
On the Interaction of High-Performance Network Protocol Stacks
with Multicore Architectures

Ganesh Chunangad Narayanaswamy

Thesis submitted to the faculty of the
Department of Computer Science

at the
Virginia Polytechnic Institute and State University

In partial fulfillment of the requirements for the degree of

Master of Science
in

Computer Science and Applications

Committee Members:

Wu-chun Feng (Chair)
Pavan Balaji

Dimitrios S. Nikolopoulos

April 18, 2008
Blacksburg, Virginia

Keywords: Multicore Architectures, High-Performance Networking,
Process-to-Core Mapping, Network Contention, Runtime Adaptation

c© Copyright 2008, Ganesh C. Narayanaswamy

On the Interaction of High-Performance Network Protocol Stacks
with Multicore Architectures

Ganesh Chunangad Narayanaswamy

ABSTRACT

Multicore architectures have been one of the primary driving forces in the recent rapid growth

in high-end computing systems, contributing to its growing scales and capabilities. With signifi-

cant enhancements in high-speed networking technologies and protocol stacks which support these

high-end systems, a growing need to understand the interaction between them closely is realized.

Since these two components have been designed mostly independently, there tend to have often

serious and surprising interactions that result in heavy asymmetry in the effective capability of the

different cores, thereby degrading the performance for various applications. Similarly, depending

on the communication pattern of the application and the layout of processes across nodes, these

interactions could potentially introduce network scalability issues, which is also an important con-

cern for system designers.

In this thesis, we analyze these asymmetric interactions and propose and design a novel sys-

tems level management framework called SIMMer (Systems Interaction Mapping Manager) that

automatically monitors these interactions and dynamically manages the mapping of processes on

processor cores to transparently maximize application performance. Performance analysis of SIM-

Mer shows that it can improve the communication performance of applications by more than two-

fold and the overall application performance by 18%. We further analyze the impact of contention

in network and processor resources and relate it to the communication pattern of the application.

Insights learnt from these analyses can lead to efficient runtime configurations for scientific appli-

cations on multicore architectures.

To my parents

To my family and friends

To the thirty-two Hokies
who lost their lives on 04/16/07

iii

Acknowledgements

I have had the fortune of being part of an academically stimulating community here at Virginia
Tech for the past two years. Many people have given me intellectual support and stimulation in de-
veloping my ideas, and while it may never be possible to thank them enough for their contributions,
its a pleasure to acknowledge those people who have made this thesis possible.

Its difficult to overstate my gratitude to my advisor, Dr. Wu-chun Feng for his kind support, prob-
ing critiques and remarkable patience. He has always motivated me to think independently and
believed in my capabilities. I would like to thank him for nominating me for the Outstanding
Master’s Student Award in the College of Engineering. I owe a huge amount of gratitude to Dr.
Pavan Balaji, my committee member, for his guidance and never ending willingness to help me. It
truly has been an exceptionally rewarding experience working with him. My sincere thanks to Dr.
Dimitrios S. Nikolopoulos, for his valuable suggestions and contributions towards this thesis and
also for the gratifying experience of working with him as a teaching assistant during my first year.

My sincere appreciation to all the other faculty in the Department of Computer Science at Virginia
Tech with whom I have had the good fortune to interact with and work on their projects. My sincere
thanks are due to Dr. William Gropp, Dr. Rajeev Thakur, and Dr. Darius Buntinas at Argonne
National Laboratory for the intellectually stimulating experience as a research intern at ANL.

I am indebted to Tom Scogland for working with me and helping me out with various aspects of
this work. My thanks also to Ashwin Aji, Jeremy Archuleta and other members of the Synergy
Laboratory for their valuable comments and suggestions. I am also grateful to my numerous other
friends who have helped me directly or indirectly in my research work.

Finally, I dedicate this thesis to my parents for their love and for providing me with the means
to learn and understand as an individual. I cannot thank them enough for the values they have
inculcated in me, without which I would not the person I am today. I am grateful to God for
providing me with the strength and intellectual capability to complete this thesis.

iv

Contents

1 Statement of the Problem 1
1.1 Motivation . 1
1.2 Contributions . 4
1.3 Outline . 4

2 Background 6
2.1 Overview of Multicore Architectures . 6
2.2 Operating System Viewpoint of the Communication Stack 8
2.3 Architectural Viewpoint of the Communication Stack 9
2.4 Process Allocation Schemes . 10

3 Intelligent Mapping of Processes to Cores 13
3.1 Experimental Testbed . 14
3.2 Analysis with Microbenchmarks . 15

3.2.1 MPI Bandwidth Evaluation . 15
3.2.2 MPI Latency Evaluation . 16
3.2.3 Analysis of Results . 18

3.3 FFTW Scientific Library . 20
3.4 Intelligent Static Mapping of Processes to Cores 21

3.4.1 GROMACS Application . 22
3.4.2 LAMMPS Application . 24

4 The SIMMer Framework 30
4.1 Identifying the Symptoms of Protocol Stack and Multicore Architecture Interaction 30
4.2 Intelligent Process-to-Core Mapping with SIMMer 32

4.2.1 The SIMMer Framework . 32
4.2.2 Current Implementation . 35
4.2.3 Metrics for Mapping Decisions . 35

4.3 Experimental Evaluation . 36
4.3.1 Microbenchmark Evaluation . 37
4.3.2 Evaluating Applications and Scientific Libraries 43
4.3.3 Evaluation of NAS Parallel Benchmarks 44

4.4 Discussion on Alternative Multicore Architectures 45

v

5 Network and Processor Resource Contention in Multicore Architectures 48
5.1 Overview of Myrinet Network . 49
5.2 Experimental Setup . 49
5.3 Configurations Used in Experiments . 50
5.4 Impact of Network Contention . 52
5.5 Impact of Processor Contention . 56
5.6 Analysis of Allocation Schemes . 58
5.7 Application Processing Pattern Analysis . 60
5.8 Summary of Resource Contention Analysis . 62

6 Related Work 63

7 Conclusions 66
7.1 Finishing Remarks . 66
7.2 Future Work . 67

Bibliography 71

vi

List of Figures

2.1 Intel Dual-core Dual-processor System . 7
2.2 Process Allocation Schemes: (a) Cyclic and (b) Blocked 11

3.1 MPI Bandwidth: (a) Intel Cluster and (b) AMD Cluster 14
3.2 MPI Latencies with TCP/IP (Intel Cluster): (a) Small Messages and (b) Large

Messages . 16
3.3 MPI Latencies with TCP/IP (AMD Cluster): (a) Small Messages and (b) Large

Messages . 17
3.4 Analysis of MPI Bandwidth: (a) Interrupts and (b) Cache Misses 19
3.5 FFTW Performance for All Configurations . 21
3.6 GROMACS Application Time Breakdown with TCP/IP: (a) Combination A and

(b) Combination A’ . 23
3.7 GROMACS LZM Protein System Application . 24
3.8 LAMMPS Communication Time Breakdown with TCP/IP: (a) Combination A and

(b) Combination B . 25
3.9 LAMMPS Communication Pattern (8 processes) 26
3.10 LAMMPS Timeline . 27
3.11 LAMMPS Performance . 28

4.1 The SIMMer Component Architecture . 33
4.2 Communication Idleness Benchmark Performance 38
4.3 Communication Idleness Benchmark Division of Time: (a) Vanilla MPICH2 and

(b) SIMMer-enabled MPICH2 . 39
4.4 Out-of-Sync Communication Benchmark Performance 40
4.5 MPI Data Buffering Time with the Out-of-Sync Communication Benchmark 41
4.6 Cache Locality Benchmark: (a) Performance and (b) Cache Miss Analysis 42
4.7 Normalized Application Performance: (a) Overall Execution Time and (b) Com-

munication Time . 43
4.8 Performance Evaluation of NAS Parallel Benchmarks 44
4.9 Local to Remote Memory Transfers for Various Types of Process Switches 46

5.1 Evaluation of Network Contention: (a) 16X1 vs 8X2 Co-Processor and (b) 8X2
Virtual Processor vs 4X4 . 52

vii

5.2 Network Communication Data Size: (a) 16X1 vs 8X2 Co-Processor and (b) 8X2
Virtual Processor vs 4X4 . 55

5.3 Analysis of Processor Contention: (a) Performance and (b) L2 Cache Misses . . . 56
5.4 CPU Stall Cycles . 57
5.5 Cyclic vs Blocked: Performance . 58
5.6 Cyclic vs Blocked: Network Data Size . 60
5.7 CG Communication Pattern . 61

viii

List of Tables

3.1 Process-Core Mappings Used in GROMACS LZM 23
3.2 Process-Core Mappings Used in LAMMPS Application 25

5.1 Normalized Total Network Communication Time for 16X1 and 8X2 Co-Processor 53
5.2 Normalized Total Network Communication Time for 8X2 Virtual Processor and 4X4 55
5.3 Network Communication Time for Cyclic and Blocked Allocation 59

ix

Chapter 1

Statement of the Problem

1.1 Motivation

As scientific applications grow in scale and complexity, high-end computing (HEC) systems that

are required to meet their demands have grown accordingly. Such systems are increasingly being

characterized by nodes built out of commodity components, which enables rapid deployment and

performance scaling. Two of the significant trends in the HEC domain over the past few years have

been the dramatic improvements in processor technology (with the advent of multicore architec-

tures) and in networking technology (using high-performance networks).

Multicore architectures have established themselves as a major step to the growing scales and

capabilities of modern HEC systems and contributed significantly to its rapid growth [30, 21].

Increasing power consumption, heat dissipation, and cooling requirements with complex single-

core processors have forced processor designers to turn to multicore architectures as a solution for

keeping up with Moore’s Law. Multicore processor architectures are bringing the performance of

a large multiprocessor system down to the chip level, providing a significant level of throughput

in a small package with lower power consumption. The commodity market already has quad-core

architectures from Intel [25] and AMD [6]. Processors with larger core counts, such as the IBM

1

Cell [12], Intel Terascale [26], and Sun Niagara [32], are also gaining in popularity.

On the other hand, high-performance networks such as 10-Gigabit Ethernet (10GE) [19,18,16],

Myrinet [31], and InfiniBand (IB) [24] are increasingly becoming an integral part of large-scale

systems with respect to scalability and performance. These network technologies use highly op-

timized protocols and hardware implementations to realize low-latency and high-bandwidth com-

munications. As these two trends emerge, the interaction between them and the its impact on

application performance needs to be understood clearly. Also, potential bottlenecks caused by this

interaction needs to be identified and possible solutions must be explored.

While many of the multicore architectures have symmetric computational capabilities and

physical parameters, the high-performance communication protocol stacks running on them fre-

quently fails to maintain that symmetry up to the application level. Specifically, it handles incom-

ing packets independent of the application receiving the packets and the processing core running

the application process. A significant amount of processing is statically fixed to a single core in the

system, resulting in processing imbalance and consequently adverse effects on applications in two

primary aspects. First, the effective capability that the overloaded core can provide to the applica-

tion is reduced. Second, the data that is processed by the protocol stack is now localized to this

core rather than to the process to which it belongs, thus resulting in cache misses for the process.

Accordingly, depending on which application process is assigned to which core, the performance

of the application can vary significantly.

While multicore architectures improve the computational throughput of a node by increasing

the number of processes that reside on the same physical node, they share the same physical net-

work resulting in increased network utilization. At the same time, however, given the increase in

intra-node shared-memory communication for processes residing on the same node, network us-

age can potentially decrease significantly. Based on these two conflicting possibilities, we need to

understand whether modern multicore architectures add extra requirements on networks requiring

future HEC systems to scale up network capacity further, or whether the increase in intra-node

2

shared memory communication compensates for the increase in network contention, thus not re-

quiring any changes. Therefore, depending on the application communication pattern and the lay-

out of processes across nodes, interesting questions arise about network resource contention and

scalability. Also, the impact of network contention needs to be analyzed against that of contention

in processor resources itself (e.g. shared caches, issue queues etc).

Thus, in the first part of this thesis, we investigate the interactions caused by the asymmetry

between multicore architectures and application processing requirements with microbenchmarks

and real life applications. Then, we utilize the lessons learned from this analysis to design an in-

telligent Systems Interaction Mapping Manager (SIMMer) framework within the Message Passing

Interface (MPI) communication library, which is the de facto parallel programming model in high-

end computing systems for a vast majority of scientific applications. SIMMer efficiently monitors

these interactions and dynamically manages the mapping of processes onto processor cores so as

to maximize performance, thereby transparently hiding the details to the programmer or the end

user. Specifically, the SIMMer library uses several heuristics to identify asymmetry between the

effective capabilities of cores (i.e. either computational capabilities or cache behavior) and the

processing requirements of the application. If substantial asymmetric behavior is detected, SIM-

Mer transparently re-maps the processes, thereby achieving improved performance. In cases where

significant asymmetric interactions are not detected within a node, we study various interactions

across nodes that result in network contention. Thus, in the second part of this thesis, we inves-

tigate the influence of contention in network and processor resources in application performance.

We then relate our results with various process allocation schemes and application communication

patterns. Both these analyses, when looked at holistically, can lead to intelligent layout of processes

both within a node and across nodes and hence result in better run-time execution environments

for applications on multicore architectures.

3

1.2 Contributions

This thesis has the following significant contributions:

• Demonstration and evaluation of various asymmetric interactions between multicore archi-

tectures and high-performance network protocol stacks.

• Synthesis and evaluation of intelligent mappings of processes to cores based on insights

learnt from the types of these interactions.

• Proposal, design and implementation of SIMMer, a framework which profiles parallel ap-

plications and applies intelligent process-core mappings automatically to eliminate possible

asymmetric interactions between multicore architectures and application requirements.

• Validation of SIMMer against microbenchmarks and scientific applications and show how it

can improve application communication performance by more than two-fold.

• Analysis of network and processor resource contention issues and relate it to process layout

schemes and application communication patterns.

• The insights gained from all of the above can be applied in designing better run-time config-

urations for applications on multicore architectures.

1.3 Outline

The rest of this thesis is arranged as follows. In Chapter 2, we present some background on mul-

ticore architectures and the operating system and architectural viewpoint of the communication

stack. In Chapter 3, we analyze the asymmetric interactions between multicore architectures and

the protocol stack and synthesize intelligent mapping of processes to cores for various applications.

In Chapter 4, we present the design of the SIMMer library and evaluate it against a few microbench-

marks and applications. Chapter 5 studies the impact of resource contention on the processor and

4

the network caused by protocol stacks on multicore architectures. Chapter 6 presents some related

work and we follow it up with our concluding remarks in Chapter 7.

5

Chapter 2

Background

In this section, we provide a detailed description of the interaction of multicore architectures with

the TCP/IP communication stack residing in the operating system (OS). We start with an overview

of the relevant architectural features of multicore processors in Section 2.1. Then, we provide

the operating system and architectural viewpoints of the behavior of the TCP/IP stack and their

interactions in Sections 2.2 and 2.3. We also provide some background on process allocation

schemes and their importance in Section 2.4.

2.1 Overview of Multicore Architectures

For many years, hardware manufacturers have been replicating components on processors to create

multiple pathways allowing more than one instruction to run concurrently with others. Duplicate

arithmetic and floating point units, co-processing units, and multiple thread contexts (SMT) on the

same processing die are examples of such replication. Multicore processors are considered to be

the next step in such hardware replication where two or more (mostly) independent execution units

are combined onto the same integrated circuit.

Multicore architectures are at a high level similar to multi-processor architectures. The oper-

6

ating system deals with multiple cores in the same way as multiple processors by allocating one

process to each core at a time. Arbitration of shared resources between the cores happens com-

pletely in hardware with no intervention from the operating system. However, multicore processors

are also very different from multi-processor systems. For example, in multicore processors, both

computation units are integrated on the same die. Thus, communication between these computa-

tion units does not have to go outside the die and hence is independent of the die pin overhead.

Further, architectures such as the current Intel multicores, as shown in Figure 2.1, provide a shared

cache between the different cores on the same die. This makes communication even simpler by

eliminating the need for complicated cache-coherency protocols found in multi-cache systems (al-

though level 1 cache coherency cannot be avoided).

Core 0 Core 1

L1 Cache L1 Cache

L2 Cache

Processor 0

Main memory

System Bus

Core 2 Core 3

L1 Cache L1 Cache

L2 Cache

Processor 1

Figure 2.1: Intel Dual-core Dual-processor

System

However, multicore processors also have the dis-

advantage of more shared resources as compared to

multi-processor systems. That is, multicore proces-

sors might require different cores on a processor die

to block waiting for local shared resources to get

freed when it is being used by a different core. Such

contention is even higher when the ratio of number

of cores on the system increases as compared to the

other resources (e.g., multicore systems with multi-

ple thread contexts). Further, for architectures such

as AMD NUMA, each processor in a multi-processor system has access to its own memory and

hence overall memory bandwidth essentially doubles with the number of processors. However, for

multicore systems, the overall memory bandwidth does not change.

7

2.2 Operating System Viewpoint of the Communication Stack

Like most communication protocol suites, the TCP/IP protocol suite is a combination of different

protocols at various levels, with each layer responsible for a different facet of the communications.

To allow standard Unix I/O system calls such as read() and write() to operate with net-

work connections, the file-system and networking facilities are integrated at the system-call level.

Network connections represented by sockets are accessed through a descriptor in the same way

an open file is accessed through a descriptor. This allows the standard file-system calls such as

read() and write(), as well as network-specific system calls such as send() and recv(),

to work with a descriptor associated with a socket.

On the transmission side, the message is copied into the socket buffer, data integrity ensured

through checksum computation (to form the TCP checksum) and passed on to the underlying

IP layer. The checksum computation on the sender side is usually performed during the copy

operation to maximize the cache effect (Jacobson’s optimization). The IP layer fragments the data

to MTU-sized chunks, constructs the IP header, and passes on the IP datagram to the device driver.

The device driver then makes a descriptor for the packet and passes the descriptor to the network

adapter using a PIO (Programmed I/O) operation. The network adapter performs a DMA operation

to move the actual data indicated by the descriptor from the socket buffer to the network adapter

buffer and raises an interrupt to inform the device driver that it has finished moving the data. The

network adapter then ships the data with the link header to the physical network.

On the receiver side, the network adapter DMAs received segments to the socket buffer and

raises an interrupt to inform the device driver. The device driver hands it over to the IP layer using

a software interrupt mechanism. The interrupt handler for this software interrupt has a higher

priority compared to the rest of the kernel. The IP layer verifies the IP checksum, and if the

integrity is maintained, defragments the data segments to form the complete TCP message and

hands it over to the TCP layer. The TCP layer verifies the data integrity of the message and places

8

it in the socket buffer. When the application calls the read() operation, the data is copied from

the socket buffer to the application buffer.

2.3 Architectural Viewpoint of the Communication Stack

While the TCP/IP data and control paths are relatively straightforward with respect to the operating

system viewpoint, they have a number of implications from an architectural viewpoint, specifically

relevant to multicore architectures. In this section, we present the compute processing and cache-

related impact that the architecture can have on the stack.

Processing Impact: As described in Section 2.2, when a packet arrives, the network adapter places

the data in memory and raises an interrupt to inform the device driver about the arrival of the packet.

For most system architectures, the processing core to which the interrupt is directed is either stat-

ically or randomly chosen using utilities such as IRQ balance. However, in both approaches, the

chosen core to which the interrupt is assigned need not be the same core on which the process

performing the relevant communication resides. Further, the core which receives the hardware

interrupt performs the relevant protocol processing for the incoming data as well. This includes

data integrity checks, connection demultiplexing, and other such compute intensive operations that

can significantly impact the computational load on the chosen core. Also, the interrupt scheduling

granularity of these utilities is many times coarser than the granularity with which interrupts are

received. Thus, any interrupts received between scheduling periods will still be delivered to the

same core.

Note that this protocol processing computational load is in addition to whatever computation

the application process itself performs. Thus, the chosen core tends to have a reduced effective

computational capability as compared to the remaining cores as far as the application processes

are concerned.

Cache Transaction Impact: Aspects of TCP/IP processing such as data copies and checksum-

9

based data integrity require the protocol stack to touch the data before handing it over to the appli-

cation (through the socket buffer). For example, on the receiver side, the network adapter places

(DMAs) the incoming data in memory and raises an interrupt to the device driver. However, when

the TCP/IP stack performs a checksum of this data, it may have to fetch the data into its local

cache. Once the checksum is complete, when the application process has to read this data, it has

to fetch this data again to its local cache. That is, if the application process resides on the same

die as the core performing the protocol processing, then the data is already on the die and can be

quickly accessed. However, if the application process resides on a different die, then the data has

to be fetched using a cache-to-cache transfer (over the system bus in the Intel architecture).

At this point, the impact of protocol offloaded stacks such as Internet Wide Area RDMA Pro-

tocol (iWARP) needs to be understood clearly. Such stacks use the hardware capabilities of the

network interface card (NIC) to offload the protocol stack onto the NIC and also bypass the operat-

ing system in delivering the packet directly to the application. Thus, such stacks may not have any

of the impacts discussed above because of extra hardware capabilities provided by the NIC. Nev-

ertheless, the interaction of such stacks with multicore architectures introduce a different kind of

interaction — that of network contention. Since such offloaded NICs do not have similar hardware

capabilities as the computational cores themselves, they may face some contention when handling

all the network packets for all the computational cores in the system. We study the impact of this

interaction in the second part of the thesis in Chapter 5.

2.4 Process Allocation Schemes

In a multicore cluster, the processes can be arranged among the nodes in several ways. Applications

typically have fixed communication patterns, and allocation schemes provide us the flexibility of

modifying which processes get collocated on the same node. Thus, depending on the allocation

scheme, the amount of network sharing might increase or decrease. We look at two common

10

allocation schemes in this thesis: cyclic and blocked allocation.

Node 0

Core 0

0
Core 1

4
Core 2

8
Core 3

12

Node 1

Core 0

1
Core 1

5
Core 2

9
Core 3

13

Node 2

Core 0

2
Core 1

6
Core 2

10
Core 3

14

Node 3

Core 0

3
Core 1

7
Core 2

11
Core 3

15

Node 0

Core 0

0
Core 1

1
Core 2

2
Core 3

3

Node 1

Core 0

4
Core 1

5
Core 2

6
Core 3

7

Node 2

Core 0

8
Core 1

9
Core 2

10
Core 3

11

Node 3

Core 0

12
Core 1

13
Core 2

14
Core 3

15

Figure 2.2: Process Allocation Schemes: (a) Cyclic and (b) Blocked

Cyclic allocation allocates each subsequent process cyclically to the next node in the ring of

nodes. For example, with a total of 16 processes and 4 nodes, process ranks 0, 4, 8 and 12 will get

assigned to node 0, ranks 1, 5, 9 and 13 to node 1, and so on. This allocation ensures good load

balance among all nodes. In blocked allocation, blocks of processes are assigned to each node in

turn. For example, with 16 processes, 4 nodes and a block size of 4, process ranks 0, 1, 2 and 3 get

assigned to node 0, ranks 4, 5, 6 and 7 to node 1, and so on. Blocked allocation typically enables

full utilization of all available resources of a node. Figures 2.2 (a) and (b) show cyclic and blocked

allocation with an example of 16 processes and 4 nodes with 4 cores per node.

The process allocation scheme can play an important role in the kind of communication per-

formed by a process. For example, for an application that does mostly neighbor communication in

a 1-D chain of processes, blocked allocation will perform better. The reason is that the neighbor

processes that a process communicates with are more likely to be on the same node. The result can

be significant reduction in network communication, thereby potentially improving performance.

Since the number of neighbors is constant, adding more cores to a node does not have scope for

improving locality further.

In a 2-D grid of N × N processes performing neighbor communication with M cores in a

11

node, again blocked allocation works better than cyclic allocation in localizing more neighbors

when N > M . When M and N are equal, the same number of neighbors co-exist with both cyclic

and blocked allocation. The same holds true for a 3-D grid of processes as well. Thus, for neighbor

communication, more neighbors will co-exist with blocked allocation.

As another example, for an application which performs tree-like regular long distance com-

munication, a cyclic allocation strategy might be a better choice, as it might localize many of

the communicating processes within a node. For applications running on large clusters with hi-

erarchical layers of switches, allocation schemes that localize branches of trees within the lowest

hierarchy might be more beneficial.

12

Chapter 3

Intelligent Mapping of Processes to Cores

In this chapter, we investigate the performance impact of the interaction of multicore architectures

with network communication stacks as introduced in Section 2.3 . This analysis will provide a

better understanding about these interactions and how we can design solutions to prevent them

from adversely affecting application performance. We use the analysis developed in this section to

design the intelligent mapping of processes to cores and, in the next section, develop a library to

transparently handle these interactions. Our analysis in this section is with the TCP/IP stack over

10-Gigabit Ethernet.

After describing our experimental setup in Section 3.1, we perform a microbenchmark based

analysis in Section 3.2. We then show the impact of this interaction on the FFTW Fast Fourier

Transformation library in Section 3.3. In Section 3.4, we follow this up with results on the GRO-

MACS and LAMMPS molecular dynamics applications and design intelligent process-core map-

pings which can improve application performance.

13

3.1 Experimental Testbed

Before looking at the evaluation results, we describe the two cluster setups that we used in our

study.

Intel Cluster: Two Dell Poweredge 2950 servers, each equipped with two dual-core Intel Xeon

2.66-GHz processors. Each server has 4 GB of 667-MHz DDR2 SDRAM. The four cores in each

system are organized as cores 0 and 2 on processor 0, and cores 1 and 3 on processor 1 (as reported

by /proc/cpuinfo). Each processor has a 4-MB shared L2 cache. The operating system used

is Fedora Core 6 with kernel version 2.6.18.

AMD Cluster: Two custom-built, dual-processor, dual-core AMD Opteron 2.6-GHz systems.

Each system has 4 GB of DDR2 667-MHz SDRAM. Each core has a separate 1-MB L2 cache.

Both machines run SuSE 10 with kernel version 2.6.13. In this case, the cores are numbered as

cores 0 and 1 on processor 0 and cores 2 and 3 on processor 1.

Network and Software: Both clusters used NetEffect 10GE adapters installed on a x8 PCI-

Express slot and connected back-to-back. For our evaluation, we used the MPICH2 (version

1.0.5p4) implementation of MPI.

0

500

1000

1500

2000

2500

3000

3500

1 4 16 64 256 1K 4K 16K 64K 256K 1M 4M

B
an

d
w

id
th

 (
M

b
p

s)

Message size (bytes)

Core 0 * Core 1

Core 2 Core 3

* Interrupt processing core

0

500

1000

1500

2000

2500

3000

1 4 16 64 256 1K 4K 16K 64K 256K 1M 4M

B
an

d
w

id
th

 (
M

b
p

s)

Message size (bytes)

Core 0 * Core 1

Core 2 Core 3

* Interrupt processing core

Figure 3.1: MPI Bandwidth: (a) Intel Cluster and (b) AMD Cluster

14

3.2 Analysis with Microbenchmarks

Here we evaluate performance of the clusters with respect to bandwidth and latency, using the ap-

propriate microbenchmarks from the OSU MPI benchmark suite. We choose the OSU benchmark

suite for their simplicity and ease of analysis. These evaluations are discussed in Sections 3.2.1

and 3.2.2. We then analyze the processing and cache transaction impacts of these results in Sec-

tion 3.2.3. Each benchmark was run at least 5 times, and the average of all runs is reported.

3.2.1 MPI Bandwidth Evaluation

In the bandwidth microbenchmark, the sender sends a single message of size S to the receiver many

times. On receiving all the messages, the receiver sends back one small message to the sender

informing that it has received the messages. The sender measures the total time and calculates the

amount of data that it had transmitted per unit time.

Figures 3.1(a) and 3.1(b) show the MPI bandwidth achieved by TCP/IP on the Intel and AMD

clusters respectively, when scheduled on each of the four cores in the system. Both the sender

and the receiver process are scheduled on the same core number but on different servers. For

the Intel cluster, Figure 3.1(a) shows several trends that are of interest to us. First, when the

communication process is scheduled on core 0, bandwidth performance barely reaches 2 Gbps.

Second, the benchmark performs slightly better when the communication process is scheduled on

either core 1 or core 3, that is, cores on the second CPU of the Intel cluster. In this case, the

benchmark achieves about 2.2 Gbps. Third, the benchmark achieves the best performance when

the communication process is scheduled on core 2, that is, the second core of the first CPU. In this

case, the benchmark achieves about 3 Gbps bandwidth, about 50% better than when the processes

are scheduled on core 0.

The trends with the AMD cluster, as shown in Figure 3.1(b), are very similar to those observed

in the Intel cluster. The interrupt processing core on the first CPU (core 0) achieves low perfor-

15

mance, the cores on the second CPU (cores 2 and 3) achieve moderate performance, and the second

core of the first CPU (core 1) achieves the best performance.

These results indicate that the interaction of the communication protocol stack with the multi-

core architecture can have significant impact on performance.

15

20

25

30

35

40

45

0 1 2 4 8 16 32 64 128 256 512 1K 2K 4K

La
te

n
cy

 (
u

se
c)

Message size (bytes)

Core 0 * Core 1

Core 2 Core 3

* Interrupt processing core

0

4000

8000

12000

16000

20000

128K 256K 512K 1M 2M 4M

La
te

n
cy

 (
u

se
c)

Message size (bytes)

Core 0 * Core 1

Core 2 Core 3

* Interrupt processing core

Figure 3.2: MPI Latencies with TCP/IP (Intel Cluster): (a) Small Messages and (b) Large Mes-
sages

3.2.2 MPI Latency Evaluation

In the MPI latency benchmark, the sender transmits a message of size S to the receiver, which in

turn sends back another message of the same size. This is repeated several times and the total time

averaged over the number of iterations – this gives the average round-trip time. The ping-pong

latency reported here is one-half of the round-trip time.

Figure 3.2 illustrates the MPI latency achieved over TCP/IP when scheduled on each of the

four cores in the Intel cluster. Again, both the sender and receiver processes are scheduled on the

same core number but on different servers. To better illustrate the results, we have separated them

into two groups. Figures 3.2(a) and 3.2(b) show the measurements for small and large messages,

respectively.

Figure 3.2(a) shows that the best performance is achieved when the communication process is

16

15

20

25

30

35

40

45

50

0 1 2 4 8 16 32 64 128 256 512 1K 2K 4K

La
te

n
cy

 (
u

se
c)

Message size (bytes)

Core 0 * Core 1

Core 2 Core 3

* Interrupt processing core

0

5000

10000

15000

20000

25000

128K 256K 512K 1M 2M 4M

La
te

n
cy

 (
u

se
c)

Message size (bytes)

Core 0 * Core 1

Core 2 Core 3

* Interrupt processing core

Figure 3.3: MPI Latencies with TCP/IP (AMD Cluster): (a) Small Messages and (b) Large Mes-
sages

on core 2. When the communication process is scheduled on core 0, however, performance drops

only slightly, unlike the MPI bandwidth results. When the communication process is scheduled on

cores 1 or 3, we see that the performance achieved is the worst.

The difference in the performance of core 0 for the latency test compared to the bandwidth

test is attributed to the synchronous nature of the benchmark. That is, for small messages, data

is sent out as soon as send() is called. By the time the sender receives the pong message, the

TCP/IP stack is idle (no outstanding data) and ready to transfer the next message. On the receive

side, when the interrupt occurs, the application process is usually waiting for the data. Thus, the

interrupt does not interfere with other computation and hurt performance. Also, core 0 has the

data in cache after the protocol processing; thus, if the application is scheduled on the same core,

it can utilize this cached data, resulting in higher performance for core 0 as compared to cores 1

and 3. For large messages, however, the benchmark is no longer synchronous. That is, as the data

is being copied into the sockets buffer, the TCP/IP stack continues to transmit it. Thus, both the

asynchronous kernel thread (which is always statically scheduled on core 0) and the application

thread might be active at the same time, resulting in loss of performance. This is demonstrated in

Figure 3.2(b).

17

Figures 3.3(a) and 3.3(b) show the MPI latencies for small and large messages, respectively on

the AMD cluster. We see that the AMD cluster also follows the same trends as the Intel cluster.

The interrupt processing core (core 0), results in the best performance for small messages, while its

performance quickly deteriorates for large messages. Core 1, the second core on the first processor,

achieves good performances for both small and large messages.

Both the MPI bandwidth and latency results show the presence of significant interaction be-

tween multicore architectures and the communication stack, and this interaction also results in

considerable performance difference. This showcases the need to further analyze these results to

understand these interactions in-depth. With this goal in mind, we analyze the microbenchmark

results to gain further insights in the next section.

3.2.3 Analysis of Results

To further understand the microbenchmark results, we analyze in this section, the processing ca-

pability and cache transaction impact of the system while running the MPI bandwidth benchmark.

To measure the impact on processing capability, we profile the number of hardware interrupts re-

ceived by each core. This will represent the amount of protocol processing overhead incurred by

each core, and hence the reduction in the effective capability of each core. The number of L2 cache

misses incurred by each core will suffice to give us a very good idea of the cache sharing impact.

Since both the Intel and AMD clusters show similar performance behavior, we look only at results

on the Intel cluster.

Analysis of Processing Impact

To measure the interrupts generated by TCP/IP during the execution of the MPI bandwidth bench-

mark, we used the Performance Application Programming Interface (PAPI) [3] library (version

3.5.0). Figure 3.4 (a) illustrates the number of interrupts per message observed during the execu-

tion of the MPI bandwidth benchmark, which was scheduled on the different cores. As shown in

18

0.01

0.1

1

10

100

1000

10000

100000

1 4 16 64 256 1024 4k 16k 64k 256k 1M 4M

In
te

rr
u

p
ts

 /
m

e
ss

ag
e

 (
Lo

g
sc

al
e

)

Message size (bytes)

Core 0 Core 1

Core 2 Core 3

-50

0

50

100

150

200

250

1 4 16 64 256 1024 4k 16k 64k 256k 1M 4M

P
e

rc
e

n
ta

ge
 d

if
fe

re
n

ce

Message size (bytes)

Core 0 Core 1

Core 2 Core 3

Figure 3.4: Analysis of MPI Bandwidth: (a) Interrupts and (b) Cache Misses

the figure, core 0 gets more than 99% of all the interrupts. This observation is in accordance with

the processing impact of the communication stack as discussed in Section 2.3. That is, the effective

capability of the interrupt processing core gets drastically reduced.

Based on the large number of interrupts, coupled with the asynchronous processing of the

TCP/IP stack by the interrupt processing core, its capability to perform application processing

gets affected. This results in reduced performance of the MPI bandwidth benchmark when the

application process is scheduled on the interrupt processing core.

Analysis of Cache Transaction Impact

As described in Section 2.1, multicore architectures provide opportunities for core-to-core data

sharing either through shared caches (e.g., Intel architecture) or separate on-chip caches with fast

connectivity (e.g., AMD architecture). In the case of TCP/IP, when interrupt processing is per-

formed by a particular core, the data is fetched to its cache to allow for data-touching tasks such as

checksum verification. Thus, if the application process performing the communication is sched-

uled on the same CPU but a different core, it can take advantage of the fast core-to-core on-die

communication. In the Intel architecture, since the L2 cache is shared, we expect this to be re-

flected as substantially fewer L2 cache misses.

19

We verify our hypothesis by using PAPI to measure L2 cache misses. Figure 3.4 (b) shows

the percentage difference in the number of L2 cache misses observed on each core compared to

that on core 0. We observe that cores 0 and 2 (processor 0) have significantly lower L2 cache

misses than do cores 1 and 3 (processor 1). These cache misses demonstrate the reason for the

lower performance of the MPI bandwidth benchmark when the process is scheduled on either core

1 or core 3, as compared to when it is scheduled on core 2. The percentage difference in cache

misses drops with larger message sizes because the absolute number of cache misses on the cores

increases with message size as they cannot fit in the cache.

3.3 FFTW Scientific Library

The analysis and results for microbenchmarks explained in the previous section serve as good

starting points for our study. In order to understand the implications of the interactions at the user

level, we evaluate the performance of user-level libraries and applications. Towards this effect, we

investigate a heavily used scientific library in this section.

Fourier Transform libraries are extensively used in several high-end scientific computing ap-

plications, especially those which rely on periodicity of data volumes in multiple dimensions (e.g.,

signal processing, numerical libraries). Due to its high computational complexity, scientists typi-

cally use Fast Fourier Transform (FFT) algorithms to compute the Fourier transform and its inverse.

FFTW [20] is a popular parallel implementation of FFT.

For our evaluation, we use the benchFFT benchmark on the Intel cluster and utilize all cores

of both nodes to consider a more realistic scenario. Since 4 cores exist in each node, we have a

total of 4! × 4! = 576 different configurations of mapping each process to every possible core.

Figure 3.5 shows the sorted performance of the benchFFT benchmark of the FFTW library for all

configurations of process-core mappings. Here we define performance as the time taken for the

benchmark to finish execution. We can observe a significant variation in performance between

20

2.25

2.3

2.35

2.4

2.45

2.5

2.55

2.6

2.65

2.7

2.75

A
ve

ra
ge

 t
im

e
 in

 s
e

co
n

d
s

All configurations

Figure 3.5: FFTW Performance for All Configurations

different configurations. The worst-case performance difference is 14.8% between the best and

worst configuration. This result shows that the exact mapping of processes to cores can affect the

performance of user-level libraries also significantly. Given that FFT methods have been adopted

extensively by many applications, even a small performance degradation of the FFT library can

impair the performance of applications to a large extent.

3.4 Intelligent Static Mapping of Processes to Cores

The results and analysis developed in previous sections shows the scope for performance improve-

ment if we can design mappings of processes to cores in an intelligent and informed manner.

With the backdrop of analysis developed in Section 3.2.3 for the microbenchmarks, in this section,

we embark upon the job of identifying the characteristics of different processes of real applica-

tions. Towards this goal, we describe factors and techniques for determining intelligent process-

core mappings which can deliver better performance. We use this analysis to synthesize optimal

21

process-core mappings for two real-life molecular dynamics simulation applications, GROMACS

and LAMMPS, described in Sections 3.4.1 and 3.4.2, respectively. We show that we can achieve

noticeable performance improvement with such synthesized mappings versus a random mapping.

3.4.1 GROMACS Application

Overview: GROMACS (GROningen MAchine for Chemical Simulations) [11] is a molecular

dynamics application developed at Groningen University, primarily designed to simulate the dy-

namics of millions of biochemical particles in a molecular structure. GROMACS is optimized to-

wards locality of processes. It splits the particles in the overall molecular structure into segments,

distributes different segments to different processes, and each process simulates the dynamics of

the particles within its segment. If a particle interacts with another particle that is not within the

process’ local segment, MPI communication is used to exchange information regarding the inter-

action between the two processes. The overall simulation time is broken into many steps, and

performance is reported as the number of nanoseconds per day of simulation time (ns/day), hence

higher values denote better performance. For our measurements, we use the GROMACS LZM

application.

Analysis and Evaluation: We start by observing that, similar to the FFTW benchmark, several

different combinations of process-to-core mappings are possible. Some of these combinations

perform worse as compared to the others. To understand the reasoning behind this, we analyze

two such combinations (combinations A and B in Table 3.1). We profile the GROMACS LZM

application using mpiP [2] and MPE [1] to get statistical analyses of the time spent in different

MPI routines. Figure 3.6(a) shows the application time breakdown when running GROMACS

with combination A. To simplify our analysis, we show the main components of computation and

MPI Wait, while grouping together all the other MPI calls into a single component. We observe

several trends from the graph. First, process 0 (running on core 0) spends a substantial amount of

time in computation (more than 60%) while spending minimal amount of time in MPI Wait. At

22

the same time, processes 6 and 7 spend a large amount of time (more than 40%) waiting. That is,

load imbalance occurs in the application.

Table 3.1: Process-Core Mappings Used in GROMACS LZM

Machine 1 Machine 2
Process Ranks Process Ranks

Mapping Core 0 Core 1 Core 2 Core 3 Core 0 Core 1 Core 2 Core 3
A 0 4 2 6 7 3 5 1
A’ 6 4 2 0 7 3 5 1
B 0 2 4 6 5 1 3 7
B’ 2 0 4 6 5 1 3 7

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 1 2 3 4 5 6 7
Process ranks

Computation MPI_Wait Other MPI calls

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 1 2 3 4 5 6 7
Process ranks

Computation MPI_Wait Other MPI calls

Figure 3.6: GROMACS Application Time Breakdown with TCP/IP: (a) Combination A and (b)
Combination A’

To rectify this load imbalance, we swap the core mappings for processes 0 and 6 to form

combination A’ (Table 3.1). In this new combination, since process 6 is idle for a long time (in

MPI Wait), we expect the additional interrupts and protocol processing on the core to avoid affect-

ing this process too much. We notice, however, that process 7 has a large idle time in spite of being

scheduled on core 0 of the second machine. We attribute this to the inherent load imbalance in

the application. Figure 3.6(b) shows the application time breakup with combination A’. We notice

that the load imbalance is less in this new combination. Figure 3.7 shows the overall performance

23

of GROMACS with the above process-core mappings. We observe that the performance of the

intelligently scheduled combination (A’) is nearly 11% better as compared to combination A. The

trend is similar for combination B as well.

12.5

13

13.5

14

14.5

15

15.5

16

A A' B B'

n
s/

d
ay

Process-core combinations

Figure 3.7: GROMACS LZM Protein System Application

This demonstrates that with an intelligent mapping of processes to cores, we can significantly

improve the performance of the application when executing on TCP/IP.

3.4.2 LAMMPS Application

Overviews: LAMMPS [33] is a molecular dynamics simulator developed at Sandia National Lab-

oratory. It uses spatial decomposition techniques to partition the simulation domain into small 3D

sub-domains, one of which is assigned to each processor. This allows it to run large problems in a

scalable way wherein both memory and execution speed scale linearly with the number of atoms

being simulated. We use the Lennard-Jones liquid simulation with LAMMPS scaled up 64 times

for our evaluation and use the communication time for measuring performance.

Analysis and Evaluation: We again analyze two difference combinations (Table 3.2). Fig-

24

Table 3.2: Process-Core Mappings Used in LAMMPS Application

Machine 1 Machine 2
Process Ranks Process Ranks

Mapping Core 0 Core 1 Core 2 Core 3 Core 0 Core 1 Core 2 Core 3
A 2 0 4 6 1 3 5 7
A’ 0 2 4 6 1 3 5 7
B 0 4 2 6 7 3 5 1
B’ 6 4 2 0 7 3 5 1

ure 3.8(a) illustrates the split-up in the communication time spent by LAMMPS while running

on processes-to-core combination A. As shown in the figure, processes 1 and 2 (which run on core

0) spend about 70% of the communication time in MPI Wait while the other processes spend about

80% of the communication time in MPI Send. This result is completely counterintuitive as com-

pared to GROMACS: we expect the processes not running on core 0 to spend a long time waiting,

while processes running on core 0 to perform a lot of computation.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 1 2 3 4 5 6 7
Process ranks

MPI_Wait MPI_Send Other MPI calls

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 1 2 3 4 5 6 7
Process ranks

MPI_Wait MPI_Send Other MPI calls

Figure 3.8: LAMMPS Communication Time Breakdown with TCP/IP: (a) Combination A and (b)
Combination B

To understand this behavior, we further profile the communication code. We observe that all

processes regularly exchange data with only three other processes (Figure 3.9) and that the sizes of

the messages exchanged are quite large (around 256 KB). Figure 3.10 illustrates the communica-

25

tion timeline for LAMMPS. As shown in the figure, process X is running on the slower core (which

receives most of the interrupts), while process Y is running on a different core. We describe the

communication timeline in different steps (broken up in the figure using dotted horizontal lines).

Step 1: Initially, both processes post receive buffers using MPI Irecv() and send data to each other

using MPI Send(). On MPI Send(), data is copied into a temporary MPI send buffer. As the data

is being copied, if space exists in the TCP/IP socket buffer, this data is also handed over to TCP/IP.

If not, the data is buffered in the MPI temporary send buffer till more space is created.

0 2 4 6

1 3 5 7

Network

Figure 3.9: LAMMPS Communication Pattern

(8 processes)

Step 2: After returning from MPI Send(), all

processes call MPI Wait() to wait until all the

data from their peer processes have been re-

ceived. While waiting for data to be received, if

any data is buffered in the MPI temporary send

buffer and has not been sent out yet, MPI at-

tempts to send that out as well. Now, if the re-

ceiver is able to read the data fast enough, the

TCP/IP socket buffer is emptied quickly, and the

sender can hand over all the data to be sent to

TCP/IP. If the receiver is not able to read the

data fast enough, however, the TCP/IP socket buffer fills up and all the data to be transmitted can-

not be handed over to TCP/IP before returning from MPI Wait(). In our example, since process

X is slower, it does not read the incoming data fast enough, thus causing process Y to return from

MPI Wait() without handing over all the data to be sent to TCP/IP.

Step 3: Once out of MPI Wait(), process Y proceeds with its computation. However, since it

did not hand over all the data that needs to be transmitted to TCP/IP, some of the data is left

untransmitted. Thus, process X cannot return from its MPI Wait() and has to wait for process Y to

flush the data out.

26

Step 4: After completing the computation, when process Y tries to send the next chunk of data,

the previous data is flushed out. Process X receives this flushed-out data, returns from MPI Wait(),

and goes ahead with its computation. Now, since process X is not actively receiving data (since it

is performing computation), the TCP/IP socket buffer, and eventually process Y’s MPI temporary

send buffer gets filled up. At this stage, since process Y does not have enough buffer space to copy

the application data, it has to wait before returning from MPI Send().

x14x15 y14y15
x13

x11
y13

y11

y12

y15
y13

x15 x14y11

y14

y12x12

y15
y21y22 y24y25y23

y23
y21y22

y24y25

y15y14

MPI_Send returns, but
not all packets sent out
(Process X cannot read

fast enough)

MPI_Send completes.
Socket recv buffer full.

Y15 not sent out
by process Y

Remaining packets
not sent until next

MPI call

Next MPI_Send

Application buffer
not free as socket

buffers are full

y25y24

Process X
(running on slower core)

MPI_SendMPI_Send

MPI_Wait receives
data

Application buffer
flushed and

MPI_Send returns.

Network

MPI
Buffer

Socket
send

buffer

Application Buffer

Socket recv buffer

MPI_Wait
(waiting for remaining

pkts)

Compute Phase

Compute Phase
MPI_Send waits

(application buffer
is not yet free)

Process Y

MPI
Buffer

Socket
send

buffer

Socket recv buffer

Application Buffer

Figure 3.10: LAMMPS Timeline

Step 5: After process X returns from its computation, when it calls MPI Wait(), it starts receiving

data allowing process Y to complete its MPI Send().

27

From the above description, we observe that the processes X and Y are running out of phase.

That is, when process Y performs computation, X waits in MPI Wait, and when X performs com-

putation, process Y waits in MPI Send. This out-of-phase behavior causes unnecessary waits,

resulting in loss of application communication performance. We note that this behavior happens

because the effective capability of the cores on which run processes X and Y execute do not match.

To rectify this situation, we need only ensure that the cores that execute processes X and Y match

in capability.

0

2

4

6

8

10

12

A A' B B'

C
o

m
m

u
n

ic
at

io
n

 T
im

e
 (

se
co

n
d

s)

Process-core combinations

Figure 3.11: LAMMPS Performance

In Table 3.2, for combination A, we see that swapping processes 0 and 2 gives us the desired

effect (note that each process communicates with only one process outside its node). Figure 3.8(b)

demonstrates that this new intelligent combination can reduce the imbalance to a large extent.

Figure 3.11 shows the communication performance of LAMMPS with the above core map-

pings. We observe more than two-fold performance difference between combinations A and A’ as

well as combinations B and B’.

In summary, with both GROMACS and LAMMPS, we identified application characteristics

28

that caused pronounced interaction between the communication stack and the architecture. We

formulated intelligent process-core mapping configurations for these applications, which were able

to substantially improve application performance.

29

Chapter 4

The SIMMer Framework

In this chapter, we formalize the intelligent mapping strategies developed in the previous chapter

and implement them in a framework that monitors and manages the interactions. Based on the

processing and cache transaction impacts which we discussed in Section 2.3, we expand them

into symptoms of interaction perceivable in application behavior. We describe these symptoms in

Section 4.1. In section 4.2, we present our approach to mitigate such effects and the design of the

SIMMer framework. We perform a thorough evaluation of SIMMer with microbenchmarks and

applications in Section 4.3. We conclude this chapter with a discussion on alternative multicore

architectures and the relevance of SIMMer in such architectures.

4.1 Identifying the Symptoms of Protocol Stack and Multicore

Architecture Interaction

Directly understanding the actual interactions between the communication protocol stack and the

multicore architecture is complicated and requires detailed monitoring of various aspects of the

kernel and hardware as well as correlation between the various events. Instead, we take an indirect

approach to understand the interactions by monitoring for symptoms in the application behavior

30

that are triggered by known interactions, instead of monitoring the interactions themselves. We

should note that a certain interaction can result in a symptom. However, the occurrence of the

symptom does not mean that the interaction has taken place. That is, each symptom can have a

number of causes that could have triggered it.

In this section, we discuss the various symptoms that we have to identify in order to catch the

different interactions. In Section 4.2, we describe our approach to monitor these symptoms and

minimize the impact of the interactions through appropriate metrics.

Symptom 1 (Communication Idleness): As noted in Section 2.3, if a core is busy performing

TCP/IP protocol processing, the number of compute cycles it can allocate to the application process

is lower, thus slowing down the process allocated to this core. So, a remote process that is trying

to communicate with this slower process would observe longer communication delays (and be

idle for longer periods) as compared to other communicating pairs. This symptom is referred to

as communication idleness. Again, as noted earlier, communication idleness can occur due to a

number of reasons including native imbalance in the application communication model itself.

Symptom 2 (Out-of-Sync Communication): Communication middleware such as MPI performs

internal buffering of data before communicating. Assuming both the sender and receiver have

equal computational capabilities, there would not be any backlog of data at the sender, and the

MPI internal buffering would not be utilized. Let us consider a case where process A sends data

to process B and both processes compute for a long time. Then process B sends data to process

A and again both processes compute for a long time. Now, suppose process B is slower than

process A. In this case, process A would have to buffer the data since process B cannot receive

it as fast as it is sent out by process A. Thus, process A attempts to send the data and goes off to

perform its computation. After its computation, when it tries to receive data from process B, it

sees that the previous data that it attempted to send is still buffered and sends it out. During the

time when process A was computing, process B just waits to receive the data. Now, when the data

is flushed out, process B receives it and goes off to perform its computation, when process A is

31

still waiting to receive its data. This behavior is caused because though processes A and B are

performing similar tasks, they are slightly out-of-sync because of the difference in their effective

computational capabilities, resulting in large wait times.

Symptom 3 (Cache Locality): As mentioned in Section 2.3, when a core performs TCP/IP protocol

processing, it fetches the data to its cache in order to perform the checksum data integrity. Thus,

if one process is actively working on the data that is being communicated, while other processes

are not (suppose they are working on some other data), the first process would likely notice more

cache misses than the rest. That is, the data needed by this process is not locally available and has

to be fetched from another core’s cache.

4.2 Intelligent Process-to-Core Mapping with SIMMer

This section describes our intelligent Systems Interaction Mapping Manager (SIMMer) framework

and its associated monitoring metrics.

4.2.1 The SIMMer Framework

The SIMMer library (Figure 4.1) is an interactive monitoring, sharing, and analysis framework

that can be tied into existing communication middleware such as MPI. The framework itself deals

with the monitoring, sharing, and analysis components while the actual metrics that are used for

the decision making are separately pluggable, as we will describe in Section 4.2.3.

Interaction Monitoring: The interaction monitoring module is responsible for monitoring the

different components within the system. This includes system-specific information (hardware in-

terrupts, software signals), communication middleware-specific functionality (data buffering time

and other internal stack overheads) and processor performance counters (cache misses). The mon-

itoring module utilizes existing libraries for performing some of the instrumentation, while relying

on in-built functionality for the rest. For example, processor performance counters are measured

32

Information Monitoring Information Sharing

Information Analysis & Decision Making

Process

Local Memory
Communication

Distributed
Communication

System

Communication Library

Figure 4.1: The SIMMer Component Architecture

using the Performance Application Programming Interface (PAPI [3]) and system-specific infor-

mation through the proc file-system. Communication library-specific information can be moni-

tored through specific profiling libraries if available. For example, MPI-specific information can

be monitored through libraries such as PERUSE [4], but several of the current MPI implementa-

tions do not support them yet. Thus, we utilize in-built profiling functionality for such information.

In order to minimize monitoring overhead, the monitoring module dynamically enables only

portions of monitoring that are required for the metrics being used. For example, if no plugged in

metric requires processor performance counters, such information is not monitored to reduce the

overhead.

Information Sharing: The information sharing module is responsible for the exchange of state

or data between different processes in the application. Several forms of information sharing are

supported, including point-to-point sharing models (for sending data to a specific process), col-

lective sharing models (for sending data to a group of processes), and bulletin board models (for

publishing events that can be asynchronously read by other processes). For each of these models,

33

both intra-node communication (between cores on the same machine) and inter-node communica-

tion (between cores on different machines) are provided. Inter-node communication is designed

to avoid out-of-band communication by making use of added fields in the communication mid-

dleware header itself. Whenever a packet is sent, the sender adds the information that needs to

be shared within the header. The receiver upon receiving the header shares this information using

regular out-of-band intra-node communication. This approach has the advantage that any single

inter-node communication can share information about all processes on the node. Intra-node com-

munication, on the other hand, has been designed and optimized completely using shared memory

without requiring locks or communication blocking of any kind. This provides a great deal more

flexibility and reduces the communication overhead of our framework significantly.

Information Analysis: The monitored interaction information collected by each process and

shared with other processes is raw in the sense that no correlation exists between the different

pieces of information by comparing locally monitored events with those from other processes.

Further, the monitored information is low-level data that needs to be summarized to more abstract

information before they can be used by the different metrics. The information analysis module

performs such analysis and summarization of the monitored information. This module also allows

for prioritization between the different plugged in metrics for cases where an application shows

multiple symptoms whose independent analyses often times conflict with each other. Finally, each

monitoring event has a certain degree of inaccuracy associated with it. Thus, some monitoring

events have more data noise than others. To handle such issues, the analysis module allows dif-

ferent monitors to define confidence levels for their monitored data through environment variables.

Thus, depending on the number of events that are received, the analysis module can accept or

discard different events based on their confidence levels, using appropriate thresholds.

34

4.2.2 Current Implementation

SIMMer is a generic framework that can be implemented for any architecture or communication

library. Referring to Figure 4.1, the Information Monitoring component is the only component

that is specific to the system or middleware. This is because the information that is monitored can

be exclusive to a communication library or architecture. Given that MPI is the de facto parallel

programming model for a majority of scientific applications in high-performance computing, we

focus our implementation on the MPI programming model on the Intel and AMD multicore archi-

tectures. Specifically, we implement SIMMer within MPICH2 [28] because of prior expertise with

MPICH2 and also because it is open source. For the rest of this chapter, SIMMer refers to our

implementation on the MPICH2 communication middleware.

4.2.3 Metrics for Mapping Decisions

In this section, we discuss different metrics that can be plugged into the SIMMer library. Specifi-

cally, we focus on metrics that address the symptoms noted in Section 4.1.

Communication Idleness Metric: This metric is defined based on the communication idleness

symptom defined in Section 4.1. The main idea of this metric is to calculate the ratio of the

idle time (waiting for communication) and computation time of different processes. This metric

utilizes the communication library monitoring capability of the SIMMer framework to determine

this ratio. The idle time is measured as the time between the entry and exit of each blocking

MPI call within MPI’s progress engine. Similarly, the computation time is measured as the time

between the exit and entry of each blocking MPI call. The computation time, thus represents the

amount of computation done by the application process, assuming that the process does not block

or wait on any other resource.

Therefore, the computational idleness metric represents the idleness experienced by each pro-

cess. For example, a process which has a high communication idleness can allow for other compu-

35

tations such as protocol processing. Comparison of this idleness factor between different processes

provides the idea of which processes are more suited for sharing the protocol processing overhead.

So, the idleness metric needs to be compared only for processes running on the same node, and

this metric only uses the intra-node communication channel as discussed in Section 4.2.1.

Out-of-sync Communication Metric: The out-of-sync metric captures the time of computation

performed with unsent data in each process’ internal MPI buffers, and compares that with the wait

time of other processes. As described in Section 4.1, this metric represents the case where unsent

data followed by a long compute phase results in high wait times on the receive process. Whenever

the computation time (with buffered data) is above a user-defined threshold, a message is sent to

all processes informing them of this symptom. A similar message is sent whenever the wait time

of a process is above a user-defined threshold. If communicating peer processes observe these

conditions on either side, a leader process is dynamically chosen, which then analyzes the data

and intelligently decides on the best mapping possible. It then informs the new mapping to all

processes concerned.

Cache Locality Metric: The cache locality metric utilizes the L2 cache misses monitored by the

SIMMer library. This metric is specific to the processor architecture and relies on the locality of

cache between different core pairs. If the number of cache misses for a process is more than the

user-defined confidence level while that of another process is smaller, then these two processes

can be swapped as long as the communicating process moves closer to the core performing the

protocol stack processing. Again, this metric only relies on intra-node communication as it is only

used to switch processes to the respective cores within the same node.

4.3 Experimental Evaluation

In this section, we evaluate our proposed approach with multiple microbenchmarks in Section 4.3.1

and the GROMACS and LAMMPS applications and FFTW Fourier Transform library in Sec-

36

tion 4.3.2. The platform we used for our evaluation is the same Intel cluster that we described

and evaluated in Section 3.1. Each microbenchmark possesses a variable component which we

found to have an effect on the performance of the benchmark and the asymmetry we have been

monitoring, the applications lack this because they do not expose such malleable characteristics.

Performance results of all microbenchmarks and applications are presented as a comparison of the

MPI library without SIMMer (henceforth called vanilla MPICH2) and the SIMMer-enabled MPI

library.

4.3.1 Microbenchmark Evaluation

We designed three microbenchmarks to illustrate the impact of each of the symptoms described in

Section 4.1 and to represent common processing patterns seen in real-world applications. These

microbenchmarks are then used to demonstrate the benefits achievable by the SIMMer library in

these cases. We then evaluate the SIMMer library with real applications and scientific libraries to

show its impact in the real world.

Communication Idleness Benchmark

The communication idleness benchmark stresses the performance impact of delays due to irregular

communication patterns. In this benchmark, processes communicate in pairs using MPI Send and

MPI Recv, with each pair performing different ratios of computation between each communication

step. Thus, a pair that is performing less computation spends more time in an idle state waiting

for communication. Such processes are less impacted by the protocol processing overhead on the

same core as compared to other processes which spend more of their time doing computation.

Figure 4.2 shows the performance of the communication idleness benchmark using SIMMer-

enabled MPICH2 as compared to vanilla MPICH2. We define the idleness ratio to be the ratio

between the computation done by the pair doing the most computation and the pair doing the least.

This ratio hence represents the amount of computational irregularity in the benchmark. Thus an

37

17

19

21

23

25

27

29

31

33

35

1 1.33 2 4

Ti
m

e
 (

se
co

n
d

s)

Idleness ratio

Vanilla SIMMer

Figure 4.2: Communication Idleness Benchmark Performance

idleness ratio of 1 represents that all the processes in the benchmark perform the same amount of

computation, while a value of 4 represents one communicating pair performs up to 4 times more

computation than another one.

In Figure 4.2, we plot the time taken for the benchmark to execute against various idleness ra-

tios. We observe that both vanilla and SIMMer-enabled MPICH2 have the same performance when

the idleness ratio is 1. This is expected given that an idleness ratio of 1 represents a completely

symmetric benchmark with no irregularity in computation or communication. Thus there exists

no scope for SIMMer to improve performance in this case. But we observe that as the idleness

ratio increases with vanilla MPICH2, the performance of the benchmark heavily depends on the

mapping of processes to cores. That dependence makes it possible for SIMMer to use the disparity

in computation to achieve a more optimal arrangement, reducing runtime by nearly 40%.

To further analyze the behavior of the benchmark, we show the distribution of time spent in the

different parts of communication in Figures 4.3(a) and 4.3(b) for vanilla MPICH2 and SIMMer-

enabled MPICH2 respectively. For consistency, both are based on the same initial mapping of

38

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 1 2 3 4 5 6 7
Process ranks

Computation Wait Communication

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 1 2 3 4 5 6 7
Process ranks

Computation Wait Communication

Figure 4.3: Communication Idleness Benchmark Division of Time: (a) Vanilla MPICH2 and (b)
SIMMer-enabled MPICH2

processes to cores with an idleness ratio of 4. Figure 4.3(a) shows that the wait times for the dif-

ferent processes are quite variable. This means that some processes spend a lot of time waiting

for their peer processes to respond, while other processes are overloaded with application com-

putation as well as protocol processing overhead. Figure 4.3(b), on the other hand, illustrates the

distribution for SIMMer-enabled MPICH2. SIMMer keeps the wait times more even across the

varied processes, thus reducing the overhead seen by the application.

Out-of-Sync Communication Benchmark

This benchmark emulates the behavior where two application processes perform a large syn-

chronous data transfer and a large computation immediately thereafter. Because some of the user

data may be buffered, usually due to a full buffer in a lower-level communication layer, the pro-

cesses may go out-of-sync. In this case that refers to the situation where the sending and receiving

processes are not assigned to cores with equal effective capabilities. This would result in data being

buffered at the sender node, causing the send to be delayed, which results in the receiver process

waiting not only for the amount of time it takes to send the data, but also for the time needed to

complete the computation which is logically after the send and receive pair completes.

Figure 4.4 shows the performance of the out-of-sync communication benchmark using vanilla

39

0

20

40

60

80

100

120

256K 512K 1M 2M 4M

Ti
m

e
 (

Se
co

n
d

s)

Message Size

Vanilla SIMMer

Figure 4.4: Out-of-Sync Communication Benchmark Performance

MPICH2 and SIMMer-enabled MPICH2, by comparing the total time in seconds to execute the

benchmark with various message size used in the communication step. Similar to the communi-

cation idleness benchmark, SIMMer-enabled MPICH2 performs as well as or better than vanilla

MPICH2 in all cases. At message sizes up to 256 KB, both vanilla and SIMMer MPICH2 have

the same performance. This is because messages at and below 256 KB are sent out without buffer-

ing by MPICH2 (eager messages). Because of the absence of buffering until 256 KB, there can

be no out-of-sync behavior, which represents our base case where with no scope for performance

improvement. But for message sizes above 512 KB, we observe that SIMMer-enabled MPICH2

consistently outperforms vanilla MPICH2 by up to 80%.

Figure 4.5 analyzes the number of times data is buffered within the MPI library running under

the same initial conditions with and without SIMMer. As shown in the figure, the data buffering

time is almost an order-of-magnitude less when using SIMMer. When an out-of-sync message

occurs with SIMMer, the time taken is the same, but because SIMMer corrects the error in syn-

chronization, the out-of-sync behavior does not happen further times. This ultimately results in the

40

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81

Se
co

n
d

s
 B

lo
ck

e
d

Vanilla SIMMer

Figure 4.5: MPI Data Buffering Time with the Out-of-Sync Communication Benchmark

performance improvement demonstrated in Figure 4.4.

Cache Locality Benchmark

This benchmark stresses the cache locality of processes by doing the majority of the network com-

munication in certain processes in the application. Depending on which core the communicating

processes are mapped to, they may present the cache locality symptom discussed in Section 4.1,

which lets us know that the performance of the application is impacted. Hence, when the commu-

nicating processes are not on the same processor die as the core performing protocol processing,

they can potentially take a severe performance hit.

In our benchmark, processes communicate in pairs wherein two pairs of processes are engaged

in heavy inter-node communication, while the other pairs perform computation and exchange data

locally. We measure the performance as the time taken to complete a certain number of iterations

of the benchmark. This is portrayed in Figure 4.6(a) which showcases performance by comparing

the total execution time with a computational load factor, which is effectively a measure of the

41

amount of work done per run. We find that as the computational load factor increases, SIMMer

outperforms vanilla MPICH2 by as much as 29%.

We profile the benchmark and count the number of L2 cache misses observed by each process

to gain a further understanding of SIMMer’s behavior. Figure 4.6(b) shows the total number of

cache misses observed by the processes performing inter-node and intra-node communication, re-

spectively. For inter-node communication, we observe that the number of cache misses decreases

significantly when using SIMMer-enabled MPICH2 despite the migration and other overhead in-

curred in the process. The number of L2 cache misses fall in the case of intra-node communication

as well. This is because the intra-node communicating processes gain two benefits from SIMMer

that we did not initially anticipate. Firstly, their locality with respect to the local processes that

they communicate with improves. Secondly, moving them away from the die doing the inter-node

processing reduces the amount of cache thrashing they have to contend with. Thus SIMMer not

only improves the cache locality of the inter-node communicating processes, but it also improves

that of the intra-node communicating processes.

0

20

40

60

80

100

120

140

160

180

1 2 4 8

Ti
m

e
 (

Se
co

n
d

s)

Computational load factor

Vanilla SIMMer

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

Inter-node Intra-node

L2
 C

ac
h

e
 M

is
se

s

Vanilla SIMMer

Figure 4.6: Cache Locality Benchmark: (a) Performance and (b) Cache Miss Analysis

42

4.3.2 Evaluating Applications and Scientific Libraries

Here we evaluate the performance of two molecular dynamics applications, GROMACS and LAMMPS,

and the FFTW Fourier Transform library and demonstrate the performance benefits achievable us-

ing SIMMer. For an explanation of the applications, refer to Section 3.4.

0.75

0.8

0.85

0.9

0.95

1

1.05

GROMACS LAMMPS FFTW

N
o

rm
al

iz
e

d
 P

e
rf

o
rm

an
ce

Vanilla SIMMer

0

0.2

0.4

0.6

0.8

1

1.2

GROMACS LAMMPS FFTW

N
o

rm
al

iz
e

d
 C

o
m

m
u

n
ic

at
io

n

P
e

rf
o

rm
an

ce

Vanilla SIMMer

Figure 4.7: Normalized Application Performance: (a) Overall Execution Time and (b) Communi-
cation Time

Figure 4.7(a) illustrates the normalized overall execution time of SIMMer-enabled MPICH2 for

GROMACS, LAMMPS and FFTW, as compared to vanilla MPICH2. SIMMer-enabled MPICH2

can remap processes to the right cores so as to maximize performance resulting in performance

improvement across the board. The figure shows an 18% performance improvement with GRO-

MACS when using SIMMer. With LAMMPS, the overall performance improvement is about 10%.

For FFTW, we noticed only about 3-5% performance difference in our experiments. This is due to

the small communication volumes that are used for FFTW in our experiments. Given that SIMMer

monitors for interactions between the communication protocol stack and the multicore architec-

tures, small data volumes mean that such interaction would be small as well.

To better understand the benefits achieved by SIMMer, we profile the applications to measure

the time spent in communication by these applications. This comparison would provide us a bet-

ter understanding of the performance improvement in the communication stack that SIMMer can

achieve. Figure 4.7(b) shows the normalized communication time of SIMMer-enabled MPICH2

43

for GROMACS, LAMMPS and FFTW, as compared to vanilla MPICH2. SIMMer achieves more

than a two-fold improvement in communication performance with LAMMPS. For GROMACS, the

improvement is about 13%, while for FFTW, it is more than 3%.

In summary, we see a noticeable improvement in both overall performance and communication

performance with SIMMer-enabled MPICH2 for all three applications. This shows that intelli-

gent process-to-core mapping is a promising approach to minimize the impact of interactions of

protocol stacks with the multicore architecture, and in turn, to improve application performance

significantly in some cases.

4.3.3 Evaluation of NAS Parallel Benchmarks

0

0.2

0.4

0.6

0.8

1

1.2

CG FT IS LU MG

R
e

la
ti

ve
 p

e
rf

o
rm

an
ce

Vanilla SIMMer

Figure 4.8: Performance Evaluation of NAS Parallel Benchmarks

Next we evaluate the performance of the NAS Parallel Benchmarks [8] with SIMMer and

motivate the need for a broader investigation of interactions of high-performance networks with

multicore architectures. Figure 4.8 shows the relative performance of SIMMer-enabled MPICH2

44

for various NAS Parallel Benchmarks (Class B) relative to vanilla MPICH2. No significant perfor-

mance difference is observed when using SIMMer with the NAS Parallel Benchmarks. We believe

this is because of the absence of any significant asymmetric interactions between application pro-

cessing and multicore architectures within a node. This leads us to perform a broader investigation

of interactions across nodes by analyzing the impact of network resource contention. This analysis

is presented in Chapter 5.

4.4 Discussion on Alternative Multicore Architectures

While we demonstrated our approach for the Intel multicore architecture, the idea of intelligently

mapping application processes to the different cores in the system is relevant to most current and

next-generation multi- and many-core systems. For example, many-core accelerator systems such

as GPGPUs provide complicated hierarchical architectures. The new NVidia Tesla system, for

instance, has up to 16 GPUs, with each GPU having up to 128 processing cores. The cores in a GPU

are grouped together into different multi-processor blocks where cores within a block communicate

via fast shared memory, while cores across blocks share lower-speed global device memory. Cores

between different GPUs can only communicate through the system bus and host memory. Such

architectures are highly sensitive to the placement of processes on the different computational cores

and would likely benefit from a process-to-core mapping manager library such as SIMMer.

While AMD-based multicore architectures are quite similar to Intel-based multicore architec-

tures, a few key differences need to be addressed before they can utilize SIMMer-like process man-

agement libraries to improve performance. Specifically, the non-uniform memory access (NUMA)

model makes process management more complicated for AMD systems as compared to Intel sys-

tems. For example, on an Intel system, SIMMer could freely move any process to any core in the

system. However, on an AMD system, as soon as a process touches a memory buffer, this buffer

is allocated on its local memory. At this time, if the process is migrated to a different core that

45

does not sit on the same die, all of its memory accesses will be remote, thus adding a significant

performance overhead.

0

50

100

150

200

250

300

350

400

450

500

0 1 2 3 4 5 6 7

Lo
ca

l t
o

 r
e

m
o

te
 m

e
m

o
ry

 t
ra

n
sf

e
rs

 (
in

 m
ill

io
n

s)

Process Ranks

No switch Intra-socket switch Inter-socket switch

Figure 4.9: Local to Remote Memory Transfers for Various Types of Process Switches

To analyze this, we profile the LAMMPS application with PAPI to count various memory

access performance counters in our AMD cluster. Figure 4.9 shows the number of local to remote

memory transfers for process switches within the same processor and between processors. We

induce these types of switches in SIMMer in one of the nodes (the one running processes 0, 2, 4

and 6) by running the application with the relevant process-core mapping. We also compare it to

the baseline case where no switch is performed. The graph shows a 31-fold increase in non-local

memory transfers with an inter-socket process switch. This confirms that the NUMA model can

cause side effects that can nullify the potential performance improvement gained by SIMMer.

While the SIMMer-enabled MPICH2 can still be applied to AMD systems, aspects such as

page migration between different memory controllers need to be addressed from an implementation

perspective to achieve good performance. In its absence, SIMMer would be restricted to process

mapping only to cores within a die, which would potentially result in only limited improvement in

performance.

46

Finally, with the upcoming network-on-chip (NoC) architectures such as Intel XScale and ad-

vanced architectures such as the Intel Terascale and Tilera chips, intelligent process-to-core map-

ping will become especially important because of the huge number of cores that will reside on

the same die. For example, the Intel Terascale chip would accommodate 80 cores on the same die,

while a Tilera chip accommodates 64 cores on the same die. In such cases, an incorrect assignment

of a process to the wrong die could lead to a significant amount of inter-die communication which

would be largely limited by the die pin overhead. Intelligent process-to-core mapping, on the other

hand, can dynamically move towards for the right assignments and use them to achieve the best

performance.

47

Chapter 5

Network and Processor Resource

Contention in Multicore Architectures

In this chapter, we investigate the interaction of high-performance network protocol stacks with

multicore architectures from a different perspective by analyzing the impact of network resource

contention on application performance. We analyze this impact with three approaches. First we

look at the effect on performance due to sharing of network resources. Next, we perform a comple-

mentary analysis of contention of processor resources. Finally, we look at how changes in process

allocation schemes can affect the amount of network contention.

We choose the Myrinet network and the MX protocol for our study and use the NAS Parallel

Benchmark suite to evaluate performance. We present an overview of the Myrinet network in

Section 5.1. Sections 5.2 and 5.3 explain the experimental setup and the various configurations in

which we run our experiments. The analysis of network and processor contention are presented

in Sections 5.4 and 5.5, respectively. In Section 5.6, we show the analysis with different process

allocation schemes.

48

5.1 Overview of Myrinet Network

Myri-10G [31], the latest generation Myrinet developed by Myricom, is a low-latency wormhole-

routed high-speed interconnect that supports link speeds of 10 Gbps. The Myrinet network inter-

face card (NIC) has a user-programmable processor and DMA engines that ease the design and

customization of software communication stacks. MX (Myrinet Express) is a high-performance,

low-level, message-passing software interface tailored for Myrinet, which exploits the process-

ing capabilities embedded in the Myrinet NIC. The Myri-10G NICs, switches, and the associated

software support both Ethernet and Myrinet protocols at the link level. Users can run applica-

tions using MX-10G over Myrinet (MOM) with Myrinet switches or using MX-10G over Ethernet

(MODE) with 10-Gigabit Ethernet switches. The basic MX-10G communication primitives are

non-blocking send and receive operations.

Our network consists of the Myri-10G NICs connected by a 24-port Myrinet switch. The NICs

are connected to the host via a 133-MHz/64-bit PCI-X bus. They have a programmable LANai

processor running at 300-MHz with 2-MB onboard SRAM memory.

5.2 Experimental Setup

To study the impact of network resource contention, we used a bigger setup than used in previous

sections. Our setup consisted of a 16-node cluster, of which each node is a custom-built, dual-

processor, dual-core AMD Opteron 2.6-GHz system with 4 GB of DDR2 667-MHz SDRAM. The

four cores in each system are organized as cores 0 and 1 on processor 0 and cores 2 and 3 on

processor 1. Each core has a separate 1-MB L2 cache. All machines run Ubuntu Fiesty with kernel

version 2.6.19 and are equipped with Myri-10G network interface cards connected to a Myrinet

switch. The MPI library used is MPICH2-MX v1.0.6. All experiments were run at least three times

with the processor affinity of each process set to a fixed core to remove the impact of operating

system scheduling anomalies.

49

We use version 3.2.1 of the NAS benchmark suite. The results shown are for class B of the

NAS benchmarks, but we achieved similar results for classes A and C.

5.3 Configurations Used in Experiments

This section describes the configurations on which we ran our experiments. We use 16 processes

for all the NPB benchmarks because this covers the maximum number of benchmarks and con-

figurations for our setup. We note that 16 processes can be run on different configurations on a

multicore architecture with four cores. Picking only those with constant number of processes on a

node, we end up with three configurations:

• 16X1 – 16 nodes, one process on one of the four cores

• 8X2 – 8 nodes, 2 processes, on two of the four cores

• 4X4 – 4 nodes, 4 processes, one on each core

We observe that between each of the three configurations have increased levels of network

contention. With 16X1, no network contention is present since each node runs only one application

process. With 8X2, however, two processes in each node use the same network interface card.

Hence, the network contention with 8X2 is two times more than with the 16X1 case. With 4X4,

four processes use the same NIC, thus making the network contention four times greater than

with the 16X1 case. In our experiments, we ran the 4X4 configuration with cyclic allocation of

processes between nodes.

To consider the effects of processor contention, we split the 8X2 into two cases again. Our

setup consists of a dual-core dual-processor system, and hence, the two processes can be run in

two different modes:

• 8X2 co-processor mode – two processes, each running on a different processor

• 8X2 virtual processor mode – two processes, both run on the same processor

50

We note that in the virtual processor mode, increased contention of processor resources is

present because both processes are run on the same processor.

We now briefly describe the various benchmarks in the NPB suite:

BT and SP: The NAS BT and SP benchmarks are two simulated CFD applications that solve

systems of equations resulting from an approximately factored implicit finite difference discretiza-

tion of three-dimensional Navier-Stokes equations [8]. The principal difference between the codes

is that BT solves block-tridiagonal systems of 5x5 blocks, whereas SP solves scalar penta-diagonal

systems resulting from full diagonalization of the approximately factored scheme. SP and BT use

a skewed-cyclic block distribution known as multipartitioning in which each processor is respon-

sible for several disjoint sub-blocks of points (cells) of the grid. In both BT and SP, the granularity

of communications is kept large, and fewer messages are sent [8].

CG: The CG kernel benchmark solves an unstructured sparse linear system by the conjugate

gradient method. It uses the inverse power method to find an estimate of the largest eigenvalue of

a symmetric positive definite sparse matrix with a random pattern of nonzero values. The MPI CG

code accepts a power of two number of processors that are mapped onto a grid of row by column

processors and tests irregular long distance communication.

FT: The FT benchmark solves a Poisson partial differential equation using a 3-D discrete

fourier transformation. The processes are arranged in a 1-D grid, and the global array is distributed

along its last dimension. The forward 3-D FFT is then performed as multiple 1-D FFTs in each di-

mension, first in the x and y dimensions, which can be done entirely within a single processor, with

no interprocessor communication. An array transposition is then performed, which amounts to an

all-to-all exchange, wherein each processor must send parts of its data to every other processor.

The final set of 1-D FFTs is then performed [8].

IS: This benchmark performs a sorting operation based on bucket sort. It performs many all-

to-all exchange communication.

51

LU: LU is a simulated CFD application that uses symmetric successive over-relaxation (SSOR)

method to solve a seven-block-diagonal system resulting from finite-difference discretization of the

Navier-Stokes equations in 3-D by splitting it into block lower and upper triangular systems. Com-

munication of partition boundary data occurs after the completion of computation on all diagonals

that contact an adjacent partition. This constitutes a diagonal pipelining method and is called a

wavefront method by its authors [31]. The LU benchmark is very sensitive to the small messages

and is the only benchmark in the NPB 2.0 suite that sends large numbers of very small (40 byte)

messages.

MG: The MG benchmark uses a V-cycle multigrid method to compute the solution of the 3-D

scalar Poisson equation. It performs both short- and long-range communications that are highly

structured.

0

0.2

0.4

0.6

0.8

1

1.2

BT CG FT IS LU MG SP

R
e

la
ti

ve
 p

e
rf

o
rm

an
ce

16X1 8X2 Co-processor

0

0.2

0.4

0.6

0.8

1

1.2

BT CG FT IS LU MG SP

R
e

la
ti

ve
 p

e
rf

o
rm

an
ce

8X2 virtual processor 4X4

Figure 5.1: Evaluation of Network Contention: (a) 16X1 vs 8X2 Co-Processor and (b) 8X2 Virtual
Processor vs 4X4

5.4 Impact of Network Contention

We evaluate the impact of network contention by running the NPB benchmarks over each of the

three configurations described in Section 5.3. Figure 5.1 shows the impact network resource con-

52

tention can have on performance of applications. The figures show the normalized performance

of the NAS benchmarks in the three aforementioned configurations. In Figure 5.1(a), as we move

from 16X1 to 8X2 co-processor mode, the performance of all the benchmarks drops (as much as

27% for IS). The reason is the increased network contention in the 8X2 configuration, where two

processes have to share the network resources. Since only one process has been added to every

node, the chances that a process will communicate predominantly with the process collocated in

its node are slim.

In Figure 5.1(b) on the other hand, the performance drop is seen mainly for CG, FT, and IS,

while the other benchmarks perform similarly or show improved performance (in the case of MG

and LU) between the two configurations. Here we see mixed benefit in moving to 4X4 because

more number of processes are collocated in the same node. Thus, potentially, more shared memory

communication can happen reducing the possibility of network contention.

Table 5.1: Normalized Total Network Communication Time for 16X1 and 8X2 Co-Processor

Communication time (seconds)

NAS Benchmark 16X1 8X2 co-processor Percentage increase

BT 0.090 0.098 7.94 %
CG 1.319 1.757 33.12 %
FT 0.051 0.056 9.56 %
IS 0.015 0.023 56.49 %
LU 0.721 0.772 6.97 %
MG 0.098 0.127 30.00 %
SP 0.165 0.197 19.38 %

To analyze the level of network contention in the above results, we profile the network com-

munication time in each of these configurations. Since we are using Myrinet’s MX protocol, we

profile the time spent in the mx isend() and mx test() calls. For small messages, the time

spent in mx isend() and mx test() is towards copying the message data from application

memory to the NIC memory, queueing the message request and waiting for the message to be sent

53

out. This time represents the time spent by the network in sending the data out and thus is an

indicator of the overhead of network contention.

Table 5.1 shows the normalized total time spent in mx isend() and mx test() calls for

the various configurations and the percentage difference between them. We observe an increase

in the network communication time for all the benchmarks between 16X1 and 8X2 co-processor

mode. In other words, moving to the 8X2 co-processor mode results in more time being spent

for network communication because the network resources are being shared. Also, the amount

of intra-node communication remains comparatively low, hence making it difficult to observe any

significant benefit from the reduced latency. Of 15 other possible processes with which a process

can communicate, only one results in intra-node communication, which means a 93% chance

that a process will communicate over the network with another process. These results mimic

the performance results where all benchmarks observe a decrease in performance when moving to

8X2 co-processor mode.

In Table 5.2, however, the network communication increases only for the CG, FT, and IS bench-

marks, while for all others it drops. This again clearly mimics the performance results as seen in

Figure 5.1(b). In this case, moving from the 8X2 virtual processor mode to 4X4 mode results in

two processes getting added to the same node. This denotes an increased capability to perform

intra-node communication. Compared to a 93% chance of network communication with the 8X2

case, the chances that a process will communicate over the network with another process in the

4X4 case is 80%.

We analyze our results further by profiling the amount of data sent over the network as com-

pared to intra-node communication for all the benchmarks. Figure 5.2(a) shows the ratio of data

sent over the network for 16X1 and 8X2 co-processor modes for all the benchmarks. Except for

FT and IS, where the amount of network communication drops slightly (6.7%), all the benchmarks

have the same amount of network communication as compared to 16X1. Figure 5.2(b) shows the

same graph for 8X2 virtual processor mode and 4X4 configurations. Here we observe that BT,

54

LU, MG, and SP experience drops in network data communicated (up to 50% in the case of LU

and MG), while CG, FT, and IS show very low reductions in the amount of network data com-

municated. In fact, CG does not observe any drop in network communication when moving from

16X1 to 8X2 to 4X4. This result also exactly mimics the network communication time results we

observed in Table 5.1 and corroborates the performance results we get.

Table 5.2: Normalized Total Network Communication Time for 8X2 Virtual Processor and 4X4

Communication time (seconds)

NAS Benchmark 8X2 virtual processor 4X4 Percentage increase

BT 0.110 0.083 -24.68 %
CG 1.804 2.716 50.54 %
FT 0.058 0.063 8.32 %
IS 0.024 0.066 172.70 %
LU 0.803 0.395 -50.83 %
MG 0.185 0.144 -22.24 %
SP 0.223 0.198 -11.40 %

0

0.2

0.4

0.6

0.8

1

1.2

BT CG FT IS LU MG SP

R
at

io
 o

f
d

at
a

se
n

t
o

ve
r

n
et

w
o

rk

16X1 8X2 Co-processor

0

0.2

0.4

0.6

0.8

1

1.2

BT CG FT IS LU MG SP

R
at

io
 o

f
d

at
a

se
n

t
o

ve
r

n
et

w
o

rk

8X2 Virtual processor 4X4

Figure 5.2: Network Communication Data Size: (a) 16X1 vs 8X2 Co-Processor and (b) 8X2
Virtual Processor vs 4X4

55

5.5 Impact of Processor Contention

To make our analysis of resource contention more comprehensive, we also need to analyze the

effect of processor contention. This would allow us to compare the relative effects of network

contention and processor contention. To do this, we compare the performance of 8X2 co-processor

and 8X2 virtual processor modes. For the co-processor mode, we run the processes in cores 0 and

2, while for the virtual processor mode we run the processes on cores 2 and 3. We expect that with

more processor contention, the performance of applications would take a hit.

0

0.2

0.4

0.6

0.8

1

1.2

BT CG FT IS LU MG SP

R
e

la
ti

ve
 p

e
rf

o
rm

an
ce

8X2 Co-processor 8X2 Virtual processor

0

10

20

30

40

50

60

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

P
e

rc
e

n
ta

ge
 d

if
fe

re
n

ce

Process ranks

FT

MG

Figure 5.3: Analysis of Processor Contention: (a) Performance and (b) L2 Cache Misses

Figure 5.3(a) shows the normalized performance of co-processor and virtual processor modes

in the 8X2 configuration for all the benchmarks. We observe a substantial performance difference

between the two modes for all the benchmarks (up to 53% as in the case of SP). This confirms our

hypothesis that contention of processor resources can be very detrimental for applications.

We verify our results with processor contention by analyzing the architectural effects of sharing

of processor resources. For this, we use PAPI [3] to count various hardware performance counters

on the AMD Opteron processor. One of the resources which can create contention in a multicore

processor is the shared L2 cache. We use PAPI to count the number of L2 cache misses observed

by each process in each mode. We present the percentage difference in the number of L2 cache

56

misses between the co-processor and the virtual processor modes in Figure 5.3(b). As shown in the

figure, the virtual processor mode sees increased L2 cache misses ranging from 27% more misses

in the case of FT to 48% more in the case of MG. This increase in L2 cache misses confirms the

existence of high contention for the shared L2 cache while running in the virtual processor mode.

0

2E+10

4E+10

6E+10

8E+10

1E+11

1.2E+11

1.4E+11

1.6E+11

CG (resource) CG (memory) SP (resource) SP (memory)

N
o

rm
al

iz
e

d
 n

u
m

b
e

r
o

f
st

al
ls

8X2 Co-processor 8X2 Virtual processor

Figure 5.4: CPU Stall Cycles

We further analyze our results by profiling the benchmarks for two types of CPU stall cycles:

those stalling for any resource and those stalling for memory accesses. These stalls represent the

number of useful CPU cycles wasted due to contention in processor resources. Here we show

results only for the CG and SP benchmarks; the results for the other benchmarks are similar.

Figure 5.4 shows the normalized number of CPU stall cycles waiting for resource and memory for

CG and SP benchmarks. From the graphs, we can see that the virtual processor mode has more

stall cycles than does the co-processor mode. SP observes up to 73% more resource stalls cycles

and 66% more memory stalls, whereas in the case of CG, it is 14% and 17%, respectively. These

results also confirm our observation that processor resource contention can affect performance of

applications to a large extent.

57

5.6 Analysis of Allocation Schemes

0

0.2

0.4

0.6

0.8

1

1.2

1.4

BT CG FT IS LU MG SP

R
e

la
ti

ve
 p

e
rf

o
rm

an
ce

16X4 Cyclic 16X4 Blocked

Figure 5.5: Cyclic vs Blocked: Performance

Here we take a different approach for investigating the impact of network contention, by per-

forming a comparative study of two process allocation schemes. The main idea behind this study

is to investigate whether changes in process allocation schemes can impact the amount of network

contention among processes. We look at two such schemes commonly used in parallel comput-

ing environments involving multicore architectures — cyclic and blocked allocation schemes and

use the NPB benchmarks to evaluate the performance of these allocation schemes. We run the

experiments on 64 processes, with four processes on each of the 16 nodes.

Figure 5.5 shows the performance of various NPB benchmarks with cyclic and blocked allo-

cation on class B data sizes. The results show that the CG benchmark sees an improvement in

performance (21%) while for the other benchmarks, performance remains the same or drops. In

particular, the performance of MG benchmark drops by more than 43%. Thus, we observe a sub-

stantial variation in performance for applications depending on which allocation scheme is used

58

during runs.

Table 5.3: Network Communication Time for Cyclic and Blocked Allocation

Communication time (seconds)

NAS Benchmark Cyclic allocation Blocked allocation Percentage increase

BT 0.086 0.136 57.87 %
CG 2.962 2.445 -17.50 %
FT 0.020 0.059 191.80 %
IS 0.026 0.042 62.71 %
LU 0.747 0.761 1.92 %
MG 0.049 0.305 527.70 %
SP 0.396 0.460 16.21 %

To further understand the reasons behind the trends observed, we profile the network commu-

nication time of the benchmarks similar to the profiling done in Section 5.4. Table 5.3 shows the

normalized total communication time for each of the benchmarks for cyclic and blocked cases and

the percentage difference between them. From the table, we observe that CG realizes a reduction

in communication time when running in blocked allocation mode. For all other benchmarks, the

network communication time increases. We note here that MG observes more than a five fold

increase in communication time, which explains why the performance of MG drops heavily when

using blocked allocation.

Figure 5.6 shows the data size communicated over the network for the NPB benchmarks be-

tween blocked and cyclic allocation. With CG, the amount of data communicated over the network

halves when moving from cyclic to blocked allocation. This result explains CG’s increased perfor-

mance with blocked allocation. FT and IS see no reduction in network data size communicated,

whereas MG sees a slight increase. These results also agree well with our other performance

results.

59

0

0.2

0.4

0.6

0.8

1

1.2

BT CG FT IS LU MG SP

R
at

io
 o

f
d

at
a

se
n

t
o

ve
r

n
et

w
o

rk

16X4 Cyclic 16X4 Blocked

Figure 5.6: Cyclic vs Blocked: Network Data Size

5.7 Application Processing Pattern Analysis

The previous sections evaluated application performance from the viewpoint of system and net-

work characteristics. In this section, we tie in the analysis developed in previous sections to the

application communication patterns. This will help in deriving insights into better performing

process configurations based on the general communication pattern of the application.

The CG benchmark performs communication within groups of four processes with certain

boundary nodes communicating between the groups. As an example, Figure 5.7 shows the com-

munication pattern of CG with 16 processes. This pattern shows that any allocation scheme that

localizes the groups of four processes within a node will achieve improved performance. For

example, if each of the group of four processes are localized within a node, the only network

communication is between the boundary nodes. Thus any allocation scheme that optimizes this

strategy will get better performance. We see this result with blocked allocation in the 16X4 case,

which performs better than the cyclic allocation (see Figure 5.5).

60

0 1

2 3

4 5

6 7

8 9

10 11

12 13

14 15

Figure 5.7: CG Communication Pattern

The FT benchmark performs an all-to-all ex-

change within subcommunicators along the row and

column in a processor grid. Thus, having more cores

in a node allows some processes in either the row or

the column subcommunicators to be local to a node.

But the communication as part of the other sub-

communicator still has to go through the network.

Although some amount of network communication

is saved, sufficient contention of network resources

still exists. Similarly, choosing an appropriate allo-

cation scheme might help in localizing all the nodes

of a sub-communicator, but enough network traffic exists between the other subcommunicator to

nullify this advantage. In our results, we see a similar behavior, where the performance drops for

FT when moving from 16X1 to 4X4 because of the increased contention of the network but re-

mains the same for the cyclic and blocked allocation strategies. The IS benchmark has a similar

analysis as FT as it also does predominantly all-to-all exchanges. This analysis for FT and IS ties

in well with the network data size analysis results shown in Figures 5.2 and 5.6. Designing efficient

network topologies for FT and IS can be a challenging task given the all-to-all pattern.

MG has an interesting pattern wherein some clustered communication happens in groups of

4, but these clusters themselves are grouped in clusters of 16. Each process communicates with

another process which is at increasing distances of increasing powers of two from it. Thus, any

process allocation strategy that puts processes at distances of powers of two on the same node will

be beneficial for the application. For example, when the number of nodes is a power of two, cyclic

allocation will put such processes on the same node. This situation explains why MG performs

better with cyclic allocation than blocked allocation with 64 processes and also why the 4X4 cyclic

configuration performs better than the 8X2 configuration.

61

BT, LU, and SP follow complex communication patterns that make analysis from the process-

ing pattern difficult. Changes in configurations or allocation schemes may not significantly affect

the amount of network contention. For example, our results in previous sections do not seem to

follow any major trends for these benchmarks.

5.8 Summary of Resource Contention Analysis

We saw in Section 5.4 that network contention affects the performance of applications. Hence

users need to be careful before utilizing many cores of a multicore architecture for their applica-

tion. We also saw that contention in processor resources has farther implications than network

contention on performance. This is expected given the higher impact of sharing resources closer to

the processing core as compared to sharing of peripheral resources such as the network. Although

the effects of network contention pale in comparison with processor contention, knowledge of net-

work contention effects can provide valuable insights for users when designing run-time strategies

for applications. Thus, both these types of contention are important factors that system designers

and users should keep in mind when running applications. Another important result we observed

in this section is that using a different process allocation strategy for parallel applications has

the potential to reduce the effects of network contention. Finally, knowledge of the application

communication and processing patterns can give better ideas for designing better run-time config-

urations for applications.

62

Chapter 6

Related Work

While there has been a lot of previous research on high-performance networks protocol stacks such

as 10 Gigabit Ethernet [22,19,23,10,18,9,16] as well as design aspects on multicore architectures,

to the best of our knowledge, no previous work has studied the interaction of high-performance

network protocol stacks with multicore architectures. Nevertheless, in this section, we discuss var-

ious papers which relate closely to the broader topic of multicore architectures and communication

performance of applications on multicores.

In [29], the authors quantify the performance difference in asymmetric multicore architectures

and define operating system constructs for efficient scheduling on such architectures. This closely

relates to the effective capability of the cores (similar to our current work), but the authors only

quantify asymmetry that already exists in the architecture (i.e., different core speeds). In our work,

we study the impact of the interaction of multicore architectures with communication protocol

stacks, which externally creates such asymmetry through aspects such as interrupts and cache

sharing.

In [13], the authors study the impact of the Intel multicore architecture on the performance

of various applications based on the amount of intra-CMP, inter-CMP and inter-node communi-

cation performed. Some of the performance problems of multicores are identified in that paper

63

and the importance of multicore-aware communication libraries is underlined. They also discuss

a technique of data tiling for reducing the cache contention which is dependent on the cache size.

We investigate the problem with a different approach by synthesizing intelligent process-to-core

mappings and the amount of sharing of network resources. While the underlying principle and

approach of this work significantly differs from our approach, we believe that these two techniques

can be utilized in a complementary manner to further improve performance.

In [14], Curtis-Maury et al. look at resource contention with OpenMP communication on mul-

ticore processors. The authors identify very similar architectural bottlenecks in their paper. But

their paper does not look at resource contention of network resources and how it compares to con-

tention in processor resources, which we address in this thesis. Another paper by Sondag et al.,

which deals with threads on asymmetric multicore architectures, is [35], wherein the authors dis-

cuss scheduling strategies to perform intelligent thread-to-core assignment by using information

from static analysis of application profiles and execution information. Our work is related to the

work done by Sondag et al. in dealing with the intelligent process-to-core mappings, but signifi-

cantly differs from their work by considering symmetric multicore architectures and the role of the

network protocol stack.

The authors of [7, 17] look at the impact of shared caches on scheduling processes or threads

on multicore architectures wherein certain mapping of processes to cores can potentially deliver

higher performance by benefiting from better cache locality. We improve upon their work by gen-

eralizing the extraneous factors that affect application performance on multicore and by devising a

framework for dynamically performing the ideal mapping of processes to cores.

In [5], Alam et al. perform extensive characterization of various scientific workloads on the

AMD multicore processor. But their work looks only at a single multicore node, whereas we

look at a cluster of nodes and at the impact of the network as well. From the communication

pattern viewpoint, many articles and papers have investigated the processing patterns of various

applications and benchmarks [36, 15, 34, 27] and suggested improvements for delivering higher

64

performance. But none of these papers focus on multicore architectures in their evaluation, which

we address here.

In summary, our work differs from existing literature with respect to its capabilities and un-

derlying principles, but at the same time, forms a complementary contribution to other existing

literature that can be simultaneously utilized. Thus, this thesis makes a novel and interesting con-

tribution in this domain.

65

Chapter 7

Conclusions

We present our concluding remarks in this section and identify potential future work that can be

done to improve upon this thesis.

7.1 Finishing Remarks

With increased adoption of multicore architectures in high-end computing systems, coupled with

high-performance network protocol stacks in supporting these architectures, a towering need to

analyze the interaction of these two components in the context of application performance can

be observed. Since the operating system and systems software that manage each of the different

system components have been designed mostly independently, the task of investigating them can

be quite challenging. Some of these interactions can reduce the effective capability of cores by

statically assigning protocol processing to a single core and this leads to surprisingly asymmetric

behavior that impact the effective throughput of applications. With growing number of cores in

a multicore processor, investigation of network scalability and resource contention is also very

important.

In this thesis, we take on the challenge of analyzing the asymmetric interaction of these two

66

components and design efficient solutions for them. We first demonstrate the impact of these in-

teractions and design intelligent mappings of processes to cores for applications and microbench-

marks. We then propose, implement, and verify SIMMer (Systems Interaction Mapping Manager),

a framework for managing these irregular interactions automatically. SIMMer enabled applications

can benefit from more than two times better communication performance and 18% improved over-

all application performance.

We have made significant contributions in this thesis in understanding the implications of using

multicore architectures with high-speed network protocol stacks. To the best of our knowledge,

no other framework/library that has been designed to automatically detect and manage these net-

work interactions. We reckon that the analysis presented in this thesis can be applied to produce

better run-time application configurations that can transparently improve application performance

without the developer/end user having to explicitly manage these interactions. The results of such

studies can also be applicable on other commodity use protocol stacks as well.

7.2 Future Work

Our work can be extended in several different directions. We summarize some of the most relevant

and important future extensions to our work here:

• We have identified three common symptoms of asymmetry in multicore architectures in this

thesis. There can be many more such symptoms which can manifest for certain architectures

or applications. SIMMer could be expanded to include these symptoms when considering

intelligent mapping of processes onto cores.

• Another important part where our work can be extended is to incorporate the network con-

tention analysis into MPI process managers and process spawners (such as mpd, mpiexec,

lamboot etc. This can be done by providing hints to the process managers about the ap-

67

plication communication pattern, which can take intelligent decisions about laying out the

processes across nodes.

• We can extend this thesis to explore the interaction of protocol stacks with more exotic

multicore architectures such as the Intel Terascale, Sun Niagara 2, Tilera and so on. Each of

these architectures have a large number of cores on them, and hence, intelligent mapping of

processes to cores becomes more critical.

• On NUMA architectures, the benefits of intelligent process-to-core mappings can be po-

tentially reduced by impacts caused by non-uniform memory accesses. Towards this, SIM-

Mer can be improved to incorporate well-informed page migration techniques to counter the

NUMA effects on these architectures.

• Another direction in which our work can be extended is to study hybrid and asymmetric

multicore architectures which add a new dimension to the problem by having cores of dif-

ferent physical capabilities itself. Such architectures include IBM Cell, Intel IXP network

processor, AMD Fusion, and even conventional multicore architectures running on different

frequencies.

68

Bibliography

[1] MPE : MPI Parallel Environment. http://www-unix.mcs.anl.gov/perfvis/download/index.htm.

[2] mpiP. http://mpip.sourceforge.net.

[3] PAPI. http://icl.cs.utk.edu/papi.

[4] PERUSE. http://www.mpi-peruse.org.

[5] S. R. Alam, R. F. Barrett, J. A. Kuehn, P. C. Roth, and J. S. Vetter. Characterization of
Scientific Workloads on Systems with Multi-Core Processors. In IISWC, pages 225–236,
2006.

[6] AMD Quad-Core Opteron Processor. http://multicore.amd.com/us-en/quadcore.

[7] J.H. Anderson, J.M. Calandrino, and U.C. Devi. Real-Time Scheduling on Multicore Plat-
forms. Real-Time and Embedded Technology and Applications Symposium, 2006. Proceed-
ings of the 12th IEEE, pages 179–190, 04-07 April 2006.

[8] D. Bailey, T. Harris, W. Saphir, R. van der Wijngaart, A. Woo, and M. Yarrow. The NAS
Parallel Benchmarks 2.0. Technical Report NAS-95-020, December 1995.

[9] P. Balaji, W. Feng, Q. Gao, R. Noronha, W. Yu, and D. K. Panda. Head-to-TOE Evaluation
of High Performance Sockets over Protocol Offload Engines. In IEEE Cluster, Boston, MA,
Sep 27-30 2005.

[10] P. Balaji, H. V. Shah, and D. K. Panda. Sockets vs RDMA Interface over 10-Gigabit Net-
works: An In-depth analysis of the Memory Traffic Bottleneck. In Workshop on Remote
Direct Memory Access (RDMA): Applications, Implementations, and Technologies (RAIT),
San Diego, CA, Sep 20 2004.

[11] H. J. C. Berendsen, D. van der Spoel, and R. van Drunen. GROMACS: A Message-Passing
Parallel Molecular Dynamics Implementation. Computer Physics Communications, 91(1-
3):43–56, September 1995.

[12] IBM Cell processor. http://www.research.ibm.com/cell.

69

[13] L. Chai, Q. Gao, and D. K. Panda. Understanding the Impact of Multi-Core Architecture in
Cluster Computing: A Case Study with Intel Dual-Core System. In Cluster Computing and
the Grid, 2007. CCGRID 2007. Seventh IEEE International Symposium on, pages 471–478,
2007.

[14] M. Curtis-Maury, X. Ding, C. D. Antonopoulos, and D. S. Nikolopoulos. An Evaluation of
OpenMP on Current and Emerging Multithreaded/Multicore Processors. In First Interna-
tional Workshop on OpenMP, Eugene, Oregon, June 2005.

[15] R. Cypher, A. Ho, S. Konstantinidou, and P. Messina. Architectural Requirements Of Parallel
Scientific Applications With Explicit Communication. 20th Annual International Symposium
on Computer Architecture, pages 2–13, May 1993.

[16] D. Dalessandro, P. Wyckoff, and G. Montry. Initial Performance Evaluation of the NetEffect
10 Gigabit iWARP Adapter. In RAIT ’06, 2006.

[17] A. Fedorova, M. Seltzer, and M. D. Smith. Cache-Fair Thread Scheduling for Multicore Pro-
cessors. Technical Report TR-17-06, Division of Engineering and Applied Sciences, Harvard
University, October 2006.

[18] W. Feng, P. Balaji, C. Baron, L. N. Bhuyan, and D. K. Panda. Performance Characterization
of a 10-Gigabit Ethernet TOE. In IEEE Hot Interconnects, Palo Alto, CA, Aug 17-19 2005.

[19] W. Feng, J. Hurwitz, H. Newman, S. Ravot, L. Cottrell, O. Martin, F. Coccetti, C. Jin, D. Wei,
and S. Low. Optimizing 10-Gigabit Ethernet for Networks of Workstations, Clusters and
Grids: A Case Study. In SC ’03, 2003.

[20] M. Frigo and S. G. Johnson. The Design and Implementation of FFTW3. Proceedings of
the IEEE, 93(2):216–231, 2005. special issue on ”Program Generation, Optimization, and
Platform Adaptation”.

[21] P. Gepner and M. F. Kowalik. Multi-Core Processors: New Way to Achieve High System
Performance. In PARELEC, pages 9–13, 2006.

[22] J. Hurwitz and W. Feng. End-to-End Performance of 10-Gigabit Ethernet on Commodity
Systems. IEEE Micro ’04.

[23] J. Hurwitz and W. Feng. Analyzing MPI performance over 10-Gigabit ethernet. Journal of
Parallel and Distributed Computing, pages 1253–1260, 2005.

[24] InfiniBand Trade Association. http://www.infinibandta.org.

[25] Intel Core 2 Extreme Quad-Core Processor. http://www.intel.com/products/processor/
core2XE/łinebreak[0]qc prod brief.pdf.

[26] Intel Terascale Research. http://www.intel.com/research/platform/terascale/teraflops.htm.

70

[27] J. Kim and D. J. Lilja. Characterization of Communication Patterns in Message-Passing
Parallel Scientific Application Programs. In CANPC ’98: Proceedings of the Second In-
ternational Workshop on Network-Based Parallel Computing, pages 202–216, London, UK,
1998. Springer-Verlag.

[28] Argonne National Laboratory. MPICH2: High Performance and Portable Message Passing.

[29] T. Li, D. Baumberger, D. A. Koufaty, and S. Hahn. Efficient Operating System Scheduling
for Performance-Asymmetric Multi-Core Architectures. In SC ’07, 2007.

[30] Multicore Technology. http://www.dell.com/downloads/global/power/ps2q05-20050103-
Fruehe.pdf.

[31] Myricom. Myrinet Home Page. http://www.myri.com.

[32] Sun Niagara. http://www.sun.com/processors/UltraSPARC-T1.

[33] S. Plimpton. Fast Parallel Algorithms for Short-Range Molecular Dynamics. Journal of
Computational Physics, 117(1):1–19, 1995.

[34] R. Riesen. Communication Patterns. In Workshop on Communication Architecture for Clus-
ters (CSC 2006), Rhodes Island, Greece, April 2006.

[35] T. Sondag, V. Krishnamurthy, and H. Rajan. Predictive Thread-to-Core Assignment on a
Heterogeneous Multi-core Processor. In PLOS ’07: ACM SIGOPS 4th Workshop on Pro-
gramming Languages and Operating Systems, October 2007.

[36] J. S. Vetter and F. Mueller. Communication Characteristics of Large-Scale Scientific Appli-
cations for Contemporary Cluster Architectures. Journal of Parallel and Distributed Com-
puting, 63(9):853–865, 2003.

71

	Statement of the Problem
	Motivation
	Contributions
	Outline

	Background
	Overview of Multicore Architectures
	Operating System Viewpoint of the Communication Stack
	Architectural Viewpoint of the Communication Stack
	Process Allocation Schemes

	Intelligent Mapping of Processes to Cores
	Experimental Testbed
	Analysis with Microbenchmarks
	MPI Bandwidth Evaluation
	MPI Latency Evaluation
	Analysis of Results

	FFTW Scientific Library
	Intelligent Static Mapping of Processes to Cores
	GROMACS Application
	LAMMPS Application

	The SIMMer Framework
	Identifying the Symptoms of Protocol Stack and Multicore Architecture Interaction
	Intelligent Process-to-Core Mapping with SIMMer
	The SIMMer Framework
	Current Implementation
	Metrics for Mapping Decisions

	Experimental Evaluation
	Microbenchmark Evaluation
	Evaluating Applications and Scientific Libraries
	Evaluation of NAS Parallel Benchmarks

	Discussion on Alternative Multicore Architectures

	Network and Processor Resource Contention in Multicore Architectures
	Overview of Myrinet Network
	Experimental Setup
	Configurations Used in Experiments
	Impact of Network Contention
	Impact of Processor Contention
	Analysis of Allocation Schemes
	Application Processing Pattern Analysis
	Summary of Resource Contention Analysis

	Related Work
	Conclusions
	Finishing Remarks
	Future Work

	Bibliography

