Publ i shed only as a Los Al anps Uncl assified Report LA-UR 00-3321

Dynamic Adjustment of TCP Window Sizes

Mike Fisk'
mfisk@lanl.gov

"Los Alamos National Laboratory *

Los Alamos, NM 87544

Abstract

The original design of TCP failed to support reason-
able performance over networks with large bandwidths
and high round-trip times. Subsequent work on TCP
has enabled the use of larger flow-control windows, yet
the use of these options is still relatively rare, because
manual tuning has been required. Other work has de-
veloped means for avoiding this manual tuning step,
but those solutions lack generality and exhibit unfair
characteristics. This paper introduces a new technique
for TCP implementations to dynamically and auto-
matically determine the best window size for optimum
network performance. This technique results in greatly
improved performance, a decrease in packet loss under
bottleneck conditions, and greater control of buffer uti-
lization by the end hosts. Previous research on buffer
management can then be applied to these buffer allo-
cation decisions.

1 Introduction

Over the past decade or more, TCP has entrenched
itself as the ubiquitous transport protocol for the In-
ternet. Virtually all TCP variants (e.g., Tahoe, Reno,
Vegas) distinguish themselves on the basis of their
congestion-control mechanisms. For much of this his-
tory, very little work has been done to the TCP flow
control mechanisms.

Rapidly increasing bandwidths and delays have only
in the last few years created a general need for in-

*This work was supported by the U.S. Dept. of Energy’s
Next Generation Internet - Earth Systems Grid and Acceler-
ated Strategic Computing Initiative - Distance and Distributed
Computing and Communication programs through Los Alamos
National Laboratory contract W-7405-ENG-36. This paper is
Los Alamos Unclassified Report (LAUR) 00-3321.

Wu-chun Feng'®
feng@lanl.gov

$Purdue University
West Lafayette, IN 47907

creased attention to flow-control mechanisms. High-
speed wireless, satellite, and long-haul terrestrial con-
nections are now common. To fully utilize these net-
works, flow-control mechanisms must support the large
delay-bandwidth products of these networks.

The ability to use larger flow-control windows has been
provided with the addition of window scaling [1] and
selective acknowledgements [2]. More recent work has
included the problems of actually managing the win-
dows and buffers on end-systems.

To this day, the size of most flow-control windows is set
to operating system defaults. The state of the art for
tuning these windows has depended on application- or
user-specified buffer sizing using tools such as Pathchar
[3] for characterizing network links by making measure-
ments that are both time- and bandwidth-consuming.

Later work has introduced the notion of including dy-
namic tuning in the TCP implementation itself [4].
This work has focused on the common case in which
the receiver window is largely unused and can conse-
quently be ignored. In its place, optimistic fairness
algorithms are used to maximize the size of the win-
dows on the sender. This tuning performs well in many
cases, but, as shown later, can induce unfair packet
loss.

To date, there has yet to be a study of a generic al-
gorithm for maintaining end-to-end flow control while
automatically providing windows that scale to meet
the link characteristics. Such a technique is described
below. Test results demonstrate that equivalent per-
formance gains can be achieved without sacrificing the
ability to perform guaranteed, end-to-end flow control.

Fisk and Feng: Dynamic Adjustment of TCP Window Sizes

LAUR 00-3321

2 Sliding Window Flow Control

Sliding window protocols such as TCP use a sliding
window to avoid stop-and-go behavior by pipelining
the delivery of data. The basic rules of engagement
are that the receiver advertises a window size and the
sender can send up to that amount of data. No more
data can be sent until the first part of the data is ac-
knowledged.

2.1 Window stalling

In every packet, a TCP end-point advertises the
amount of window space currently available. If that
window size, minus any unacknowledged data that has
already been sent to that system, is zero, then no more
data can be sent until a larger window is advertised.!

Thus, a full window will cause the sender to stall even
if it has data to send and its congestion window would
permit it. For the sender to be able to send data con-
stantly, the receiver’s window must always exceed the
amount of sent, but unacknowledged data.

Figures 1 and 2 demonstrate the effect of changing the
window size. In the first figure, the window is half the
size necessary to keep the network fully utilized. As a
result, the transmission stalls and is bursty.

rtt 11 window

Figure 1: Stop-and-go

In the second figure, the window is the correct size.
The result is that in the same period of time twice as
much data has been received.

1One-byte packets can be sent to trigger a response with the
current window size.

rtt

1 window

Figure 2: Full window

2.2 Theoretical sizing

Assuming that the receiver is able to immediately ac-
knowledge transmitted data, the maximum amount of
data that can be in transit is limited to the delay-
bandwidth product of the network. In practice, pack-
ets may be delayed in queues for variable amounts of
time. Further delay that may be introduced by delayed
acknowledgements and other TCP implementation de-
tails. Fortunately, common techniques for measuring
round-trip times include these delays.

In practice, the window size is usually representative
of the amount of free buffer space that the receiver
has committed to this connection. Assuming that the
receiver is able to deliver acknowledged data to the
application at the same rate at which is received, the
receiver should never have a extensive amount of data
buffered. As a result, the advertised window size will
approach the size of the receive buffer.

3 Uniform Buffer Sizes

Since the inception of TCP, the bandwidth-delay prod-
uct of most wide-area networks has been relatively
small. The window (and consequently buffer) size nec-
essary to allow full bandwidth utilization has been
small enough that hosts have allocated fixed-sized send
and receive buffers to each connection. Over time, op-
erating systems have changed the default buffer size
from common values of 8 kilobytes to as much as 64
kilobytes. The growth in host memory size has more
than kept pace with the growth in bandwidth.

Fisk and Feng: Dynamic Adjustment of TCP Window Sizes

LAUR 00-3321

3.1 New trends

The growing use of the Internet and distributed appli-
cations is resulting in faster growth in available and
desired bandwidth. OC-3 (155 megabits/second) and
even OC-12 (622 megabits/second) connections are be-
coming commonplace. Meanwhile the number of users
with 56 kilobit or less connections also continues to
grow.

Current performance optimizations for web servers and
operating systems are targeting the support of more
than 10,000 simultaneous connections to a server. [5]

Meanwhile, the speed of light remains the same and
round-trip delays of satellite links still reach 500ms.
Cross-continent terrestrial links are frequently on the
order of 100ms.

3.2 Cost of uniform buffer sizes

Consider the case of a heavily-used server on the Inter-
net. This server may quite reasonably have a 622 Mb/s
OC-12 connection to the Internet. Many of its clients
may be across a continent or even around the world.
For the sake of argument, we consider common, 100-
millisecond, intra-continental delays in the discussion
below.

If maximum performance is to be achieved with a client
on a 100 Mb/s network connection, a window of 1.25
megabytes (0.1s x 100 Mb/s) is necessary. Mean-
while, the majority of the server’s connections may be
to clients with 56 kilobit network connections. These
clients can only make use of a 0.7 kilobyte (0.1s x 56
kb/s) window. Table 1 shows the window sizes for
these and several other types of links. Figure 3 graph-
ically depicts the magnitude of the difference between
these links.

The current TCP standard [6] requires that the re-
ceiver must be capable at all times of accepting a full
window’s worth of data. If the receiver over-subscribes
its buffer space, it may have to drop an incoming
packet. The sender will discover this packet loss and in-
voke TCP congestion control mechanisms even though
the network is not congested. It is clear that receivers
should not over-subscribe buffer space if they wish to
maintain high performance.

If operating systems were to uniformly use a buffer
size that could fully serve the above client case, each

56k T-1 T-3

0C-3 0C-12 GigE

Figure 3: Relative Delay-Bandwidth Products

connection would be allocated a 1.25 megabyte buffer.
To support large transfers in both directions, two such
buffers would be required for each connection. With
10,000 simultaneous connections, the server would
need over 24 gigabytes (10,000 x 1.25 MB x 2) of
memory just for the socket buffers. This is not only
costly, but larger than the addressable memory of a
typical 32-bit server.

If a currently common window size of 64 kilobytes were
used, 1.2 gigabytes of memory would still be required.
If, instead, the 0.7 kilobyte buffers necessary for dialup
clients were uniformly used, a trivial 14 megabytes of
memory would be needed.

It is clear that when using uniform window sizes,
there is a strong conflict between supporting high-
throughput connections and the resulting over-sizing
for slower connections. Reserving buffers for these
oversized windows can be prohibitively expensive.
Over-subscription avoids this problem but can lead to
unnecessary packet loss and reduced performance.

4 Application Tuning of Buffers

Many operating systems allow system-wide default
buffer sizes to be set while letting individual applica-

Fisk and Feng: Dynamic Adjustment of TCP Window Sizes

LAUR 00-3321

Table 1: Window-size = Delay x Bandwidth

Link Speed Window Size

80ms 500ms

(Mb/s) || (KB) | (MB)

56k 0.05 0.56 0.003
T-1 1.55 15.9 0.1
T-3 45 460.8 2.8
0C-3 155 1587.2 9.7
0C-12 622 6369.28 | 38.9
GigE 1000 10240 62.5

tions select buffers that are smaller or larger than the
default.

The system defaults can be raised, but will be used for
all connections, even those over low delay-bandwidth
networks. The calculations shown above make it clear
why this is wasteful.

A few applications allow the user to request a certain
buffer size, but the user must know what size to ask
for. This information is usually obtained by sophisti-
cated users who can measure the round-trip time with
ping and determine the bandwidth through consulta-
tion with network providers or with the use of tools
such as Pathchar [3] or Pchar [7]. Once determined,
the values are specific to certain hosts and are subject
to change at any time.

4.1 Measuring path characteristics

Like Traceroute, Pathchar and Pchar use the IP time-
to-live field to determine the intermediate nodes in a
path. Starting with the nearest hop and working out,
the bandwidth impact of each additional link is calcu-
lated by measuring the amount of time it takes packets
of various sizes to traverse that link.

For each packet size, multiple measurements are taken.
It is assumed that if enough packets are sent, it is prob-
able that at least one of them will go through that link
without being delayed in queues. The minimum time
measured for each packet size is therefore used to ap-
proximate the bandwidth.

This lengthy process is repeated for each hop to deter-
mine the bandwidth of each link. To measure end-to-
end bandwidth, the hop-by-hop measurements could
be avoided, but the number of samples necessary is
probabilistically identical. The overall process can take

over an hour to complete.

4.2 Automated discovery and use

If applications were to automatically use the algo-
rithms used by these tools, prohibitively large amounts
of bandwidth would be used performing these measure-
ments. Further, these tools measure link bandwidth
rather than the moving target of available bandwidth.

The Web100 Project [8] has architect-ed a new discov-
ery protocol [9] for intermediate hops to communicate
their link characteristics. The implementation of this
protocol in the Internet core would require its adoption
by the major router vendors.

5 Over-subscription

Another option is to change the specified behavior of
TCP receivers to allow the over-subscription of buffer
space. As proposed in [4], the receiver’s buffers are
tuned to some very large maximum value. The sender’s
buffers, no longer constrained by small window adver-
tisements from receivers, are then allocated to sending
processes using fair-share algorithms.

There is no discussion in this proposal, however, re-
garding the potential for starvation caused by this
over-subscription.

A receiver uses its buffers for the following purposes:

Filling Gaps: If a gap is detected in a sequence of
received packets, those packets are buffered un-
til the gap can be filled. If the gap was caused
by packet loss, the buffers will be used until the
sender successfully retransmits the packet. If the
culprit was the reordering of packets in the net-
work, the missing packet may arrive very soon.

Application Buffering: Once a complete sequence
of packets has been received and acknowledged,
they can be delivered, in-order, to the receiving
application. Using the Berkeley Sockets API, the
data must reside in kernel buffers until the receiv-
ing application reads it in.

If one or more connections use significant portions of

Fisk and Feng: Dynamic Adjustment of TCP Window Sizes

LAUR 00-3321

its available buffers, the receiver could be forced to
drop some incoming data for lack of buffer space.

5.1 Receiver consequences

The TCP standard specifies that a receiver can never
shrink the window size for an existing connection be-
cause by the time the sender receives notification of
the smaller window size, it may have already sent more
data than will fit in the new window. If, however, the
receiver is not concerned with strict adherence to win-
dow sizes, it can accept this possibility.

If a receiver were to lower the advertised window size
when memory starts to become scarce, it would gener-
ally be successful at reducing the upper bound of the
speed at which the sender could transmit data. How-
ever, to avoid dropping packets and triggering conges-
tion control mechanisms, it must be prepared to receive
more data than will fit in the new window.

If the receiver drops packets because it does not have
enough free buffer space to hold that data, the sender
will assume that the data was lost due to a congested
link in the network. Congestion control mechanisms
will be used and the sender will slow-down its trans-
missions. This merging of flow control and congestion
control could provide relief to the receiver, but effec-
tively takes flow control out of the hands of the re-
ceiver.

5.2 Applicability of congestion control
mechanisms

The amount of buffers used on the receiver is not
caused by the sender’s speed, but instead by slow re-
ceiving applications, packet loss, or reordering in the
network. If one connection with a large window comes
through a path with packet loss or significant reorder-
ing, it will end up using a significant amount of receive
buffer space while the holes are filled in. If another
connection comes through without loss or reordering,
it may be starved from the few buffers that it needs by
the connection that suffered loss.

The effects of window congestion may be much more
long-lived than traditional, instantaneous congestion
of bandwidth or router queues. Out of order data can
be thrown away and will be retransmitted at a slower
pace, but data that has already been acknowledged

cannot be removed from the buffers until the receiving
application is waiting for it. In the meantime, well-
behaved connections will be penalized by this blocking
application. In essence, acknowledging data is com-
mitting not only the instantaneous use of buffers, but
also use of those buffers for an unforeseeable amount of
time. Thus, the fundamental congestion control tech-
nique of instantaneous packet loss and subsequent mul-
tiplicative back-off cannot always be exercised for win-
dow congestion. An application that has acknowledged
data in the window may starve other connections with-
out incurring a penalty of its own.

5.3 Conclusions

Over-subscription has been proposed as a technique for
increasing the size of windows advertised by receivers.
It is not clear, however, that the consequences of this
over-subscription are tolerable. Under stress, the fair-
ness to receiving processes is particularly troublesome.
More study of this area is clearly warranted. There
is a potential for a away from strict flow-control, but
the full implications of such a move are not well under-
stood. In addition, the probability that these problem
cases will occur goes up as high delay-bandwidth net-
work connections become more common.

6 Dynamic Right-sizing

A more appealing solution would be the development
of a low-overhead mechanism for automatically and dy-
namically determining the correct window size for a
given connection.

6.1 Attributes of the right size

The basic requirement is that, provided there is suf-
ficient available memory, the window advertised by
the receiver should be as large as the minimum of the
bandwidth-delay product of the network path.

In practice, the sender’s congestion window [6] will con-
strain the transmission rate for at least the first portion
of the connection. Thus there is no value in advertis-
ing a window larger than the number of bytes that the
sender can send with its current congestion window.?2

2This calculation is made by taking the congestion window’s

Fisk and Feng: Dynamic Adjustment of TCP Window Sizes

LAUR 00-3321

If, the congestion window is larger than the bandwidth-
delay product, and the sender makes use of that win-
dow, it may experience packet loss and/or additional
queuing delay. In the case of packet loss, the conges-
tion window will be dropped. Additional queueing de-
lay may allow for more full link utilization, but is also
likely to cause packet loss. For this reason it is both
undesirable and controlled by the congestion window.

Thus the congestion window is both an upper-bound
on the bandwidth that the sender will use and an
approximation of the connections fair share of the
bandwidth-delay capacity of the network. Accordingly,
our initial requirement can be replaced by saying the
receiver should, provided there is sufficient available
memory, advertise a window that is large enough to
not constrain the congestion window.

6.2 Estimating the sender’s congestion
window

A TCP header option could be used for the sender
to explicitly convey the window size to the receiver,
but the deployment issues associated with any such
addition to the protocol are prohibitively complex for
the sake of this paper. A less intrusive technique is
preferable.

It is already standard practice for the sender to mea-
sure the round-trip time of the connection [10]. There
are no provisions, however, for measuring the available
end-to-end bandwidth of the network.

It is clearly trivial to measure the amount of data re-
ceived in a fixed period of time and subsequently com-
pute the average throughput over that period. How-
ever, the instantaneous throughput of a connection
seen by a receiver may be larger than the maximum
available end-to-end bandwidth. For instance, data
may travel across a slow link only to be queued up on
a downstream switch or router and then sent to the
receiver in one or more fast bursts.

The maximum size of this burst is bounded by the
size of the sender’s congestion window and the win-
dow advertised by the receiver. The sender can send
no more than one window’s worth of data between ac-
knowledgements. Accordingly, a burst that is shorter
than a round-trip time can contain at most one win-
dow’s worth of data.

packet count and multiplying it by the TCP maximum segment
size.

Thus, for any period of time that is shorter than a
round-trip time, the amount of data seen over that pe-
riod is a lower-bound on the size of the sender’s win-
dow. Some data may be lost or delayed by the network,
so the sender may have sent more than the amount of
data seen. Further, the sender may not have had a full
window’s worth of data to send. Thus the window may
be larger than the lower-bound.

As mentioned earlier, the window used by the sender is
the minimum of the receiver’s advertised window and
the sender’s congestion window. As a result, measur-
ing this minimum and making sure that the receiver’s
advertised window is always larger will let the receiver
track the congestion window size.

6.3 Averaging over longer periods

Over a period of time (¢) that is larger than the round
trip time, the amount of data received (d) is still a
function of the round-trip time (rtt). Assuming that
the round-trip time is not fluctuating, the time (¢) is
some whole number (n) of round-trip periods plus a
partial period:

t =mn-rtt + rttpartial

If the sender is sending as fast as possible, the amount
of data sent during a round-trip time will be equal
to the window size. Under the same assumption, the
data received is equivalent to n times the window size
plus some amount of data received during the partial
period:

d = n - window + windowpartial

By substituting the two equations and solving for the
window size, it is shown that the lower bound of the
window size is bounded as follows:

d-rtt d-rtt d

t

< window <

Since the application may not have been ready to send
for the entire time period, the estimated window size
may be smaller than the actual window. If each time
interval was measured separately, the largest measured
value would be at least as large as the average value
over a longer time period. Rather than using an av-
erage, we therefore use the largest measured value for
each individual round-trip interval. This decreasing
lower-bound is used to estimate the largest window
that the sender may use.

Fisk and Feng: Dynamic Adjustment of TCP Window Sizes

LAUR 00-3321

6.4 Sender’s window

The previous discussion presents a method for a re-
ceiver to enlarge its window to match the size of the
sender’s window. In current practice, the sender’s win-
dow is often the same static size as the receiver’s. A
functional solution is for the sender and receiver to
work their window sizes up until they are sufficient to
fill the bandwidth-delay product.

To maintain strict flow control, the sender should not
send more data than the receiver claims it is ready to
receive. These increases must consequently be initi-
ated by the receiver. It has already been stated that
the receiver will advertise a window larger than the
measured window. Thus the receiver may increase its
buffer allocations by tracking the receiver’s advertise-
ments. This technique will not cause the sender’s al-
locations to be out of line with the useful window size
for the particular connection.

6.5 Slow-start

In order to keep pace with the growth of the sender’s
congestion window during slow-start, the receiver
should use the same doubling factor. Thus the receiver
should advertise a window that is twice the size of the
last measured window size.

6.6 Window scaling

TCP only has a 16-bit field for window size. Newer
implementations support Window Scaling [1] in which
a binary factor (between 0 and 14 bits) is negotiated at
connection setup for each end-point. For the remain-
der of the connection, this is implicitly applied to all
windows advertised by that end-point.

However, there will be a resulting loss of granularity in
expressing window sizes. For example, if the maximum
window scaling of 14 bits is used, window sizes of 1 gi-
gabyte can be represented, but the granularity will be
16 kilobytes. This makes it impossible to safely adver-
tise a window size of less than 16 kilobytes as anything
other than 0. Consequently, the receiver should use a
window that is substantially larger than the quantum
specified by the scaling factor.

In order to support dynamically sized buffers, the re-
ceiver must request, at connection setup, a window

scaling sufficient to represent the largest buffer size
that it wishes to be able to use. It must balance this
scaling with the ability to represent smaller window
sizes.

7 Implementation

The algorithms described above were implemented in
a Linux 2.2.12 kernel. To make the receive throughput
measurements, two variables are added to the TCP
for each connection. These variables are used to keep
track of the time of the beginning of the measurement
and the next sequence number that was expected at
that time.

Upon the arrival of each TCP packet, the current time
is compared to the last measurement time for that con-
nection. If more than the current, smoothed, round-
trip time has passed, the last sequence number seen
(not including the current packet) is compared to the
next sequence number expected at the beginning of the
measurement. Assuming that all packets are received
in order, the result is the number of bytes that were re-
ceived during the period. If packets were received out
of order, the number of bytes received may actually be
more or less.

The receive buffer space is then increased, if necessary,
to make sure that the next window advertised will be at
least twice as large as the the amount of data received
during the last measurement period.

7.1 Receive buffer

The Linux 2.2 kernel advertises a receive window that
is half as large as the receive buffer. Since data may
come from the sender in packets with payloads any-
where from 1 byte to the maximum segment size, the
receiver can never quite be certain how much buffer
space will be used for a given amount of receive win-
dow. Thus, the buffers are advertised in a binary-
search style. In practice, large amounts of data should
come in large packets with relatively low storage over-
head for headers.

Since the right-sizing algorithm described above al-
ready keeps the buffer size twice as large as the maxi-
mum amount of data received during a round-trip time,
the amount of buffer space allocated is actually four
times the last measurement. This is clearly wasteful,

Fisk and Feng: Dynamic Adjustment of TCP Window Sizes

LAUR 00-3321

but a better algorithm for safely filling the buffers is a
different topic of study.

In addition, the Linux kernel wuses the
netdev_max_backlog parameter to limit the number
of received packets that haven’t been processed yet.
This value defaults to 300 and was smaller than the
sender’s congestion window during the experiments
shown below. Due to the bursty nature of TCP and
the ability of gigabit ethernet to deliver packets very
fast, we believe that we were passing this limit and
changed the value to 3000.

7.2 Timing granularity

The granularity of kernel timers in this Linux kernel
was 10ms. Even if the round-trip time is 1ms, the
measurement period could be around 10ms (or vice-
versa). For local-area connections with low round-trip
times around 1ms, the calculated amount of progress
may be inflated by as much as factor of 10. To com-
pensate, the amount of data received during a mea-
surement is averaged as if the measured period was
actually 10 round-trips. As discussed earlier, average
measurements made over multiple round-trip periods
may be smaller than those made over single round-trip
periods.

7.3 Round-trip time

In a typical TCP implementation, the round-trip time
is measured by observing the time between when data
is sent and an acknowledgement is returned. During a
bulk-data transfer, the receiver might not be sending
any data and would therefore not have a good round-
trip time estimate. For instance, an FTP data connec-
tion transmits data entirely in one direction.

A system that is only transmitting acknowledgements
can still estimate the round-trip time by observing the
time between when a byte is first acknowledged and
the receipt of data that is at least one window beyond
the sequence number that was acknowledged. If the
sender is being throttled by the network, this estimate
will be valid. However, if the sending application did
not have any data to send, the measured time could
be much larger than the actual round-trip time. Thus
this measurement acts only as an upper-bound on the
round-trip time.

Megabtyes

10 ,

O L L L L L
0 50 100 150 200 250 300

Seconds

Figure 4: Progress of data transfers

To develop a useful upper-bound on the round-trip
time, we keep track of the minimum value observed. If
there is no smoothed, round-trip time (srtt) available
from transmissions, the minimum received round-trip
time is used.

8 Results

As expected, the use of larger windows increases per-
formance compared to using smaller, default window
sizes. In Figure 4, 50 transfers of 64 megabytes each
were made with the ttcp program. The first 25 trans-
fers used the default window sizes of 64 kilobytes for
both the sender and receiver. The second 25 trans-
fers, shown in dotted lines, used the dynamically sized
windows described above. Both end points have gi-
gabit ethernet interfaces separated by a WAN emula-
tor that introduces a 100ms delay in the round-trip
time. The congestion control mechanisms triggered by
packet losses cause the abrupt decreases in slope.

8.1 Performance

The transfers made with default window sizes took a
median time of 240 seconds to complete. The trans-
fers with dynamic windows sizes were roughly 7 times
faster and took a median time of 34 seconds.

In Figures 5 and 6, we examine the window sizes during
two of the above transfers. The amount of sent, but
unacknowledged data in the sender’s buffer is known
as the flightsize. The flightsize is in turn bounded by

Fisk and Feng: Dynamic Adjustment of TCP Window Sizes

LAUR 00-3321

" Static window
35 ¢ Static flightsize -

Kilobytes

0 L L L L
0 50 100 150 200 250

Seconds

Figure 5: Static case: Flight & window sizes

1200 ‘ —
Dynamic window
1000 | Dynamic flightsize i
7 S
g 800 O Rt A
= AL E
2 600 | 5 i 1
o A %
X 400 3 Lo
200 / %]
0 I I I I I I
0 5 10 15 20 25 30 35

Seconds

Figure 6: Dynamic case: Flight & window sizes

the window advertised by the receiver.

Figure 6 shows that, in the default case, the flight-
size is generally equal to the constraining window size.
In contrast, during the dynamic case shown in Figure
5, the receiver is able, during most of the connection,
to advertise a window size that is roughly twice the
largest flightsize seen to date. As a result, the flight-
size is only constrained by the congestion window and
the delay-bandwidth product. This 7-fold increase in
the average flightsize is the source of the throughput
increase demonstrated in Figure 4.

Other tests did occasionally see the increased queu-
ing delay caused when the congestion window grows
larger than the available bandwidth. At this point
the retransmit timer expired and reset the congestion
window even though the original transmission of the
packet was acknowledged shortly thereafter. In this
case the congestion window is reset to 1 rather than

16 : N
Dynamic flightsize
14 ¢ Dynamic window ———]

Kilobytes

0 10 20 30 40 50 60
Seconds

N B~ O

Figure 7: Low-bandwidth links: dynamic case

35 ‘ ‘ Statiqflig_htéize 1
30 jﬁ%\\ . < Mw———ws»a‘atlc)w wrldow 4
o 250 Pt 1
Q
_‘% 20 ¢ 1
o
c 15|]
10 1

0 10 20 30 40 50 60
Seconds

Figure 8: Low-bandwidth links: static case

just performing a normal multiplicative decrease.

8.2 Low-bandwidth links

Figure 7 shows the first part of the same transfer over
a link that is simulated to be only 56 kilobits. Here
we see that the largest advertised window is under 13
kilobytes.

Figure 8 shows what happens over the same link when
default window sizes are used. Other measurements
show that the two cases get virtually identical through-
put. Yet, the static case appears to usually have more
data in flight.

As evidenced by the increased frequency of retrans-
missions show in Figure 9, this additional data in
flight is dropped by the link which cannot support that

Fisk and Feng: Dynamic Adjustment of TCP Window Sizes

LAUR 00-3321

60

' Static
Dynamic

50 1
40 |
30 ¢
20 1
10 ¢

Cumulative Retransmits

0 "/\ L L L L L L L L
0 5 10 15 20 25 30 35 40 45 50
Seconds

Figure 9: Low-bandwidth links: Retransmits

throughput. If the gateway to that link had sufficiently
large buffers, the packet would be lost. If all network
connections are behaving similarly, however, it is un-
likely that such a gateway would possess enough buffer
space for all connections.

9 Conclusions

The capability for scaling TCP’s flow control windows
has existed for several years, but the use of this scaling
has remained dependent on manual tuning. To address
this problem, we have developed a general method
for automatically scaling the flow control windows in
TCP. This scalability allows end systems to automat-
ically support increased performance over high delay-
bandwidth networks.

It has been demonstrated that this method can suc-
cessfully grow the receiver’s advertised window at
a pace sufficient to avoid constraining the sender’s
throughput. For the particular circumstances tested
a 7-fold speedup was achieved. Connections capable of
supporting higher throughput would be able to realize
their full throughput as well.

Meanwhile, the receiver remained in full control of
the flow-control mechanisms. As a result, imple-
mentations that wish to guarantee window availabil-
ity have the necessary information to strictly allo-
cate buffers or control the degree to which they are
over-committed. Additionally, network connections
with small bandwidth-delay products are identified
and the receiver can avoid reserving unnecessarily large
amounts of buffer space for these connections.

10

At the same time, the sender’s window also grows to
match the congestion window. Fairness algorithms
such as those described in [4] can be used to manage
competition for sender buffer space. Further, these al-
gorithms may also be useful for managing the receiver’s
buffer space.

Because the sender’s window is throttled by the re-
ceiver’'s measurements of achieved throughput, the
growth of the congestion window can be limited by
actual performance. Over low-bandwidth bottlenecks,
this feedback was able to reduce overall packet loss by
keeping the congestion window closer to the available
bandwidth.

In summary, we have shown that TCP flow control
can be automatically scaled to support high delay-
bandwidth links while providing more fairness than al-
ternative solutions in which the receiver ignores actual
flow control needs. In addition, more information is
provided to the end-systems about actual flow control
needs.

References

[1] V. Jacobson, R. Braden, and D. Borman, “RFC
1323: TCP extensions for high performance,”
May 1992.

M. Mathis, J. Mahdavi, S. Floyd, and A. Ro-
manow, “RFC 2018: TCP selective acknowledg-
ment options,” Oct. 1996, Status: PROPOSED
STANDARD.

in-
at

Van Jacobson, “Characteristics of
ternet paths,” Presentation published
ftp://ftp.ee.lbl.gov/pathchar /msri-talk.pdf,
Apr. 1997.

J. Semke, J. Mahdavi, and M. Mathis., “Auto-
matic TCP buffer tuning,” in Proceedings of ACM
SIGCOMM ’98. 1998, pp. 315-323, ACM Press.

Dan Kegel, “The C10K problem,” Whitepaper
published at http://www.kegel.com/c10k.html,
1999.

J. Postel, “RFC 793: Transmission Control Pro-
tocol,” Sept. 1981.

Bruce Mabh,
suring internet

A tool for mea-
characteristics,”

“pchar:
path

http://www.employees.org/ bmah /Software/pchar/.

[8] “Webl00 project,” http://www.web100.org/.

Fisk and Feng: Dynamic Adjustment of TCP Window Sizes LAUR 00-3321

[9] “Automatic bandwidth delay product discovery,”
http://www.web100.org/papers/bdp.discovery.html.

[10] Van Jacobson, “Congestion Avoidance and Con-
trol,” in Proceedings, SIGCOMM ’88 Workshop.
ACM SIGCOMM, Aug. 1988, pp. 314-329, ACM
Press, Stanford, CA.

11

