
Gang Scheduling with Lightweight User-Level Communication
�

Eitan Frachtenberg, Fabrizio Petrini, Salvador Coll, Wu chun Feng

CCS-3 Modeling, Algorithms, & Informatics Group
Computer & Computational Sciences Division

Los Alamos National Laboratory
{eitanf,fabrizio,scoll}@lanl.gov

Abstract

In this paper we explore the performance of gang scheduling
on a cluster using the Quadrics interconnection network. On
such a cluster, the scheduler can take advantage of the unique
capabilities of this network, including a NIC based processor
and memory and efficient user level communication libraries.
We developped a micro benchmark to test the scheduler’s per-
formance under various aspects of parallel job workloads:
memory usage, bandwidth and latency-bound communica-
tion, number of processes, timeslice quantum and multipro-
gramming level. Our experiments show that the gang sched-
uler preforms relatively well under most workload conditions,
is largely insensitive to the amount of concurrent jobs in the
system and scales almost linearly with number of nodes. On
the other hand, the scheduler is very sensitive to the timeslice
quantum, and values under 30 seconds can incur large over-
heads and fairness problems.

Keywords: Gang Scheduling, CoScheduling, Performance
Evaluation, Parallel Architectures, Quadrics interconnect.

1 Introduction

Gang scheduling has been proposed as an efficient means
to multiprogramming of frequently communicating processes
on parallel supercomputers [11, 1]. Gang scheduling offers
many advantages for job and system efficiency which are sim-
ilar to those of time-sharing in uniprocessor systems. The sys-
tem can be better utilized by the scheduler’s ability to preempt
jobs in several ways:

� The responsiveness of the system to interactive and high
�
The work was supported by the U.S. Department of Energy through Los

Alamos National Laboratory contract W-7405-ENG-36

priority jobs can be very high, even when the system is
highly utilized.

� Jobs requiring a high number of processors do not have
to wait for other jobs to terminate until the resource re-
quirement is met before being launched. Furthermore,
once such a job is running, it does not monopolize re-
sources, and other jobs can still be executed.

� Unused resources can be utilized by low priority jobs
and reallocated to higher priority jobs when these be-
come available.

� The system can maintain a high utilization rate under
varying workloads.

On the other hand, it has been argued that gang scheduling
can incur a relatively high overhead due to the effect of the
context switch on the computing nodes.

This overhead is caused by the resource sharing between
multiple jobs and spans several dimensions. A first dimension
is the cache memory and the Translation Look-aside Buffer
(TLB): a context switch between processes causes a "cold
start", which initiates the load of the working set of the new
process and the eviction of the old working set.

A severe performance penalty is usually caused by the
overflow of the physical memory into the virtual memory. In
fact, the access time of a page swapped to disk can be orders
of magnitude slower than the access time of the same page in
main memory.

Another important dimension is the interface between the
processing node and the network. A common architectural
solution to deliver high-performance over system area net-
works (SANs) is the close integration between processors and
network interface. This is usually obtained using user-level
messaging protocols, that minimize the communication de-
lay removing the operating system from the communication

1

Workshop on Scheduling and Resource Management for Cluster
Computing (in conjunction with the ICPP01). LA-UR 01-3025

protocols [8, 6, 18, 7, 19]. These protocols require dedicated
buffers in the network interface, that are usually mapped in
the virtual address space of the user processes. They may
also require communication buffers, that are "pinned" in main
memory, that are reserved by the user-level protocol to per-
form the inter-node communication. With gang scheduling,
all these buffers must be properly managed between context-
switches. Finally, the context switch between jobs must take
care of the packets in transit inside the network.

In the SHARE scheduler of the IBM SP2 [4] the commu-
nication buffers are saved/restored at every context switch, in
order to minimize the amount of pinned memory. The coor-
dination between processing nodes is achieved through syn-
chronized clocks. The nodes do not interact through explicit
synchronization and do not receive a coordination message
from a central controller. In particular, the network is not
flushed during a context switch, therefore a node may receive
a packet that is addressed to a process that is no longer run-
ning.

Network flushing was pioneered by the CM-5 Connec-
tion Machine [10]. During a context switch, all packets are
"dropped down" to the closest node in the fat-tree network
and stored in a temporary node. When the job is re-scheduled,
these packets are re-injected to complete their trip.

In the ParPar scheduler [3] the context switch is coordi-
nated by a master daemon, which sends a collection of point-
to-point messages to the worker nodes. Upon receiving the
synchronization message, a partner daemon in the worker
node stops the running process and schedules the new pro-
cess. In order to flush the network, each network interface
broadcasts a halt message to all other network interfaces.
Given that the communication queues in the network interface
are managed in FIFO order and the network delivers packets
using a single determinstic path between each pair of nodes,
this protocol guarantees that no packets belonging to the pre-
vious timeslice will be received after the halt message. In [2]
it is shown that the buffers in the network interface are often
underutilized during the context switch, so the context switch
overhead can be reduced by saving only the packets that are
in the buffer rather than the whole set of buffers.

Network flushing is also used in the SCore-D cluster [5].
SCore-D doesn’t need to send special control messages be-
cause each single packet is explicitly acked or nacked by the
destination. So each node simply stops transmitting and waits
until all its outstanding packets are acknowledged.

In this paper we analyze the overhead associated with the
gang-scheduler of the Quadrics network (QsNET)1. The Qs-
NET is of particular importance to the Los Alamos National
Laboratory since it is to be used as the interconnect for the

1http://www.quadrics.com

SDRAM
I/F Processor

 codeµ

DMA
Buffers

Inputter

FIFO
0

FIFO
1

Link
Mux

MMU &
TLB

Table
Walk

Engine

Clock &
Statistics
Registers

4 Way
Set Associative Cache

PCI Interface

Thread
Processor

100 MHz

Data Bus

66MHz

64

64

72

64

28

10 10200MHz

32

Figure 1: Elan functional units

30Tops ASCI-Q machine, currently developed by Compaq2.
This paper’s contribution lies in a systematic study of various
properties of the Quadrics gang-scheduler that can be used to
compare it to other schedulers in terms of performance, over-
head and scalability.

The rest of this paper is organized as follows. We start by
describing the hardware and software features of a Quadrics-
based cluster in section 2. In section 3 we provide the de-
tails of the experimental methodology we used in this study.
We provide experimental results obtained with our cluster and
analysis in section 4. Finally, section 5 concludes the paper
and outlines future research work.

2 Overview of QsNET and RMS

2.1 Hardware

QsNET [12] is based on two building blocks, a programmable
network interface called Elan [13] and a low-latency high-
bandwidth communication switch called Elite [14]. Elites
can be interconnected in a fat-tree topology [9]. The network
has several layers of communication libraries which provide
trade-offs between performance and ease of use. Other im-
portant features are hardware support for collective commu-
nication patterns and fault-tolerance.

The Elan network interface links the high-performance,
multi-stage Quadrics network to a processing node contain-

2http://www5.compaq.com/alphaserver/news/archive/2000/supercomputer_0822.html

2

ing one or more CPUs. In addition to generating and accept-
ing packets to and from the network, the Elan also provides
substantial local processing power to implement high-level
message-passing protocols such as MPI. The internal func-
tional structure of the Elan is shown in Figure 1.

In the Elan there are four independent microcode threads:
(1) Inputter thread; handles input transactions from the net-
work. (2) DMA thread; generates DMA packets to be written
to the network, prioritizes outstanding DMAs, and time-slices
large DMAs so that small DMAs are not adversely blocked.
(3) Processor-scheduling thread; prioritizes and controls the
scheduling and descheduling of the thread processor. (4)
Command-processor thread; handles operations requested by
the host (i.e., “command”) processor at user level. The Elan
is also equipped with 64 MB of SDRAM.

Processes in a parallel job can communicate with each
other through an abstraction of distributed virtual shared
memory. Each process is allocated a virtual process id (VPID)
and can map a portion of its address space into the Elan.
These address spaces, taken in combination, constitute a dis-
tributed virtual shared memory. Remote memory (i.e., mem-
ory on another processing node) can be addressed by a com-
bination of a VPID and a virtual address. The SDRAM in the
Elan can be used to keep the virtual-to-physical translation
and routing tables of several jobs. Thus, in the presence of a
context switch, there is no need to flush the Elan communi-
cation buffers and the system data structures. Messages are
chunked by the DMA engine in packets of 320 bytes which
are delivered in-order.

2.2 Software

The various compnents of the Quadrics network are inte-
grated by a software environment called Resource Manage-
ment System (RMS)[15, 16].

An RMS system is a set of computers that are all connected
to a management network, and a Quadrics data network to
provide high performance user-space communication. Some
nodes can be connected to an external LAN to provide ac-
cess to the RMS system. Computing nodes that are used for
the parallel applications are accessed via RMS and can op-
tionally have user logins disabled. Nodes can be divided into
mutually-exclusive partitions, so that each partition can have
different properties and policies for resource allocation, and
several configurations can be defined and switched to allow
different set of properties per partition (for example, different
configurations can exist for day and night operation, to allow
larger programs to run at night). One node (which can be
separate from the computing nodes) is designated as a man-
agement node and holds the RMS database, which enables

Compute
Node

rmsd

rmsloaderstdout

stderr

40 1 5 2 6 3 7

pmanager

rmsloader

rmsd rmsd

rmsloader

Compute
Node

Management
 Node

Compute
Node

Compute
Node

rmsloader

rmsd

prun

Figure 2: Loading and Running a parallel program

interfacing to the system using standard SQL queries.
The RMS provides a single point of interface to the system

for resource management. It includes facilities for gathering
information on resources (monitoring, auditing, accounting,
fault-diagnosis and statistical data collection) and for resource
handling (CPU allocation, access control, parallel jobs sup-
port and execution and scheduling). RMS is implemented as a
set of UNIX commands and daemons that communicate using
socket daemons and access the database for storing or retriev-
ing all the system details. Of the set of daemons provided by
RMS, two are concerned primarily with parallel job launching
and scheduling. The Partition Manager pmanager is a per-
partition daemon that runs on the management node. It han-
dles requests for job launching and termination, checks the
privileges and priorities allowed for each job, manages and
allocates resources within its partition and schedules the jobs.
The RMS Daemon rmsd runs on each computing node in the
system. It loads and runs user processes (using the application
loader rmsloader), creates communication contexts for the
application, delivers signals and monitors resource usage and
system performance.

Figure 2 shows how the system runs an 8-process job on
4 t-way SMP nodes. First, a user invokes a program called
prun on the management node to launch her program, which
in turn asks pmanager to allocate CPUs for the job and start
it on them. pmanager notifies the rmsd processes on the
allocated nodes to invoke an rmsloader process with the
user’s program. rmsloader also directs the stdout and
stderr streams of the program to prun, which forwards it
to the controlling terminal or output files.

The RMS scheduler allocates boxes (N nodes with a fixed
number of CPUs per node) to jobs, so that they may take ad-
vantage of the hardware support of the QsNet for broadcast
and barrier operations which operate over a contiguous range
of network addresses.

Each partition can have its own scheduling policy and pa-
rameters (such as timeslice interval, timelimit, etc.). The
scheduling algorithm used can be one of the following:

1. Gang scheduling of parallel programs, where all the pro-

3

cesses in a program are scheduled and descheduled to-
gether.

2. Regular UNIX scheduling with the addition of simple
load balancing.

3. Batch scheduling, where use of resources is controlled
by a batch system.

When pmanager decides to suspend a running program or
run another (either due to timeslice expiration, insertion of a
higher-priority job to the system or user command), it sends
an appropriate command to the rmsd processes on the af-
fected nodes through their sockets channel. Thus, the traf-
fic density of the control messages is not determined by the
amount of jobs but rather by the timeslice value.

3 Experimental Methodology

3.1 Goals

We are primarily concerned with the following properties of
the RMS gang scheduler (GS):

1. How it scales as the multiprogramming level (MPL) in-
creases. We would like to quantify the overhead that is
introduced by the scheduler.

2. How it scales as the number of nodes in the cluster in-
creases.

3. How different memory requirements and memory ac-
cess patterns of the applications affect the overall per-
formance.

4. How the GS handle different communication granulari-
ties when applications are gang-scheduled. What effect,
if any, a context switch has on the network and the com-
munication buffers of the network interface.

5. What the effect of the timeslice length is. What the us-
able range of timeslices is and which values offer a good
trade-off between response time and scheduling over-
head.

3.2 Experimental Framework

We have designed a micro-benchmark to test several aspects
of the gang scheduler. Our benchmark is structured as a pro-
gram that loops over an array, reads a value from one en-
try, performs some simple floating-point calculation, writes
the result in another entry of the same array, and copies a

subset of these results on another array which serves as the
communication buffer. The stride for traversing the array
is a constant large prime. At a specified frequency the pro-
gram performs a total exchange with its peer processes (us-
ing MPI_Alltoall [17]). In a total exchange, also known as
personalized all-to-all communication, each process sends a
distinct message to every other process. An external script
launches this program with different parameters according to
a predefined sequence and with several instances to create the
desired MPL. In the experiments we varied the following pa-
rameters:

� Total computation cycles, number of total exchanges and
communication buffer size. These three factors deter-
mine the computation/communication granularity. Note
that if � processes are having a total exchange of

�
bytes,

each process sends and receives �� to and from every
other process.

� Number of processes per job.

� MPL (the number of jobs that are launched concur-
rently).

� Size of memory array for read/write operations.

We normalize the run time of each job with the MPL. Job
slowdown is compared to the basic case, where a program
uses an array size of one byte, does not communicate and
runs on one PE only, with no other jobs.

For our measurements we used a cluster of 16 dual-
processor nodes running Linux 2.4.0. Each node is equipped
with two 733-MHz Pentium-III processors, a 66-MHz PCI
bus, 1 GB of ECC memory, and Quadrics and Ethernet con-
nections. The first node is used as a management node for
RMS.

3.3 Workload

Several assumptions on the workload were made for this
study. First, when the multiprogramming level is greater than
1, we launch all the jobs together. The amount of computation
of each job is 100 million read/modify/write cycles, which is
approximately 50 seconds of run time. This granularity was
found to be large enough to make the experimental sample
relatively stable, and small enough to make large experiments
practical. Still, it should be noted that there is some variabil-
ity in the results. This variability stems from various system
parameters that are difficult to control and add noise to the
experiments. Such parameters include small architectural dif-
ferences between the nodes, temporal effects like varying load
of Linux and RMS daemons, and local scheduling decisions

4

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1 16 256 4K 64K 256K 1M 4M 16M

S
lo

w
do

w
n

Array size (bytes)

Slowdown as a function of array size (timeslice=30 sec, 1 node)

MPL 1
MPL 2
MPL 4
MPL 8

Figure 3: Effect of array size and multiprogramming level on
runtime

that are done by Linux on each SMP and affect cache affin-
ity and synchronization issues. We used the following default
values for all other parameters (unless otherwise indicated on
a per-experiment basis):

1. Read/write array size of 1 MB, with no separation be-
tween read and write locations.

2. 1024 total exchanges, with 4096-bytes of total buffer
size. This represents a granularity of a total-exchange
every 50 ms.

3. 16 processes running on 8 nodes.

4. Timeslice of 30 seconds.

These default parameters represent an application that uses
enough memory, so that memory bandwidth becomes a rel-
evant performance factor, but not enough that swapping be-
comes one. It communicates small messages frequently and
synchronously, as is the worst case behavior for many parallel
applications. A multiprogramming level of 4 is supposed to
represent a moderate-to-high workload.

4 Experimental Results

4.1 Effect of Memory Usage

Figure 3 shows the slowdown of gang scheduling multiple
jobs on a single processing node with a timeslice of 30 sec-
onds. We can see that the overhead is approximately 10%
more than the basic case when a single job is run in ded-
icated mode. This indicates that for workloads that do no

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

3.2

1 5 10 15 30 45 90

S
lo

w
do

w
n

timeslice (seconds)

Slowdown as a function of timeslice (Array size=1MB, buffer size=4KB, 1024 total exchanges, 8 nodes)

MPL 1
MPL 2
MPL 4
MPL 8

Figure 4: Run time slowdown as a function of timeslice length

incur swapping the performance penalty from gang schedul-
ing is contained. It is worth noting that our benchmark has a
deliberate poor data reuse (because we use a large stride for
scanning the array) so that cache concerns have no real effect
on the results. The picture changes for workloads that do not
fit in main memory. For example, running two processes of
512 MB each on one machine (thus exhausting the machine’s
physical memory) exhibits a slowdown of 30. The same ap-
plications using 620 MB each yields a slowdown of more than
200.

4.2 Effect of Timeslice Quantum

Figure 4 shows the effect of the timeslice on the runtime. We
would expect a decrease in run time as the timeslice increases,
due to a lower amount of context switches and associated
overhead. This can be seen in the graph for timeslice values
larger than 10 seconds, although the responsiveness of small
and interactive jobs can be low for such timeslices. Coun-
terintuitively, run time is actually better for timeslice values
smaller than 10 seconds. This occurs because the pamanger
process cannot handle this rate of control messages, and skips
several context switches. This results in poor fairness and
starvation, which is demonstrated in a very high variation of
the jobs’ run time. In the case of 4 jobs and a timeslice of
1 second, we measured a standard deviation of 65 when the
average runtime is 131 seconds. This in turn also affects ad-
versly the responsiveness of starved jobs.

From our measurements it can be seen that the gang sched-
uler requires a timeslice larger than 30 seconds to operate ef-
fectively.

5

1

1.5

2

2.5

3

3.5

4

4.5

5

1 8 128 1K 8K 128K 1M

S
lo

w
do

w
n

Total exchanges

Slowdown as a function of total-exchanges (timeslice=10 sec, 8 node, buffer size=1 byte)

MPL 1
MPL 2
MPL 4
MPL 8

Figure 5: Effect of communication amount on runtime on one
node (2 PEs). The communication buffer size is 1 byte

4.3 Effect of Communication

We measure the effect of communication on the gang sched-
uler in two dimensions, using latency-bound and bandwidth-
bound communication patterns. For the former, the commu-
nication buffer is only one byte, and the number of total ex-
changes varies. For the latter, we have 1024 total exchanges
and we increase the buffer size upto 128 KB. In both cases,
we try to stress the scheduler further by using the relatively
low timeslice value of 10 seconds. As discussed in the pre-
vious section, this value represents the smallest timeslice that
still guarantee fairness. Figure 5 shows the result of the first
experiment. It can be seen that the difference between the
slowdown curves are nearly flat for each MPL, upto the point
of 1M exchanges (which represents one total exchange for ev-
ery 50 � sec). Even though the slowdown values are relatively
high, because the gang scheduler is operating in a saturated
mode, they are almost insensitive to changes in the number of
total exchages.

Figure 6 describes the result of the second experiment.
Again, we see that the gap between the slowdown curves for
different MPLs remains nearly constant, suggesting that the
gang scheduler is insensitive to the bandwidth requirements
of the benchmark. This is due to the fact that the Elan net-
work interface card can store multiple network contexts, as
outlined in section 2.1. This can support a lightweight context
switch and eliminates the need for a full network cleanup. It is
also worth noting that for larger buffers, the Elan offers some
degree of overlapping between computation and communica-
tion of distinct jobs. This explains the run time improvement
for buffers larger than 32 KB.

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

1 128 1K 4K 32K 64K 128K

S
lo

w
do

w
n

Buffer size (bytes)

Slowdown as a function of communication buffer size (timeslice=10 sec, 8 nodes, 1024 TEs)

MPL 1
MPL 2
MPL 4
MPL 8

Figure 6: Effect of different communication buffer sizes and
multiprogramming levels on runtime.

1

1.5

2

2.5

3

3.5

4

1 2 3 4 5 6 7 8

S
lo

w
do

w
n

Multiprogramming level

Slowdown as a function of multiprogramming level (1024 TEs of 4Kb, array size=1MB, 8 nodes)

timeslice=30 sec
timeslice=10 sec

Figure 7: Effect of multiprogramming level on run time

4.4 Effect of Multiprogramming Level

An important property of gang scheduling is that the amount
of control information exchanged between the resource man-
ager and the workers is insensitive to the number of concur-
rent jobs. The determining factor for the amount of informa-
tion exchanged is actually the timeslice value, because a con-
stant amount of information is exchanged on every timeslice,
irrespective of the number of jobs. We would therefore expect
the cost of adding additional jobs to a gang scheduling system
to be relatively low. This can be clearly seen in Figure 7. The
scheduling overhead for adding more jobs after the second is
relatively small, and furthermore, is only determinded by the
timeslice quantum.

6

1

1.5

2

2.5

3

3.5

4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

S
lo

w
do

w
n

number of nodes

Slowdown as a function of number of nodes (1024 TEs of 4Kb, array size=1MB)

MPL 1, timeslice 10
MPL 2, timeslice 10
MPL 4, timeslice 10
MPL 1, timeslice 30
MPL 2, timeslice 30
MPL 4, timeslice 30

Figure 8: Node scalabilty

4.5 Node Scalability

To conclude our experimental results, we would like to mea-
sure how the gang scheduler scales as the number of nodes is
increased. To this end, we run and analyse six test sets over a
continuous range of nodes from 1 to 15 (with each node us-
ing both PEs). Figure 8 shows the slowdown results of these
runs. One apparent property is the instability of the test-sets
that were run with a timeslice quantum of 10 seconds. As was
shown in section 4.2, for lower timeslice values the scheduler
performs erratically, where actual timeslice values can vary
widely, and serious fariness problems occur. These proper-
ties are displayed in this figure for MPL values of 2 and 4.
For an MPL value of 1 the timeslice has no effect. It can be
seen from the graph that both curves for MPL 1 are nearly
identical, differing only because of the inherent variablity of
the test system (see section 3.3). These two curves show a
relatively small, gradual growth in the slowdown from 1.2
to 1.3 (approx. 8%), which is explained by the increasing
cost of the MPI_Alltoall operation as the number of nodes
increases. Both the MPL 2 and MPL 4 results with a times-
lice of 30 seconds exhibits a higher growth rate for the first 7
nodes (43% and 38% respectively). However, for more than
7 nodes the growth rate is rather moderate, reaching 3% and
9% respectively. These results indicate that for a larger num-
ber of nodes, the overhead associated with context switches
scales gracefully, and is probably due to the fact that context
switches do not penalize the NIC, so the increase in traffic
does not aggravate the context switch overhead. Both MPL
2 and 4 results indicate a similar growth pattern when the
timeslice is reduced to 10 seconds: a steep growth from 1
to 7 nodes, and a moderate growth afterwards. However, The
picture is quite different in terms of slowdown - both reach
slowdown values of 250% and upwards, and make the choice

of such a timeslice value unattractive.

5 Conclusions

This paper describes the tests that were conducted to explore
the properties of the Quadrics gang scheduler. We have shown
that it is relatively insensitive to the amount of communica-
tion granularity in terms of latency and bandwidth, and may
actually improve the overall runtime of bandwidth-hungry
programs that are co-scheduled, by overlapping some of the
computation and communication times. Further, we have
shown that the scheduler is also insensitive to the amount of
memory applications use, as long as the physical memory of
the machine is not exhausted. Another important issue is the
scheduler’s scalability in terms of number of nodes and num-
ber of coscheduled programs. It was shown in both cases to
be quite good for upto 30 PEs and 8 coscheduled programs
respectively.

On the negative side, the scheduler is very sensitve to the
timeslice quantum, and can perform poorly if a low value is
chosen. For timeslice values of under 30 seconds, perfor-
mance degradation of upto approximately 90% can be ob-
served in some cases; for values of 5-10 seconds, severe
fairness and starvation problems occur, which have an ad-
verse effect on system responsiveness. On the other hand,
using higher values for the timeslice quantum also has impli-
cations on responsiveness, especially for short or interactive
programs.

Future Work

One future direction that can ascertain the suitability of the
Quadrics gang scheduler for real world systems is the usage of
actual applications for the measurements. Another interesting
venue for research is to use realistic workloads, or simulations
thereof. The simple workload described in this paper does not
launch jobs according to a workload model or real workload
trace, taking into account issues such as day/night/weekend
periods, development issues, etc. Another obvious, but never-
theless important extension of this paper would be to measure
the scheduler’s performance on large-scale machines, so that
a substantial understanding of its scalability properties can be
obtained.

References
[1] D.G. Feitelson and L. Rudolph. Gang Scheduling Performance Benefits

for Fine-Grain Synchronization. Journal of Parallel and Distributed
Computing, 16(4), 1992.

7

[2] Yoav Etsion and Dror G. Feitelson. User-Level Communication in a
System with Gang Scheduling. In 15th International Parallel and Dis-
tributed Processing Symposium, April 2001.

[3] Dror G. Feitelson, Anat Batat, Gabriel Benhanokh, David Er-El, Yoav
Etsion, Avi Kavas, Tomer Klainer, Uri Lublin, and Marc Volovic. The
ParPar System: a Software MPP. In Rajkumar Buyya, editor, High
Performance Cluster Computing, volume 1: Architectures and systems,
pages 754–770. Prentice-Hall, 1999.

[4] Hubertus Franke, Pratap Pattnaik, and Larry Rudolph. Gang Schedul-
ing for Highly Efficient Distributed Multiprocessor Syetems. In
6th Symposium on the Frontiers of Massively Parallel Computation
(FRONTIERS ’96), pages 1–9, Annapolis, MD, October 1996.

[5] Atsushi Hori, Hiroshi Tezuka, Yutaka Ishikawa, NoriYuki Soda, Hi-
roki Konaka, and Muneori Maeda. Overhead Analysis of Preemptive
Gang Scheduling. In Dror G. Feitelson and Larry Rudolph, editors, Job
Scheduling Strategies for Parallel Processing, volume 1459 of Lecture
Notes in Computer Science, pages 217–230. Springer-Verlag, 1998.

[6] http://www.hippi.org/cST.html. Scheduled Transfer Protocol (ST), (ST
is also being commercially promoted as part of GSN), 1996–present.

[7] http://www.viarch.org. VI Architecture, 1998–1999.

[8] Mario Lauria and Andrew Chien. High-Performance Messaging on
Workstations: Illinois Fast Messages (FM) for Myrinet. In Proceedings
of Supercomputing ’95, November 1995.

[9] Charles E. Leiserson. Fat-Trees: Universal Networks for Hardware
Efficient Supercomputing. IEEE Transactions on Computers, C-
34(10):892–901, October 1985.

[10] Charles E. Leiserson et al. The Network Architecture of the Connection
Machine CM-5. In Proceedings of the 4th Annual ACM Symposium on
Parallel Algorithms and Architectures, pages 272–285, June 1992.

[11] J. K. Ousterhout. Scheduling Techniques for Concurrent Systems. Pro-
ceedings of Third International Conference on Distributed Computing
Systems, 1982.

[12] Fabrizio Petrini, Adolfy Hoisie, Wu chun Feng, and Richard Graham.
Performance Evaluation of the Quadrics Interconnection Network. In
Workshop on Communication Architecture for Clusters (CAC ’01), San
Francisco, CA, April 2001.

[13] Quadrics Supercomputers World Ltd. Elan Reference Manual, January
1999.

[14] Quadrics Supercomputers World Ltd. Elite Reference Manual, Novem-
ber 1999.

[15] Quadrics Supercomputers World Ltd. RMS Reference Manual, June
2000.

[16] Quadrics Supercomputers World Ltd. RMS User Manual, April 2000.

[17] Marc Snir, Steve Otto, Steven Huss-Lederman, David Walker, and Jack
Dongarra. MPI - The Complete Reference, volume 1, The MPI Core.
The MIT Press, 1998.

[18] H. Tezuka, A. Hori, Y. Ishikawa, and M. Sato. PM: An Operating Sys-
tem Coordinated High-Performance Communication Library. In Pro-
ceedings of High-Performance Computing and Networking ’97, pages
708–717, April 1997.

[19] Werner Vogels, David Follett, Jenwi Hsieh, David Lifka, and David
Stern. Tree-Saturation Control in the AC � Velocity Cluster. In Hot
Interconnects 8, Stanford University, Palo Alto CA, August 2000.

8

