lower bound on the percentage of
deadline met be 39.2%.

Figure 4.4(b) shows the rate of convergence for the same system of two tasks
(with periods of 300 and 400 and mean execution times of 100 and 200, respec-
tively) but with a minimum execution time of 25 rather than 1. The maximum
utilization is 1.27. While the lower bound starts at 76.4% with the first job, it
quickly decreases to 53.2% after 10 jobs and 51.1% after 19 jobs. As can be seen
by comparing Figure 4.4(a) to Figure 4.4(b), decreasing the maximum utilization
causes the probability of meeting deadlines to increase. With a minimum execu-
tion time of 70 rather than 1 the maximum utilization is 1.01 and the busy interval
ends after the third job.

4.1.4 Determining Worst Case Phase

We now return to the choice of initial phases for tasks. When the maximum uti-
lization is no greater than one, the worst-case response time occurs when the first
job in each task in a busy interval is released in phase [10]. The result rests upon
the following lemma which establishes that a new busy interval starts if jobs are
ever released in-phase. (See [10] for proof that an in-phase release results in the
worst-case execution time.)

Lemma 4.1.1 There is no backlog at the start of a in-phase busy interval if the

21

Probability

Probability

10

0.2

0.0

1.0

0.8

0.6

04

0.2

0.0

5 10 15 20 25 30 35

Jobs

(a) 141% Utilization

40

5 10 15 20
Jobs

(b) 127% Utilization

25

Figure 4.4: Rate of convergence for system of two tasks.

29

maximum utilization is no greater than 1.0.

Proof: We prove the lemma by contradiction. Suppose a job in every task is
released at timeé which is in the middle of a busy interval. In other words, that
backlog exists at. This implies

i{%JEj>t

=1 v

Since|z| < x
Lt
—FEr >t
2 p b
=1 !
"Rt
G 1
Z P
=1 ?
and hence

Ut >1
which contradicts the assumption that the maximum utilization is less thani1.0.

Because no backlog can exist at the time jobs are released in phase when
Ut < 1, we are assured that the busy interval will end before the jobs are again
released in phase. We now prove that the lower bound on deadlines met computed
by STDA is one if the system is schedulable.

Lemma 4.1.2 If a system is schedulable, the lower bound on deadlines met com-
puted by STDA is 100%.

Proof: The maximum value of the response time density function computed
for a job using STDA is identical to the sum of the maximum execution times
computed as the worst-case response time of the job using GTDA. Hence, if the
job is determined to be schedulable using GTDA, it will surely be determined
schedulable using STDA. Thus, the lower bound on deadlines met computed by
STDA is 100%. O

This result makes STDA particularly useful for analyzing systems in which
the maximum utilization of the system exceeds the Liu and Layland bound but is

[sls]

less than unity. It is recommended that STDA be used instead of TDA (or GTDA)
since STDA not only determines schedulability, but also computes a lower bound
on the deadlines met if the system is not schedulable.

ForU* > 1, we do not know what phasing causes jobs to have their worst-
case response times. Some combinations of release times of the first jobs may
lead to a larger maximum response time of for a task. We hypothesize that these
combinations occur infrequently enough so that the lower bound computed from
response time distributions of jobs in an in-phase busy interval is sufficiently accu-
rate. To test this hypothesis, we performed a series of simulation experiments on
a number of systems. For each system, we determine the behavior of the system
when each tasi; has a randomly distributed phase in the rafg®,~, P,) and
when all tasks have equal phases, i.e., are released at time 0. (We call a unique
combination of phases and actual execution times of the tasks.)a For each
run, a histogram of the response times of a large number of jobs in each task
is computed. The histograms of all the runs are averaged, bin by bin, to obtain
a histogram representing the average behavior of the tasks of the system. The
histograms for in-phase and random-phase releases are then compared.

For the tasks in Example 4.1, we performed 100 runs for both in-phase and
random-phase releases, each run containing the release of at least 8,000 jobs in
each task. The width of the 95% confidence interval on the profile of the histogram
was+5% of the mean value or less except in the tail of the density function where
the probability was small to begin with. Figure 4.5 shows the histograms for task
T, from our example.

As Fig. 4.5(b) shows, the response time distribution for in-phase releases
bounds the distribution for random-phase releases from below. The response
time density function, Figure 4.5(a), exhibits a saw-tooth behavior for in-phase
releases. The behavior is caused by the fixed relationship between the release
times of 77 and75. This relationship causes the completion of jobginto be
delay by jobs irf}; in a periodic manner. The linearly rising shape of each tooth is
due to the uniform distribution of the execution timelgfwhile the general shape
of the curve results from combined effect of the execution time distributions of
bothT; andT;. Figure 4.6 compares the histograms for tasks with the same pa-
rameters as our example but with exponential distribution times. Once again, the
distribution obtained when the initial jobs were released in-phase bounds from be-
low the distribution obtained when the first jobs were released with random-phase.
Also, the in-phase release curve exhibits a similar saw-tooth shape. However, each

221

0.0030 T T T T T T T
0.0025
0.0020 | At [

0.0015 |

Probability

0.0010 |

0.0005

OOOOO 1 1 1 1 1 1 \\K~I =
0O 100 200 300 400 500 600 700 800

Response Time

(a) Density

10 T T T T T — T

08]
Random-Phase %

06 |]
% In-Phase

Probability

0. O L 1 1 L ! | |
0 100 200 300 400 500 600 700 800

Response Time

(b) Distribution

Figure 4.5: Response time distributionsief Uniform, 71% Utilization.

(o] =y

0.0030 - . . .
0.0025 [,
0.0020

0.0015

Probability

0.0010

0.0005

S

0 500 1000 1500 2000 2500
Response Time

0.0000

(a) Density

1.0 ; .
Random-Phase

0.8

0.6

Probability

04

0.2

0 . O 1 1 1 1
0 500 1000 1500 2000 2500

Response Time

(b) Distribution

Figure 4.6: Response time distributionsiof Exponential, 71% Utilization.

2R

Table 4.2: Parameters of systems with different average utilizations.

System MinimumJobs T; P E; U; U U+
1 1,000 71 300 50 0.167 0.354 0.703
T, 400 75 0.188
2 8,000 7y 300 100 0.333 0.708 1.411
T, 400 150 0.375
3 32,000 Ty 300 134 0.447 0.949 1.893

7, 400 201 0.503

tooth has a more rounded shape due to the exponential distributign Binally,
the asymptotically decreasing shape of the density curves indicates the combined
effect of the execution time distributions of both tasks.

Next we consider the effect of average system utilization on the hypothesis
that in-phase response time distributions bound their random-phase release coun-
terparts from below. Mean utilizations of 35% and 95% were obtained by scaling
the mean execution times of the system in Table 4.1 by 0.5 and 1.34, respectively.
The parameters of the systems are given in Table 4.2. For ease of comparison,
the parameters of the previous system are duplicated as system #2. Figures 4.7
and 4.8 give the response time distributions for Systems 1 and 3, with 35% and
95% average utilizations, when execution times are distributed uniformly. The re-
sponse time distributions when execution times are distributed exponentially are
given in Figures 4.9 and 4.10. As can be seen, the response time distributions
obtained by examining the response times of jobs in an in-phase busy interval
bounds from below those obtained from examining the response times of jobs in
a random phase busy interval. At high average utilizations, the curves become
indistinguishable.

Despite the large number of systems simulated, we have not observed a case
where tasks in which the first jobs are released with arbitrary phases have a lower
percentage of deadlines met than the same tasks in which the first jobs are released
in-phase. We therefore use in-phase busy intervals in computing a lower bound
on the average completion rate using STDA.

7

Probability

Probability

0.008 - . . :
0.007 r i
0.006 ! .y . 1
0.005 1
0.004 i
0.003 Random-Phase
0.002
0.001 r
0.000 ' ' ' '
0 50 100 150 200 250
Response Time
(a) Density

10 T T T l///,/
08 L Random-Phase % 1
06 |]
04 r 1
o2 L /<————— In-Phase 1
OO / 1 1 1 1

0 50 100 150 200 250

Response Time

(b) Distribution

Figure 4.7: Average response timeslef Uniform, 35% Ultilization.

20

0.0010 - . . :
0.0008 | .

2 0.0006 1

=

Q

[e]

& 0.0004 A 1
0.0002 1
0.0000 e

0 1000 2000 3000 4000 5000
Response Time
(a) Density
1.0 T T T T
Random-Phase
08 | T~]

2 06 1

§ ~— In-Phase

& 04r 1
0.2 r 1
OO 1 1 1 1

0 1000 2000 3000 4000 5000
Response Time
(b) Distribution

Figure 4.8: Average response timeslef Uniform, 95% Utilization.

20

0-012 T T T T T T

0.010 |, |
0.008

0.006

Probability

0.004

0.002

0 100 200 300 400 500 600 700
Response Time

0.000

(a) Density

1.0 . .
Random-Phase "

08 r

06 r

Probability

0 . O 1 1 1 1 1 1
0 100 200 300 400 500 600 700

Response Time

(b) Distribution

Figure 4.9: Average response timesléf Exponential, 35% Utilization.

N0

0.00050
0.00045 | -
0.00040 |
0.00035 |
0.00030
0.00025
0.00020
0.00015
0.00010
0.00005

0.00000 - - -
0 2000 4000 6000 8000 10000

Response Time

Probability

(a) Density

Probability

0 . O 1 1 1 1
0 2000 4000 6000 8000 10000

Response Time

(b) Distribution

Figure 4.10: Average response times/®f Exponential, 95% Utilization.

N1

Table 4.3: Tightness of STDA bound for tasks of Table 4.2.

Simulation
System T; STDA In-phase Ratio Random-phase Ratio
1 Ty 100.0 100.0 +£0.0 1.000 100.0 +£ 0.0 1.000
Ty 100.0 100.0 + 0.0 1.000 100.0£ 0.0 1.000
2 T 100.0 100.0 + 0.0 1.000 100.0 £ 0.0 1.000
Ty 39.2 80.8+ 0.1 0.485 81.3+ 0.1 0.482
3 T 100.0 100.0 £ 0.0 1.000 100.0 £ 0.0 1.000
T 2.6 18.34+£0.1 0.142 18.4+0.1 0.141

4.1.5 Comparing STDA to Simulation Results

We now compare the lower bound on the probability of meeting deadlines com-
puted via STDA for the systems in Table 4.2 with the percentage of the jobs in
each task meeting their deadlines obtained by simulating the the systems. The
minimum number of jobs in a task that were released during the simulation ranged
from 1,000 for System 1 to 32,000 for System 3. The simulation results are sum-
marized in Table 4.3. In all cases, the lower bounds computed by STDA are below
the percentage of deadlines met obtained by simulation. The table also shows that
increasing the average load of the system decreases the tightness of the lower
bound. Part of the difference between the lower bound and the simulation results
occurs because STDA computes the worst-case probability that jobs released in
an in-phase busy interval meet their deadlines rather than the average.

The tightness of the bound computed by STDA is also affected by the vari-
ance of the execution time distributions. Table 4.4 gives the parameters for three
systems with the same mean utilization but different maximum utilizations due to
changing the variance of the uniform distributions. (Once again, the parameters
of Table 4.1 are duplicated as system #6 for ease of comparison.) Table 4.5 com-
pares the lower bounds on the percentage of jobs in a task meeting their deadlines,
as computed by STDA, to the average obtained by simulation. As expected, de-
creased variance causes the difference between the STDA bound and the average
deadlines met to decrease.

We note that system #4 is a good example of a system which is not schedulable
even though the maximum utilization of the system is less than unity. Determinis-
tic analysis does not indicate how close the system is to being schedulable. On the
other hand, not only does STDA indicate tHatis unschedulable, but also that
at least 85.9% of the deadlines will be met. We note that the bound for system

N0

Table 4.4: Parameters of the tasks with different variances.

System 1T, P~ D; E; E;, E u Ut
4 7, 300 300 72 100 128 0.708 0.997
7, 400 400 72 150 228
5 7y 300 300 50 100 150 0.708 1.125
7, 400 400 50 150 250
6 7; 300 300 1 100 199 0.708 1.411

7, 400 400 1 150 299

Table 4.5: Tightness of STDA bound for tasks of Table 4.4.

Simulation
System T; STDA In-phase Ratio Random-phase Ratio
4 T 100.0 100.0 £ 0.0 1.000 100.0 £ 0.0 1.000
T, 85.9 95.3+0.1 0.901 97.6 £ 0.3 0.880
5 T 100.0 100.0 £ 0.0 1.000 100.0 £ 0.0 1.000
T 51.1 92.6 £0.2 0.552 94.1+£0.2 0.543
6 T 100.0 100.0 £ 0.0 1.000 100.0 £ 0.0 1.000
T 39.2 80.8+£0.1 0.485 81.3+0.1 0.482

#4 is within 12% of the simulation results. Instead of taking over 10 minutes to
simulate the system to the accuracy shown, STDA took less than 1 second.

In the examples shown here, simulating the behavior of the two tasks is rea-
sonable. However, even for the very simple systems considered here, simulation
required significantly greater effort than STDA. Hence STDA provides a faster
way to determine if the probability of a missed deadlines is acceptable.

4.2 Extending STDA to Handle Mutual Exclusion

So far, we have assumed that jobs do not share resources. Realistically, however,
jobs in a system share resources in order to perform meaningful computations.
Furthermore, access to the resources may require synchronization to ensure the
integrity of the system. In this section, we extend the Stochastic Time Demand
Analysis method so that it can deal with mutual exclusion and focus on systems
where all resource accesses are made according to the Non-Preemptable Section
(NPS) protocol [13].

According to the NPS protocol, a job in the system cannot be preempted while

N2

accessing shared resources, i.e., while it is in a critical section. Jobs with a higher
priority released after the currently executing job has entered a critical section
are blocked until the currently executing job exits the critical sectiomridrity
inversionis said to occur whenever a job waits while a lower priority job executes
[14]. Uncontrolled priority inversion cannot occur under the NPS protocol if the
duration of every critical section is bounded. This fact is formally stated by the
following lemma, the proof of which can be found in [13].

Lemma 4.2.1 The maximum blocking time of a job is the duration of the longest
critical section of all lower priority jobs that can block it.

We now state and prove another lemma which allows blocking to be account
for in the formulation of both deterministic and probabilistic time demand analysis
techniques.

Lemma 4.2.2 Only the first job in a busy interval can be blocked.

Proof: Because of priority scheduling, only jobs with priority equal to or higher
thang; can execute in a level; busy interval in the absence of blocking. Thus

a job with priority lower thanp; will be unable to enter its critical section unless

it does so before the interval starts. Therefore only the first job in a busy interval
can be blocked. O

We note that the duration of the critical sections in a job are random variables.
Let B, denote the duration of theth critical section of jobJ; ; when the job
executes alone. We léf"™ be the maximum duration aBf, and letb; be the
maximum duration of all critical sections @f. Blocking time is accounted for in
Time Demand Analysis and Generalized Time Demand Analysis by increasing the
time demand of tasK; by the maximum duration of a non-preemptable section of
a lower priority task. The time demand according to TDA with non-preemptable
sections is

t
w;(t) = Z |VF—‘ Ef + max bf
1<k<i |~ 7 =

As before, if the time demand is met by the deadline of the jobs in the task, the
task is schedulable. A straight forward way to extend STDA to accommodate
blocking increases the time demand in a like manner. Because of Lemma 4.2.2,

NN

the time demand of job; ;, i.e.,w; 1(¢), is increased at the time of its release by
the maximum duration of critical sections of lower priority tasks. Thereatfter, the
probability of timely completion of each job is computed as in Section 4.1.

To maintain responsiveness and maximize performance, most critical sections
will be of short duration and will not vary too widely. Thus increasing the time
demand bymax; <, bj will not be overly pessimistic for most systems. Nev-
ertheless, for completeness we outline an approach which takes into account the
variable duration of critical sections.

Consider a system af tasks, each of which has a critical section with a
known (independent) duration distribution. The effect of blocking is accounted
for in STDA by convolving the time demand functiom, ;(¢) with the density
function for the maximum blocking times. The distribution of blocking time suf-
fered by a job froml; due to a job with a single critical section from taskis
P [le () < x] . Therefore, the distribution of the delay experienced by a job from
T; due to critical sections of lower priority jobs froffj is the weighted sum of
the probability distributions of the blocking time of the lower priority tasks. For a
system ofn tasks, the distribution of the blocking time for< z < oo is

PBlis,..(@) <] = D ai/P[Bi(2) <]
l=i+1

whereq;; is the probability that a job frorfd; is blocked by the critical section
of a job in7;. In general, the value af;; must be estimated by measurement
or simulation because it depends on the execution histories of the tasks involved.
However, assuming the probability thAt is blocked by a critical section iff;
is proportional to the frequency of job releases, as it would be if tasks consist of
straight-line code without conditionals or loops and the first job in each task is
released with an arbitrary phase, can be approximated by

t

b

a;; = lim ;
=20) icicn B

Note that tighter bounds can be obtained by accounting for the blocking of indi-
vidual critical sections of lower priority tasks. Given that taskhasm; critical

NE

sections,

n my

P[Biisr,..ny(x) < z] = Z ZaﬁZP[BIk(IIf) <]

l=i+1 k=1

Whereaﬁl is the probability that a job fror; is blocked by thekth critical sec-

tion of a job from7;. Once againaﬁj must be determined by measurement or

simulation. Alternatively, it can be estimated by static execution path analysis.
Because of the difficulty in obtaining the weight factoss, or aﬁl, we ex-

pect that the maximum blocking delay experienced by job%;afue to critical

sections in lower priority tasks will be used instead of the more detailed analysis,

except when the duration of some critical sections are very long. As noted before,

such critical sections should be very rare as non-preemptable sections with long

durations generally lead to performance problems.

4.3 Applying STDA to Distributed Systems

Real-time systems are often designed to make use of multiple processors. In this
section, we apply the Stochastic Time Demand Analysis method to systems of
distributed tasks with end-to-end deadlines.

By a distributed task, we mean a periodic task each of whose jobs is a chain
of subjobswhich execute sequentially on a set of processors according to a fixed
assignment of subjobs to processors. We denotgjttingob of task7; by J; ;
and thekth subjob ofJ; ; by J; ; .. (We extend the periodic task notation in the
obvious manner, e.g., the release time/gf;, is r; ;. and its completion time is
¢.;k-) Subjobs are constrained to execute in order, i.e., a subjob becomes ready
to execute only when its successor has completed. The first subjob in each job
has no successor. The end-to-end response time of a distributed job is the length
of time from the release of the first subjob in a task until the completion of the
last subjob. Each subjob has a fixed priority which can be assigned according to
one of the existing distributed fixed priority assignment algorithms [54-56]. (We
only req