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In addition to correctness requirements, a real-time system must also meet

its temporal constraints, often expressed as deadlines. We call safety or mission

critical real-time systems which may miss some deadlinescritical soft real-time

systemsto distinguish them from hard real-time systems, where all deadlines must

be met, and from soft real-time systems which are not safety or mission critical.

The performance of a critical soft real-time system is acceptable as long as the

deadline miss rate is below an application specific threshold.

Architectural features of computer systems, such as caches and branch pre-

diction hardware, are designed to improve average performance. Deterministic

real-time design and analysis approaches require that such features be disabled

to increase predictability. Alternatively, allowances must be made for for their

effects by designing for the worst case. Either approach leads to a decrease in

average performance. Since critical soft real-time systems do not require that all

deadlines be met, average performance can be improved by adopting a probabili-

tistic approach. In order to allow a trade-off between deadlines met and average

performance, we have developed a probabilistic analysis technique, call Stochas-

tic Time Demand Analysis, for determining a lower bound on the rate at which
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deadlines are met in fixed priority systems.

Allowing a real-time system to miss some deadlines in exchange for better av-

erage performance increases the possibility of overload. While overload in real-

time systems has been studied, the emphasis has been on hard real-time systems in

which overload is an exception whose occurrence is to be minimized. In contrast,

critical soft real-time systems can be repeatedly overloaded during normal opera-

tion. Therefore, we have evaluated the performance of various real-time schedul-

ing algorithms for critical soft real-time systems, including two new classes of

algorithms, on workloads with execution and inter-release time variations, both

with and without dependencies.
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Chapter 1

Introduction

The fundamental difference between real-time and non-real-time computer sys-

tems is the requirement that a system meet its temporal constraints. The most

common form of constraint is the deadline; each job (e.g., computation, data

transmission or file block retrieval) must complete its execution by its deadline

to have met its temporal constraints.

Traditionally, safety and mission critical real-time systems are designed to

ensure that there are no missed deadlines because there are no techniques for ac-

curately determining the probabilities that deadlines will be missed. For many

systems, meeting all deadlines is an overly stringent requirement resulting in low

resource utilization and poor average performance. We call safety or mission crit-

ical systems which may miss some deadlinescritical soft real-time systemsto

distinguish them from hard real-time systems, where all deadlines must be met,

and from soft real-time systems which are not safety or mission critical. Examples

of critical soft real-time systems are found in the telecommunication, signal pro-

cessing, and process control domains. As long as the rate at which deadlines are

missed is below a threshold, the real-time performance of a critical soft real-time

system is considered acceptable.

Critical soft real-time systems cannot be analyzed with existing (determin-

istic) real-time analysis techniques because the techniques indicate whether or

not deadlines will be missed, not the frequency of missed deadlines. Queueing

theoretic approaches used to analyze time-share systems compute the mean and

variance of performance not the probability of a missed deadline. While sim-

ulations or measurements can provide the desired performance characterization,

they are expensive and adequate coverage is difficult to ensure, particularly when

the expected miss rate is small. Thus, techniques for bounding the probability of
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a missed deadline in critical soft real-time systems must be developed to allow

systems to meet their temporal constraints while improving average performance.

Allowing a real-time system to miss some deadlines in exchange for better

average performance increases the possibility of overload. A real-time system is

overloaded when insufficient processing time is available to complete all jobs by

their deadlines. The goal for critical soft real-time systems in overload is to meet

as many deadlines as possible while minimizing response times. While overload

in real-time systems has been studied, the emphasis has been on hard real-time

systems in which overload is an exception whose occurrence is to be minimized.1

In contrast, critical soft real-time systems by definition will be repeatedly over-

loaded during normal operation. Therefore, the performance of various real-time

scheduling algorithms needs to be evaluated and compared specifically for critical

soft real-time systems.

1.1 Motivation

Modern computer systems incorporate many architectural features designed to im-

prove average performance. For example, it is common for CPUs to contain mul-

tiple functional units, multi-level branch prediction, and out-of-order pipelined

execution. Multiple levels of caches are routinely used to reduce memory access

delays. Network requests from many connections are aggregated on a shared link

to maximize link utilization and minimize cost. In each of these cases, increases

in average performance come at the expense of predictability and worst-case per-

formance.

Traditional real-time design and analysis approaches require that these fea-

tures (e.g., caching) be disabled to increase predictability or allowances be made

for increased variation (e.g., by using worst-case memory access times). Either

approach leads to a decrease in average performance. Since many safety or mis-

sion critical real-time systems do not require that all deadlines be met, average

performance can be improved by adopting a probabilistic approach which accom-

modates the variability of modern architectural features.

As an example of the usefulness of a probabilistic analysis approach, consider

the design of an automotive engine management system. One of the important

1A real-time system designed to meet all deadlines may still become overloaded due to unfore-
seen events. Rather than uncovering a flaw in the design, this indicates an error in the specification
or a bug in the implementation.
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functions of the system is to compute the duration of fuel injection pulses at each

intake port from sensor readings of air flow rate and fuel pressure. To be of use, a

duration must be available before the beginning of the appropriate intake stroke.

However, some computations can miss their deadlines without adverse effects be-

cause the amount of fuel an engine requires changes slowly from one cycle to

the next. Suppose that a deterministic real-time analysis of the engine manage-

ment system shows that some of the duration computations miss their deadlines

on a target processor. Based on the analysis, a faster processor must be selected

to ensure the proper operation of the engine because insufficient information is

available to decide otherwise. In contrast, suppose that it can be ascertained that

the computation will meet its deadline at least 99% of the time when executed on

the target processor. It is likely that missing a deadline one percent of the time will

have little effect on the performance of the engine. Hence the target processor can

be used. To enable such trade-offs, probabilistic analysis techniques need to be

developed.

Designing a system for good average utilization causes the potential for over-

load. It is well known that tasks in an overloaded system miss deadlines in a pre-

dictable manner when scheduled on a fixed priority basis. In contrast, deadline-

driven systems behave unpredictably when overloaded. It would appear that fixed

priority scheduling is preferable to deadline-driven scheduling except for the fact

that the maximum schedulable utilization of a deadline-driven system is 100%

while the maximum schedulable utilization of a fixed priority system can be sig-

nificantly less. To facilitate the design of critical soft real-time systems which

experience repeated overload due to execution or inter-release time variations, the

performance of various schedulers under overload needs to be characterized.

1.2 Objectives and Contributions

The objective of this thesis is to develop techniques for analyzing and scheduling

critical soft real-time systems. Specifically, this work

1. extends the periodic task model [1] to describe systems of hard, soft and

non-real-time tasks in a uniform manner,

2. develops an analysis method for bounding the frequency of missed dead-

lines for three classes of fixed priority systems: 1) uniprocessor systems
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with independent tasks, 2) uniprocessor systems with shared resources, and

3) distributed systems of independent tasks with end-to-end deadlines,

3. proposes two classes of algorithms for scheduling job overruns and evalu-

ates their performance by comparison with the class of existing hard real-

time scheduling algorithms on workloads with and without dependencies,

4. evaluates the performance of the previous two classes of scheduling algo-

rithms in relation to the algorithms in the base class on workloads with

release time jitter and execution time variations, both with and without de-

pendencies.

The extended periodic task model allows systems of hard, soft and non-real-

time tasks to be described in a uniform and seamless manner. It provides a frame-

work for developing analysis and scheduling techniques for heterogeneous sys-

tems. The new method allows fixed priority critical soft real-time systems to be

designed with good resource utilization and average performance. It allows the

effect of performance enhancing features, such as multi-level memory hierarchies

in processors or statistical multiplexing in networks, to be accounted for in deter-

mining the probability that jobs of a task will meet their deadlines. Finally, the

information obtained through the evaluation of various real-time scheduling algo-

rithms aids designers of critical soft real-time systems in selecting the appropriate

scheduling algorithm for the best performance.

1.3 Organization

The remainder of this thesis is organized as follows. Chapter 2 presents related

work and discusses background material concerning the analysis and scheduling

of real-time systems. In particular, the chapter summarizes deterministic real-

time analysis and scheduling techniques and their applicability in the context of

critical soft real-time systems. Building upon the periodic task model, Chapter 3

presents an extended model of real-time systems which allows hard, soft and non-

real-time computations to be described in a uniform and convenient manner. The

extended periodic task model is the basis for the analysis and scheduling results

in subsequent chapters.

Chapter 4 presents a statistical analysis technique for bounding the frequency

of missed deadlines in fixed-priority systems. The technique, calledStochastic
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Time Demand Analysis, is first developed for systems of independent tasks on

a single processor. It is then extended to systems in which tasks access shared

resources within non-preemptable critical sections. Finally, it is applied to dis-

tributed systems with end-to-end deadlines.

In Chapter 5, the performance of three classes of algorithms for scheduling

real-time systems in which jobs overrun are compared for workloads in which

the execution times of jobs in a task are independent. The performance of the

algorithms on workloads in which the execution times of jobs in a task exhibit

dependencies is also presented.

In Chapter 6, we initially consider the effect of release time variations with

execution times held constant. Then we look at the performance of scheduling

algorithms in the presence of both release time variations and overrun.

Finally, Chapter 7 summarizes the contributions of this work and points to

directions of future research.
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Chapter 2

Related Work

Substantial work has been done on deterministic models for the analysis of hard

real-time systems. This work is summarized in Sections 2.1 and 2.2. Section 2.3

summarizes existing probabilistic analysis techniques. Section 2.4 discusses ap-

proaches for the scheduling of overloaded systems. Since the behavior of real-

time systems can also be described using queueing theory, Section 2.5 presents

applicable queueing theoretic results and discusses why we have chosen to extend

deterministic real-time results rather than taking a queueing theoretic approach to

the analysis of real-time systems.

2.1 Periodic Task Model

The periodic task model[1], with various extensions [2–29], is the foundation

for state-of-the-art techniques for characterizing the behavior of hard real-time

systems. According to the periodic task model, a real-time system consists of a

set oftasks, each of which is a stream of computations or communications called

jobs. We denote theith task of the system byTi and thejth job of the task (or

the jth job since some time instant) byJi,j. The execution time of a job is the

amount of time the job takes to complete if it executes alone. All the jobs in

a task have common minimum and maximum execution times denotedE−
i and

E+
i . We will refer to the actual execution time ofJi,j asei,j. Jobs in a task are

released for execution (i.e., arrive) with a common minimum inter-release time.

The minimum inter-release time (or inter-arrival time) is greater than zero and is

called theperiod of the task,P−
i . A job Ji,j becomes ready for execution at its

release time,ri,j. It must complete execution by its absolute deadline,di,j, or it is

said to have missed its deadline. Figure 2.1 shows these quantities in the context

6
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Figure 2.1: Time-line for TaskTi.

of a time-line. The length of timeDi = di,j − ri,j between the release time and

absolute deadline of every job in each taskTi is called therelative deadlineof the

task. The completion time ofJi,j is ci,j and the response time isρi,j = ci,j − ri,j.

The maximum utilizationU+
i of a task is the ratio of the maximum execution

time to the minimum inter-release time (period), i.e.,

U+
i =

E+
i

P−
i

The maximum utilization of a system ofn tasks is

U+ =
∑

1≤i≤n

U+
i

In a similar manner, the average utilization of the systemŪ is defined as

Ū =
∑

1≤i≤n

Ēi

P̄i

=
∑

1≤i≤n

Ūi

Finally, the release time of the first job in a task is called thephaseof the task. We

say that tasks arein-phasewhen they have identical phases.

In modern real-time systems, tasks are scheduled in a priority driven manner.

At any point in time, the ready job with the highest priority executes. Most sys-

tems use a fixed priority assignment according to which all jobs in a task have the

same priority. The priority of taskTi is denotedφi. For convenience and without

loss of generality, we assume that priorities are distinct in a fixed priority system

and arrange the tasks in order of non-increasing priorityTi ¹ Ti+1 such thatTi

has a higher priority thanTi+1 for all i. Examples of fixed priority policies are

Rate Monotonic(RM) [1] or Deadline Monotonic(DM) [30]. The priority of a

task under RM is inversely proportional to the period of the task. The priority of a
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task under DM is inversely proportional to the relative deadline of the task. Prior-

ities may also be assigned dynamically in the which case the priority of jobJi,j is

φi,j. The most common dynamic priority scheduling policy isEarliest Deadline

First [1] (EDF) which assigns priorities to jobs in order of their absolute deadlines,

i.e. the earlier the deadline the higher the priority.

2.2 Deterministic Schedulability Analysis

A task in a system is said to beschedulableif all jobs in the task meet their

deadlines. A system of tasks is schedulable if all the tasks in the system are

schedulable. Deterministic real-time theory determines the schedulability of a

system based on the maximum execution times and minimum inter-release times

of its tasks. In order to be schedulable, each task is allocated a portion of the

processor bandwidth equal to its maximum utilization. In other words, the system

is designed with sufficient capacity to enable it to meet the peak time demand of

all tasks simultaneously. The maximum utilization for which a specific scheduling

algorithm is guaranteed to schedule all jobs of an arbitrary system without missing

a deadline is called theschedulable utilizationof the scheduling algorithm.

It was shown by Liu and Layland in [1] that a system ofn tasks scheduled on

a RM basis is schedulable if the maximum utilization of the system satisfies the

inequality

U+ ≤ n
(
2

1
n − 1

)

The expression on the right hand side of the inequality is often called the Liu and

Layland bound. In the limit, the Liu and Layland bound approachesln 2 ≈ 0.693.

Thus the schedulable utilization of RM isln 2. We note that the Liu and Layland

bound is a sufficient condition. A system may be schedulable according to the

RM priority assignment policy even though its maximum utilization exceeds the

Liu and Layland bound.

Consider the system of three fixed priority tasks in Table 2.1. The tasks are

arranged in order of decreasing RM priority. The Liu and Layland bound is com-

puted for taskTi by considering the set of tasks with priority equal to or higher

thanTi. In the example, the maximum utilization of the set of tasks consisting of

{T1} is less than the Liu and Layland bound, hence taskT1 is schedulable. Like-

wise, taskT2 is schedulable because the maximum utilization of the set of tasks

8



Table 2.1: Parameters of the Tasks.

Ti φi P−
i E+

i Di Ui U+ n(2
1
n − 1)

T1 1 300 100 300 0.333 0.333 1.000
T2 2 400 100 400 0.250 0.583 0.828
T3 3 600 200 600 0.333 0.917 0.780

{T1, T2} is less than the Liu and Layland bound. However, the Liu and Layland

bound does not allow us to determine if taskT3 is schedulable when executed with

the other two tasks.

One of the limitations of the Liu and Layland bound is that it assumes the

worst-case execution time for every job in a task and hence may be overly pes-

simistic when execution times vary widely. In their paper on the Multiframe

Model [31], Mok and Chien observed that the execution times of jobs in many

tasks vary according to a fixed repeating pattern. For example, a task which de-

codes a MPEG video stream executes longer to decodeI frames than it does to

decodeP or B frames. Because the frames in a video stream follow a fixed pat-

tern, e.g.,I-B-P -B, the execution times of jobs in the task vary according to the

same pattern. For each position in the pattern, the worst-case execution time of

jobs in that position is determined. In general, a taskTi has a sequence of worst-

case execution times{E+
i,1, . . . , E+

i,Ni
} of lengthNi. In the example above, the

first element of the sequence is the worst-case execution time of allI frames.

Mok and Chien derived the following schedulability bound when each of then

tasks in the system has a fixed sequence of worst-case execution times and the

first execution time in the sequence is larger than the others

U+ ≤ rn

((
r + 1

r

) 1
n

− 1

)

wherer = minn
i=1(E

+
i,1/E

+
i,2) is the smallest of the ratios of the first two worst-

case execution times of the tasks. In systems with a pattern of length one,r is

one, and the multiframe bound reduces to the Liu and Layland bound. In spite

of the increased precision the technique affords, we still cannot determine the

schedulability of a task if the total utilization of the task and higher priority tasks

is greater than the multiframe bound. In addition, some systems do not have a

fixed pattern of worst-case execution times.

The Time Demand Analysis (TDA) method [9] provides a more accurate and
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general characterization of the schedulability of arbitrary fixed-priority systems

than the Liu and Layland bound. For a system of independent periodic tasks in

which the tasks are scheduled preemptively on a fixed-priority basis and every job

completes before the next job in the task is released, the worst-case response time

of a the task occurs when one of its jobs is released along with a job from every

task of equal or higher priority [1]. The release time of such a job is called a

critical instantof Ti. To determine if all jobs inTi meet their deadlines, it suffices

for us to look at a job inTi that is released at a critical instant. We call this jobJi,1.

The time demand functionof Ti, denotedwi(t), is the maximum processor time

demanded byJi,1, as well as all the jobs that complete beforeJi,1, as a function of

time t since the release ofJi,1

wi(t) =
∑

1≤k<i

⌈
t

P−
k

⌉
E+

k

It is a function which increases by the maximum execution timeE+
k every time a

higher priority jobJk,l is released. If there is sufficient time before the deadline of

Ji,1 such thatwi(t) ≤ t is satisfied, then no job inTi will miss its deadline.

Figure 2.2 shows the time demand function for each of the tasks in Example 1.

There is sufficient time for tasksT1, T2 andT3 to complete by 100, 200 and 600

respectively. Thus the system is schedulable in spite of the fact that the maximum

utilization of the system is greater than the Liu and Layland bound. A schedule of

the system with the initial job in each task released at a critical instant is shown

in Fig. 2.3. Even though the processor is idle from 1100–1200, it is clear that

increasing the maximum execution time of any task will result in the potential for

J3,1 to miss its deadline at 600.

The description of TDA given above works only when all jobs complete by

the release of the next job in the task, which is the case for the example. To

determine whether all jobs inTi meet their deadlines when a job in some task

of the set{T1, T2, . . . , Ti} may be released before the previous job in the same

task completes, we must compute the worst-case bounds on the response times of

all jobs inTi executed in ain-phase level-φi busy intervalthat begins at an instant

when a jobJi,1 in Ti is released at the same time with a job in every higher priority

task.1 A level-φi busy interval is an interval of time which begins the instant when

1This instant is still called a critical instant in the literature even thoughJi,1 may not have the
worst-case response time among all jobs inTi.
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Figure 2.2: Time Demand Analysis of the Example System.
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Figure 2.3: Schedule of the Example System.
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a job inTi or a higher priority task is released and immediately prior to the instant

no job in those tasks is ready for execution. It ends at the first time instantt at

which all jobs inTi and higher priority tasks released beforet have completed.

Analogous to the critical instant analysis in [1], it has been shown in [10] that it

suffices for us to consider only an in-phase level-φi busy interval for the following

reasons.

1. If a job inTi is ever released at the same time as a job in every higher priority

task, that instant is the beginning of an in-phase level-φi busy interval (i.e.,

the system has no backlog at that instant).

2. The length of an in-phase level-φi busy interval is longer than a level-φi

busy interval that is not in-phase and hence more jobs inTi are released in

an in-phase level-φi busy interval.

3. The response time of every job in a level-φi busy interval that is not in phase

is no greater than the response time of the corresponding job in an in-phase

level-φi busy interval.

For these reasons, if all jobs in an in-phase level-φi busy interval meet their dead-

lines, the task is schedulable [10]. We call this Generalized Time Demand Analy-

sis (GTDA).

We know from TDA that the system of tasks in Table 2.1 is schedulable. How-

ever, suppose that a significantly less expensive processor is available which is

half as fast. Just as in the automotive engine management system example in Sec-

tion 1.1, the profitability of the product would be greatly enhanced if the slower

processor could be used. Using the slower processor, the execution time doubles

but the periods do not change because they are determined by the environment.

Thus the system utilization is doubled, as shown in Table 2.4. The deterministic

analysis techniques discussed earlier can only tell us that taskT1 is schedulable

and that tasksT2 andT3 are not. They cannot tell us how often deadlines will

Figure 2.4: Tasks of Example 1 on Slower Processor.

Ti φi P−
i E+

i Di U+
i U+ n(2

1
n − 1)

T1 1 300 200 300 0.67 0.67 1.00
T2 2 400 200 400 0.50 1.17 0.83
T3 3 600 400 600 0.67 1.83 0.78
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be missed. Although we may be willing to trade occasional missed deadlines for

the use of the slower processor, we are unable to do so based on the information

obtained from deterministic real-time techniques.

Our work is based on an extension of the periodic task model in which a guar-

anteed execution time, which may differ from the maximum execution time, is

specified for each task in the system. Likewise, the guaranteed inter-release time

specified for a task may differ from the minimum inter-release time of task. Un-

like the Liu and Layland or Multiframe bounds, the objective of the Stochastic

Time Demand Analysis (STDA) described in Chapter 4 is to derive a lower bound

on the percentage of jobs in a task that meet their deadlines. While the bound

obtained by STDA can be used to determine the schedulability a system, it also

allows us to determine if the frequency of missed deadlines is acceptable when the

system is not schedulable. STDA is similar to Generalized Time Demand Analy-

sis in that it also considers the jobs of an in-phase level-φi busy interval. Unlike

GTDA, it is not restricted to systems in which the maximum utilization is less than

1.0. It does this by taking a probabilistic rather than a deterministic approach.

2.3 Probabilistic Schedulability Analysis

There are only two other real-time techniques that exploit information about the

statistical behavior of periodic tasks to analyze real-time systems: Probabilistic

Time Demand Analysis (PTDA) [32] and Statistical Rate Monotonic Scheduling

(SRMS) [33].

Like the method proposed in Chapter 4, PTDA attempts to provide a lower

bound on the probability that jobs in a task will complete in time. It is a straight

forward extension to TDA in which the time demand is computed by convolving

the probability density functions of the execution times instead of summing the

maximum execution times. PTDA assumes that the relative deadline of all tasks

are less than or equal to their periods and computes a lower bound on the proba-

bility that jobs in a task complete in time by determining the probability that the

time supply equals or exceeds the time demand at the deadline of the first job in

the task. The assumption is not valid when the average utilization of the system

approaches one and hence Stochastic Time Demand Analysis was developed.

SRMS is an extension to classical Rate Monotonic scheduling. Its primary

goal is to schedule tasks with highly variable execution times in such a way that
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the portion of the processor time allocated to each task is met on the average.

Variable execution times are “smoothed” by aggregating the executions of several

jobs in a task and allocating an execution time budget for the aggregate (which

may be proportional to the original). A job is released only if its task contains

sufficient budget to complete in time and if higher priority jobs will not prevent its

timely completion. All other jobs are dropped. The analysis given in [33] can only

be used to compute the percentage of jobs in each task that will be released for

execution (and hence complete in time). Moreover, it is applicable only when the

periods of the tasks are related in a harmonic way, i.e., each larger periodP−
j is

an integer multiple of every smaller periodP−
i . Recent extensions [34] generalize

SRMS to non-harmonic systems. The STDA method presented in Chapter 4 seeks

to provide a lower bound on the percentage of jobs which meet their deadlines

when all jobs are released, and it is not restricted to the RM scheduling policy.

2.4 Overload Handling

Since processor bandwidth allocations in a critical soft real-time system are of-

ten less than the amount necessary to guarantee that the system is schedulable,

the scheduler must be able to accommodate overload. The scheduling of over-

load systems was considered by Tiaet al. [32] who proposed the Task Transform

Method (TTM). The Overrun Server Method (OSM) proposed in Chapter 5 is

both a simplification and an extension of the TTM. Like the TTM, the OSM also

transforms a job into a mandatory periodic task, whose maximum execution time

is the guaranteed execution time in our model, and a request to a server for the ex-

ecution of the remaining portion. Under fixed priority scheduling, OSM and TTM

both execute the remaining portion by a Sporadic Server [20]. Under an EDF

scheduler, OSM executes requests by either a Constant Utilization Server [35] or

a Total Bandwidth Server [21] rather than a Slack Stealer [11] as is the case with

TTM.

The Overload Server Method is also similar to the work by Chunget al. [36];

the main difference being that the remaining portions of all jobs execute to com-

pletion under OSM instead of being terminated when deadlines cannot be met.

Chung also investigated several policies for assigning priorities to remaining por-

tions and compared how well the policies minimized the average error of the sys-

tem based on a simple non-linear error function. (The error in the result computed
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by a job is a function of the difference between the result obtained by executing

for less than the required time and the result obtained by executing to comple-

tion.) They found that assigning priorities to the remaining portions on the basis

of the deadlines of the jobs generally resulted in a lower average error. Our results

also suggest that deadline-driven scheduling of the remaining portions gives bet-

ter performance even though we used the average deadlines met and the average

response times as our metrics instead of average error.

The Isolation Server Method (ISM), proposed in Chapter 5, is similar to the

Proportional Share Resource Allocation algorithm (PSRA) [37]. Both assign a

portion of the processor bandwidth to a task. Whereas the PSRA algorithm allo-

cates the assigned portion to jobs in discrete-sized time quanta, the ISM allocates

the portion in variable sized chunks. The difference between the portion of proces-

sor bandwidth a task receives under the PSRA algorithm and the ideal is bounded

by a constant equal to the quantum size. The ISM provides the ideal portion pre-

cisely. Both algorithms allow the integration of real and non-real-time processing,

are easy to implement and prevent ill-effects of overrunning jobs on jobs in other

tasks.

Both the Overrun Server Method and the Isolation Server Method require tasks

to be assigned to servers. For the fixed priority case, Katcheret al. [38] consider

the problem of assigningn fixed priority tasks tom servers, wherem ≤ n and

give an exponential time algorithm for determining the assignment that gives the

smallest response time while ensuring that the system remains schedulable, if such

an assignment exists. However, the systems under consideration in this thesis are,

for the most part, not schedulable according to deterministic real-time scheduling

theory. In addition, we relax the assumption that jobs are served first-come-first-

served and consider the behavior of Sporadic Servers with a fixed priority queue

discipline (DM) and a queue discipline designed to minimize response times. We

also consider the assignment of tasks to servers under EDF scheduling. As will

be shown in Chapter 5, our results indicate that the behavior of a system with

multiple servers is bounded by the assignment of all tasks to a single server and

the assignment of each task to its own server.

In [6], Ghazalie and Baker consider the performance of several aperiodic

servers in a deadline-driven environment. Their focus is on scheduling aperiodic

tasks while our focus is on scheduling overruns using servers. One of the servers

they consider is a variation of the Sporadic Server, adapted to a dynamic prior-

ity environment, while we use Sporadic Servers for fixed priority scheduling and
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Constant Utilization Servers [35], Total Bandwidth Servers [21] or Weighted Fair

Queueing Servers [39] (also called Packet-by-Packet Generalized Processor Shar-

ing [40]) for dynamic priority scheduling. They observe that the average response

time of an aperiodic task decreases with increases in Sporadic Server server period

while we observe that increasing the server period can either increase or decrease

the average response time depending on the execution time distributions involved.

Some of the difference may be due to fixed versus dynamic priority, but it is also

likely that the difference comes from averaging the behavior of many systems

instead of observing the behavior of a single system. We also consider three dis-

ciplines for prioritizing the server ready queue while it appears that their server

executes requests in order of arrival. Finally, we also consider dependencies be-

tween the execution times of consecutive jobs.

A complimentary work to ours is the Open Systems Environment (OSE) de-

scribed in [35]. Similar to the deadline-driven version of the ISM with a server

per task, the OSE ensures that the behavior of a task does not interfere with the

ability of other tasks to meet their deadlines. The primary motivation of the OSE

is to allow real-time applications to be developed and validated independently by

assuming that each application runs alone on a slow processor and then are exe-

cuted together on a fast processor without causing missed deadlines. The primary

motivation of the OSM and the ISM is to accommodate overrun. Thus, the OSM

and the ISM are complimentary to the OSE.

Ramanathan [41] reduces the load on an overloaded system by selectively

discarding jobs in a task according to the(m, k)-firm deadline model of [42].

According to the approach, the stream of jobs from a task is partitioned into se-

quences ofk consecutive jobs. Out of thek consecutive jobs,m jobs in a sequence

are declared mandatory and are scheduled at their nominal priority while the re-

maining jobs are declared optional and given a priority lower than any real-time

task. Thus, optional jobs are only scheduled if sufficient time is available and

at leastm out of k consecutive jobs in each task are guaranteed to meet their

deadlines. The error introduced by discarding jobs can be compensated for by

modifying the control law computation [41]. The approach assumes that priori-

ties are fixed and that some jobs can be dropped. It also assumes that jobs can be

complete out of order since optional jobs may complete after subsequent manda-

tory jobs due to being given a lower priority. Our work assumes that all jobs must

be executed and they must complete in order. We allow either fixed or dynamic

priority assignments.
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The work by Chu and Nahrstedt on the Dynamic Soft Real-Time scheduling

framework (DSRT) [43, 44] is also closely related. Their middleware, which re-

quires conformance to the POSIX 1003.1b standard for real-time support, requires

no modifications to the kernel in order to co-schedule hard, soft, and aperiodic

real-time workloads (along with time-share workloads) on a set of processors.

Under DSRT, the processing capacity of a system is divided into fixed sized real-

time, overrun and time-share partitions. The scheduler task which chooses the

next job to execute based on an EDF policy is given the highest priority in DSRT.

The selected job is assigned a real-time priority below the scheduler priority so

that it will run when the scheduler finishes. In this way, DSRT implements EDF

scheduling using fixed priority services which conform to the POSIX real-time

standard. Each real-time task submits a reservation for processor bandwidth, with

DSRT performing admission control to prevent hard real-time jobs from miss-

ing their deadlines. To assist the user in deciding upon an appropriate bandwidth

reservation for a task, the framework provides a “smart probing” feature which

executes a specified number of jobs in the task without real-time guarantees and

returns a suggested reservation based upon the processor usage of the jobs. As

part of the reservation, the task can specify an adaptation policy which allows

the system to modify the reservation as the required bandwidth of the jobs in the

task change. If a job overruns, the remainder of its execution will take place in

the overrun partition. In this respect, the scheduling of overrunning jobs most re-

sembles our Overrun Server Method with a single server for all tasks scheduled

according to the EDF algorithm.

Most of the differences between DSRT and the overload scheduling techniques

we present stem from differences in purpose and scope. DSRT is designed as a

complete solution for supporting soft real-time workloads on general purpose op-

erating systems and therefore contains mechanisms and policies, such as adapta-

tion, which are useful in that environment. We focus on issues related to overrun

scheduling in support of critical soft real-time systems where real-time perfor-

mance is of primary importance. In spite of the different goals, there are many

similarities. Like DSRT, the OSM partitions the processor bandwidth. However,

the partitions in OSM are sized dynamically based on the requirements of the

admitted tasks rather than being statically determined by an administrator. Fur-

thermore, the processor bandwidth in OSM is not allocated in discrete-sized time

quanta as it is in DSRT. Instead of treating all overrunning jobs equally as the

OSM does, DSRT classifies overrunning jobs into one of two categories based on
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the amount and frequency of overruns and schedules the jobs accordingly. Our

approach does not preclude a multi-level overrun classification policy from being

implemented but the policy implemented in DSRT is undesirable for schedul-

ing critical real-time systems because of its emphasis on fairness at the expense

of meeting deadlines. We note that DSRT can approximate the Isolation Server

Method by letting the guaranteed execution times of tasks (execution time reser-

vations) be zero and setting the burst tolerances appropriately. However, DSRT

uses round robin scheduling within an overrun class to ensure fairness whereas

the OSM uses priority-based scheduling to achieve better real-time performance.

The adaptive statistical characterization in Appendix C is similar to the “smart

probing” feature of DSRT with the primary difference being that we are after dis-

tributions while [43, 44] seeks some simple descriptive statistics in order to form

reservations. Finally, as mentioned earlier, DSRT provides support for adapting

the resource reservation of a task to accommodate changing processor demands

while OSM does not. Adaptation is not required in most critical soft real-time

systems.

The work described in this thesis differs from recent approaches (such as [45])

by relaxing hard real-time constraints in a controlled manner rather than attempt-

ing to add support for real-time tasks to time-shared operating systems without

compromising fairness. The latter is unable to provide any form of hard real-time

guarantee under overload by virtue of an insistence on being fair. In contrast, the

baseline and OSM algorithms discussed in this thesis are able to make real-time

guarantees and thereby may sacrifice the ability to be fair to all tasks. However,

fairness within non-real-time tasks can achieved without sacrificing the ability to

make guarantees by executing non-real-time tasks within a server which imple-

ments a traditional time-share scheduler. Thus the baseline and OSM algorithms

described in this thesis are able to guarantee the deadlines of hard real-time tasks

(and critical soft real-time tasks whose jobs do not exceed the guaranteed exe-

cution time) while scheduling non-real-time tasks fairly within the portion of the

processing time allocated for them.

2.5 Queueing Theory

The statistical analysis of real-time systems described in Chapter 4 is similar to the

analysis of queueing systems in many ways. Indeed, real-time systems can be de-
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scribed by a queuing theoretic model rather than a periodic task model. However,

a very simple real-time system is still a complex queueing system.

A key assumption underlying most analytical results in queueing is the “mem-

oryless property” of the arrival time and/or execution time distributions. For ex-

ample, M/M/1 and M/G/1 queues have Poisson arrivals; M/M/1 and G/M/1 queues

have exponential execution times [46, 47]. The memoryless property makes the

analysis of otherwise complex queueing systems tractable. On the other hand,

jobs of a real-time task arrive more or less periodically, implying an arbitrary

inter-arrival time distribution. Likewise, the execution times of jobs in a task are

likely from distributions for which there are no elegant mathematical description.

To further complicate attempts to achieve an analytical solution, real-time sys-

tems are scheduled preemptively according to priority. Although queueing theo-

retic analysis techniques exist for priority scheduled systems (see [47] Chapter 3),

combining priority scheduling with general inter-arrival time and execution time

distributions that do not have the memoryless property makes analytical solutions

of average performance difficult.

Recently, Lehoczky has developed a queuing theoretic technique called Real-

Time Queueing Theory which is better suited to real-time systems [48–50]. Given

a scheduling algorithm and a distribution of the deadlines of jobs, analytical ex-

pressions for the lead-time distribution of jobs in each task are derived as a func-

tion of the average number of jobs in the queue for the FIFO, EDF and processor

sharing scheduling algorithms. (The lead-time of a job is the time remaining un-

til its deadline.) The formulation for the lead-time distributions of tasks is based

upon the assumption of a high system load in order to approximate the behavior

of the system by a diffusion process.

While the technique shows promise, results published to date have been lim-

ited to the above mentioned scheduling algorithms and tasks with either Poisson

arrivals or exponential execution times. Besides the lack of expressions for fixed-

priority schedulers with arbitrary execution time and inter-arrival time distribu-

tions, Real-Time Queueing Theory yields the average number of deadlines met

rather than a lower bound on the percentage of deadlines met, the latter being

more important for critical soft real-time systems. In addition, the diffusion ap-

proximation upon which the approach is based requires the average number of

jobs in the queue to be large in order to be accurate. (The results for a 95% aver-

age system utilization and uniformly distributed execution times reported in [48]

were obtained with an average queue length of 50 jobs. In contrast, the system

19



of three tasks scheduled by a Total Bandwidth Server discussed in Figure 5.8 of

Chapter 5 has a maximum queue length of two.) Because of these difficulties, the

approach taken in this thesis is to extend real-time system results through a sta-

tistical treatment rather than extending queueing theory to account for real-time

constraints.

It should be noted that any statistical approach, based on either real-time or

queueing theory, must deal with the practical problem of summing random vari-

ables. The primary difficulty is in computing the resulting probability density

function from the density functions of the summands. Analytical results for sums

of random variables exist only for certain special cases. In the general case, the

probability density function of the sum must be computed by convolution. Con-

volution, however, has remained computationally expensive in spite of efforts to

reduce its cost. (See [51], for example). The fastest known method for perform-

ing convolution is to compute the Fast Fourier Transforms of the density functions,

multiply, and and compute the inverse transform. This is still an expensive opera-

tion, however. It is natural to wonder if the effort required to compute the proba-

bility distribution of a sum of random variables can be reduced by approximations

derived from well known mathematical or statistical results (see Appendix D).

Sadly, the bounds obtained by this approach are so loose as to completely dis-

courage their use in analyzing real-time systems. Because of this, we compute

probability distributions via convolution in this work.

20



Chapter 3

Extended Periodic Task Model

Deterministic real-time theory determines the schedulability of a system based on

the maximum execution times and minimum inter-release times of tasks in the

system. In order to ensure that the system is schedulable, the processor bandwidth

set aside for each task is equal to its maximum utilization. Because the execution

times or inter-release times of jobs in many real-time systems vary widely, de-

signing a critical soft real-time system using deterministic real-time theory often

yields a system whose average utilization is unacceptably low.

In systems where the execution time varies, we require that aguaranteed exe-

cution time, E∗
i , be specified for each task instead of a maximum execution time

as in the original periodic task model. The guaranteed execution time of a task

is zero for non-real-time tasks, equal to the maximum execution time of any job

of the task for hard real-time tasks, and somewhere in between for soft real-time

tasks. To account for inter-release time variations, we require that aguaranteed

inter-release time, P ∗
i > 0, be specified for each task instead of a minimum inter-

release time. The guaranteed inter-release time of a task is infinite for non-real-

time tasks, equal to the minimum inter-release time of any job in the task for hard

real-time tasks, and somewhere in between for soft real-time tasks. (We define

the guaranteed utilizationin the expected way,U∗
i = E∗

i /P
∗
i .) We require that

systems be schedulable according to deterministic real-time theory on the basis of

the guaranteed execution and inter-release times of tasks. Modifying the periodic

task model in this manner allows systems containing hard, soft and non-real-time

tasks to be described and treated in a simple, unified manner.

Allowing the guaranteed execution time of a task to be less than its maximum

execution time increases the potential for jobs to miss their deadlines. A job is

said tooverrun when it executes for more than its guaranteed execution time.
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Depending on the amount of time available, a system may be able to schedule

the remaining portion of an overrunning job so that it completes by its deadline.

Likewise, allowing the guaranteed inter-release time of a task to be greater than its

minimum inter-release time increases the potential for jobs to miss their deadlines.

We say that a job has ajittered releasewhen the time between its release and the

release of its predecessor differs from the guaranteed inter-release time. A system

may be able to schedule a job with jittered release so that no deadlines are missed,

depending upon the load on the system.

We say that a system isoverloadedwhen it is not schedulable according to

deterministic real-time theory on the basis of maximum execution times and min-

imum inter-release times and hence some jobs may miss their deadlines. Jobs in a

system may overrun or have jittered releases without the system being overloaded.

However, an overloaded system implies that a job will overrun or that some re-

lease was jittered. In Chapter 5, we consider ways to schedule systems in which

jobs overrun so as to guarantee that jobs which do not overrun will meet their

deadlines. For jobs with execution times in excess of their guaranteed execution

times, the objective is to minimize the response times of the jobs. In Chapter 6,

we consider the scheduling of systems in which the release times of jobs are jit-

tered, both with and without overrun. For jobs with inter-release times less than

their guaranteed inter-release times, the objective is also to maximize the number

of deadlines met and minimize response time.

We note that specifying an execution time for a task less than the maximum

is not new. Under the Processor Capacity Reserve model of Merceret al. [52],

a task is guaranteed to execute for at least its guaranteed execution time each

period. However, we appear to be the first to use the specification of a guaran-

teed execution time equal to or less than the maximum to characterize hard, soft

and non-real-time tasks in a uniform manner. In contrast, we know of no study

in which the guaranteed inter-release time of a task is purposefully specified as

greater than the minimum inter-release time.
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Chapter 4

Stochastic Time Demand Analysis

This chapter presents theStochastic Time Demand Analysistechnique (STDA)

for computing a lower bound on the percentage of deadlines that a fixed priority

periodic task meets in the presence of execution time variations. We compute a

lower bound on the probability that deadlines are met by jobs in a simple sys-

tem and compare the bounds with the percentage of deadlines met obtained by

simulation. We then extend the technique to account for blocking caused by non-

preemptability. We also apply STDA to computing the probability of meeting

end-to-end deadlines in distributed systems.

4.1 Computing Lower Bounds

We now focus on a taskTi in the system. LetJi,j be thejth job in Ti released in

a level-φi busy interval. To simplify the discussion and without loss of generality,

we take as the time origin the beginning of the busy interval. The response time

ρi,j of job Ji,j is a function of the execution times of all jobs which can execute in

the interval(ri,j, ci,j]. Since the execution times of jobs are random variables, the

response times of jobs are also random variables. Our analysis assumes that the

execution timeEi of a job inTi is statistically independent of other jobs inTi and

of jobs in other tasks. We further assume that the variations in inter-release times

are negligible and use the minimum inter-release time in our analysis. Because a

job may not complete by the release of a subsequent job in the same task, we must

consider all jobs in a level-φi busy interval. The length of a level-φi busy interval

is also a random variable. Determining when busy intervals end is key to STDA.

First we show how to compute the response time distribution of jobs in taskTi.
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4.1.1 Computing Response Time Distributions

Let wi,j(t) denote the time demand of all jobs that execute in the interval(ri,j, t].

JobJi,j completes when there is sufficient time to meet the demandwi,j(t) = t.

Let Wi,j(t) = P [wi,j(t) ≤ t] denote the probability that the time demand up tot

is met byt, given that the busy interval has not ended.Wi,j(t) is the probability

that the response time ofJi,j is less than or equal tot. The probability thatJi,j

meets its deadline is therefore at leastWi,j(di,j).

We now turn our attention to computingWi,j(t). The response time distribu-

tion Wi,j(t) is computed by conditioning on whether or not a backlog of work

from equal or higher priority tasks exists whenJi,j is released. If no backlog

exists, a level-φi busy interval starts at the release ofJi,j, which we relabelJi,1,

and

Wi,1(t) = P [wi,1(t) ≤ t] (4.1)

If backlog exists, the response time distributions for the subsequent jobs ofTi in

the busy interval are computed in order of their release by

Wi,j(t) = P [wi,j(t) ≤ t | wi,j−1(ri,j) > ri,j] (4.2)

For the highest priority task, the response time distribution of the first job in a

busy interval is the same as its execution time distribution. The response time

distribution of the subsequent job in the busy interval is computed by convolving

the execution time distribution of the task with the distribution of the backlog

obtained by conditioning. This process continues until the end of the busy interval.

We now computeWi,j(t) for j > 1. Clearly jobs with a priority higher than

φi can execute in the interval(ri,j, ci,j]. Jobs amongJi,1, Ji,2, . . . , Ji,j−1 that com-

plete afterri,j, as well asJi,j, also execute in this interval. The effect of jobs

which are eligible for execution atri,j is already taken into account in the con-

ditioning process. To computeWi,j(t), we must still take into account the time

demand of jobs of higher priority tasks released in the interval(ri,j, ci,j]. This is

done by dividing(ri,j, ci,j] into sub-intervals separated by releases of higher pri-

ority jobs and conditioning on whether a backlog of work exists at the start of

each sub-interval. For example, suppose that only one higher priority jobJk,l is

released in the interval(ri,j, ci,j]. Its release timerk,l divides the interval into two

sub-intervals,(ri,j, rk,l] and(rk,l, ci,j]. The probability thatJi,j completes by time
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t in the first sub-interval(rk,l, rk,l] is

Wi,j(t) = P [wi,j(t) ≤ t | wi,j−1(ri,j) > ri,j] (4.3)

and completes by timet in the second sub-interval(rk,l, ri,j+1) is

Wi,j(t) = P [wi,j(t) ≤ t | wi,j−1(ri,j) > ri,j, wi,j(rk,l) > rk,l] (4.4)

P [wi,j(rk,l) > rk,l]

The probability that a job completes by its deadline is determined by systemat-

ically computingWi,j(t) for t in successive sub-intervals until the sub-interval

containingdi,j has been considered.

Equations 4.1 and 4.2 allow the response time distributions of jobs in a level-

φi busy interval to be computed for any combination of initial release times. In

order to compute a lower bound on the probability that jobs complete by their

deadlines, the worst-case combination of release times needs to be identified. As

discussed previously, an upper bound on the response time of jobs fromTi is

obtained by computing the response times of jobs executed in an in-phase level-φi

busy interval according to deterministic TDA. Sadly, we note that it is not longer

sufficient for us to consider an in-phase busy interval in general. The proof that no

backlog exists at the instant when a job is released simultaneously with the release

of a job of every higher priority task requires that the maximum total utilization

of the system is no greater than one, as assumed by deterministic TDA. STDA

requires only that the average utilization of the system is less than one hence some

systems may not meet the condition. It is not clear what relationship between the

release times of the first jobs in a level-φi busy interval causes some job inTi to

have the maximum possible response time and hence the smallest probability of

completing in time. For now, we assume that the first jobs in all tasks are released

in-phase and discuss the rationale for this assumption later.

4.1.2 Determining End of Busy Interval

We now turn our attention to the matter of determining when a busy interval

ends. We note that since there is a single task per priority level, a level-φi busy

interval ends if some jobJi,j in Ti completes before the next jobJi,j+1 is re-

leased. Thus we know that the busy interval has surely ended if, for somej,
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P [wi,j(ri,j+1) ≤ ri,j+1] = 1.0. (When multiple tasks have the same priority, jobs

from the same priority level must have their response time distributions computed

in order of increasing release times. The busy interval will have ended if all jobs

with equal or higher priority released before timet have completed byt with

probability 1.0.)

For systems with a maximum utilization greater than 1.0, the probability that

Ji,j completes beforeJi,j+1 is released may be strictly less than 1.0. In other

words, the probability that a level-φi busy interval ends is less than 100%. Even

though a busy interval may not end, the lower bound on the minimum probability

that jobs fromTi will meet their deadlines as computed according to STDA is a

correct lower bound. To see this, let{Ji,1, Ji,2, . . . Ji,n} be the sequence of jobs

of Ti in the level-φi busy interval and let{Pi,1,Pi,2, . . .Pi,n} be the sequence of

probabilities that the corresponding jobs ofTi in the busy interval complete by

their deadlines, as computed by the process in Section 4.1.1. The monotonically

non-increasing functionL(n) = min{Pi,1,Pi,2, . . . ,Pi,n} represents the devel-

opment of the lower bound on the probability that jobs in{Ji,1, Ji,2, . . . , Ji,n}
complete by their deadlines, as computed by STDA. When the busy interval never

ends,L(∞) is at least zero since the probability that a job completes by its dead-

line lies in the range[0, 1]. Clearly, a lower bound of zero is a correct lower bound

on the minimum probability that jobs inTi meet their deadlines. The tightness of

the lower bound computed by STDA depends on the maximum utilization of the

system. For maximum utilizations less than 1.0, the bound is quite good. As the

maximum utilization becomes increasingly greater than 1.0, the bound becomes

increasingly conservative.

As a practical matter, the process of computingL(n) asn →∞ can be termi-

nated when the change between two successive values becomes acceptably small.

We have found that the computation converges quite rapidly, with the rate of con-

vergence depending on the maximum utilization of the system.

4.1.3 Computing Bounds for a Simple System

As an example, we now use STDA to bound the percentage of deadlines met

in a system of two tasks shown in Table 4.1. The execution time of each task

is uniformly distributed with parameters chosen to accentuate the potential for

missed deadlines. The worst-case utilization of the system is 1.41 and the mean

utilization of the system is 0.71. Consequently, we would expect that some jobs
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Table 4.1: Parameters of the Tasks.

Ti P−
i Di E−

i Ēi E+
i U−

i Ūi U+
i

T1 300 300 1 100 199 0.0033 0.333 0.663
T2 400 400 1 150 299 0.0025 0.375 0.748

Total 0.0058 0.708 1.411

will miss their deadlines. To determine the probability of jobs in each of the

tasks missing their deadlines, we apply the procedure outlined above. Because its

maximum utilization is less than 1.0, we know thatT1 will not miss any deadlines.

Therefore we begin the analysis withT2.

It is apparent that the maximum time demand ofT2 in the interval(0, 400]

exceeds the time supply because the sum of the maximum utilizations of the two

tasks exceeds one. BecauseJ2,1 may not have complete by the timeJ2,2 is re-

leased, the response time ofJ2,2 may be greater than that ofJ2,1. At the very

least we need to compute the response time distributions forJ2,1 andJ2,2. To

compute the probability thatJ2,1 completes by its deadline, the interval(0, 400]

is divided into sub-intervals(0, 300] and(300, 400] by the release time ofJ1,2 at

300. In the first interval, the time demand includes only the execution times of

J1,1 andJ2,1. The time demand of the second interval includes the execution time

of J1,2, as well as the work remaining from the first interval. The probability that

the time demand is no greater than a particular value is conditioned on whether or

not J2,1 completes beforeJ1,2 is released. We first consider the interval(0, 300].

The probability thatJ2,1 will finish by 300 isP [w2,1(300) ≤ 300], wherew2,1(t)

for 0 ≤ t ≤ 300 is the sumE1 + E2 and has the density function and distribution

shown in Fig. 4.1. The probability thatJ2,1 completes by 300 is 0.669.

We now computeP [w2,1(400) ≤ 400 | w2,1(300) > 300] for t in the interval

(300, 400]. BecauseJ2,1 may not have completed by time 300, there are between

0 and 198 time units of work remaining whenJ1,2 is released. The density func-

tion for the backlog is the density function of Fig. 4.1(a) in the range 300–498,

normalized so that the cumulative probability is 1.0 at time 498 as is implied by

statistical conditioning. The random variable for the backlog is then added to the

random variable for the execution time ofJ1,2. The resulting density and distribu-

tion are given in Fig. 4.2. The probability thatJ2,1 completes by 400, given that it

did not complete by 300, is 0.209 as shown in Fig. 4.2(b).

Combining the results of analyzing the two sub-intervals gives us the distri-
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Figure 4.1: Time demand ofJ2,1 over interval(0, 300].
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Figure 4.2: Time demand ofJ2,1 over interval(300, 400].
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Figure 4.3: Time demand ofJ2,1 over interval(0, 400].
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bution of the response time ofJ2,1 and thus the probability thatJ2,1 completes by

400 and meets its deadline

P [w2,1(400) ≤ 400] = (0.669) + (0.209)(0.331) = 0.738 (4.5)

The density and distribution functions of the response time ofJ2,1 over the entire

interval(0, 400] are given in Fig. 4.3.

We note that the probability thatJ2,1 will not complete beforer2,2 is 0.262 so

it is also necessary to compute the probability thatJ2,2 completes by its deadline.

The analysis proceeds following the same pattern until the busy interval ends or

the lower bound converges to the final value. Figure 4.4(a) shows the convergence

history for this heavily loaded system. The data points indicate the probability of

timely completion of jobs inT2 as computed by STDA while the line indicates

the minimum probability of timely completion. For this system, the lower bound

is 73.8% after the first job, 43.4% after 10 jobs, 40.2% after 22 jobs, and 39.2%

after 34 jobs. Based on these results, we let the lower bound on the percentage of

deadline met be 39.2%.

Figure 4.4(b) shows the rate of convergence for the same system of two tasks

(with periods of 300 and 400 and mean execution times of 100 and 200, respec-

tively) but with a minimum execution time of 25 rather than 1. The maximum

utilization is 1.27. While the lower bound starts at 76.4% with the first job, it

quickly decreases to 53.2% after 10 jobs and 51.1% after 19 jobs. As can be seen

by comparing Figure 4.4(a) to Figure 4.4(b), decreasing the maximum utilization

causes the probability of meeting deadlines to increase. With a minimum execu-

tion time of 70 rather than 1 the maximum utilization is 1.01 and the busy interval

ends after the third job.

4.1.4 Determining Worst Case Phase

We now return to the choice of initial phases for tasks. When the maximum uti-

lization is no greater than one, the worst-case response time occurs when the first

job in each task in a busy interval is released in phase [10]. The result rests upon

the following lemma which establishes that a new busy interval starts if jobs are

ever released in-phase. (See [10] for proof that an in-phase release results in the

worst-case execution time.)

Lemma 4.1.1 There is no backlog at the start of a in-phase busy interval if the
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maximum utilization is no greater than 1.0.

Proof: We prove the lemma by contradiction. Suppose a job in every task is

released at timet which is in the middle of a busy interval. In other words, that

backlog exists att. This implies

n∑
i=1

⌊
t

P−
i

⌋
E+

i > t

Sincebxc ≤ x

n∑
i=1

t

P−
i

E+
i > t

n∑
i=1

E+
i

P−
i

> 1

and hence

U+ > 1

which contradicts the assumption that the maximum utilization is less than 1.0.

Because no backlog can exist at the time jobs are released in phase when

U+ ≤ 1, we are assured that the busy interval will end before the jobs are again

released in phase. We now prove that the lower bound on deadlines met computed

by STDA is one if the system is schedulable.

Lemma 4.1.2 If a system is schedulable, the lower bound on deadlines met com-

puted by STDA is 100%.

Proof: The maximum value of the response time density function computed

for a job using STDA is identical to the sum of the maximum execution times

computed as the worst-case response time of the job using GTDA. Hence, if the

job is determined to be schedulable using GTDA, it will surely be determined

schedulable using STDA. Thus, the lower bound on deadlines met computed by

STDA is 100%.

This result makes STDA particularly useful for analyzing systems in which

the maximum utilization of the system exceeds the Liu and Layland bound but is
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less than unity. It is recommended that STDA be used instead of TDA (or GTDA)

since STDA not only determines schedulability, but also computes a lower bound

on the deadlines met if the system is not schedulable.

For U+ > 1, we do not know what phasing causes jobs to have their worst-

case response times. Some combinations of release times of the first jobs may

lead to a larger maximum response time of for a task. We hypothesize that these

combinations occur infrequently enough so that the lower bound computed from

response time distributions of jobs in an in-phase busy interval is sufficiently accu-

rate. To test this hypothesis, we performed a series of simulation experiments on

a number of systems. For each system, we determine the behavior of the system

when each taskTi has a randomly distributed phase in the range(−P−
i , P−

i ) and

when all tasks have equal phases, i.e., are released at time 0. (We call a unique

combination of phases and actual execution times of the tasks arun.) For each

run, a histogram of the response times of a large number of jobs in each task

is computed. The histograms of all the runs are averaged, bin by bin, to obtain

a histogram representing the average behavior of the tasks of the system. The

histograms for in-phase and random-phase releases are then compared.

For the tasks in Example 4.1, we performed 100 runs for both in-phase and

random-phase releases, each run containing the release of at least 8,000 jobs in

each task. The width of the 95% confidence interval on the profile of the histogram

was±5% of the mean value or less except in the tail of the density function where

the probability was small to begin with. Figure 4.5 shows the histograms for task

T2 from our example.

As Fig. 4.5(b) shows, the response time distribution for in-phase releases

bounds the distribution for random-phase releases from below. The response

time density function, Figure 4.5(a), exhibits a saw-tooth behavior for in-phase

releases. The behavior is caused by the fixed relationship between the release

times ofT1 andT2. This relationship causes the completion of jobs inT2 to be

delay by jobs inT1 in a periodic manner. The linearly rising shape of each tooth is

due to the uniform distribution of the execution time ofT1 while the general shape

of the curve results from combined effect of the execution time distributions of

bothT1 andT2. Figure 4.6 compares the histograms for tasks with the same pa-

rameters as our example but with exponential distribution times. Once again, the

distribution obtained when the initial jobs were released in-phase bounds from be-

low the distribution obtained when the first jobs were released with random-phase.

Also, the in-phase release curve exhibits a similar saw-tooth shape. However, each
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Figure 4.5: Response time distributions ofT2: Uniform, 71% Utilization.
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Figure 4.6: Response time distributions ofT2: Exponential, 71% Utilization.
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Table 4.2: Parameters of systems with different average utilizations.

System Minimum Jobs Ti P−
i Ēi Ūi Ū U+

1 1,000 T1 300 50 0.167 0.354 0.703
T2 400 75 0.188

2 8,000 T1 300 100 0.333 0.708 1.411
T2 400 150 0.375

3 32,000 T1 300 134 0.447 0.949 1.893
T2 400 201 0.503

tooth has a more rounded shape due to the exponential distribution ofT1. Finally,

the asymptotically decreasing shape of the density curves indicates the combined

effect of the execution time distributions of both tasks.

Next we consider the effect of average system utilization on the hypothesis

that in-phase response time distributions bound their random-phase release coun-

terparts from below. Mean utilizations of 35% and 95% were obtained by scaling

the mean execution times of the system in Table 4.1 by 0.5 and 1.34, respectively.

The parameters of the systems are given in Table 4.2. For ease of comparison,

the parameters of the previous system are duplicated as system #2. Figures 4.7

and 4.8 give the response time distributions for Systems 1 and 3, with 35% and

95% average utilizations, when execution times are distributed uniformly. The re-

sponse time distributions when execution times are distributed exponentially are

given in Figures 4.9 and 4.10. As can be seen, the response time distributions

obtained by examining the response times of jobs in an in-phase busy interval

bounds from below those obtained from examining the response times of jobs in

a random phase busy interval. At high average utilizations, the curves become

indistinguishable.

Despite the large number of systems simulated, we have not observed a case

where tasks in which the first jobs are released with arbitrary phases have a lower

percentage of deadlines met than the same tasks in which the first jobs are released

in-phase. We therefore use in-phase busy intervals in computing a lower bound

on the average completion rate using STDA.
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Figure 4.7: Average response times ofT2: Uniform, 35% Utilization.
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Figure 4.8: Average response times ofT2: Uniform, 95% Utilization.
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Figure 4.9: Average response times ofT2: Exponential, 35% Utilization.
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Figure 4.10: Average response times ofT2: Exponential, 95% Utilization.
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Table 4.3: Tightness of STDA bound for tasks of Table 4.2.
Simulation

System Ti STDA In-phase Ratio Random-phase Ratio

1 T1 100.0 100.0± 0.0 1.000 100.0± 0.0 1.000
T2 100.0 100.0± 0.0 1.000 100.0± 0.0 1.000

2 T1 100.0 100.0± 0.0 1.000 100.0± 0.0 1.000
T2 39.2 80.8± 0.1 0.485 81.3± 0.1 0.482

3 T1 100.0 100.0± 0.0 1.000 100.0± 0.0 1.000
T2 2.6 18.3± 0.1 0.142 18.4± 0.1 0.141

4.1.5 Comparing STDA to Simulation Results

We now compare the lower bound on the probability of meeting deadlines com-

puted via STDA for the systems in Table 4.2 with the percentage of the jobs in

each task meeting their deadlines obtained by simulating the the systems. The

minimum number of jobs in a task that were released during the simulation ranged

from 1,000 for System 1 to 32,000 for System 3. The simulation results are sum-

marized in Table 4.3. In all cases, the lower bounds computed by STDA are below

the percentage of deadlines met obtained by simulation. The table also shows that

increasing the average load of the system decreases the tightness of the lower

bound. Part of the difference between the lower bound and the simulation results

occurs because STDA computes the worst-case probability that jobs released in

an in-phase busy interval meet their deadlines rather than the average.

The tightness of the bound computed by STDA is also affected by the vari-

ance of the execution time distributions. Table 4.4 gives the parameters for three

systems with the same mean utilization but different maximum utilizations due to

changing the variance of the uniform distributions. (Once again, the parameters

of Table 4.1 are duplicated as system #6 for ease of comparison.) Table 4.5 com-

pares the lower bounds on the percentage of jobs in a task meeting their deadlines,

as computed by STDA, to the average obtained by simulation. As expected, de-

creased variance causes the difference between the STDA bound and the average

deadlines met to decrease.

We note that system #4 is a good example of a system which is not schedulable

even though the maximum utilization of the system is less than unity. Determinis-

tic analysis does not indicate how close the system is to being schedulable. On the

other hand, not only does STDA indicate thatT2 is unschedulable, but also that

at least 85.9% of the deadlines will be met. We note that the bound for system
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Table 4.4: Parameters of the tasks with different variances.

System Ti P−
i Di E−

i Ēi E+
i Ū U+

4 T1 300 300 72 100 128 0.708 0.997
T2 400 400 72 150 228

5 T1 300 300 50 100 150 0.708 1.125
T2 400 400 50 150 250

6 T1 300 300 1 100 199 0.708 1.411
T2 400 400 1 150 299

Table 4.5: Tightness of STDA bound for tasks of Table 4.4.
Simulation

System Ti STDA In-phase Ratio Random-phase Ratio

4 T1 100.0 100.0± 0.0 1.000 100.0± 0.0 1.000
T2 85.9 95.3± 0.1 0.901 97.6± 0.3 0.880

5 T1 100.0 100.0± 0.0 1.000 100.0± 0.0 1.000
T2 51.1 92.6± 0.2 0.552 94.1± 0.2 0.543

6 T1 100.0 100.0± 0.0 1.000 100.0± 0.0 1.000
T2 39.2 80.8± 0.1 0.485 81.3± 0.1 0.482

#4 is within 12% of the simulation results. Instead of taking over 10 minutes to

simulate the system to the accuracy shown, STDA took less than 1 second.

In the examples shown here, simulating the behavior of the two tasks is rea-

sonable. However, even for the very simple systems considered here, simulation

required significantly greater effort than STDA. Hence STDA provides a faster

way to determine if the probability of a missed deadlines is acceptable.

4.2 Extending STDA to Handle Mutual Exclusion

So far, we have assumed that jobs do not share resources. Realistically, however,

jobs in a system share resources in order to perform meaningful computations.

Furthermore, access to the resources may require synchronization to ensure the

integrity of the system. In this section, we extend the Stochastic Time Demand

Analysis method so that it can deal with mutual exclusion and focus on systems

where all resource accesses are made according to the Non-Preemptable Section

(NPS) protocol [13].

According to the NPS protocol, a job in the system cannot be preempted while
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accessing shared resources, i.e., while it is in a critical section. Jobs with a higher

priority released after the currently executing job has entered a critical section

are blocked until the currently executing job exits the critical section. Apriority

inversionis said to occur whenever a job waits while a lower priority job executes

[14]. Uncontrolled priority inversion cannot occur under the NPS protocol if the

duration of every critical section is bounded. This fact is formally stated by the

following lemma, the proof of which can be found in [13].

Lemma 4.2.1 The maximum blocking time of a job is the duration of the longest

critical section of all lower priority jobs that can block it.

We now state and prove another lemma which allows blocking to be account

for in the formulation of both deterministic and probabilistic time demand analysis

techniques.

Lemma 4.2.2 Only the first job in a busy interval can be blocked.

Proof: Because of priority scheduling, only jobs with priority equal to or higher

thanφi can execute in a level-φi busy interval in the absence of blocking. Thus

a job with priority lower thanφi will be unable to enter its critical section unless

it does so before the interval starts. Therefore only the first job in a busy interval

can be blocked.

We note that the duration of the critical sections in a job are random variables.

Let Bk
i,j denote the duration of thekth critical section of jobJi,j when the job

executes alone. We letbk+
i be the maximum duration ofBk

i,j and letb+
i be the

maximum duration of all critical sections ofTi. Blocking time is accounted for in

Time Demand Analysis and Generalized Time Demand Analysis by increasing the

time demand of taskTi by the maximum duration of a non-preemptable section of

a lower priority task. The time demand according to TDA with non-preemptable

sections is

wi(t) =
∑

1≤k≤i

⌈
t

P−
j

⌉
E+

j + max
i<j≤n

b+
j

As before, if the time demand is met by the deadline of the jobs in the task, the

task is schedulable. A straight forward way to extend STDA to accommodate

blocking increases the time demand in a like manner. Because of Lemma 4.2.2,
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the time demand of jobJi,1, i.e.,wi,1(t), is increased at the time of its release by

the maximum duration of critical sections of lower priority tasks. Thereafter, the

probability of timely completion of each job is computed as in Section 4.1.

To maintain responsiveness and maximize performance, most critical sections

will be of short duration and will not vary too widely. Thus increasing the time

demand bymaxi<j≤n b+
j will not be overly pessimistic for most systems. Nev-

ertheless, for completeness we outline an approach which takes into account the

variable duration of critical sections.

Consider a system ofn tasks, each of which has a critical section with a

known (independent) duration distribution. The effect of blocking is accounted

for in STDA by convolving the time demand function,wi,1(t) with the density

function for the maximum blocking times. The distribution of blocking time suf-

fered by a job fromTi due to a job with a single critical section from taskTj is

P[
B1

j (x) ≤ x
]
. Therefore, the distribution of the delay experienced by a job from

Ti due to critical sections of lower priority jobs fromTl is the weighted sum of

the probability distributions of the blocking time of the lower priority tasks. For a

system ofn tasks, the distribution of the blocking time for0 ≤ x ≤ ∞ is

P[
B1
{i+1,... ,n}(x) ≤ x

]
=

n∑

l=i+1

αi,lP
[
B1

l (x) ≤ x
]

whereαi,l is the probability that a job fromTi is blocked by the critical section

of a job in Tl. In general, the value ofαi,l must be estimated by measurement

or simulation because it depends on the execution histories of the tasks involved.

However, assuming the probability thatTi is blocked by a critical section inTl

is proportional to the frequency of job releases, as it would be if tasks consist of

straight-line code without conditionals or loops and the first job in each task is

released with an arbitrary phase,αi,l can be approximated by

αi,l = lim
t→∞

t
P−l∑

i<l≤n
t

P−l

Note that tighter bounds can be obtained by accounting for the blocking of indi-

vidual critical sections of lower priority tasks. Given that taskTl hasml critical
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sections,

P[
B{i+1,... ,n}(x) ≤ x

]
=

n∑

l=i+1

ml∑

k=1

αk
i,lP

[
Bk

l (x) ≤ x
]

whereαk
i,l is the probability that a job fromTi is blocked by thekth critical sec-

tion of a job fromTl. Once again,αk
i,j must be determined by measurement or

simulation. Alternatively, it can be estimated by static execution path analysis.

Because of the difficulty in obtaining the weight factors,αi,l or αk
i,l, we ex-

pect that the maximum blocking delay experienced by jobs ofTi due to critical

sections in lower priority tasks will be used instead of the more detailed analysis,

except when the duration of some critical sections are very long. As noted before,

such critical sections should be very rare as non-preemptable sections with long

durations generally lead to performance problems.

4.3 Applying STDA to Distributed Systems

Real-time systems are often designed to make use of multiple processors. In this

section, we apply the Stochastic Time Demand Analysis method to systems of

distributed tasks with end-to-end deadlines.

By a distributed task, we mean a periodic task each of whose jobs is a chain

of subjobswhich execute sequentially on a set of processors according to a fixed

assignment of subjobs to processors. We denote thejth job of taskTi by Ji,j

and thekth subjob ofJi,j by Ji,j,k. (We extend the periodic task notation in the

obvious manner, e.g., the release time ofJi,j,k is ri,j,k and its completion time is

ci,j,k.) Subjobs are constrained to execute in order, i.e., a subjob becomes ready

to execute only when its successor has completed. The first subjob in each job

has no successor. The end-to-end response time of a distributed job is the length

of time from the release of the first subjob in a task until the completion of the

last subjob. Each subjob has a fixed priority which can be assigned according to

one of the existing distributed fixed priority assignment algorithms [54–56]. (We

only require that the period of subjobs be equal to the periods of their end-to-

end jobs.) Because the Release Guard Protocol (RGP) has been shown to have

better average performance than other methods for synchronizing the releases of

subjobs [25], we focus on systems where the RGP is used.

The key idea behind the RGP is to ensure that the inter-release time between
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Figure 4.11: Schedule of Distributed Tasks using Release Guard Protocol.

any two consecutivekth subjobs of a task on a processor is no shorter than the

period of the task. Associated with thekth subjob of a task is a variable called its

release guard, Gi,j,k, which represents the earliest allowable release time of the

subjob. The release of a subjob whose predecessor completes before timeGi,j,k

is delayed until at leastGi,j,k. Initially, the release guards of all subjobs are zero.

Whenever a subjobJi,j,k is released, the release guard ofJi,j+1,k is set equal to the

sum of the current time and the guaranteed inter-release time of the task containing

the subjob. Figure 4.11 shows a distributed system of two tasks with guaranteed

inter-release times of 2 and 3, respectively, each containing two subjobs. The first

subjob of each task executes for 1 time unit on Processor 1 and the second for 1

time unit on Processor 2. The dotted arrows indicate when the second subjobs can

be released because their successors have completed.

Since its release guard is zero,J1,1,2 is released on Processor 2 when its prede-

cessorJ1,1,1 completes at time 1. The release guardG1,2,2 for J1,2,2 is set to time

3. At time 2,J2,1,1 completes, and its successorJ2,1,2 is released on Processor 2.

The release guardG2,2,2 is set to time 5. The end-to-end response times of dis-

tributed jobsJ1,1 andJ2,1 are the sum of the response times of their subjobs, i.e.,

their response times are 2 and 3, respectively. Following the same process yields

the end-to-end response times of other jobs in the tasks.

Note that while the predecessor of subjobJ2,2,2 completed by time 4, the re-

lease guard prevented its release until time 5. Likewise, jobJ2,4,2 is not released

until time 11 because of its release guard. Since the inter-release times of subjobs

on a processor are no shorter than their guaranteed inter-release times, (Gener-
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alized) Time Demand Analysis can be used to compute the maximum response

times of subjobs on each processor independent of subjobs on other processors.

An upper bound on the end-to-end response time of jobs in a task is the sum of the

maximum response times of its subjobs [25]. The maximum end-to-end response

time obtained by this method allows us to determine the schedulability of the sys-

tem. However, we wish to determine a lower bound on the probability that jobs

in a task meet their end-to-end deadlines. We must therefore take into account the

variations in execution times. Because the release guards of subjobsJi,j,k j, k > 1

depend upon the completion time ofJi,1,k−1, we can no longer consider subjobs

on a processor independent of the subjobs on other processors.

We now describe how to apply Stochastic Time Demand Analysis to compute

distributions for the end-to-end response times of jobs in a distributed system. The

end-to-end response time of a distributed job whose subjobs are released accord-

ing to the RGP is the sum of the response times of the subjobs. Therefore, the

response time distribution of an end-to-end job is determined by convolving the

probability density functions of the response time distributions of the individual

subjobs in the chain. The response time density functions of the first subjobs of

the first jobs in each task are readily computed using STDA. We now show how

to compute the response time density functions of the subsequent subjobs.

We begin by noting that the once subjobJ2,1,2 of Figure 4.11 is released, the

RGP will ensure that the subjobs{J2,2,2, J2,3,2, . . . } are released at leastP ∗
2 = 3

time units after the release of subjobs{J2,1,2, J2,2,2, . . . }. Thus, the release time

of any subjobJi,j,k depends not only upon the completion time of its predecessor,

Ji,j,k−1, but also upon the release time ofJi,1,k. The release time ofJi,1,k is a ran-

dom variable and hence the release guards of{Ji,2,k, Ji,3,k, . . . } are also random

variables. The release guardGi,j,k has probability density function equal to the

probability density function of the release time ofJi,1,k plus(j − 1)P ∗
i .

Applying the approach in Section 4.1.1, the response time of a subjob depends

upon the time demand of jobs which execute on its processor between when it is

ready for execution and when it completes, as well as upon the backlog of work

that exists on the processor at the time it is ready for execution. Again, subjob

Ji,j,k is ready for execution no earlier than its release guard,Gi,j,k. Therefore,

the backlog of work that exists atGi,j,k is computed by conditioning on the event

thatJi,j,k−1 completes afterGi,j,k. Since the completion time ofJi,j,k−1 is also a

random variableCi,j,k, we are required to condition upon an event whose time of
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occurrence is also random variable.1 The distribution of the backlog atGi,j,k is

therefore

P [Ci,j,k−1 ≥ Gi,j,k] =

∫
P [Ci,j,k−1 ≥ Gi,j,k, Gi,j,k = t] dt

=

∫
P [Ci,j,k−1 ≥ Gi,j,k | Gi,j,k = t] dt

=

∫
P [Ci,j,k−1 ≥ t] gi,j,k(t)dt

wheregi,j,k(t) is the probability density function ofGi,j,k. A closed form solu-

tion to the distribution of backlog is unlikely except for very simple systems. In

general, the distribution of the backlog must be solved for numerically. Once the

distribution of the backlog has been computed, the response time ofJi,j,k can be

determined by the STDA technique of Section 4.1.

We can simplify the process of computing a distribution for the backlog at the

cost of a less tight bound by assuming the worst-case response time of thekth

subjob of the first job in each task,Ji,1,k, so that the release guards are no longer

random variables.

4.4 Summary

Using deterministic real-time analysis techniques to design critical soft real-time

systems can lead to low resource utilization, increased cost, and poor average per-

formance. An expensive alternative is to simulate critical soft real-time systems to

determine their performance. The Stochastic Time Demand Analysis method is a

less expensive way to determine if the performance of a system is acceptable. With

the Stochastic Time Demand Analysis method, a lower bound on the percentage

of jobs in a task that meet their deadlines under a fixed priority scheduling policy

can be computed thereby enabling missed deadlines to be balanced against other

design goals such as processor utilization or cost.

We have shown how STDA can be used to compute the percentage of dead-

lines met for systems with non-preemptable critical sections. Because critical

sections must be short or the performance of the system will suffer, the response

time distribution of the first job in a busy interval need only be offset by the max-

1Incidently, computing the response time distributions of jobs whose inter-release times are
random variables also requires conditioning on an event whose time of occurrence is a random
variable.
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imum delay due to blocking, after which the other response time distributions are

computed as if no critical sections exist. For systems with long duration critical

sections, we have also outlined a complex but more accurate technique for com-

puting the distribution of blocking delay that a job may suffer. The distribution

of blocking delay is convolved with the execution time distribution of the first job

in a busy interval before computing the response time distributions according to

STDA.

Finally, we have shown how STDA can be used in conjunction with the Re-

lease Guard Protocol to compute response time distributions for end-to-end jobs

in a distributed system and hence obtain a lower bound on the percentage of jobs

that meet their deadlines. While the general formulation requires the numerical

evaluation of the probability that the predecessor of a subjob completes after the

release guard, i.e., conditioning on an event whose time of occurrence is also a

random variable, a conservative bound can be obtained by assuming the worst-

case release times of the subjobs of the first job in each task when establishing the

release guards for the subjobs in jobs after the first.
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Chapter 5

Scheduling Overruns

In this chapter, we address the problem of scheduling jobs that may overrun their

processor allocations, potentially causing the system to be overloaded. Specifi-

cally, we compare the performance of three classes of scheduling algorithms on

workloads with and without execution time dependencies. The first class, which

contains classical priority scheduling algorithms, as exemplified by DM and EDF,

provides a baseline. The second class is the Overrun Server Method which in-

terrupts the execution of a job when it has used its allocated processor time and

schedules the remaining portion as a request to an aperiodic server. The final class

is the Isolation Server Method which executes each job as a request to an aperiodic

server to which it has been assigned.

5.1 Algorithms for Scheduling Overruns

Any algorithm for scheduling jobs with a potential for overrun must meet two

criteria if it is to perform well. First, it must guarantee that jobs which do not

overrun meet their deadlines. Second, it should maximize the number of overrun-

ning jobs that meet their deadlines or minimize the response times of overrunning

jobs. In this section, we discuss two new classes of scheduling algorithms, the

first of which achieves the former while striving for the latter. The second relaxes

the guarantee that non-overrunning jobs will meet their deadlines in order to per-

form better on dependent workloads. As a basis for comparison, we also consider

the performance of classical fixed and dynamic priority hard real-time scheduling

algorithms.

The algorithms used as the baseline are the Deadline Monotonic (DM) [30]

and Earliest Deadline First (EDF) [1] scheduling algorithms which where dis-
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cussed in Chapter 2. These algorithms are optimal in that the DM and EDF algo-

rithms ensure that no deadlines are missed if all the tasks can be scheduled without

missing a deadline by any fixed or dynamic priority algorithm, respectively. The

DM algorithm also has the desirable property that an overrun will not cause a job

of a higher priority task to miss its deadline. In contrast, it is well known that the

EDF algorithm behaves unpredictably upon overrun. However, EDF has a higher

schedulable utilization than DM and hence makes better use of resources as long

as the maximum utilization is no greater than one. The desire to combine the pre-

dictability of DM with the optimal schedulable utilization of EDF motivates the

development of the two new classes of algorithms.

5.1.1 Overrun Server Method

The Overrun Server Method (OSM), is both a simplification and an extension of

the Task Transform Method proposed by Tiaet al. [32]. Under the OSM, a job is

released for execution and scheduled according to the algorithms in the baseline

class. At the time of overrun, the execution of the overrunning job is interrupted

and the remaining part of the job is released as an aperiodic request to a server. A

Sporadic Server (SS) [20] is used to execute the requests in fixed priority systems

while either a Constant Utilization Server (CUS) [35] or Total Bandwidth Server

(TBS) [21] is used to execute requests in a dynamic priority system. We denote

the former as OSM-DM and the latter as OSM-EDF.

Sporadic Servers are specified by a replenishment period and an execution

budget. A SS demands no more time within any time interval than a correspond-

ing periodic task with the same period and maximum execution time. Thus, the

schedulability of a system containing Sporadic Servers can be determined by the

methods applicable to systems of periodic tasks. We use a particularly aggres-

sive implementation of the Sporadic Server which reduces the average response

time of requests [57]. A Sporadic Server has a separate ready queue so it makes

sense to consider various queueing disciplines. We consider the First-Come-First-

Served (FCFS), Deadline Monotonic (DM), andShortest time Remaining at Over-

run (SRO) queue disciplines. (In the latter, the priority of a request is inversely

proportional to the amount of work remaining at the time of overrun.)

As an example of OSM-DM, consider a system of three tasks. TaskT1 has

a period of 3 and a guaranteed execution time of 1. TaskT2 has a period of 4

and a guaranteed execution time of 1. TaskT3 has a period of 6 and a guaranteed
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Figure 5.1: Behavior of DM upon Overrun.

execution time of 2. In Figure 5.1(a), jobJ1,1 overruns. As a result,T3 misses a

deadline at time 6 when the tasks are scheduled according to the DM algorithm.

Figure 5.1(b) shows the same workload but with a Sporadic Server having a re-

plenishment period of 12 and an execution budget of 1. According to deterministic

schedulability theory, the three tasks and the server are schedulable according to

DM on the basis of guaranteed execution times. Note that now the jobs ofT3 meet

their deadlines in spite of the overrun by a job inT1.

The schedulability of an OSM-EDF system using either a CUS or a TBS can

also be determined by the methods applicable to systems of period tasks because

they demand no more time than a corresponding task with the same utilization.

The difference between the two algorithms is that a TBS uses background time

whereas a CUS does not. Typically, a CUS is preferred when there are several

servers and it is undesirable for the servers to compete for background time. How-

ever, one would expect the average response time of requests executed by a CUS
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to be greater than if executed by a TBS. We later show results that support this

conclusion.

5.1.2 Isolation Server Method

The Isolation Server Method (ISM) is named for its use of a SS, CUS, or TBS

to isolate other parts of the system from the effects of an overrunning job. Jobs

are submitted as aperiodic requests to the server assigned to their task at the time

of their release and execute completely under server control. A server may be

assigned to execute jobs from multiple tasks. Whereas OSM requires a portion of

the processor separate from the tasks to be allocated to servers, ISM allocates por-

tions of the processor to servers and does not allocate time to the tasks. Because

jobs of a task are released as requests to a server, an overrunning job under ISM

can only delay the completion of jobs from tasks assigned to that server. The exe-

cution of jobs in tasks not assigned to that server are isolated from the overrunning

job. Unlike OSM, ISM cannot guarantee all jobs with execution times which do

not exceed their guaranteed execution times will complete by their deadlines.1 We

denote fixed priority ISM by ISM-DM and dynamic priority ISM by ISM-EDF.

As an example, consider another system of three tasks scheduled according to

the EDF algorithm together with a TBS. TaskT1 has a period of 4 and a guaranteed

execution time of 1. TaskT2 has a period of 12 and a guaranteed execution time

of 4. TaskT3 has a period of 24 and a guaranteed execution time of 2. Under

OSM-EDF, the overrun server has a replenishment period of 3 and an execution

budget of 1 while ISM-EDF has a separate server per task with utilizations equal to

the utilizations of the respective tasks. According to deterministic schedulability

theory, the system is schedulable under both OSM-EDF and ISM-EDF.

Suppose that a job ofT2 overruns by 2 at time 6 and a job ofT1 overruns

by 1 at time 7, as shown in Figure 5.2. The overrunning job ofT1 misses its

deadlines under OSM-EDF but completes in time under ISM-EDF. Also, both

overrunning jobs complete earlier under ISM-EDF than under OSM-EDF because

ISM servers execute jobs at their original priority, while OSM servers execute the

overrun portion of jobs at the priority of the corresponding server. In this case, the

isolation server has a lower priority thanT1 while it executes the overrunning job

1The ISM can be considered a special case of the OSM in which the guaranteed execution
time of each task is zero and hence all jobs immediately “overrun” and are released directly to the
overrun servers.
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Figure 5.2: Behavior of Server upon Overrun.

of T2.

5.2 Comparison Methodology

In this section, we describe the methodology used to compare the performance of

the three classes of algorithms. The average performance of the system is obtained

by discrete event simulation. We first discuss the criteria used to compare the

performance and then describe the workload used in the comparison.

5.2.1 Performance Criteria

In Section 5.1 we stated what the ideal behavior of an algorithm for scheduling

jobs in the presence overruns should be. First and foremost is the requirement that

jobs which do not exceed their guaranteed execution times should never miss a

deadline. OSM meets this condition by design. ISM relaxes this condition slightly

in that an overrunning job may delay the completion of subsequent jobs assigned
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to the same server. The next condition is that the algorithm maximizes the number

of deadlines met and minimizes the response times of overrunning jobs. Thus, the

fraction of deadlines met by jobs in each task and the average response time of

jobs in a task are the metrics use in our comparison study.

It is clear that the above metrics cannot be directly compared for different

workloads because, for example, the percentage of deadlines missed depends

upon the execution time and deadline of the tasks, both of which vary across work-

loads. For this reason, we use the ratio of a metric measured for one algorithm

against the same metric measured for another algorithm on the same workload,

averaged over all the workloads. As an example, if the average ratio of deadlines

met is 1.0, then the two algorithms have equivalent performance on the average.

Likewise, an average ratio of deadlines met of 1.25 indicates that the first algo-

rithm performs 25% better than the second on the average.

Finally, there are two perspectives from which to compare performance. The

first is from the perspective of system performance and the second is from the

perspective of task performance. The average ratio of a metric from the perspec-

tive of system performance is computed as a weighted sum of the metric for each

task. The weight for a task is the fraction of all jobs that belong to the task. The

average ratio of a metric from the perspective of task performance is just the sum

of the metric for each task. As we will see, the system perspective of performance

biases the comparison in favor of the fixed priority baseline algorithm since the

task with the highest priority also releases the most jobs in a given length of time.

Because our objective is to schedule overloaded critical real-time systems to max-

imize the deadlines met and minimize the average response time of each task,

we are primarily interested in the performance of tasks rather than overall system

performance. For completeness, however, we present the performance from both

perspectives in the following sections.

5.2.2 Workload Generation

The performance of a scheduling algorithm depends upon the average utilization

of the system. At low utilizations, sufficient time exists for nearly all overrunning

jobs to complete in time. As the utilization increases, overrunning jobs become

more likely to miss their deadlines. At some point, overruns will cause the system

to be overloaded. As long as the average utilization of the system is less than

one, the system will continue to function, albeit with increasingly reduced per-
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Table 5.1: Overrun Simulation Parameters.

Parameter Values

Distribution Types Uniform, Exponential
Average Utilizations 0.50, 0.75, 0.90, 0.95
Dependency Patterns{1}, {1, 1}

formance. For the workloads used in this study, an average utilization of 0.50 is

sufficient for nearly all jobs to met their deadlines. The average utilizations we

consider are 0.50, 0.75, 0.90 and 0.95.

Given the average utilization of the system, the average utilization of a task is

obtained by multiplying the average system utilization by a utilization factor for

the task. The utilization factors of the tasks in a system are uniformly distributed

in the range(0, 1] and normalized such that the sum of the factors equals 1.0. The

execution time of jobs in a task are random variables with a common distribution,

either uniform or exponential. The mean execution time of a job is equal to the

mean utilization of its task multiplied by the (constant) period of the task. The

minimum execution time is 1 time unit. The periods of the tasks are constant and

are uniformly distributed in the range[1000, 10000].

Overruns are often caused by common factors and hence the execution times

of jobs are likely to be correlated. For dependent execution times, we model

dependencies as being exclusively between jobs in a task and following a fixed

pattern. The pattern is represented by a list of execution time factors, with a

mean value of 1.0, representing the correlations between the execution times of

consecutive jobs. For example, suppose that the pattern is{2, 0.5, 1, 0.5}. If the

mean execution time of a set of dependent jobs is 100, the actual execution times

of the jobs are{200, 50, 100, 50}. (The mean execution time of a set of dependent

jobs is computed by the previous procedure.) Dependence patterns are varied and

clearly application dependent. In our current study, we examined the performance

of the algorithms for the (independent) pattern{1} and for the (dependent) pattern

{1, 1}.
For each average system utilization, distribution type and dependency pattern,

we generated 100 systems, each consisting of 8 tasks. Each of the tasks in a

system had a minimum of 2000 jobs. A summary of the parameters which we

varied during the performance study are given in Table 5.1.
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5.3 Baseline

We compare the performance metrics for equal release times (in-phase release)

and random release times. For the random release time case, 30 runs with the

initial release time of each task uniformly distributed in[0, P−
i ] were performed.

The results clearly indicate that the average performance of the system does not

depend on the initial phase of the tasks.

Another factor which may influence performance is the number of tasks in

the system. Figure 5.3 shows a comparison of the performance of the DM and

EDF schedulers on systems with between 1 and 8 tasks. The results are presented

as the average of the ratios of the performance of systems withn tasks to the

performance of a system with 1 task. The average system utilization is 95%. The

figure shows that the average performance of the system improves with increased

numbers of tasks. This occurs because distributing a given system load across

more tasks decreases the average overrun per task. The average response time

decreases as the average overrun decreases making it more likely for jobs to meet

their deadlines. We use 8 tasks per system for the remainder of the study.

Finally, we compare the performance of EDF and DM on independent and de-

pendent workloads. As can be seen in Figure 5.4, the average performance of the

EDF policy is clearly worse than the average performance of DM from a system

perspective. Considering performance from the perspective of a task, the percent-

age of deadlines met for EDF slightly exceeds that of DM for the independent

uniform distribution at high average utilizations, as Figure 5.5 shows. In gen-

eral, DM performs better than EDF, however, particularly with respect to average

response time.

5.4 Overrun Server Method

As discussed above, one way to schedule jobs with the potential for overrun is

to suspended a job when it has executed for its guaranteed execution time and

release the remainder of the job as a request to an overrun server. Only jobs with

execution times in excess of their guaranteed values may miss their deadlines. The

main issues in using overrun servers to schedule jobs are the number of servers

to use, the assignment of jobs to servers, the parameters of each server, and the

queueing discipline employed by the server.
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Figure 5.3: Performance vs. Number of Tasks: the average of the ratios of the
metrics for systems withn tasks to the metrics of a system with 1 task.
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Figure 5.4: EDF vs. DM from System Perspective: the average of the ratios of the
metrics for systems with an EDF scheduler to the metrics of systems with a DM
scheduler.
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Figure 5.5: EDF vs. DM from Task Perspective: the average of the ratios of the
metrics for systems with an EDF scheduler to the metrics for systems with a DM
scheduler.
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5.4.1 Number of Servers

The number of servers can range from a single server for all tasks to a server

for each overrunning task. Clearly the total average utilization of the servers can

be at most1 −∑
i Ūi, without the potential for causing non-overrunning jobs to

miss their deadlines. (It may be less than this under fixed priority scheduling poli-

cies due to a lower schedulable utilization.) The question is how to distribute the

uncommitted utilization of the processor. If the remaining utilization is divided

without regard for the average overrun assigned to each server, e.g., dividing the

remaining utilization evenly, some servers may have a proportionally greater av-

erage load than others. This utilization distribution will likely cause jobs to have

worse response times and be less likely to complete by their deadlines. On the

other hand, dividing the remaining utilization proportionally according to the av-

erage overrun assigned to each server ensures that servers will receive processor

time proportional to their load.

The results indicate that the performance of a single server for all tasks and

a server per task bound the performance of systems with intermediate numbers

of servers. In addition, there is no significant difference in performance between

different assignments of tasks to servers when the remaining utilization is assigned

in proportion to the average overrun seen be each server since the load on the

servers are equal. For brevity, we present only the results for systems with 1 or 8

servers having groups of consecutive tasks assigned to servers.

5.4.2 Deadline Monotonic

Given the server utilization, an overrun server in a fixed priority system requires

the specification of a replenishment period in order to establish a budget for the

server. It also requires a scheduling discipline for its job queue. For simplicity,

we consider the choice of replenishment period and queue discipline for a system

with a single overrun server.

The literature pertaining to the service of aperiodic requests almost universally

suggests that the priority of a server should be greater than that of the tasks. To

determine the best server period, we simulated the behavior of a simplified set of

100 systems consisting of 3 tasks with 1000 jobs per task and 9 priorities chosen to

be slightly higher than, equal to, and slightly lower than the priority of each task.

The execution time of jobs in the highest priority task were taken from a uniform

or exponential distribution. The execution times of jobs in the other tasks were
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constant. The task periods were in the range[100, 1000]. The average utilizations

of the systems were 75%, chosen to be less than the Liu and Layland bound of

75.7% thereby guaranteeing schedulability on the basis of mean execution times.

Initial results presented in [58] indicated that the choice of Sporadic Server

priority does not significantly affect the average response time or percentage of

deadlines met. Those results were based on simulation results with 30 systems. In-

creasing the number of systems to 100 allowed statistically significant differences

to appear. As Figure 5.6 shows, selecting a server priority slightly higher than the

task with variable execution time increases deadlines met for exponentially dis-

tributed execution times, where as selecting a server priority slightly lower than

that the task with variable execution time increases deadlines met for uniformly

distributed execution times.2 The same conclusions follow when response times

are considered. For convenience, we let the period of all servers be mean of the

range of periods in the experiments that follow.

Next we consider the choice of queue discipline for the Sporadic Server ready

queue. We use FCFS as a baseline (as in [32]) and compare its performance

from the system perspective with DM and SRO on the workloads discussed in

Section 5.2.2. Figure 5.7 shows that the percentage of deadlines met when DM is

used as the queue discipline is higher than when FCFS is used. Likewise, more

deadlines are met when SRO is used. The average response times with DM and

SRO are better than FCFS.3

The latter result may be surprising because SRO performs poorly as a real-

time scheduling algorithm since it prioritizes jobs on the basis of remaining work

at release rather than on task deadlines or periods. However, it minimizes response

time and thus it allows more overrunning jobs to complete by their deadlines when

used as a SS queue discipline. We use SRO as the queue discipline in the experi-

ments that follow.

5.4.3 Earliest Deadline First

We now consider the OSM in a deadline-driven system. As stated earlier, we

use either a CUS or a TBS in connection with an EDF scheduling policy. The

2The differences between FCFS, DM and SRO queue disciplines are not statistically significant
except for exponentially distributed execution times where SRO performs better than FCFS and
DM.

3The average response time ratios of DM with respect to FCFS appears to exceed 1.0 but is in
fact within±5% at 95% confidence.
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Figure 5.6: Effect of Sporadic Server Period: the average performance as a func-
tion of the relationship between the server and the task periods.
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Figure 5.7: Performance of Sporadic Server Queue Disciplines: the average of the
ratios of the metrics for Sporadic Servers with DM or SRO queue disciplines to
the metrics with Sporadic Servers with FCFS queue disciplines.
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CUS and TBS overrun servers are specified by establishing server utilizations and

assigning tasks to servers in the manner discussed earlier.

Again, a CUS server and a TBS server behave identically except that the lat-

ter is allowed to compete for background processing time. Because of this, jobs

executed by a TBS server may complete earlier if background time is available,

possibly meeting their deadlines. Thus we would expect a TBS to perform bet-

ter than a CUS as an overrun server. Indeed, the average response times using a

TBS are much lower than those using a CUS, as Figure 5.8 shows, particularly at

moderate to high average system utilization. The percentage of deadlines met is

also greater for a TBS. The shape of the curves for deadlines met comes from two

opposing effects. At low load, the average overrun is small so a TBS and a CUS

perform similarly. Increasing the load causes an increase in the average overrun

which a TBS executes earlier. At the same time, increasing the load decreases

the amount of background time that a TBS can exploit. As the average load ap-

proaches 100%, the average deadline met once again becomes similar because the

amount of background time approaches zero.

There is another subtle reason for preferring a TBS over a CUS in overloaded

systems. Both a TBS and a CUS compute the server deadline as the greater of the

current time or the previous deadline of the server plus the execution time of the

job being released divided by the guaranteed utilization of the server, i.e., for the

server per task configuration

d′i,j = max(d′i, j − 1, t) +
ei,j

U∗
i

This ensures that servers in a fully loaded system do not use more than their al-

located bandwidth. A job being released is given the deadline of its server for

scheduling according to EDF. (The deadline by which a job should complete, its

completion deadlinedi,j, is distinct from thescheduling deadlineof the serverd′i,j.

The completion deadline is a constraint that the system tries to maintain whereas

the scheduling deadline is an artifact of scheduling.) Jobs executed by a TBS are

allowed to compete for background time by being entered into the OS ready queue

as soon as they are released. Jobs executed by a CUS must wait to enter the ready

queue until timemax(d′i,j−1, t) and thus cannot compete for background time.4

4As an optimization, the scheduling deadline of the CUS can be reset to the current time when
the processor is idle. During a busy interval, however, a CUS does not compete for background
time while a TBS does.
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Figure 5.8: Performance of TBS vs. CUS: the average of the ratios of the metrics
for systems with Total Bandwidth Servers to the metrics for systems with Constant
Utilization Servers.
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Figure 5.9: Queue Length of TBS vs. CUS: the number of released but not yet
completed jobs as a function of time at 95% average utilization showing that the
overhead of queue management grows for Constant Utilization Servers.

As a result, a CUS must maintain a separate wait queue for the jobs which are

released but not yet eligible to compete for the processor.

Figure 5.9 shows the minimum number of released but not yet completed

(“pending”) jobs as a function of time for a system of three tasks with an aver-

age utilization of 95%. All of the pending jobs are in the ready queue of the TBS,

while all but at most one of the pending jobs are in the wait queue of the CUS.

Clearly, the length of the wait queue of the CUS is growing. The number of jobs in

the wait queue of the CUS will continue to grow as more jobs are released. Mean-

while the overhead of maintaining the wait queue increases until it overwhelms

the scheduler. We call the utilization at which the overhead of maintaining the

wait queue overwhelms the scheduling of jobs thesaturation utilizationof the

server. The saturation utilization of a TBS is greater than a CUS because a TBS

completes jobs more quickly through its use of background time. As the average

utilization approaches 1.0, however, all servers will saturate. Because a CUS has a

lower saturation utilization and worse performance than a TBS, we conclude that

a CUS should not be used for scheduling highly overloaded systems.
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5.4.4 Performance of OSM vs. Baseline

Figures 5.10, 5.11, 5.12, and 5.12 compare the performance of the OSM with the

performance of the baseline algorithms. As Figure 5.10(a) shows, significantly

more deadlines were missed by OSM-DM from the system’s perspective. The Liu

and Layland bound for the baseline algorithm is 72.4% and hence the systems

are not likely to be schedulable at high average system utilizations. In spite this,

we present results for higher utilizations as an indication of critical soft real-time

behavior at high system loads.

Figure 5.10(b) indicates that OSM-DM yields better response times than clas-

sical DM for a single overrun server and dependent exponential workloads. In all

cases, a single overrun server for all tasks performs better than having an overrun

server per task. This occurs because interactions between servers due to their fixed

priorities prevents them from optimally reclaiming time allocated to idle servers

even though the aggressive implementation of the SS employed does make some

use of background time.

From the tasks’ perspective, OSM-DM meets more of the deadlines than DM,

as shown in Figure 5.11, particularly for exponential execution time distributions,

high average utilizations and a single server for all tasks. However, it does so at a

dramatic increase in response times above 75% average utilization. The higher re-

sponse times of OSM-DM, from both the system and task perspectives, are caused

by overruns being executed at a fixed priority which is likely to be different from

their natural priority. The effect of servers having fixed priorities is not as apparent

from the system perspective because high priority tasks have both better average

response times and greater influence on the final results due to more frequent re-

leases of jobs.

In Figure 5.12 we see that OSM-EDF performs better than classical EDF for

exponential workloads, particularly if the workload has dependencies. Also it

performs better on exponential workloads than on uniform ones because the prob-

ability of overrun is less for an exponential distribution than for a uniform one

when the guaranteed execution time equals the mean, as it does here. Finally, we

observe that OSM-EDF performs better with a server per task than with a single

server because a TBS makes use of background time unused by other servers and

does so at the priority of the overrunning job.

Curiously, the results from the task perspective (Figure 5.13) are nearly iden-

tical to those from the perspective of the system. This is not as strange as it first
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Figure 5.10: OSM-DM vs. DM from System Perspective: the average of the ra-
tios of the metrics for systems scheduled according OSM-DM to the metrics for
systems scheduled according to DM.
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Figure 5.11: OSM-DM vs. DM from Task Perspective: the average of the ratios of
the metrics for systems scheduled according OSM-DM to the metrics for systems
scheduled according to DM.
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Figure 5.12: OSM-EDF vs. EDF from System Perspective: the average of the
ratios of the metrics for systems scheduled according OSM-EDF to the metrics
for systems scheduled according to EDF.
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appears. When a system is scheduled EDF, there is no way to predict which jobs

will be affected by an overrun. If the system is overloaded and many jobs overrun,

each task is just as likely to miss jobs as any other and in about the same propor-

tion. For example, the EDF results for exponentially distributed execution times

at 95% average utilization indicate that 95% of the deadlines met lie within±4%

of the mean from both the system and the task perspectives. The spread is even

less for uniformly distributed execution times or for systems with lower average

utilizations. Since an overrun server behaves like a periodic task, the performance

of the tasks in the system, including the servers, are similar. Therefore, because

the response times of the tasks with the greatest release rates do not differ appre-

ciably from the mean, the performance from the system and task perspectives are

similar.

5.4.5 Performance of OSM-EDF vs. OSM-DM and DM

Under classical scheduling, DM performs better than EDF when jobs overrun.

However, as Figures 5.14 and 5.15 show, OSM-EDF performs better than OSM-

DM in the server per task configuration. Thus, in general, OSM should employ a

server per task and be scheduled according to the EDF algorithm.

Finally, Figures 5.16 and 5.17 compare OSM-EDF to classical DM. From the

system’s perspective, the performance of DM is clearly superior while from the

tasks’ perspective, OSM-EDF yields significantly more deadlines met for the ex-

ponential workloads. However, the response time ratios of DM are still better

than OSM-EDF. From this we conclude that OSM-EDF may be preferable only

for highly loaded systems containing overrunning jobs that have long execution

time tails where percent deadlines met is the primary metric.

In spite of its generally lack-luster performance from the system perspective

when compared with DM, OSM is ideal for systems in which hard, soft and non-

real-time workloads execute on the same processor because of the guarantee that

non-overrunning jobs will complete in time if the guaranteed portion of the jobs,

along with the overrun servers, are schedulable.

5.5 Isolation Server Method

Another way to schedule jobs with the potential for overrun is to release the jobs as

requests to isolation servers for execution. The same factors need to be considered
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Figure 5.13: OSM-EDF vs. EDF from Task Perspective: the average of the ra-
tios of the metrics for systems scheduled according OSM-EDF to the metrics for
systems scheduled according to EDF.
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Figure 5.14: OSM-EDF vs. OSM-DM from System Perspective: the average of
the ratios of the metrics for systems scheduled according OSM-EDF to the metrics
for systems scheduled according to OSM-DM.
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Figure 5.15: OSM-EDF vs. OSM-DM from Task Perspective: the average of the
ratios of the metrics for systems scheduled according OSM-EDF to the metrics
for systems scheduled according to OSM-DM.
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Figure 5.16: OSM-EDF vs. DM from System Perspective: the average of the
ratios of the metrics for systems scheduled according OSM-EDF to the metrics
for systems scheduled according to DM.
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Figure 5.17: OSM-EDF vs. DM from Task Perspective: the average of the ratios of
the metrics for systems scheduled according OSM-EDF to the metrics for systems
scheduled according to DM.
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when scheduling jobs using the ISM as when scheduling overruns using the OSM:

the number of servers, the assignment of jobs to servers, the budget of each server,

and the queueing discipline employed by each server.

As in Section 5.4, we consider 1–8 servers. Unlike the OSM, each server is

allocated a portion of the processor bandwidth proportional to the fraction of the

total utilization the tasks it executes contribute. As is the case for OSM-DM, the

SRO queue discipline gives the best results. A TBS is also clearly superior to a

CUS for ISM-EDF. Here also, the performance of a single server for all tasks and

a server per task bounds the performance of intermediate numbers of servers and

hence only the results for 1 and 8 servers are presented.

5.5.1 Performance of ISM vs. Baseline

Figures 5.18, 5.19, 5.20 and 5.21 compare the performance of the ISM with the

performance of the baseline algorithms. As Figure 5.18 shows, the performance

of ISM-DM from the system perspective is worse than classical DM; the systems

are less likely to be schedulable as the average system utilization increases. From

the tasks’ perspective, ISM-DM with a single server meets more deadlines than

DM at the expense of an increase in the average response time.

We note that ISM-DM, in Figure 5.18(b) and 5.19(b), has a higher average

response ratio than OSM-DM (in Figure 5.10) at 50% utilization because overrun-

ning jobs may delay subsequent jobs under ISM where they cannot under OSM.

ISM-DM has a better response ratio than OSM-DM at high utilizations, however.

Once again, ISM-DM gives the best results with one server for all tasks for the

same reason that OSM-DM does.

In Figure 5.20(a) we see that ISM-EDF with one server per task meets more

of its deadlines on the average than classical EDF and less with a single server for

all tasks. Also, the average response time ratio is better for a server per task, as

Figure 5.20(b) shows. This behavior is evident for both dependent and indepen-

dent workloads with exponential or uniform distributions. The conclusions also

hold from a task perspective, as shown in Figure 5.21.

5.5.2 Performance of ISM-EDF vs. ISM-DM and DM

As Figure 5.22 shows, the performance of ISM-EDF from the system perspective

is better than the performance of ISM-DM in the server per task configuration and
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Figure 5.18: ISM-DM vs. DM from System Perspective: the average of the ra-
tios of the metrics for systems scheduled according ISM-DM to the metrics for
systems scheduled according to DM.
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Figure 5.19: ISM-DM vs. DM from Task Perspective: the average of the ratios of
the metrics for systems scheduled according ISM-DM to the metrics for systems
scheduled according to DM.
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Figure 5.20: ISM-EDF vs. EDF from System Perspective: the average of the
ratios of the metrics for systems scheduled according ISM-EDF to the metrics for
systems scheduled according to EDF.
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Figure 5.21: ISM-EDF vs. EDF from Task Perspective: the average of the ratios of
the metrics for systems scheduled according ISM-EDF to the metrics for systems
scheduled according to EDF.
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worse in the single server configuration. There was surprisingly little variation

between independent and dependent workloads. For the best performance, the

ISM should employ a server per task and be scheduled according to the EDF

algorithm.

Finally, Figures 5.24 and 5.25 compare ISM-EDF to classical DM. From the

perspective of the system, the performance of DM is clearly superior than ISM-

EDF with a single server, while ISM-EDF and DM are very similar for a server

per task. At 95% average utilization, the average ratio of percent deadlines met is

lower for ISM-EDF with a server per task than for the DM algorithm by between

4% and 7% for uniform and exponential execution time distributions, respectively.

On the other hand, at 50% average utilization the average response time ratio is of

ISM-EDF with a server per task is better than that of DM by between 5% and 10%,

with exponential execution time distributions yielding the greatest difference.

From the task perspective, ISM-EDF with a server per task yields more dead-

lines met than the DM algorithm for all workloads. However, the average response

times of the DM algorithm are significantly better than ISM-EDF. Once again, this

is because of the highest priority task has the highest job release rate.

In conclusion, ISM-EDF is generally preferred for most systems, especially

those with execution time dependencies or distributions with long tails. The only

exceptions are those critical soft real-time systems for which short response times

are more critical than deadlines met.

5.6 Realistic Dependencies

The results in the previous section suggest that the ISM-EDF algorithm with a

server per task may perform better than the DM algorithm on workloads with

dependencies. In this section, we further compare the performance of the two al-

gorithms on workloads with dependencies taken from the execution of jobs of an

application. We also compare the performance of classical EDF and DM schedul-

ing to highlight improvements brought about by using the ISM.

The motivating example is a critical soft real-time system for video telephony.

In addition to supporting voice communications, the system transmits a video

stream of the remote participant for viewing locally. Figure 5.26 shows a block

diagram of one of the two end-to-end tasks involved in the video portion of the

phone call. There is another end-to-end task transmitting video in the opposite
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Figure 5.22: ISM-EDF vs. ISM-DM from System Perspective: the average of the
ratios of the metrics for systems scheduled according ISM-EDF to the metrics for
systems scheduled according to ISM-DM.
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Figure 5.23: ISM-EDF vs. ISM-DM from Task Perspective: the average of the
ratios of the metrics for systems scheduled according ISM-EDF to the metrics for
systems scheduled according to ISM-DM.
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Figure 5.24: ISM-EDF vs. DM from System Perspective: the average of the ra-
tios of the metrics for systems scheduled according ISM-EDF to the metrics for
systems scheduled according to DM.
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Figure 5.25: ISM-EDF vs. DM from Task Perspective: the average of the ratios of
the metrics for systems scheduled according ISM-EDF to the metrics for systems
scheduled according to DM.
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Capture Compression Decompression Display

Figure 5.26: Video Telephony End-to-End Task for One Side of a Call.

direction. Each end-to-end task is divided into sub-tasks which capture, com-

press, transmit, decompress and display frames of the video stream. In order for

participants to communicate effectively, the majority of the deadlines needs to be

met. We focus on the video decoding (decompression) task which transforms a

MPEG-1 encoded video stream into a sequence of video frames to be displayed.

Because of the sophisticated compression algorithm used to produce a MPEG

video stream, decode times of frames vary dramatically. Furthermore, successive

decode times are correlated due to the way in which a video stream is encoded into

I, P, and B frames. Similarities in the content of successive frames of the original

video stream also introduce dependencies in the decode times of successive frames

in the encoded video stream.

Ideally, we would like to have used video streams from actual teleconferences

in comparing the performance of the ISM-EDF and DM algorithms. However,

such streams are unavailable, probably because of a lack of demand but also for

privacy reasons. Instead, we used readily available MPEG-1 video streams. The

first is a segment from an animation entitled “A Close Shave” by Nick Park. The

second is a video about the dreams of a unicycle entitled “Red’s Nightmare”. The

final stream is a simulated walk through of an imaginary art museum entitled “The

Incredible Museum”. Traces of the decode times of frames in the videos were

obtained by using a high precision timer to measure the time required to decode

each frame. Only decode times were measured. The time consumed reading data

from the disk or displaying the decoded frames was not measured.

One reason we chose these streams was their length; they all contain over

1000 frames. We also chose the streams for their wide variations in decode times.

(A more detailed description of the characteristics of the streams can be found in

Appendix B along with more information on the process used to obtain the traces.)

We used the traces of decode times to generate the workloads used in comparing

the performance of the two algorithms.
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5.6.1 Workload Generation

As in Section 5.2.2, the average utilizations of the workloads are 0.50, 0.75, 0.90

and 0.95. The average utilization of each task was chosen randomly as before.

The execution times of jobs in each task were taken from the traces of decode

times. Assuming 30 frames per second (fps), the average utilizations of the traces

ranged from 8% to 13%. To obtain the desired average system utilization, either

the frame rate of the trace can be increased or the decode times scaled. Since

frame rates higher than 30 fps generally do not yield noticeable improvements in

quality, we chose to scale the decode times of the traces.

Workloads consisted of 100 systems containing 4 tasks. The execution times

of all tasks in a system were taken from the same trace. Execution times for the

“control”, or independent group, were selected uniformly from the trace. Execu-

tion times for the dependent workloads were selected sequentially from the traces

with the start of a sequence of decode times chosen uniformly from the range of

frame numbers. Selections of decode times were wrapped around to the begin-

ning upon reaching the end of the trace. The minimum number of jobs in a task

varied from 1000 at 50% utilization to 4000 at 95% utilization in order to reduce

the width of the confidence intervals at high average utilizations. (In general, the

width of the 95% confidence intervals were less than±5%.)

We note that as an artifact of selecting values from traces rather than from

uniform or exponential distributions, the average utilization of a workload was

occasionally higher or lower than desired because the coefficient of variation of

the traces was less than 1.0. The frequency of this occurring was quite low. It

occurred three times for the “Incredible Museum” video: twice at 50% average

utilization with dependencies and once for 90% utilization without dependencies.

It did not occur for the other two video streams. To avoid the possibility of in-

troducing a bias, the three configurations where this occurred were disregarded in

the final results (even though the results would likely not have been significantly

affected).

5.6.2 Performance

A comparison between the classical EDF and DM algorithms yields no surprises.

From the system perspective, the DM algorithm generally performs better than the

EDF algorithm, as Figure 5.27 shows. The only exception was the random and

sequentially selected workloads from the video “A Close Shave” where the EDF
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algorithm performed better from the system perspective than the DM algorithm

at 90% or higher average utilizations. From the task perspective, Figure 5.28, the

EDF algorithm met more deadlines than the DM algorithm for all streams except

“Red’s Nightmare” and “Incredible Museum” with dependencies. The response

times were generally worse, however.

Figures 5.29 and 5.30 compare the performance of ISM-EDF with a server

per task and classical DM. From the system perspective, DM met more deadlines

than ISM-EDF. However, ISM-EDF met more deadlines than DM from the task

perspective. The response times for the algorithms were exactly opposite. ISM-

EDF generally had better response times from a system perspective and worse

response times from a task perspective.

5.7 Summary

In summary, the primary metrics by which to compare algorithms for scheduling

critical soft real-time systems in the presence of overrun are the percentage of

deadlines met and the average response time. The metrics can be computed from

the perspective of the system or of the tasks in the system. The former is useful for

considering overall system performance, while the latter is important for designers

of critical soft real-time systems.

In this chapter, we proposed two classes of scheduling algorithms, the Over-

run Server Method and the Isolation Server Method. We also compared their

performance through simulation with classical real-time scheduling algorithms

exemplified by the Deadline Monotonic and Earliest Deadline First algorithms.

We observed that the performance of the Overrun Server Method was the highest

when there was an overrun server per task scheduled by a deadline-driven sched-

uler. In spite of this, the performance of the Overrun Server Method is generally

inferior to classical DM from both the system and task perspective with the excep-

tion that OSM-EDF met more deadlines than the Deadline Monotonic scheduling

algorithm from the task perspective. However, unlike the classical scheduling al-

gorithms, the Overrun Server Method guarantees that jobs which do not overrun

will meet their deadlines if the tasks of the system and the overrun servers are

schedulable on the basis of the guaranteed execution times and periods. Thus it is

ideal for systems in which hard, soft and non-real-time workloads execute on the

same processor.
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Figure 5.27: EDF vs. DM from System Perspective: the average of the ratios
of the metrics for systems scheduled according EDF to the metrics for systems
scheduled according to DM on the MPEG workloads.
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Figure 5.28: EDF vs. DM from Task Perspective: the average of the ratios of the
metrics for systems scheduled according EDF to the metrics for systems scheduled
according to DM on the MPEG workloads.
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Figure 5.29: ISM-EDF vs. DM from System Perspective: the average of the ra-
tios of the metrics for systems scheduled according ISM-EDF to the metrics for
systems scheduled according to DM on the MPEG workloads.
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Figure 5.30: ISM-EDF vs. DM from Task Perspective: the average of the ratios of
the metrics for systems scheduled according ISM-EDF to the metrics for systems
scheduled according to DM on the MPEG workloads.
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The performance of the Isolation Server Method is also best when there is

a server per task scheduled by a deadline-driven scheduler. From both the sys-

tem and task perspectives, the performance was generally comparable to the best

classical algorithm on workloads with independent execution times; the classical

algorithms having the advantage on one metric from each perspective and the Iso-

lation Server Method having the advantage on the remainder. Because the causes

of overrun are often correlated, dependencies arise between the execution times of

jobs in a task. For the dependent workloads considered, ISM-EDF with a server

per task performed better than the classical algorithms, especially from the per-

spective of the tasks in the system, at the cost of increased average response time.

The results indicate that all the methods perform similarly for average system

utilizations below about 75% regardless of the distribution of execution times and

the presence or lack of dependencies. (A 75% average system utilization cor-

responds to a maximum system utilization of at least 150% for the distributions

considered.) Thus, the choice of scheduling algorithm is probably not crucial for

all but the most highly overloaded systems.

Although we have explicitly considered the performance of static systems in

this study, the results are also applicable to systems in which tasks arrive and leave.

Through the use of admission control to manage the average system utilization,

non-overrunning jobs are assured of meeting their deadlines when scheduled ac-

cording to the Overrun Server Method. This allows hard, soft and non-real-time

workloads to be executed on a single processor while making real-time guarantees

appropriate to each class of traffic and is done without dividing bandwidth into

fixed partitions assigned to the various types of workloads. The distinction be-

tween hard, soft and non-real-time workloads is made by the choice of guaranteed

parameters and enforced by the scheduling algorithm. Any allocated bandwidth

not needed by a server is automatically given to a server which can use it. Under

OSM-EDF and ISM-EDF, the spare bandwidth is given to the server which will

most benefit from receiving additional time.
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Chapter 6

Scheduling Jittered Releases

In Chapter 5, we considered the scheduling of systems in which the execution

times of the tasks varied. We now turn our attention to systems in which the inter-

release times of jobs also vary. We initially consider the case where the execution

times of all jobs are equal to the guaranteed execution times of their tasks. We then

consider the more general case where both the execution times and inter-release

times of jobs are variable.

6.1 Effect of Release Time Jitter

A system in which jobs may be released earlier or later than their guaranteed

inter-release times would require is said to experiencerelease time jitter. Release

time jitter can cause jobs to miss deadlines or have increase response times be-

cause it can cause short-term overload in a system which would not otherwise be

overloaded.

As an example, consider a system of three tasks with guaranteed inter-release

times of 2, 4, and 8 (and with guaranteed execution times of 1, 1 and 2 respec-

tively). The maximum utilization of the system is 1.0. In the schedules shown in

Figures 6.1(b) and 6.2(b), all jobs meet their deadlines when the jobs are released

“on time” and the system is scheduled according to the DM or EDF algorithms.

Suppose, however, that jobJ1,9, which is nominally released at time 16, is

released 0.5 time units early and scheduled according to the DM algorithm, as

shown in Figure 6.1(a). (The release time of the job is indicated by the filled

triangle.) Because the priority ofT1 is higher than the priority ofT3, J1,9 pre-

emptsJ3,2 causing it to miss its deadline. Similarly, the early release of jobs in a

deadline-driven system can cause deadlines to be missed (see Figure 6.2(a)). Now
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Figure 6.1: Effect of release time on a fixed-priority system.
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Figure 6.2: Effect of release time on a deadline-driven system.
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suppose that jobJ1,4 of T1, which is nominally released at time 6, is released 1.5

time units late and the subsequent job,J1,5 is released on time.1 (The scheduling

deadline of the job is indicated by a filled circle.) The late release ofJ1,4, coupled

with the on-time release of its successor, causes jobJ3,2 to miss its deadlines when

scheduled according to the DM algorithm, as shown in Figure 6.1(c). Likewise,

the delay due toJ1,4 being released late causes jobJ1,8 to miss its deadline when

scheduled according to the EDF algorithm (Figure 6.2(c)).

As the examples show, jittered release times can cause the amount of work

which has been released but not yet completed to exceed the capacity of the pro-

cessor causing a short-term overload to occur even though the system is schedu-

lable on the basis of the guaranteed inter-release times.

6.2 Fairness in Scheduling

One result of variations in release times within a task is the clustering of jobs

into bursts of work followed by intervals in which the task is idle. We allow

the scheduler to give additional time to backlogged tasks whenever some other

task is idle, as long as the idle task is once again given its guaranteed allocation

when it releases another job. Ideally, all tasks should receive processing time

proportional to their guaranteed utilizations when they have work to do. In order

to limit scheduling overhead, we allocate the processor to one job at a time, hence

the guaranteed utilization is only realized on the average over some interval of

time. The degree to which the actual utilization over a time interval approximates

the guaranteed utilization indicates the fairness of the scheduler [40, 59]. We are

interested in fairness because a fair scheduler is likely to lower response times and

meet more deadlines on the average than an unfair scheduler.

A scheduler is said to befair when thenormalized servicereceived by each

task which is backlogged throughout an interval differs by no more than afairness

threshold[60],F ≥ 0. (A task is backlogged throughout an interval if at any time

in the interval at least one job from the task is eligible for execution.) Letsi(t1, t2)

denote the service (i.e., amount of processor time) received by a taskTi during the

interval(t1, t2). The normalized service received byTi in the interval is the ratio

1Typically, the timer which releasesJ1,5 is not set untilJ1,4 is released, preventing the inter-
release time from being less than the guaranteed inter-release time. However in a system of dis-
tributed tasks whose end-to-end jobs consist of chains of subjobs as discussed in Section 4.3,
subjobJi,j,k can be released “on time” even though subjobJi,j−1,k is released late unless the
Release Guard Protocol [25] is used.
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si(t1, t2)/U
∗
i , where the fraction of processor time allocated toTi is equal to the

guaranteed utilizationU∗
i . Hence an algorithm is fair to withinF over the interval

(t1, t2) if

∣∣∣∣
si(t1, t2)

U∗
i

− sj(t1, t2)

U∗
j

∣∣∣∣ ≤ F (6.1)

for each pair of tasksTi andTj which are backlogged throughout the interval. In

the ideal case,F = 0 and

si(t1, t2)

sj(t1, t2)
=

U∗
i

U∗
j

(6.2)

which impliessi(t1, t2) = U∗
i (t2− t1) for each backlogged taskTi. The minimum

value ofF which satisfies Equation 6.1 over any nonzero interval indicates the

fairness of an algorithm. While the fairness parameterF is theoretically useful

for comparing the maximum unfairness of scheduling algorithms, the connection

between fairness and either percent deadlines met or average response time is

unclear.

As long as the release times of jobs are periodic, fairness is not an issue. This

is shown in Figures 6.3 and 6.4 for a system of two tasks with execution times

of 1 time unit each and guaranteed inter-release times of 1.5 and 3 time units, re-

spectively. (Again, we indicate release times by filled triangles.) The DM sched-

uler is unfair because clusters of releases from a high priority task can delay the

completion of low priority tasks causing them to be starved, as shown in Fig-

ure 6.3(b). Now consider the same system scheduled according to EDF. (The

scheduling deadlines of jobs are shown by filled circles.) Clustered releases of

jobs can also cause starvation, as Figure 6.4(b) shows.

In contrast, the SS and CUS algorithms are fair because they strictly emulate

the behavior of periodic tasks and hence ensure that clustered releases in one task

cannot effect other tasks. As shown in the previous chapter, however, a CUS does

not perform as well as a TBS because it does not use background time to improve

response times and increase met deadlines.

When jobs are release periodically, a TBS is also fair Figure 6.5(a) shows

an example scheduled according to ISM-EDF with a TBS server per task. The

guaranteed utilizations of the servers areU∗
1 = 1/3 andU∗

2 = 2/3. Job releases

(and hence server deadlines) are periodic so the difference in normalized service
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Figure 6.5: Effect of clustered releases on ISM-EDF using TBS.

given to each task over any interval is bounded. On the other hand, if the releases

of jobs inT2 are clustered whileT1 is idle after which the releases of jobs inT1 are

clustered, as shown in Figure 6.5(b), the server deadlines forT2 are sufficiently

far into the future with respect to the server deadlines ofT1 that only jobs inT1

are executed in the interval(3, 9]. In effect, the TBS server is penalizingT2 for

having used background time during(0, 3] while T1 was idle. An arbitrary amount

of work released by a task while other tasks are idle results in the potential for

starvation by the same arbitrary amount. This result is not surprising since TBS

is a preemptable variant of the Virtual Clock (VC) network packet scheduling

algorithm [61–63] which is known to be unfair [59,64].

Note that fairness is a more stringent requirement on servers than ensuring that

tasks receive their guaranteed utilizations on the average. It implies that tasks are

allocated an amount of time at least equal to their guaranteed execution times over

intervals with a length equal to their guaranteed inter-release times.

If we modify the TBS algorithm so that servers do not penalize tasks for addi-

tional service received while other tasks are idle, fairness is greatly improved.

Conceptually, the improved algorithm would allocate processor time to back-
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Figure 6.6: Generalized Processor Sharing Model.

logged tasks in proportion to their guaranteed utilizations. If the jobs in a task do

not overrun and are not released too soon, each job is guaranteed to receive suffi-

cient processor bandwidth between its release and its deadline to complete in time.

(This assumes that the system is schedulable on the basis of the guaranteed pa-

rameters.) The improved algorithm is a preemptable variant of the Weighted Fair

Queueing (WFQ) or Packet-by-Packet Generalized Processor Sharing (PGPS) al-

gorithm used to schedule network packets [39,40]. Because of improved fairness,

Weighted Fair Queueing Servers (WFQS) are expected to perform better than

TBS on workloads with significant release time jitter. (See [60, 64, 65] for fur-

ther discussions of the properties of the latency-rate and rate-proportional classes

of servers to which WFQ and VC belong. See also [66] for a comparison of

other network scheduling algorithms.) We now describe WFQ servers by first de-

scribing the Generalized Processor Sharing (GPS) algorithm [59,67,68] that they

approximate.

The GPS algorithm, as shown in Figure 6.6, is an idealized weighted round

robin scheduling technique in which each backlogged server is given an infinites-

imally small time slice proportional to its utilization. Around, R, is the length

of time necessary to give each backlogged server one time slice. Because the set

of backlogged servers (and their total utilization) varies, the length of a round

does also. Clearly, a literal implementation a GPS server is not practical due to

the exorbitant overhead of small time slices. The WFQ algorithm approximates

the fairness of GPS (over sufficiently long time intervals) but with much lower

overhead.

A WFQS emulates a GPS system by scheduling jobs in order of theirfinish

numbers, f , where the finish number of a job is the round in which the job would

have finished had it been executed by a GPS server, i.e., a WFQS prioritizes jobs

by their completion time under GPS. A job executed by a WFQS will finish no
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later than the round designated by its finish number.

We now turn our attention to computing the round number. The rate at which

the round number changes is inversely proportional to the total utilization of the

backlogged servers and hence the rate is constant except when servers become

backlogged or idle, i.e., when jobs are released or when they complete. Hence,

we only need to update the round number at these times.

We observe that the round number can be updated by either “looking forward

or “looking backward”. In a forward-looking algorithm, such as the one from [69]

shown in Figure 6.7, the round number is brought up to date with every release

and completion. We also see that the finish number is updated in the same way

as the scheduling deadline of a TBS except that the scheduling deadline of a TBS

is computed using physical time, which progresses at a constant rate, while the

finish number of a WFQS is computed using virtual time (round number), which

progresses at a rate inversely proportional to the total utilization of the backlogged

servers. The increased fairness of a WFQS comes from the fact that virtual time,

in the form of the round number, increases more rapidly when some servers are

idle so that the finish number of a job released to an idle server does not lag too

far behind the finish numbers of jobs released to backlogged servers.

In a backward-looking WFQ algorithm, the round number is updated to ac-

count for changes in the total backlogged utilization only when a job is released.

As the algorithm in Figure 6.8 (adapted from the Fair Queueing algorithm of [39])

shows, we look backward to the time when the round number was last updated,

then move forward one completion event at a time accounting for the changes in

total backlogged utilization caused by job completions. The finish number of the

job being released is computed after the round number has been updated.

Figure 6.9(a) shows a schedule in which jobs are released periodically to the

WFQ servers. The schedule is identical to the one obtained under TB servers (Fig-

ure 6.5(a). Figure 6.9(b) shows a schedule of the clustered release example under

a WFQS. We see that a WFQS does not penalizeT1 for having received additional

bandwidth whileT2 is idle. It is expected that the performance of WFQ algorithm

will be superior to the performance of a TBS or classical EDF scheduling.
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(AssumingJi,j is assigned to serverSk . . . )
If all servers are idle,

Reset round numberR to current timet,
Set last update timetupdate = t,
Set finish numberfk = ei,j/U

∗
k ,

ReleaseJi,j to ready queue with a scheduling deadline offk.
Else if serverSk is idle,

Update round numberR = (t− tupdate)/UStotal
,

Set last update timetupdate = t,
IncrementUStotal

by USk
,

Set finish numberfk = R + ei,j/U
∗
k ,

ReleaseJi,j to ready queue with a scheduling deadline offk.
Else,

Add Ji,j to ready queue of serverSk for later release.

(a) On release ofJi,j

(AssumingJi,j is assigned to serverSk . . . )
If serverSk is no longer backlogged,

Increment round numberR by (t− tupdate)/UStotal
,

Set last update timetupdate = t,
DecrementUStotal

by USk
.

Else,
Remove next jobJ from ready queue of serverSk,
Increment finish numberfk by ei,j/U

∗
k ,

ReleaseJi,j to ready queue with a scheduling deadline offk.

(b) On completion ofJi,j

Figure 6.7: Forward-Looking Weighted Fair Queueing Algorithm.
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Update round numberR following algorithm in Figure 6.8(b),
Set finish numberfk of serverSk (to whichJi,j is assigned), to

max(fk, R) + ei,j/USk
, whereUSk

is the processor
allocation of serverSk,

If serverSk was idle, increase total utilization
of backlogged serversUStotal

by USk
,

Release jobJi,j to ready queue with a scheduling deadline offk,
Add tuple(Ji,j, fk) to finish queueQ ordered by finish number.

(a) On release ofJi,j

If processor was idle prior to release ofJi,j,
Reset round numberR to current timet,
Reset round number of last updateRupdate to t,
Reset time of last updatetupdate to t,
Reset finish numberfk of each serverSk to t.

Otherwise,
While last update timetupdate is less thant,

Get tuple(J, f) fromQ, wheref has the
smallest finish number of tuples inQ,

Compute elapsed time since last update,∆t = t− tupdate ,
If job would have finished byt under GPS

(i.e., if f ≤ Rupdate + ∆t/UStotal
),

Incrementtupdate by (f −Rupdate) ∗ UStotal
,

UpdateRupdate to f ,
If serverSk became idle with completion ofJ ,

DecrementUStotal
by USk

,
Remove(J, f) fromQ.

Otherwise,
Update round numberR to Rupdate + ∆t/UStotal

,
Set round number of last updateRupdate to R,
Set time of last updatetupdate to t.

(b) Update round number

Figure 6.8: Backward-Looking Weighted Fair Queueing Algorithm.

107



������ ������������

������

	�	
�


������

���� ������ ������

������ ������

0 5 10

T2

T1

(a) Periodic

���
���
������
������
������
������
������

���
���
������	�	

	�	

�

�
 ���

���
������ �

�
������ ���
���
������

���
���
������

T1

T2

0 5 10

(b) Clustered

Figure 6.9: Effect of clustered releases on WFQS.

6.3 Comparison Methodology

The general approach to comparing the performance of the classes of scheduling

algorithms is the same as in Section 5.2. Again, the metrics are percent deadlines

met and average response time, which can be considered from either the perspec-

tive of the system or the perspective of the tasks in the system. We report results

from both perspectives.

The time between releases of consecutive jobs in a task are random variables

with a common distribution, either uniform or exponential. The mean inter-release

times of the tasks were chosen uniformly from the range[1000, 10000], with min-

imum inter-release times of 1.0 to maximize the inter-release time variations of

jobs within a task. The average utilization of a task was obtained by multiplying

the average system utilization by a utilization factor for the task. The utilization

factors of the tasks in a system were uniformly distributed in the range(0, 1] and

normalized such that the sum of the factors equals 1.0. The mean execution times

of jobs in a task are equal to the mean utilization of the task multiplied by the

mean inter-release time.
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Table 6.1: Jitter Simulation Parameters.

Parameter Values

Distribution Types Uniform, Exponential
Average Utilizations 0.50, 0.75, 0.90, 0.95
Variations Period-only
Dependency Patterns{1}, {1, 1}

For the initial performance comparison, we let the execution times of jobs in

a task be equal to the guaranteed execution time of the task, which we set equal to

the mean execution time of the task. (Since no jobs overrun, the performance of

the OSM is identical with the baseline scheduling algorithm and hence need not

be considered.)

When both the inter-release times and execution times vary (Section 6.6), the

parameters of the inter-release time distributions were chosen as above. The ex-

ecution times of jobs in a task were taken from a common distribution with the

mean computed as above and the minimum chosen to be 1.0 to maximize the effect

of execution time variations. Because variations are often correlated, we consid-

ered both dependent and independent distributions with dependencies modeled as

being exclusively between jobs in a task and following a fixed pattern, as was done

in Chapter 5. A summary of the parameters are given in Table 6.1.

As in Section 5.2, the workloads used in the simulations had average system

utilizations of 50, 75, 90 and 95%. For each average system utilization, distri-

bution type and dependency pattern, we generated 100 systems, each consisting

of 8 tasks. Each of the tasks in a system had at least 1000 jobs. (To decrease

confidence intervals at high utilizations without causing simulation times to be-

come excessive, the minimum number of jobs in a task varied from 1,000 at 50%

average utilization to 4,000 at 95% average utilization.)

6.4 Baseline

Because the results of Chapter 5 showed that the average performance of the sys-

tem does not depend on the initial phase of the tasks, we restrict our attention to

in-phase releases. Also, we only consider systems with 8 tasks. Therefore, we

start our comparison of the performance of the various algorithms by comparing

classical EDF and DM scheduling on workloads with release time jitter and no
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execution time variations.

Figure 6.10 shows that from the system perspective the average ratio of per-

cent deadlines met by the EDF algorithm with respect to the DM algorithm de-

teriorates rapidly from nearly 1.0 at 75% average system utilization to less than

50% at 95% average system utilization for exponential workloads with or without

dependencies. Correspondingly, the average ratio of the response times increases

to around 1.8 at 95% average system utilization. While the results are somewhat

better for uniform distributions, the DM algorithm still performs better than the

EDF algorithm. From the task perspective, the number of deadlines met by the

EDF algorithm is inferior to the DM algorithm except for uniform workloads with

no dependencies (see Figure 6.11). However, the average response times of jobs

scheduled EDF is significantly worse than when they are scheduled DM. For the

exponential workload with dependencies, the average ratio of response times at

95% average utilization was over 60.0! Clearly, heavily loaded systems with re-

lease time jitter should not be scheduled according to classical EDF.

6.5 Isolation Server Method

We now consider the performance of the Isolation Server Method for both fixed-

priority and deadline-driven systems from both the system and task perspectives.

Previous results showed that the performance of a single server for all tasks and a

server for each task bound the results of intermediate configurations. Therefore,

we consider systems with either 1 or 8 servers. Since a CUS did not perform

as well as a TBS under overload, we will not consider it further. We therefore

start with a comparison of the performance of ISM-EDF using a WFQS to the

performance of ISM-EDF using a TBS.

6.5.1 Comparison of WFQS and TBS

As discussed in Section 6.2, it was expected that ISM-EDF using a WFQS will

perform better than ISM-EDF using a TBS. We note that a single WFQS is equiv-

alent to a single TBS server and hence only consider the case of a server per task.

Contrary to intuition, Figures 6.12 and 6.13 indicate that a configuration with

a WFQS per task meets fewer deadlines than a similar configuration with a TBS

per task. The average response times also increase. The difference becomes more

pronounced as the average utilization approaches 1.0.
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Figure 6.10: EDF vs. DM from System Perspective: the average of the ratios of
the metrics for systems with an EDF scheduler to the metrics of systems with a
DM scheduler.
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Figure 6.11: EDF vs. DM from Task Perspective: the average of the ratios of the
metrics for systems with an EDF scheduler to the metrics of systems with a DM
scheduler.
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Figure 6.12: WFQS vs. TBS from System Perspective: the average of the ratios
of the metrics for systems with Weighted Fair Queueing Servers to the metrics for
systems with Total Bandwidth Servers.

113



0.80

0.85

0.90

0.95

1.00

1.05

50 55 60 65 70 75 80 85 90 95

A
ve

ra
ge

 R
at

io
 o

f 
Pe

rc
en

t D
ea

dl
in

es
 M

et

Average System Utilization

8 Svr, Exp, Ind
8 Svr, Uni, Ind

8 Svr, Exp, Dep
8 Svr, Uni, Dep

(a) Deadlines Met

1.00

1.05

1.10

1.15

1.20

1.25

1.30

50 55 60 65 70 75 80 85 90 95

A
ve

ra
ge

 R
at

io
 o

f 
R

es
po

ns
e 

T
im

e

Average System Utilization

8 Svr, Exp, Ind
8 Svr, Uni, Ind

8 Svr, Exp, Dep
8 Svr, Uni, Dep

(b) Response Time

Figure 6.13: WFQS vs. TBS from Task Perspective: the average of the ratios of
the metrics for systems with Weighted Fair Queueing Servers to the metrics for
systems with Total Bandwidth Servers.
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This can be explained by considering the effects of using virtual time (round

number) to set the scheduling deadline (finish number) of a job under a WFQS

rather than physical time under a TBS. As long as all WFQ servers are backlogged,

virtual time progresses at the same rate as physical time and a WFQS will perform

the same as a TBS. Virtual time progresses at faster rate than physical time during

a processor busy interval when not all servers are backlogged. Consequently, the

scheduling deadline of a job released to an idle server does not lag the scheduling

deadlines of jobs released to the busy servers. (This is how a WFQS improves

fairness over a TBS.) This causes an increased likelihood that a job from a busy

server will be scheduled before a job released to an idle server. When the average

utilization of the system is high, scheduling a job from a busy server in preference

to a job released to an idle server will tend to increase the number of deadlines

missed because it is likely that the jobs in the busy servers have already missed

their deadlines while a job released to an idle server is more likely to met its

deadline. Furthermore, scheduling a job from a busy server in preference to one

released to an idle server increases average response times because it is likely that

the jobs in busy servers are already late.

In summary, allocating bandwidth fairly has a negative impact on the percent-

ages of deadlines met and average response times of tasks. Because of this, we

will use Total Bandwidth Servers for the remainder of the performance study.

6.5.2 Performance of ISM vs. Baseline

Figures 6.14 and 6.15 compare the performance of ISM-DM with classical DM

on configurations with a single server for all tasks and a server per task. Almost

without exception, the performance of ISM-DM is inferior to the performance of

classical DM for both percent deadlines met and average response time. (The only

exception is for independent uniform distributions and a single server where the

performance of ISM-DM is similar to DM when compared on a task basis.)

The performance of ISM-DM on independent workloads is better than on de-

pendent workloads, while the performance on workloads from uniform distribu-

tions is better than on workloads from exponential distributions. Thus we see

that increased variation causes lower performance. Unlike what was observed for

systems with overrun, ISM-DM meets more deadlines and has a shorter average

response time with a server per task than with one server for all tasks. This is be-

cause clustered releases of jobs in a task are executed as if they had been released
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periodically, if each task has its own server, while the cluster of work will cause

jobs from lower priority tasks to be starved with a single server for all tasks. Thus,

the best performance of ISM-DM in the presence of jitter is obtained on indepen-

dent workloads taken from uniform distributions with a server per task. However,

the figures show that classical DM scheduling is still to be preferred.

Figures 6.16 and 6.17 compare the performance of ISM-EDF to classical EDF.

The performance of ISM-EDF with one server for all tasks is worse than the EDF

algorithm while the performance of ISM-EDF with a server per task is better

than classical EDF, particularly for exponential workloads and workloads with

dependencies. (The width of the 95% confidence intervals for average response

time ratios in Figure 6.17 range from around±25% at 50% utilization to around

±5% at 95% utilization for a single server cases. The width of the 95% confidence

intervals for the server per task cases were all less than±5%.) This is consistent

with the results obtained for execution time variations in the previous chapter.

Clearly, ISM-EDF should be configured with a server per task.

6.5.3 Performance of ISM-EDF vs. ISM-DM and DM

A comparison of the performance of ISM-EDF with the performance of ISM-DM

(Figures 6.18 and 6.19) clearly shows that ISM-EDF performs better than ISM-

DM when both use a server per task. (A server per task is the best configuration

for both algorithms.) Both algorithms have nearly identical performance with a

single server. Finally, the performance from the system and task perspectives were

also nearly identical.

We now compare the performance of the ISM with the best configuration,

namely ISM-EDF with a server per task, with the performance of classical DM.

The results are shown in Figures 6.20 and 6.21. From the system perspective,

classical DM provides better average response times and percent deadlines met.

The reason, stated earlier, is that the highest priority jobs under classical DM

also have the most jobs released in a given length of time. The difference in

performance is within 20% for the server per task configuration, however. From

the task perspective, ISM-EDF meets 5–10% more deadlines than classical DM,

but at the cost of a dramatic increase in average response times.2 This suggests

that classical DM should be used to schedule systems with release time variations.

2The width of the 95% confidence interval for the single server, dependent exponential work-
load at 95% utilization is±52.4%.

116



0.0

0.2

0.4

0.6

0.8

1.0

50 55 60 65 70 75 80 85 90 95

A
ve

ra
ge

 R
at

io
 o

f 
Pe

rc
en

t D
ea

dl
in

es
 M

et

Average System Utilization

1 Svr, Exp, Ind
8 Svr, Exp, Ind
1 Svr, Uni, Ind
8 Svr, Uni, Ind

1 Svr, Exp, Dep
8 Svr, Exp, Dep
1 Svr, Uni, Dep
8 Svr, Uni, Dep

(a) Deadlines Met

0.5

1.0

1.5

2.0

2.5

50 55 60 65 70 75 80 85 90 95

A
ve

ra
ge

 R
at

io
 o

f 
R

es
po

ns
e 

T
im

e

Average System Utilization

1 Svr, Exp, Ind
8 Svr, Exp, Ind
1 Svr, Uni, Ind
8 Svr, Uni, Ind

1 Svr, Exp, Dep
8 Svr, Exp, Dep
1 Svr, Uni, Dep
8 Svr, Uni, Dep

(b) Response Time

Figure 6.14: ISM-DM vs. DM from System Perspective: the average of the ra-
tios of the metrics for systems scheduled according ISM-DM to the metrics for
systems scheduled according to DM.
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Figure 6.15: ISM-DM vs. DM from Task Perspective: the average of the ratios of
the metrics for systems scheduled according ISM-DM to the metrics for systems
scheduled according to DM.
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Figure 6.16: ISM-EDF vs. EDF from System Perspective: the average of the
ratios of the metrics for systems scheduled according ISM-EDF to the metrics for
systems scheduled according to EDF.
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Figure 6.17: ISM-EDF vs. EDF from Task Perspective: the average of the ratios of
the metrics for systems scheduled according ISM-EDF to the metrics for systems
scheduled according to EDF.
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Figure 6.18: ISM-EDF vs. ISM-DM from System Perspective: the average of the
ratios of the metrics for systems scheduled according ISM-EDF to the metrics for
systems scheduled according to ISM-DM.
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Figure 6.19: ISM-EDF vs. ISM-DM from Task Perspective: the average of the
ratios of the metrics for systems scheduled according ISM-EDF to the metrics for
systems scheduled according to ISM-DM.
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Figure 6.20: ISM-EDF vs. DM from System Perspective: the average of the ra-
tios of the metrics for systems scheduled according ISM-EDF to the metrics for
systems scheduled according to DM.
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Figure 6.21: ISM-EDF vs. DM from Task Perspective: the average of the ratios of
the metrics for systems scheduled according ISM-EDF to the metrics for systems
scheduled according to DM.
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6.5.4 Effect of Maximum Period Ratio

Thus far, the comparisons have shown that the performance of the DM scheduling

algorithm is better than the performance of any of the alternative algorithms. One

of the reasons is that the tasks with the highest release rate also have the highest

priorities. Hence jobs in those tasks have lower response times and are more likely

to meet their deadlines. As the guaranteed inter-release times of the tasks in the

system become similar, it is expected that the performance of the DM algorithm

will decrease.

As Figures 6.22 and 6.23 show, reducing the maximum period ratio (defined

as the maximum to the minimum guaranteed inter-release times of tasks in the

system) from 10.0 to 1.09 does indeed cause the performance of the ISM-EDF

algorithm with a Total Bandwidth Server per task to improve in relation to the

DM algorithm. However, the performance of ISM-EDF is still not as good as the

performance of the DM algorithm. This is likely due to a fundamental difference

between fixed and and dynamic priority assignments. As long as we assign give

higher priorities to tasks which release more jobs, a fixed priority scheduling al-

gorithm will perform better than a deadline driven one because a fixed priority

scheduling algorithm is more predictable under overload. Because most systems

will have a fairly wide range of guaranteed inter-release times, we will continue

using a maximum period ratio of 10:1 for the remainder of the chapter.

6.6 Execution and Release Time Variations

So far we have only considered the effects of release time variations on the perfor-

mance of various scheduling algorithms. In this section, we present the effects of

release time and execution time variations on the performance of the three classes

of scheduling algorithms: classical, OSM and ISM.

In determining the performance of the scheduling algorithms, we employ a

similar methodology to Sections 5.2 and 6.3. The mean inter-release times of the

tasks were chosen uniformly from the range[1000, 10000], with minimum inter-

release times of 1.0 as before. The inter-release time of jobs in a task were taken

from a common uniform or exponential distribution. The average utilization of a

task was obtained by multiplying the average system utilization by a utilization

factor for the task. The utilization factors of the tasks in a system were uniformly

distributed in the range(0, 1] and normalized such that the sum of the factors
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Figure 6.22: Effect of Maximum Period Ratio from System Perspective: the per-
formance of ISM-EDF in comparison to the performance of DM for two maxi-
mum period ratios as shown by the average of the ratios of the metrics for systems
scheduled according ISM-EDF to the metrics for systems scheduled according to
DM.
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Figure 6.23: Effect of Maximum Period Ratio from Task Perspective: the perfor-
mance of ISM-EDF in comparison to the performance of DM for two maximum
period ratios as shown by the average of the ratios of the metrics for systems
scheduled according ISM-EDF to the metrics for systems scheduled according to
DM.
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Table 6.2: Jitter and Overrun Simulation Parameters.

Parameter Values

Distribution Types Uniform, Exponential
Average Utilizations 0.50, 0.75, 0.90, 0.95
Variations Both period and execution times
Dependency Patterns{1}, {1, 1}

equaled 1.0. The mean execution times of jobs in a task were equal to the mean

utilization of the task multiplied by the mean inter-release time. The minimum

execution times were 1 time unit. The execution times of jobs in a task were also

taken from a common uniform or exponential distribution. Again, dependencies

were modeled as being exclusively between jobs in a task and following a fixed

pattern, as was done in previous experiments.

Once again, the workloads had average system utilizations of 50, 75, 90 and

95%. For each average system utilization, distribution type and dependency pat-

tern, we generated 100 systems, each consisting of 8 tasks. A minimum of 1,000

jobs in each task were released at 50% average utilization, increasing to a min-

imum of 4,000 at 95% average utilization. Because both the inter-release times

and the execution times vary, the confidence intervals exceeded±5% more fre-

quently than we would have liked. From the system perspective, the maximum

widths of the confidence intervals for deadlines met were strictly below5%. The

maximum widths of the confidence intervals for response times were as high as

±30.8% with an average of±6.4%. The maximum widths of the confidence inter-

vals from the perspective of the tasks were significantly higher: up to±7.9% for

deadlines met and over±100% for response times. However, the average width

of the confidence intervals for deadlines met and response times were not nearly

as excessive at±3.4% and±16.8%. Most of the confidence intervals with widths

over±5% occurred for data appearing in only a few of the figures. Taking into

account the widths of the confidence intervals did not qualitatively affect the in-

terpretation of the results so we did not attempt to reduce the intervals. (Since the

simulation times of some of the longest running data points already exceeded 30

hours, it would have been impractical to increase the minimum number of jobs

enough to significantly decrease the widths of the worst confidence intervals.) We

summarize the parameters which we varied in Table 6.2.
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6.6.1 Performance of EDF vs. DM

The performance of EDF with respect to DM on workloads containing both re-

lease time jitter and execution time variations is consistent with previous compar-

isons. As Figures 6.24 and 6.25 show, DM behaves much more predictably under

overload conditions than EDF. As was observed in Section 5.7, the difference in

performance does not become pronounced until higher utilizations.

6.6.2 Performance of OSM vs. Baseline

A comparison of OSM-DM with the DM algorithm also yields no surprises (Fig-

ures 6.26 and 6.27). The performance of OSM-DM with a single server was better

than a server per task and dependencies had only a small effect on the results. The

only exception, from the perspective of the system, occurred for distributions with

long tails in the single server configuration where the average response times were

significantly better for OSM-DM. Even so, the number of deadlines met was still

slightly less than classical DM. Overall, the DM algorithm performs as well as or

better than OSM-DM from both the system and task perspectives.

From the task perspective, OSM-DM met significantly more deadlines than

DM, particularly in the single server configuration, but at the expense of greatly

increased average response times. This is to be expected since OSM defers the ex-

ecution of overrunning jobs causing their response times to increase. Inter-release

time variations accentuate the problem because the non-overrunning portions are

no longer guaranteed to meet their deadlines if clusters of releases occur.

A comparison of OSM-EDF with EDF shows that OSM-EDF meets many

more deadlines than EDF from both the system and task perspectives. As Fig-

ures 6.28 and 6.29 show, the performance on workloads with exponential distri-

butions was significantly better than with uniform distributions. Once again, a

server per task performed better than a single server. Surprisingly, the distribu-

tion type had a greater effect on the performance than did the number of servers.

Clearly, the variability resulting from the use of distributions with long tails for

both release times and execution times dwarfs the differences caused by varying

the number of servers.

Figures 6.30 and 6.31 compare the performance of the best configurations of

OSM-EDF and OSM-DM, i.e., OSM-EDF with a server per task and OSM-DM

with one server. Contrary to previously observed results, the best configuration of

OSM-DM performs better than the best configuration of OSM-EDF on workloads
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Figure 6.24: EDF vs. DM from System Perspective: the average of the ratios of
the metrics for systems with an EDF scheduler to the metrics of systems with a
DM scheduler.
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Figure 6.25: EDF vs. DM from Task Perspective: the average of the ratios of the
metrics for systems with an EDF scheduler to the metrics of systems with a DM
scheduler.
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Figure 6.26: OSM-DM vs. DM from System Perspective: the average of the ra-
tios of the metrics for systems scheduled according OSM-DM to the metrics for
systems scheduled according to DM.
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Figure 6.27: OSM-DM vs. DM from Task Perspective: the average of the ratios of
the metrics for systems scheduled according OSM-DM to the metrics for systems
scheduled according to DM.
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Figure 6.28: OSM-EDF vs. EDF from System Perspective: the average of the
ratios of the metrics for systems scheduled according OSM-EDF to the metrics
for systems scheduled according to EDF.
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Figure 6.29: OSM-EDF vs. EDF from Task Perspective: the average of the ra-
tios of the metrics for systems scheduled according OSM-EDF to the metrics for
systems scheduled according to EDF.
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with both release time jitter and execution time variations. This result holds from

both the system and the task perspectives. While the percentage of deadlines met

differs by a slight but statistically significant amount, the average response times

of OSM-DM are much better than OSM-EDF. (The width of the 95% confidence

intervals are generally all well below 5%.) Therefore, we now compare OSM-DM

to classical DM.

A comparison of OSM-DM to classical DM from the system perspective (Fig-

ures 6.32) shows that classical DM performs the best, with the exception of the

average response time for the exponential workload and a single server for all

tasks. Figure 6.33 shows that OSM-DM meets more deadlines than classical DM

for exponential workloads and for uniform workloads at high utilizations. How-

ever, the average response times for OSM-DM are definitely inferior to classical

DM.

6.6.3 Performance of ISM vs. Baseline

We now compare the performance of ISM-DM to DM and ISM-EDF to EDF for

systems in which both the inter-release times and the execution times vary widely.

As Figure 6.34 shows, the preferred configuration of ISM-DM from the perspec-

tive of the system is one server for all tasks. In this configuration, the number

of deadlines met is only slightly less than classical DM. However, average re-

sponse times are much better than for classical DM. From the perspective of a

task (Figure 6.35), ISM-DM meets more deadlines than classical DM in either the

single server or the server per task configurations, except for the uniform distribu-

tion and a server per task. Once again though, the average response times are all

worse for ISM-DM than for classical DM. (Although the confidence intervals the

data shown in Figure 6.35(b) are wide, the observed differences are statistically

significant.)

Figures 6.36 and 6.37 compare ISM-EDF to classical EDF. While the single

server configuration performs worse than classical EDF, the server per task con-

figuration performs much better. (The confidence intervals for the single server

data in Figure 6.37(b) exceed 5% at 50% average utilization, becoming less than

5% by 95% average utilization.)

We now compare ISM-EDF to ISM-DM. As Figures 6.38 and 6.39 show, ISM-

EDF with a server per task generally performs better than ISM-DM in the same

configuration, but worse in the single server configuration. ISM-EDF with a server
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Figure 6.30: OSM-EDF Best vs. OSM-DM Best from System Perspective: the
average of the ratios of the metrics for systems scheduled according the best
OSM-EDF configuration to the metrics for systems scheduled according to the
best OSM-DM configuration.

137



0.0

0.2

0.4

0.6

0.8

1.0

1.2

50 55 60 65 70 75 80 85 90 95

A
ve

ra
ge

 R
at

io
 o

f 
Pe

rc
en

t D
ea

dl
in

es
 M

et

Average System Utilization

Exp, Ind
Exp, Dep
Uni, Ind

Uni, Dep

(a) Deadlines Met

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

50 55 60 65 70 75 80 85 90 95

A
ve

ra
ge

 R
at

io
 o

f 
R

es
po

ns
e 

T
im

e

Average System Utilization

Exp, Ind
Exp, Dep
Uni, Ind

Uni, Dep

(b) Response Time

Figure 6.31: OSM-EDF Best vs. OSM-DM Best from Task Perspective: the aver-
age of the ratios of the metrics for systems scheduled according the best OSM-
EDF configuration to the metrics for systems scheduled according to the best
OSM-DM configuration.
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Figure 6.32: OSM-DM vs. DM from System Perspective: the average of the ra-
tios of the metrics for systems scheduled according OSM-DM to the metrics for
systems scheduled according to Classical DM.
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Figure 6.33: OSM-DM vs. DM from Task Perspective: the average of the ratios of
the metrics for systems scheduled according OSM-DM to the metrics for systems
scheduled according to Classical DM.
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Figure 6.34: ISM-DM vs. DM from System Perspective: the average of the ra-
tios of the metrics for systems scheduled according ISM-DM to the metrics for
systems scheduled according to DM.
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Figure 6.35: ISM-DM vs. DM from Task Perspective: the average of the ratios of
the metrics for systems scheduled according ISM-DM to the metrics for systems
scheduled according to DM.
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Figure 6.36: ISM-EDF vs. EDF from System Perspective: the average of the
ratios of the metrics for systems scheduled according ISM-EDF to the metrics for
systems scheduled according to EDF.
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Figure 6.37: ISM-EDF vs. EDF from Task Perspective: the average of the ratios of
the metrics for systems scheduled according ISM-EDF to the metrics for systems
scheduled according to EDF.
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per task clearly meets more deadlines from either the system or the task perspec-

tives. It also has better better average response times, except at very high average

utilizations. Therefore, ISM-EDF is generally preferable to ISM-DM.

Finally, we compare the performance of ISM-EDF to the DM algorithm (Fig-

ures 6.40 and 6.41). ISM-EDF with a single server for all tasks clearly performs

worse than classical DM from either perspective. It also performs slightly worse

than classical DM from the system perspective in the server per task configura-

tion. From the task perspective, however, the server per task configuration meets

up to around 20% more deadlines at the cost of a dramatic increase in response

times.

6.7 Summary

In summary, we have compared the performance of various scheduling algorithms

on workloads with release time jitter, both with constant and varying execution

times. The metrics used were the percentage of deadlines met and the average

response time which can be computed from the perspective of the system or of

the tasks in the system. The former view is useful for considering overall system

performance, while the latter is important for the designers of critical soft real-

time tasks. In general, the performance from the two perspectives differed less for

workloads with release time jitter than they did for overrun.

The performance of only two classes of scheduling algorithms were compared

when inter-release times varied but execution times were held constant: the clas-

sical fixed-priority and deadline-driven scheduling algorithms, characterized by

the Deadline Monotonic and Earliest Deadline First algorithms, and the Isolation

Server Method. (The performance of the Overrun Server Method was not consid-

ered as the execution times of jobs were constant and hence could not overrun.

Therefore the performance of the Overrun Server Method should be identical to

the performance of the classical algorithms.)

We also considered the effects of fairness by comparing the performance of

Weighted Fair Queueing Servers (WFQS) with the performance of Total Band-

width Servers (TBS) when scheduled according to ISM-EDF. In the configuration

in which all tasks are assigned to a single server, the performance of a WFQS and

a TBS are identical because the scheduling deadlines of jobs computed by each

type of server are the same. In the server per task configuration, the performance
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Figure 6.38: ISM-EDF vs. ISM-DM from System Perspective: the average of the
ratios of the metrics for systems scheduled according ISM-EDF to the metrics for
systems scheduled according to ISM-DM.
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Figure 6.39: ISM-EDF vs. ISM-DM from Task Perspective: the average of the
ratios of the metrics for systems scheduled according ISM-EDF to the metrics for
systems scheduled according to ISM-DM.

147



0.0

0.2

0.4

0.6

0.8

1.0

1.2

50 55 60 65 70 75 80 85 90 95

A
ve

ra
ge

 R
at

io
 o

f 
Pe

rc
en

t D
ea

dl
in

es
 M

et

Average System Utilization

1 Svr, Exp, Ind
8 Svr, Exp, Ind
1 Svr, Uni, Ind
8 Svr, Uni, Ind

1 Svr, Exp, Dep
8 Svr, Exp, Dep
1 Svr, Uni, Dep
8 Svr, Uni, Dep

(a) Deadlines Met

0.5

1.0

1.5

2.0

2.5

3.0

50 55 60 65 70 75 80 85 90 95

A
ve

ra
ge

 R
at

io
 o

f 
R

es
po

ns
e 

T
im

e

Average System Utilization

1 Svr, Exp, Ind
8 Svr, Exp, Ind
1 Svr, Uni, Ind
8 Svr, Uni, Ind

1 Svr, Exp, Dep
8 Svr, Exp, Dep
1 Svr, Uni, Dep
8 Svr, Uni, Dep

(b) Response Time

Figure 6.40: ISM-EDF vs. DM from System Perspective: the average of the ra-
tios of the metrics for systems scheduled according ISM-EDF to the metrics for
systems scheduled according to DM.
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Figure 6.41: ISM-EDF vs. DM from Task Perspective: the average of the ratios of
the metrics for systems scheduled according ISM-EDF to the metrics for systems
scheduled according to DM.
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of TB servers was better than the performance of WFQ servers, particularly for

high average system utilizations. This occurs because in the process of giving

each busy server its fair share of the processor bandwidth a WFQS may schedule

a job from a busy server (which has already missed its deadline) instead of a job

released to an idle server (which is more likely to meet its deadline). We used TB

servers for the remainder of the performance evaluations.

The Isolation Server Method performed best with a server per task scheduled

according to EDF. From both the system and task perspectives, the performance

was generally comparable but not equal to the best classical algorithm, DM. We

investigated the effect of the maximum difference in inter-release times on perfor-

mance. Decreasing the maximum period ratio causes ISM-EDF to perform better

with respect to the DM algorithm, but the DM algorithm still met more deadlines

and had lower average response times. We concluded that as long as priorities

are correlated with release rate, a fixed priority assignment is likely to yield better

performance.

We also compared the performance of the classical scheduling algorithms with

the OSM and the ISM on workloads in which both the inter-release times and the

execution times varied. Once again, ISM-EDF with a server per task performs

better than either the fixed priority or deadline driven variants of the ISM and the

OSM, but did not exceed the performance of classical DM in general.

From purely a performance point of view, highly overloaded systems should

be scheduled using classical DM because of its predictability, especially from

the perspective of the system. However, classical DM cannot guarantee that jobs

which do not overrun their processor allocations will meet their deadlines like

OSM can. Likewise, the DM algorithm does not meet as many deadlines from the

perspective of a task as the ISM does. Thus in the wider context of critical soft

real-time system design, the Overrun Server and Isolation Server Methods may

still find use.

As with overload caused by overrun, the results indicate that all the methods

perform similarly for average system utilizations below about 75% regardless of

how the release times or execution times vary. Likewise, the presence or lack

of dependencies had little effect below 75% average utilization. (A 75% aver-

age system utilization corresponds to a maximum system utilization of at least

150% for the distributions considered.) Thus, the choice of scheduling algorithm

is probably not crucial for all but the most highly overloaded systems.
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Chapter 7

Conclusions

In this thesis, we extended the periodic task model to allow systems of hard, soft

and non-real-time tasks to be described in a uniform and seamless manner. We

used the model to develop the Stochastic Time Demand Analysis method which

allows fixed priority critical soft real-time systems to be designed for better re-

source utilization and average performance than is possible using deterministic

real-time analysis methods. In particular, Stochastic Time Demand Analysis al-

lows the effect of performance enhancing features, such as multi-level memory

hierarchies in processors or statistical multiplexing in networks, to be accounted

for in determining the probability that jobs of a task will meet their deadlines.

When applied to applications which are allowed to miss a few deadlines, Stochas-

tic Time Demand Analysis enables systems to be designed with higher average

performance and lower cost.

Allowing a real-time system to miss some deadlines in exchange for better

average performance increases the possibility of overload. We have compared the

performance of various scheduling algorithms for critical soft real-time systems

under overload conditions to determine which algorithms meet the most dead-

lines and provide the shortest average response times. The information assists

the designers of critical soft real-time systems in the selection of the appropriate

scheduling algorithm for the best performance.

7.1 Extended Periodic Task Model

In Chapter 3, we extended the periodic task model, to allow systems of hard, soft

and non-real-time tasks to be described in a uniform and seamless manner. The

extended model requires each task to be assigned a guaranteed execution time and
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a guaranteed inter-release time, with the constraint that the system be schedulable

on the basis of these guaranteed parameters. If the execution time of a job is less

than the guaranteed execution time of its task and the release time of the job is no

earlier than the release time of its successor plus the guaranteed inter-release time

of its task, then the system guarantees that the job will meet its deadline if higher

priority tasks do not violate their guaranteed parameters.

The guaranteed execution time of a hard real-time task is equal to the max-

imum execution time of its jobs. The guaranteed inter-release time of a hard

real-time task is equal to the minimum inter-release time of its jobs. In contrast,

the guaranteed execution times of non-real-time tasks are equal to zero and the

guaranteed inter-release times are equal to infinity. The guaranteed execution and

inter-release times of soft real-time tasks (whether critical or not) have values

which lie between the values for hard and non-real-time tasks. By appropriate

choices for the guaranteed execution and inter-release times of the tasks in a sys-

tem, we can describe systems containing hard, soft and non-real-time tasks within

a single framework. This provides a flexible basis for design and analysis. We

made use of this flexibility in the formulation of the Stochastic Time Demand

Analysis method in Chapter 4 and in the performance comparison of algorithms

for scheduling overload in Chapters 5 and 6. An early version of the extended

model was published in [58].

7.2 Stochastic Time Demand Analysis

The Stochastic Time Demand Analysis method for bounding the frequency of

missed deadlines in fixed priority systems makes it possible to account for the

variability introduced by performance enhancing features during the design of

critical soft real-time systems thereby achieving better average performance than

would be possible using deterministic real-time analysis methods. It is used to

bound the frequency of deadlines met by jobs in a task.

A lower bound on the probability that jobs in a task complete by their deadlines

is computed by considering the time demand of each job, along with other jobs of

equal or higher priority, in the interval of time from when the job is released until it

completes. In other words, the time demand is considered from the perspective of

the job being analyzed rather than from the perspective of the entire busy interval

as in the Time Demand Analysis method [9]. The probability that a job completes
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by its deadline is the probability that the time between its release and its deadline

is sufficient to meet the time demand of the system during the interval.

For systems in which the maximum utilization is less than 1.0, the probability

that a busy interval will end is 100% and the worst-case time demand occurs

when jobs are released in-phase. Even though we do not know what combination

of release times leads to the worst-case time demand for jobs in a task when the

maximum utilization exceeds 100%, simulation results support the use of in-phase

busy intervals in analysis. We have not observed a case where the probability of

completion of tasks released in-phase is higher than when the tasks are released

with arbitrary phases. Thus, the minimum probability of timely completion of

any job in a task in an in-phase busy interval is likely to be a lower bound on the

probability that all jobs in the task will complete in time. An early version of these

results were published in [70].

In many real-time systems, tasks share resources. To maintain the integrity

of the system, access to shared resources often needs to be controlled. This is

frequently accomplished by ensuring that a job holding a resource cannot be pre-

empted until the resource is released. Non-preemption, however, gives rise to pri-

ority inversion where a high priority job waits while a low priority job executions

in a critical section. Blocking delay due to priority inversion can be accounted

for in Stochastic Time Demand Analysis by increasing the time demand at the

beginning of an in-phase busy interval by the maximum delay caused by critical

sections in lower priority tasks. If critical sections are of short duration, as they

typically are since long duration critical sections reduce performance, adding the

maximum blocking delay is not overly pessimistic. We also outlined a more com-

plex approach for systems with long duration critical sections or ones in which

the durations vary widely.

Finally, we have shown how Stochastic Time Demand Analysis can be used,

along with the Release Guard Protocol [25], to compute the probability of meeting

end-to-end deadlines in distributed systems. The Release Guard Protocol ensures

that the separation between the releases of two instances of a subjob in an end-

to-end task is at least as large as the guaranteed inter-release time. Assuming

that the phase of the first instance of a subjob in a busy interval is equal to the

maximum response time of its successor in the job, the response time distribution

of an end-to-end job is computed via a straight forward application of Stochastic

Time Demand Analysis. The probability of jobs in a task meeting their end-to-end

deadlines is determined from the end-to-end response time distribution. A more
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precise bound can be computed by taking into account the response time distri-

bution of the first subjob as well. This leads to a more complex approach which

requires conditioning on an event whose time of occurrence is itself a random

variable.

7.3 Scheduling Overrun and Jitter

In this thesis, we also characterized the performance of scheduling algorithms for

overloaded systems. A system is overloaded as when it is not schedulable accord-

ing to deterministic real-time theory on the basis of maximum execution times

and minimum inter-release times and hence some jobs may miss their deadlines.

We considered the effects of both execution and inter-release time variations. The

metrics used to compare the algorithms were percent deadlines met and average

response times. The metrics can be computed from the perspective of the system

(i.e., the performance of each job has equal weight) or from the perspective of the

tasks in the system (i.e., the average performance of each task has equal weight).

The former is useful for considering overall system performance, while the latter

is important for designing real-time tasks.

Specifically, we proposed two new classes of algorithms for scheduling over-

loads due to overruns. We also compared the performance of the two classes with

a baseline class of scheduling algorithms on workloads with independent and de-

pendent execution times. The baseline class contains the Deadline Monotonic and

Earliest Deadline First scheduling algorithms. In the second class of algorithms,

called the Overrun Server Method, jobs are initially scheduled according to one

of the baseline algorithms. If a job overruns it is interrupted and its remaining part

is submitted as an aperiodic request to a server. We used a Sporadic Server to ex-

ecute overruns in fixed priority systems and either a Total Bandwidth Server or a

Constant Utilization Server in deadline-driven systems. In the final class of algo-

rithms, called the Isolation Server Method, jobs of a task are released as aperiodic

requests to the server assigned to the task. An overrunning job can only delay the

completion of other jobs assigned to the same server, effectively isolating the jobs

of one server from the jobs of other servers. Preliminary results were published

in [58].

The average utilizations of the workloads used in the study ranging from 50%

to 95%. We also considered the effects of fixed correlations between consecutive
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jobs in a task since the underlying causes of overload are likely to cause depen-

dencies. Generally speaking, we found that fixed priority scheduling performed

better than deadline-driven scheduling when judged from the system perspective

since higher priority jobs also release more jobs. A comparison of the classical

scheduling algorithms showed that the Deadline Monotonic algorithm performs

much better than the Earliest Deadline First algorithm under overload.

The comparisons indicated that the Deadline Monotonic algorithm performs

better than the Overrun Server Method for fixed priority systems from either the

system or the task perspective. For deadline-driven systems, the Overrun Server

Method performs better than the Earliest Deadline First algorithm for exponen-

tial workloads, particularly with a server per task. Otherwise, the Earliest Dead-

line First algorithm performs best. The best performance of the Overrun Server

Method occurred under the deadline-driven scheduler when individual overrun

servers were assigned to each task. A comparison of Constant Utilization Servers

and Total Bandwidth Servers showed that the latter yields dramatically better per-

formance through the use of background time. The comparison also showed that

Constant Utilization Servers should not be used for systems with high average

utilization because the overhead of wait queue management grows until it over-

whelms the scheduling of jobs.

A comparison between the Isolation Server Method and the classical schedul-

ing algorithms showed that the Deadline Monotonic algorithm had the best per-

formance for fixed-priority systems from either perspective. In deadline-driven

systems, however, the Isolation Server Method with a server per task had the best

performance on the dependent workloads, particularly for high average system

utilizations and from the perspective of the tasks. To further characterize the per-

formance of the the Isolation Server Method under overload, we conducted simu-

lations using execution time traces obtained from an actual application and com-

pared the results with the performance of the Earliest Deadline First and Deadline

Monotonic scheduling algorithms. Once again, the Deadline Monotonic schedul-

ing algorithm performed better than the Earliest Deadline First algorithm from

either perspective. From the system perspective, Deadline Monotonic met more

deadlines than the deadline-driven Isolation Server Method but less from the task

perspective. The response time results for the algorithms were exactly opposite

with the Isolation Server Method having better average response times from the

perspective of the system and Deadline Monotonic having better average response

times from the perspective of the tasks.
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We considered the effects of release time jitter on the performance of the three

classes of scheduling algorithms. Initially, the execution times of jobs in a task

were constant. We only compared the Isolation Server Method with the baseline

algorithms because the performance of the Overrun Server Method is identical

with the baseline when jobs do not overrun. We noted that fairness becomes an

issue when inter-release times vary and defined a variant of the Isolation Server

Method which used Weighted Fair Queueing Servers instead of Total Bandwidth

Servers. With a single server for all tasks, the operation of a Weighted Fair Queue-

ing Server and a Total Bandwidth Server are identical. Because of improved

fairness, however, it was expected that the performance of the Isolation Server

Method with multiple Weight Fair Queueing Servers would be better than the per-

formance of the Isolation Server Method with multiple Total Bandwidth Servers.

Surprisingly, the Isolation Server Method with a Total Bandwidth Server per task

performed better, from either perspective, than the Isolation Server Method with a

Weighted Fair Queueing Server per task. Because of the way in which scheduling

deadlines are assigned to jobs to improve fairness, a job with a high probability

of missing its deadline can be scheduled by a busy server before a job which is

released to an idle server even though the latter has a higher likelihood of com-

pleting in time, especially for heavily loaded systems. Because of its performance

advantage, we selected the Total Bandwidth Server for use in the remainder of the

simulations.

A comparison of the Earliest Deadline First and Deadline Monotonic algo-

rithms once again showed that the latter performs better. While the deadline-

driven Isolation Server Method performed better than the Earliest Deadline First

algorithm in general, its performance was largely inferior to Deadline Mono-

tonic scheduling indicating that the Deadline Monotonic algorithm is generally

preferable for scheduling systems with release time jitter. One reason is that the

task with the highest release rate also has the highest priority with the Deadline

Monotonic algorithm (assuming the relative deadline equals the guaranteed inter-

release time) and hence the results are biased in its favor. Reducing the maximum

period ratio caused performance of the deadline-driven Isolation Server Method

to improve relative to the Deadline Monotonic algorithm. However, the Dead-

line Monotonic algorithm still performed better suggesting that the tasks with the

highest release rate should have the highest (fixed) priority.

When both execution times and inter-release times were varied, the Deadline

Monotonic algorithm once again performed better than Earliest Deadline First al-
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gorithm. It also performed better than the fixed priority Overrun Server Method.

Although the deadline-driven Overrun Server Method performed better than Ear-

liest Deadline First algorithm, it did not perform better than the Deadline Mono-

tonic algorithm. The best performance of the Isolation Server Method occurred

for the deadline-driven variant with a server per task. Even though it performed

better than Earliest Deadline First algorithm, it did not perform better than Dead-

line Monotonic algorithm except in limited situations.

Based on the simulations performed, the Deadline Monotonic scheduling al-

gorithm performed the best overall and hence should generally be used when over-

load is possible. However, there are non-performance reasons for choosing one of

the other methods. For example, the Overrun Server Method is the only schedul-

ing algorithm that can guaranteed that a job which does not overrun will meet its

deadline (as long as the guaranteed inter-release times of tasks equal the minimum

inter-release times). As such, it should be used for systems in which hard guar-

antees are required. Furthermore, the Isolation Server Method met significantly

more deadlines from the task perspective than the other methods, especially when

the workload exhibited dependencies. Therefore the Isolation Server Method is

preferable to the Deadline Monotonic algorithm if meeting deadlines is more im-

portant than minimizing average response times.

Finally, the results indicated that all the methods perform similarly for av-

erage system utilizations below about 75% regardless of the distribution of exe-

cution times and the presence or lack of dependencies. (A 75% average system

utilization corresponded to a maximum system utilization of at least 150% for the

distributions considered.) Thus, the choice of scheduling algorithm is probably

not crucial for all but the most highly overloaded systems.

7.4 Future Work

While Stochastic Time Demand Analysis improves our ability to predict the be-

havior of critical soft real-time systems, it is restricted to fixed priority assign-

ments. Similar techniques need to be developed for systems with dynamic priority

assignments, such as those scheduled Earliest Deadline First. The probability that

consecutive jobs will miss their deadlines also needs to be computed as many crit-

ical soft real-time applications cannot afford to miss more than a certain number

of deadlines in a row. Finally, the behavior of systems in which execution times
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are dependent across tasks or jobs have precedence constraints between them also

needs to be considered.

The performance comparisons in Chapters 5 and 6 either assumed that jobs

were independent or that correlations could be modeled as fixed dependencies

between consecutive jobs in a task. More realistic correlations need to be consid-

ered, including probabilistic dependencies which span variable numbers of (pos-

sibly) non-consecutive jobs in different tasks. Finally, the performance of servers

employing the TB* algorithm [71], a successor to the Total Bandwidth Server

algorithm, needs to be considered.
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Appendix A

Simulation Environment

Chapters 5 and 6 compare the performance of various algorithms for scheduling

overloaded systems. The performance was obtained by discrete event simulation

using an object-oriented simulation framework developed prior to initial explo-

rations of the topics. In this appendix, we discuss the hardware and software used

to obtain the simulation results and make particular mention of things that we

would do differently.

A.1 Simulation Framework

The simulation framework follows an object-oriented design and is implemented

in the hybrid object-oriented language Java. The design is a straight forward mod-

eling of the basic entities in a real-time system (e.g., jobs, tasks, schedulers and

events). The framework consists of 244 files totaling 24,956 lines (including white

space and comments) containing 247 classes and 2 interfaces with 852 methods

and 400 variables. Of the classes, 66 are used for testing or demonstration pur-

poses. Some of the most important classes are listed in Tables A.1, A.2, A.3,

and A.4.

The code that must be written to perform a new simulation consists primarily

of a class with amain class method. Themain class method creates an instance

of the Processor class (or a user-specified subclass thereof) with the appro-

priate scheduler queue discipline. Next, the tasks of the system and their initial

release events are created and the events are added to the event queue of thePro-

cessor . Finally, theProcessor event loop is entered and the simulation runs

until a Doomsday event occurs or until the event loop runs dry. The default be-

havior of each event’soccur method (also called a handler) only performs the
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Table A.1: Major Classes of the Simulator.

Event

Event Queue

Exponential Random Variable

Job

Job Queue

Processor (Scheduler)

Queue Discipline

Random Number Generator

Random Variable

Server

Task

Uniform Random Variable

Table A.2: Major Subclasses of Simulator Events.

Blocked

Budget Consumed

Budget Replenishment

Budget Reset

Completion

Deadline Met

Deadline Missed

Delayed Release

Enter NPS

Exit NPS

Idle

Overrun

Preemption

Ready

Release

Resume

Schedule

Server Release

Table A.3: Subclasses of Simulator Queue Disciplines.

Deadline Monotonic

Earliest Deadline First

First-Come First-Served

Rate Monotonic

Shortest Job First

Shortest Time Remaining at Overrun

Shortest Remaining Time

Table A.4: Subclasses of Simulator Servers.

Constant Utilization Server

Sporadic Server

Total Bandwidth Server

Weighted Fair Queueing Server
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actions required for proper simulator operation; events of interest to a simulation

must be subclassed and theiroccur methods overridden to provide the desired

behavior. (The overridden method must include calling the default method.) Typ-

ically, the overridden handler prints an appropriate message tostdout for post-

processing. For the simulations in this work, the released, completion, deadline

met and deadline missed event handlers were overridden to print the time an event

occurred, the job involved and the task of the job. From this, the response time

and percentage of deadlines met were computed.

At the time that work began on the framework, “Ahead-of-Time” (conven-

tional) or “Just-In-Time” (JIT) compilers did not exist. The only tools available

were bundled with Sun Microsystems’s Java Development Kit (JDK). Of these

tools, the bytecode compiler,javac and bytecode interpreter,java (an imple-

mentation of the Java virtual machine) were immediately useful. Early in the

development of the framework it became apparent that the JVM was no speed

demon. Simple tests indicated that executing simulations under the JVM would

result in a 20–30 fold loss in speed over natively compiled code from languages

such as C++. However, it also became apparent that development time would be

reduced by using Java instead of C++ because of features such as garbage collec-

tion, less complicated semantics, a hierarchical name space for class identifiers

and the unification of class declarations and definitions1. Luckily, several options

for speeding up the execution of programs written in Java became available be-

fore the framework was targeted toward serious research. The option chosen was

the Toba compiler, developed at the University of Arizona, which compiles and

links classes into stand alone executables by way of intermediate files contain-

ing C source. The biggest advantage of this approach over JIT compilers is the

small memory requirements resulting from not having to have a class loader or

JIT compiler resident. It was estimated that the Toba compiler reduced execution

times to within 25% of C++. Since that time, several other ahead-of-time compil-

ers have been or are being developed. One is the GNU Java Compiler (GCJ) in

the GNU Compiler Collection (GCC) from the Free Software Foundation2. One

1In general, C++ requires classes to be declared separate from their definitions. (The excep-
tion being inline definitions of functions in class declarations.) Java classes are defined by their
declarations hence there is a single source which serves both purposes. Personal experience in-
dicates that having a single source reduces code size, eliminates synchronization errors between
declarations and definitions, and generally simplifies development and maintenance.

2The initial public release of GCJ occurred on July 31, 1999 in version 2.95 of GCC. It is
available from <http://egcs.cygnus.com/> . The runtime library is currently available
separately from<http://sourceware.cygnus.com/java/> .
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of the expected advantages of GCJ is better performance as the result of more

optimizations performed by the GCC back end. Another advantage is that object

files from various languages, including Java, C and C++, can be incorporated into

one stand alone executable.

The task of invoking the simulator for various configurations was automated

by a set of Perl scripts which also created directories for the results and provided

a visual indication of progress by writing a character to the screen before the

simulation of each system. Perl scripts were also used to compute the percentage

deadlines met and average response times of each task or for the system as a

whole. In addition, Perl scripts were used to compute descriptive statistics about

the simulations and to compute distributions of random variables. Perl proved to

be a very good language for these purposes since it excels at orchestrating program

invocations and at string handling.

A.2 Hardware

As mentioned in the experimental methodology of the previous chapters, each

line on a graph represents the ratio of the performance of one algorithm to another

for a given workload and consists of data points for four different utilizations.

In general, each data point required the simulation of 100 system configurations

for two different algorithms. While in the process of computing preliminary re-

sults [58], it was discovered that simulating all the systems for a single data point

took several hours to complete. Overall, many months of continuous simulation

time would be necessary. Because each data point is independent of the others,

the series of simulations represented a potentially large amount of coarse grained

parallelism which we set out to exploit.

Table A.5 lists the machines which were ultimately assembled to perform the

simulations. (One of the machines, rtsl7.cs.uiuc.edu, was only available for four

weeks while a colleague was on vacation.) Except for the two RTSL machines,

the remainder were borrowed from colleagues in the Concurrent Systems Archi-

tecture Group. All but one of the machines were connected to a single monitor,

keyboard and mouse using a Raritan console switch. The machines were con-

nected to each other (and to the outside world) via a 10base2 Ethernet hub.

The operating system was RedHat Linux v5.2 upgraded to kernel version 2.2.3

with SMP extensions enabled so that both processors could be used on the dual
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Table A.5: Machines Used for Simulations.

Clock Speed RAM Disk
Machine Manufacturer Processor (MHz) (MB) (GB)
rtsl3 Gateway 2000 Pentium Pro 200 64 3 IDE
rtsl7 Gateway 2000 Pentium Pro 266 64 8.5 IDE
stda1 HP Vectra Pentium Pro 200 64 9 SCSI

Pentium Pro 200
stda2 HP Vectra Pentium Pro 200 64 9 SCSI

Pentium Pro 200
stda3 HP Vectra Pentium Pro 200 64 9 SCSI

Pentium Pro 200
stda4 Dell Optiplex Pentium Pro 200 64 2 SCSI
stda5 Dell Optiplex Pentium Pro 200 64 2 SCSI
stda6 Dell Optiplex Pentium Pro 200 64 2 SCSI
stda7 Dell Optiplex Pentium Pro 200 64 2 SCSI

processor machines. Most of the computations required only local use of the

disk for temporary files but the final results were stored on a 2 GByte partition

which was NFS mounted to each machine from rtsl3.cs.uiuc.edu. Even though

only a small portion of the generated data was ever stored to disk, the archived

and compressed data, including the input data sets, totalled nearly 1.0 GByte in

68,799 files. Uncompressed, the results consume nearly 7.9 GBytes of disk space

in 1,220,367 files. Because the average size of the result files was small, the i-

nodes on the 2 GByte partition were frequently exhausted before all the disk space

was consumed. The problem was exacerbated by the relatively small size of the

archive partition. Each time the i-nodes were exhausted, the simulator would halt

but with manual intervention the simulations had could be restarted where they

left off. The solution was to archive and compress the data to conserve i-nodes

even though this made data reduction less convenient.

An anticipated problem was saturation of the network bandwidth. Because

temporary results were cached locally on each machine, comparatively little data

was sent to the server. The only time that saturation became significant was during

data reduction when each processor would read pairs of summary files for each

system of a workload. The time required for comparison would increase from ap-

proximately 15 minutes with one machine to 30–45 minutes with all 12 machines.

Surprisingly, the dual processor HP machines always completed the comparison

computations more quickly than did the single processor Dell machines. We have
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no explanation for this phenomenon but hypothesize that the HP machines had

higher performance I/O subsystems since the simulation times showed little dif-

ference in processor performance. We also observed that the cost of symmetric

multiprocessing on the dual processor HP machines was a 10–15% increase in

simulation time when using both processors compared to using a single proces-

sor. The cause was most likely memory contention, mutual exclusion and cache

effects.

A.3 Simulation Times

As mentioned earlier, obtaining the data presented in this work required a substan-

tial amount of simulation time. Tables A.6, A.7 and A.8 give average simulation

times to obtain the final results for one data point on a graph. In the preliminary

results reported in [58], each system of a workload executed a minimum of 1,000

jobs in each task. To improve the quality of the results, the overrun simulations

were run again with a minimum of 2,000 jobs in each task. Although this was

an improvement, a higher quality at 90 and 95% utilization was desired for the

release time variation results and the results with both release time and execution

time variations. To keep simulation times reasonable, the minimum number of

jobs were increased in increments of 1,000 from 1,000 at 50% utilization to 4,000

at 95% utilization. Likewise, the minimum number of jobs was doubled at each

step while investigating the effects of overrun using the MPEG traces (e.g., 1,000

at 50% utilization to 8,000 at 95% utilization). All together, the final results pre-

sented in this thesis took over 274 days of simulation time. However, the total

amount of simulation time, including exploration and rerunning to obtain more

accurate results, is approximately 2.5–3.5 times that amount.3

A.4 Lessons Learned

At the conclusion of any substantial project, it is appropriate to reflect upon the

lessons learned. (We note that during a substantial project the ability to backtrack

in order to recover from an earlier decision is often lost as the project proceeds.

Typically, the cost of backtracking becomes prohibitive during a project because

3The simulation results for the Constant Utilization Server shown in Figure 5.8 on page 67 took
nearly 26 days to obtain at an average of 6.5 days per data point. Conveniently, the performance
of the Total Bandwidth Server was much better, as was its simulation times.
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Table A.6: Average Simulation Times for Baseline Algorithms in Hours.

Utilization
Workload Average 50% 75% 90% 95%
Overrun 5.3 5.5 5.3 5.3 5.3
Jitter 6.6 2.9 5.2 7.3 9.3
Both 6.3 2.6 5.0 7.4 9.8
Museum 4.3 1.3 2.3 4.8 9.0
A Close 4.2 1.2 2.3 4.5 9.0
Red’s 4.2 1.2 2.3 4.5 8.6

Table A.7: Average Simulation Times for OSM in Hours.

Utilization
Workload Base Servers Average 50% 75% 90% 95%
Overrun DM 1 6.3 6.2 6.1 6.2 6.7

DM 8 9.6 7.0 7.6 9.8 13.5
EDF 1 5.9 6.0 5.8 5.9 5.8
EDF 8 5.8 6.0 5.8 5.7 5.8

Jitter DM 1 6.8 2.8 5.5 8.3 10.6
DM 8 7.8 4.1 5.6 8.8 12.8
EDF 1 6.5 2.8 5.1 7.8 10.1
EDF 8 6.3 2.8 5.1 7.8 10.3

Table A.8: Average Simulation Times for ISM in Hours.

Utilization
Workload Base Servers Average 50% 75% 90% 95%
Overrun DM 1 8.3 6.0 6.0 6.8 14.3

DM 8 7.0 6.7 6.8 6.9 7.8
EDF 1 5.3 5.5 5.3 5.2 5.2
EDF 8 5.3 5.5 5.4 5.4 5.3

Jitter DM 1 10.0 3.0 5.6 9.9 21.5
DM 8 10.5 3.4 6.3 11.0 21.0
EDF 1 6.4 2.8 5.1 7.7 10.0
EDF 8 6.5 3.0 5.3 7.6 10.0

Both DM 1 12.8 3.1 5.7 11.5 30.9
DM 8 11.5 3.5 6.6 12.2 23.7
EDF 1 12.8 5.7 10.3 15.1 20.0
EDF 8 12.8 5.7 10.2 15.1 20.0
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of time or cost constraints.) Thus it is very important to learn from mistakes. In

this case, the lessons are both positive and negative.

It is reasonable to ask why an existing simulation framework was not used

rather than writing one from scratch. The answer is that the simulator frame-

work was largely written as part of a separate project to gain experience with

Java and to develop an applet to display schedules for real-time systems in a web

browser. Making modifications to adapt the framework for discrete event simula-

tion required substantially less effort than learning another simulation framework.

While the framework has performed well for the task at hand, it may be wise to

learn a more general framework as insurance against future need.

Developing the simulation framework lead to greater intuition about when to

use inheritance and when to use parameterization. The framework was designed

so that specialized behavior is obtained by subclassing a parent class and over-

riding appropriate methods. This approach was used extensively to develop sub-

classes of classEvent , for example. The primary difference between events is

the behavior that occurs when the event handler is invoked. Rather than subclass

to override theoccur method, theEvent class should be parameterized with

the code that is called when an event occurs. Using a singleEvent class with a

parameter specifying its handler would reduce the amount of code that needs to

be written to create a simulation. It is recommended that programs written in Java

should make extensive use ofinner classes( [72]) to specialize behavior rather

than use inheritance.4

Even with inner classes, it is still not as convenient to parameterize behavior

in Java as one would like. Inner classes are a heavy weight solution for many pa-

rameterization needs because an inner class is a complete anonymous class that is

defined textually within another class. Therefore, inner classes still require at least

one constructor and one method to specialize behavior. They also require instance

variables to be set explicitly in order to save the appropriate state for later use.

On the other hand, languages like Lisp and Smalltalk have closures which capture

the lexical environment implicitly and do not require construction of complete

classes. An additional benefit of Lisp and Smalltalk is the flexibility that comes

from the dynamic typing of variables rather than the static typing offered by Java

4Until the addition of inner classes in Java 1.1, the language did not conveniently support the
parameterization of behavior except by the creation of named classes in separate files. Hence,
inheritance was used in the design of the framework instead of parameterization. Also, the Toba
compiler did not support inner classes until well after the framework was in use.
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(albeit, at the cost of requiring better type inference in the compiler to achieve

good performance). Thus, Lisp or Smalltalk may be better languages for writing

simulations than Java.

On the positive side, the choice of Java over C or C++ for writing the simu-

lator framework was vindicated by faster development times. Because the perfor-

mance of the simulator when compiled with Toba was comparable to a simulator

written in C or C++, the initial concern about adequate performance faded. On

the negative side, the lack of generic containers in Java proved to be a constant

nuisance.5 Extending Java to have generic containers would make the use of con-

tainers more convenient and enable the compiler to eliminate many run time type

checks. There are several proposal for adding generic containers to Java but none

have been adopted as standard yet.

The final lesson learned concerns the robustness of Linux as a production en-

vironment. Over the past year, Linux has seen extremely heavy use without once

crashing. In particular, the file system has performed flawlessly in spite of the

tremendous amount of data created by the performance studies. In addition, re-

configuring the Linux kernel to support additional capabilities, such as SMP, is

relatively painless. It takes approximately 11 minutes to perform a clean rebuild

of the kernel, install it and reboot. In contrast, colleagues who are extending the

Windows NT kernel with real-time support report that a clean rebuild of the ker-

nel takes approximately 11 hours and requires manual intervention in strategic

spots. While Windows NT seems to be the politically correct choice for systems

research, stability and ease of modification have proven Linux to be an excellent

alternative.

5By a generic container, we mean an object in which a homogeneous collection of other objects
(or references to them) are stored. Examples include lists, heaps, and binary trees. The containers
in Java hold references to objects descended from classObject . An object retrieved from a Java
container must undergo a run time type check, called a “type cast”, to recover its specific type
before use. Generic containers know the type of their contents making type checks unnecessary.
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Appendix B

MPEG Video Decoding

In this thesis we have shown that a statistical approach better characterizes the

performance of critical soft real-time systems than does a deterministic approach,

especially for systems in which the execution times and inter-release times of

tasks vary widely. Following standard practice in the statistics and simulation

communities, we used uniform or exponential distributions of execution times for

most of our analysis and simulation. However, real world tasks have execution

time dependencies. One task which exhibits widely varying execution times and

dependencies is a decoder for MPEG video.

A MPEG video stream is composed of frames which correspond to images

to be displayed. In order to reduce storage and transmission costs, the raw video

frames are transformed into one of three types of MPEG frames. The first is the

I-frame in which the raw pixel data is divided into 2-D blocks and compressed

by the discrete cosine transform. The next is theP-framewhich encodes data

used to “predict” where features of the previous I-frame will be in the future. The

last is theB-framewhich “bi-directionally interpolates” features of surrounding I

and P frames in relation to the current frame. Because of dependencies, some

MPEG frames are positioned earlier in the MPEG video stream than the raw

video frames they represent would indicate. The frames that are decoded early

are buffered until they are displayed. The excellent compression ratios achieved

by the MPEG algorithm are possible because the sequence of P and B frames are

often significantly smaller than if the stream had been encode as I-frames alone.

Thus a sequence of MPEG frames, such asI-B2-P -B2
1, is smaller than an en-

coding containing only I-frames. Due to the sophisticated encoding scheme, the

1The notationI-B2-P -B2 is shorthand for sequenceI-B-B-P -B-B. We give all frame se-
quences in decode order rather than in display order.
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execution time of jobs in a MPEG video task exhibit variability for which a sta-

tistical approach is especially well suited. (For more information on MPEG visit

<http://www.mpeg.org> .)

B.1 Trace Acquisition

Traces of frame decode times for MPEG video streams were created specifically

for the study. Measured execution times were limited to the decode times of in-

dividual frames rather than including the time spent reading the encoded frames

from disk or displaying the decoded frames. In other words, we measured exe-

cutions times from the perspective of a real-time task whose only function is to

decode MPEG frames. As a result, the execution times are lower than other stud-

ies (such as [44]) which measure the complete time required to read, decode and

display a frame.

The decode times for each frame were obtained by surrounding the body of

mpegVidRsrc of the mpeg play application, developed at the University of

California Berkeley2, with calls to a high resolution time source (explained fur-

ther below). For convenience, the options were set to decode the video stream

as fast as possible (framerate 0 ) and to suppress displaying to the screen

(no display ). Setting the options to achieve the fastest possible running of

mpeg play did not bias the results because only the decode function was being

timed.

The data was collected under RedHat Linux 5.2 with the Linux 2.2.3 ker-

nel running on a 200 MHz Pentium Pro machine. The load on the machine at

the time of the test was light, consisting primarily of daemon processes. Ini-

tial measurements were taken via standard Unixgettimeofday calls. How-

ever, the resolution was insufficient to obtain accurate data because of interfer-

ence from daemon processes and interrupt handlers. To improve the quality of

the data, thertime function of thelibpperf library, available from<http:

//qso.lanl.gov/˜mpg/libpperf-0.5.tar.gz> , was used to yield a

granularity of 1 clock cycle or 5 nanoseconds. (Thelibpperf library accesses

a model-specific status register of the Pentium Pro which contains a count of the

number of CPU cycles since startup or reset.) Each video was decoded at least

100 times and the average decode time was computed for each frame.

2The source code formpeg play is available at <http://bmrc.berkeley.edu/
projects/mpeg/mpeg_play.html> .
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In computing the average for each frame, it was noticed that decode times up

to 20 times longer than the average occurred occasionally. These extraordinar-

ily long decode times are likely caused by the execution of an interrupt handler

during frame decode. Clearly, long decode times could affect the average decode

time of a frame. Assuming that the variations in decode times for a frame are the

result of a large number of random events, the Central Limit Theorem states that

the distribution of decode times for a specific frame will converge to the Gaussian

distribution in the limit. We therefore disregarded decode times outside±4σ and

recomputed the mean. This process was repeated until no data points were dis-

carded. In general, less than 5 points were discarded for each frame. The widths

of the 95% confidence intervals were less than 0.7% for each frame. (Because of

the large number of samples for the decode times of each frame, the average de-

code times with outlying points discarded differed only slightly from the average

with no points discarded.)

We now present the statistical characterization of the traces along with their

distributions. The traces themselves are available electronically.3

B.2 The Incredible Museum Video

The first video stream is a walk-through of a ray traced model of an imaginary mu-

seum.4 It was chosen because of its length (3909 frames) and because its decode

times vary by over a decimal order of magnitude. (See Table B.1 for a summary of

the statistical characteristics of the trace.) The video stream lasts 130.3 seconds at

a natural frame rate of 30 fps and has a width and height of 352x240. The size of

the video stream is 25,320,484 bytes and has the (rather typical) frame sequence

I-B2-P -B2.

Of the selected video streams, the Incredible Museum video stream showed

the most pronounced periodicity of decode times. A look at the decode times as

a function of the frame number, Figure B.1, shows that the decode times of each

frame type changes drastically with scene changes. For example, the frames up

to 330 and from 3475 to the end are the title and production credits. Frames 660–

850, 930–1430, 1715–1987, 2226–2470, 2740–3115, and 3240–3475 are scenes

3The traces are available at<ftp://ftp.cs.uiuc.edu/pub/research-groups/
perts/video-traces> .

4The video stream is available from<http://private.homepages.intershop.
de/rene/museum.html> .
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Table B.1: Characteristics of the Incredible Museum video.

Average Decode Time,msec
Frame Count Minimum Maximum Mean Variance

All 3909 0.64 9.03 3.44 2.93
I 652 1.17 8.30 5.24 2.42
P 652 0.68 9.03 4.65 4.10
B 2065 0.64 7.34 2.68 1.01
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Figure B.1: Decode Times for the Incredible Museum video.

within different rooms of the museum. The remaining frames are of the central

hall. Transitions from a room to the central hall or from the central hall to another

room correspond quite closely to the dramatic changes in the decode times.

In Figure B.2, we show the density function and distribution of decode times

for the Incredible Museum video stream. This video stream has the second great-

est spread of execution times and the most gradual rate of change of the probabil-

ity distribution functions of all the selected videos. Note that the density function

of the B-frames is bi-modal. The density function of all the frames together is

also bi-modal in direct consequence of there being four B-frames for every I or P

frame.
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Figure B.2: Statistical Characterization of the Incredible Museum video.
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B.3 “A Close Shave” Video

The next video stream is of a delightful Wallace and Grommit animation by Nick

Park entitled “A Close Shave”.5 It was chosen because its length is over 1000

frames. Its was also chosen because its decode times vary by nearly a factor of 9,

as shown in Table B.2, although most of the decode times were within the range

2–8 msec. The video stream lasts 56.84 seconds at natural frame rate of 25 fps

and has a width and height of 352x288. The size of the video stream is 8,755,204

bytes and it has the frame sequenceI-B3-P -B3-P -B3.

Table B.2: Characteristics of the “A Close Shave” video.

Average Decode Time,msec
Frame Count Minimum Maximum Mean Variance

All 1421 1.60 14.41 4.05 0.93
I 119 3.98 9.44 5.77 0.69
P 237 3.62 7.58 5.21 0.34
B 1065 1.60 14.41 3.60 0.16
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Figure B.3: Decode Times for the “A Close Shave” video.

5The video stream is available from<http://animafest.hr/z96/mpeg/aclose_
v.mpg> .

173



0.00

0.05

0.10

0.15

0.20

0.25

0.30

0 2 4 6 8 10

Pr
ob

ab
ili

ty

Decode Time (msec)

All Frames
  I-Frames
  P-Frames
  B-Frames

(a) Density

0.0

0.2

0.4

0.6

0.8

1.0

0 2 4 6 8 10

Pr
ob

ab
ili

ty

Decode Time (msec)

All Frames
  I-Frames
  P-Frames
  B-Frames

(b) Distribution

Figure B.4: Statistical Characterization of the “A Close Shave” video.
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B.4 “Red’s Nightmare” Video

The final video stream is an animation entitled “Reds Nightmare”.6 It too was

chosen because of a length over 1000 frames. Its decode times vary by a factor of

15, as shown in Table B.3. The video stream lasts 48.4 seconds at a natural frame

rate of 25 frames per second and has a width and height of 320x240. The stream

is the shortest and smallest of the selected videos, with a size of 3,619,896 bytes.

It has the frame sequenceI-B9-P -B9-P -B9.

Table B.3: Characteristics of the “Red’s Nightmare” video.

Average Decode Time,msec
Frame Count Minimum Maximum Mean Variance

All 1210 0.60 9.32 2.30 1.01
I 41 3.96 7.82 4.99 0.44
P 81 0.61 9.32 3.68 1.95
B 1088 0.60 8.02 2.09 0.50
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Figure B.5: Decode Times for the “Red’s Nightmare” video.

6The video stream is available from<ftp://ftp.luth.se/pub/misc/anim/anim/
RedsNightmare.mpg> .

175



0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

0 2 4 6 8 10

Pr
ob

ab
ili

ty

Decode Time (msec)

All Frames
  I-Frames
  P-Frames
  B-Frames

(a) Density

0.0

0.2

0.4

0.6

0.8

1.0

0 2 4 6 8 10

Pr
ob

ab
ili

ty

Decode Time (msec)

All Frames
  I-Frames
  P-Frames
  B-Frames

(b) Distribution

Figure B.6: Statistical Characterization of the “Red’s Nightmare” video.
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B.5 MPEG Models

The average execution time distributions in the previous sections provided the ex-

ecution times for the MPEG decode tasks in Section 5.6. We observe that the size

of the coded frames is dependent on the composition of the original frames and

hence the decode times are also variable. There are wide variations in composi-

tion in most video streams, often for artistic impact. This suggests that the raw

video stream could be separated into “scenes”, which are groups of raw frames

that are “similar” from an MPEG point of view, with the encoding of each scene

performed independently. Thus, a video stream may contain many different frame

sequences. Standard practice is to encode a video stream with a single frame se-

quence7, but the development of accurate models which adequately capture the

characteristics of general video streams is the subject of ongoing research. As

understanding of video streams improves, we expect MPEG encodings to become

more efficient which will lead to wider variations in decode times, increasing the

utility of the techniques we have developed.

7The primary exception is that the first sequence differs occasionally.
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Appendix C

Adaptive Statistical
Characterization

Unlike deterministic approaches for hard real-time systems, the probabilistic real-

time approaches described in this work assume that distributions for inter-release

times and execution times are known with sufficient accuracy for each task in

the system. However, accurate distributions may not be readily available a priori.

The system must then discern the characteristics of the tasks “on-the-fly”. We

will now address approaches for learning the statistical properties of tasks as they

execute and present an adaptable approach that allows tasks with varying behavior

to influence how the system schedules them.

Suppose a task with unknown characteristics is admitted to the system. There

is a risk that its admission will cause the miss rate of previously admitted tasks to

increase. Thus, rather than admitting the task unconditionally before its behavior

is known, we admit the task conditionally and allow it to consume time when the

processor is idle while we have monitor its behavior. The task is reconsidered for

unconditional admission when its behavior is quantified with sufficient accuracy.

Initially, the jobs of a conditionally admitted task are assumed to have constant

execution times and no release time jitter. (In the absence of further information,

we may safely assume that the task has a zero execution time and that its period

is infinite.) The inter-release time and execution time distributions are updated

after each job of a conditionally admitted task completes. When the profile of the

probability distribution functions are known to within the required tolerance, the

task is unconditionally admitted to the system.1

We note that maintaining the information necessary to compute distributions

1To ensure that the system does not prematurely consider a distribution accurate, some mini-
mum number of jobs need to be executed.

178



is costly in terms of both processing time and memory. One approach to limiting

the cost is to maintain a circular buffer of past history from which the distributions

can be computed. The buffer is either empty initially or it is primed with default

values. The capacity of the buffer represents a window on the behavior of the

task. Too small a buffer size and the of behavior the system will not be adequately

captured. Too large a buffer size and the cost, both in time and space, will be

excessive.

If the range of values can be estimated, the storage of individual values and

repeated computation of the distribution can be eliminated. The estimated range

is divided into a suitable number of bins with the first and last bins representing

values below and above the range, respectively. Each time a job completes, the

count within the bin in which the value falls is incremented. The total number of

values is also incremented. The probability represented by each bin is computed

as the number of values which lie within the range of the bin divided by the total

number of values. When the change in probability of all bins is within some

threshold, the distribution is deemed sufficiently accurate for use in admission

control.

Another approach, which may work for some systems and which requires very

little time or space, is to maintain a few descriptive statistics, e.g., minimum,

maximum, mean, and variance. SupposeX is the random variable representing

the quantity of interest. Initially, the sample minimum isX−
0 = +∞, the sample

maximum isX+
0 = −∞, the sample mean is̄X0 = 0, and the sample variance

is S2
0 = 0. The statistics are updated with each new sample according to the

following recursive definitions [73]2.

X−
i+1 = min(Xi+1, X

−
i ) (C.1)

X+
i+1 = max(Xi+1, X

+
i ) (C.2)

X̄i+1 = X̄i +
Xi+1 − X̄i

i + 1
(C.3)

S2
i+1 = (1− 1

i
)S2

i + (i + 1)(X̄i+1 − X̄i)
2 (C.4)

When the relative change in the statistics are less than some threshold, the task can

be admitted. The minimum inter-release time and maximum execution time can
2There are subtle issues involving numerical roundoff when computing the mean and vari-

ance of a sample sequence using recursive definitions implemented with floating point numbers.
We will ignore these issues because the effect is likely to be less than that caused by the use of
descriptive statistics in the place of actual distributions.
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be used for admission control via the Liu and Layland bound or Time Demand

Analysis. Alternatively, the task can apply for admission based on guaranteed

execution and inter-release times chosen from within the observed bounds. In

that case, the inter-release times and execution times can be assumed to follow

a normal distribution and Statistical Time Demand Analysis used to estimate the

percentage of deadlines which will be met.

We have shown how the use of adaptive statistical characterization mecha-

nisms can be employed to gather information for use with admission control algo-

rithms. However, the mechanisms may also be used to adapt the characterizations

of tasks for scheduling purposes. While the statistical characterization of the be-

havior of a task measured within a finite window of jobs can be used directly, we

note that the programmatic interface to the scheduler may be simplified, at the

expense of providing less direct control, by specifying a percentage of the range

between the minimum and average inter-release times and a percentage between

the average and maximum execution time as indications to the scheduler whether

the program prefers improved utilization or guaranteed deadlines.3 We call the

two percentages theperiod controland theexecution time control, respectively.

(A further simplification arises when we define the previous two controls in terms

of a single parameter.) Once the inter-release time and execution time parameters

have been estimated through conditional execution, the guaranteed inter-release

and execution times are computed from the specified controls and unconditional

admission requested. Although the percentage of deadlines met is not a linear

function of the controls in general, the value of a control is correlated to the per-

formance and provides a means of influencing the processor allocation given to a

task in the absence of known statistical properties.

Another advantage of specifying period and execution time controls rather

than guaranteed inter-release times and execution times is that the guaranteed

inter-release times and execution times can change as the behavior of the task

changes. To do this requires continued measurements after a task has been uncon-

ditionally admitted. If circular buffers of values are maintained while computing

the statistical properties of task, the effect of a particular value can be retired be-

fore it is removed from the buffer, thereby allowing adaptation as the program

behavior changes. Alternatively, an exponential decay can be used in the place of

the execution history contained in the circular buffers.

3Slightly more complex specifications involving variances are also possible with attendant im-
provements in accuracy.
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Adaptations which increase the minimum or average inter-release times or

adaptations which decrease the average or maximum execution times can be en-

acted immediately without causing the average miss rates of other tasks to in-

crease. Adaptations in the opposite direction require that the system evaluate

whether the guaranteed inter-release time can be decreased or the guaranteed exe-

cution time can be increased without causing other tasks to miss more deadlines.
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Appendix D

Sums of Random Variables

Bounding sums of random variables has been the goal of an enormous amount

of research in statistics. The following are some results which can be used to

bound the sums of random variables representing the execution times of jobs in a

real-time system.

D.1 Chebyshev Inequality

The Chebyshev Inequality is commonly used to provide a bound on the proba-

bility distribution function of a random variable when only the mean or standard

deviation is known. For a derivation of the inequality or for alternative formula-

tions, see [46,74,75].

Lemma D.1.1 Given a random variableX with meanµ and varianceσ2, the

probability that a value ofX differs from the mean by more thanδ ≥ 0 is

P [|X − µ| ≥ δ] ≤ σ2

δ2

D.2 Bennett Inequality

The Bennett Inequality, as stated in [75], requires a zero mean for each random

variable in a sum of independent random variables. The formulation given here

allows a non-zero mean and corresponds directly to a probability distribution func-

tion.

Lemma D.2.1 Given independent random variables,X1, X2, . . ., Xn, with each

random variableXi having meanµi and varianceσ2
i , if all values ofXi are

182



bounded by a constantb such that|Xi − µi| ≤ b, for 1 ≤ i ≤ n, then the prob-

ability that a value ofXn = X1 + X2 + · · · + Xn differs from the mean ofXn,

denotedµn = µ1 + µ2 + · · ·+ µn, by more thanδ ≥ 0 is

P [Xn ≥ x] ≤ exp

(−nλ

2σ2
n

ψ

(√
nλb

σ2
n

))

ψ(y) =
2

y2
[(1 + y) log (1 + y)− y]

wherex = λ
√

n + µn andσs
n = σ2

1 + σ2
2 + · · ·+ σ2

n is the variance ofXn.

D.3 Bernstein Inequality

The Bernstein Inequality, as stated in [75], requires a zero mean for each random

variable in a sum of independent random variables. The formulation given here

allows a non-zero mean and follows directly by way of algebraic manipulation.

Lemma D.3.1 Given independent random variables,X1, X2, . . ., Xn, with each

random variableXi having meanµi and varianceσ2
i , if

E [|Xi − µi|n] ≤ vin!cn−2

2

for n ≥ 2 andc > 0, then the probability that a value ofXn = X1+X2+· · ·+Xn

differs from the mean ofXn, denotedµn = µ1 +µ2 + · · ·+µn, by more thanδ ≥ 0

is

P [Xn − µn ≥ δ] ≤ exp

( −δ2

2(vn + cδ)

)

whereδ = λ
√

n vn = v1 + v2 + · · ·+ vn. Note thatc = b/3 is suggested in [75],

if |Xi − µi| ≤ b.

D.4 Berry-Esseen Inequality

The Berry-Esseen Inequality, as stated in [75, 76], requires a zero mean for each

random variable in a sum of independent random variables. The formulation given

here allows a non-zero mean and follows by way of algebraic manipulation.
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Lemma D.4.1 Given independent random variables,X1, X2, . . ., Xn, with each

random variableXi having meanµi and varianceσ2
i , if the absolute third central

moment,E [|Xi − µi|3
]

of each random variables is finite, then the probability

distribution function ofXn = X1 + X2 + · · · + Xn differs from the probability

distribution function of a normal distribution with the same mean and variance as

Xn, denotedµn = µ1 + µ2 + · · ·+ µn andσ2
n = σ2

1 + σ2
2 + · · ·+ σ2

n, by

sup
x∈R

|P [Xn ≤ x]−N(x)| ≤ c
E [|Xi − µi|3

]

σ3
n

.

The smallest known value ofc for which the inequality holds when distributions

are identical is

c =

√
10 + 3

6
√

2π
.

When distributions are not identical, the smallest known valuec = 0.7975.

D.5 Hoeffding Inequality

The Hoeffding Inequality (see [75]) requires each distribution to be bounded, but

does not require a knowledge of the means and variances.

Lemma D.5.1 Given independent random variables,X1, X2, . . ., Xn. If each

random variableXi has boundsai ≤ Xi ≤ bi, then the probability that a

value ofXn = X1 + X2 + · · · + Xn differs from the mean ofXn, denoted

µn = µ1 + µ2 + · · ·+ µn, by more thanδ ≥ 0 is

P [Xn ≥ x] ≤ exp

( −2δ2

∑n
i=1(bi − ai)2

)

wherex = δ + µn andδ = λ
√

n.
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Appendix E

Implementing STDA

In this chapter, we discuss an implementation of STDA in the PERTS real-time

prototyping environment [77, 78]. PERTS is a tool which facilitates the design

and analysis of real-time systems by applying theoretical results, where possible,

or by simulating the system to determine its behavior. The issues we discuss are

not particular to PERTS and must be addressed by any implementation of STDA.

One of the main operations in STDA is the summing of random variables rep-

resenting execution times. It is well known that the probability density function

of the sum of two statistically independent random variables can be obtained by

convolutionf(t) = g(t)⊗h(t).The direct way to perform convolution on a digital

computer is to discretize the integral using a constant spacing between samples

fi =
∑N−1

j=0 gihi−j. Computingf by direct convolution is anO(N2) operation,

whereN is the number of points in the discrete representations ofg andh. It

has long been known that the asymptotic cost of convolution can be reduced by

applying theConvolution Theoremg(t)⊗ h(t) ⇐⇒ G(f)H(f), whereG(f) and

H(f) are the Fourier transforms ofg(t) andh(t) respectively. The result is an

O(N log2 N) algorithm for convolution. There are many descriptions and imple-

mentations of the FFT readily available (e.g., [51,79,80]).

Three issues need to be considered when using FFT to perform convolution.

First, the discrete representations of the probability density functions being con-

volved must have the same sampling rate and consist of the same number of

points. In STDA, the vectors containing the discretized probability density func-

tions will almost always have different sample rates and numbers of points as

a result of the conditioning process. Thus new vectors must be formed by in-

terpolation before every convolution. Since interpolation can be performed in

O(N log2 N) time, the asymptotic complexity of convolution is not increased.
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Second, sufficient “zero padding” is required to ensure that aliasing does not oc-

cur [80]. The length of the vectors are also required to be a power of two for

most implementations of the FFT. As a result, the vectors are likely to be large

and sparsely populated in our application. Our experience indicates that the vec-

tors are often only 50–75% filled with non-zero data. The final issue concerns the

number of points used to represent the probability density functions for sufficient

accuracy.

Figure E.1(a) shows the error between the computed and exact distributions of

response time corresponding to Fig. 4.1(b) as a function of the number of points in

the discrete representation. Figure E.1(b) shows the computation time as a func-

tion of the number of points. In order to maintain acceptable interactive response,

we have chosen a default of 1024 points in the PERTS implementation of STDA,

which yields a maximum absolute error of slightly over 0.005 for this example.
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