
COMPUTER 26

GUEST EDITORS’ INTRODUCTION

Published by the IEEE Computer Society 0018-9162/09/$26.00 © 2009 IEEE

challenge that will create more-not less-problematic
software.

A WORLD OF UBIQUITOUS PARALLELISM
Even without parallelism, software defects already

account for up to 40 percent of system failures. Further,
concurrency bugs and memory-related bugs cause more
than 60 percent of system vulnerabilities. Consequently,
even with serial computing, computing systems must often
be rebooted, thus creating downtime and impacting avail-
ability. This is particularly insidious in data centers, where
the average cost of an hour of downtime can run in the
millions of dollars.

In short, programming for serial computing is already
a difficult undertaking that we have yet to master; pro-
gramming for parallel computing will only exacerbate this
difficulty. For parallelism to succeed, it must ultimately
produce better performance relative to speed, ef!ciency,
and reliability. However, most programmers not only are ill-
equipped to produce proper parallel programs, they also lack
the tools and environments for producing such programs.

Dealing with these issues requires a suite of tools and
environments that provide users and developers with con-
venient mechanisms for managing different resources
in multicore environments. Resources include memory,
cache and compute units, compilers that allow sequential

I n the past, computing speeds doubled every 18 to 24
months, increasing the clock speed and giving soft-
ware a “free ride” to better performance. This free
ride, however, is now over, and such automatic per-
formance improvement is no longer possible. With

clock speeds stalling out and computational horsepower
instead increasing due to the rapid doubling of the number
of cores per processor, serial computing is now dead, and
the vision for parallel computing, which started more than
40 years ago, is a revolution that is now upon us.

With the advent of multicore chips—from the tradi-
tional AMD and Intel multicore to the more exotic hybrid
multicore IBM Cell and the many-core AMD/ATI and
NVIDIA graphics processing units—parallel computing
across multiple cores on a single chip has become a neces-
sity. However, writing parallel applications is a signi!cant

Wu-chun Feng, Virginia Tech

Pavan Balaji, Argonne National Laboratory

Programming for serial computing is al-
ready a difficult undertaking that we have
yet to master; programming for parallel
computing will only exacerbate this diffi-
culty. Fortunately, tools and environments
are beginning to emerge that will let us take
advantage of multicore and many-core ar-
chitectures in a more productive manner.

TOOLS AND
ENVIRONMENTS
FOR MULTICORE
AND MANY-CORE
ARCHITECTURES

27DECEMBER 2009

Performance Bottlenecks in Work-Stealing Computations,”
Nathan R. Tallent and John M. Mellor-Crummey propose a
new pro!ling strategy for analyzing such issues, more spe-
ci!cally focusing on work-stealing programming models.

In “Eliminating Concurrency Bugs with Control Engineer-
ing,” Terence Kelly and colleagues present approaches from
control engineering that can be applied to multicore parallel
program development, containing the behavior of complex
systems and preventing runtime failures. They provide an
in-depth look at the Gadara project, which uses discrete
control theory to eliminate deadlocks in shared-memory
multithreaded software, and discuss broader prospects for
concurrency management based on discrete control theory.

W e hope the articles in this special issue
will provide relevant insights into the
emerging ubiquitous world of parallel
computing.

Wu-chun Feng is an associate professor in the Depart-
ments of Computer Science and Electrical and Computer
Engineering at Virginia Tech. His research focuses on
high-performance computing with specific interests in
accelerator-based parallel computing, green supercomput-
ing, dynamic multicore and many-core scheduling, and
bioinformatics. Feng received a PhD in computer science
from the University of Illinois at Urbana-Champaign. Con-
tact him at feng@cs.vt.edu.

Pavan Balaji is an assistant computer scientist in the
Mathematics and Computer Science Division at Argonne
National Laboratory. His research interests focus on par-
allel and distributed computing. Balaji received a PhD in
computer science and engineering from Ohio State Univer-
sity. Contact him at balaji@mcs.anl.gov.

programs to automatically take advantage of multicore
systems, strategies that allow users to analyze perfor-
mance issues in multicore systems, and environments to
control and eliminate bugs in parallel threaded programs.
Thus, the purpose of this special issue is to present such
latest advances in next-generation tools and environments
for multicore and many-core architectures.

IN THIS ISSUE
In this special issue, we take a closer look at some of the

recent advances in tools and environments that have al-
lowed users to take advantage of multicore and many-core
architectures in an easy and productive manner.

In “Programming Multiprocessors with Explicitly Man-
aged Memory Hierarchies,” Scott Schneider, Jae-Seung
Yeom, and Dimitrios S. Nikolopoulos take a look at modern
many-core architectures such as the Cell Broadband
Engine that require programmers to explicitly manage
data movement in the memory hierarchy.

Managing the memory hierarchy in multicore proces-
sors introduces tradeoffs in terms of performance, code
complexity, and optimization effort. While processors
with coherent hardware caches simplify programming
by freeing programmers from having to explicitly manage
data, they come at the cost of more expensive hardware
requiring more power and potentially providing worse
performance. Explicitly managed caches, on the other
hand, avoid the additional hardware and logic that is re-
quired for such automated cache management, but can
make development more complex and error-prone. The
authors study various programming models that provide
different mechanisms to make the task of explicit memory/
cache management easier for application developers. They
compare these models using two applications and describe
the pros and cons of each model.

With multicore and many-core architectures in!ltrat-
ing every aspect of computing, including desktops and
laptops, developers who were content with just sequential
programs are now plunged into the sudden requirement
to parallelize their applications. To address this issue, in
“Cetus: A Source-to-Source Compiler Infrastructure for
Multicores,” Chirag Dave and colleagues describe an open
source compiler infrastructure that allows for automatic
parallelization of C programs on multicore architectures.
The authors present an overview of Cetus and offer details
about its working model.

Performance analysis of threaded programs has tradi-
tionally been one of the biggest challenges of the multicore
era. What parts of the program are well parallelized; what
parts have too !ne-grained parallelism, causing locking
and synchronization overheads; and what parts do not
have enough parallelism, causing idleness, are all impor-
tant issues that are not easy to identify. In “Identifying

The many faces of multicore and many-core architectures.
Images courtesy of http://images.google.com.

