Blocks and Beyond, A VL/HCC 2015 Workshop, Oct-2015.

Block-Based Programming Abstractions for
Explicit Parallel Computing

Annette Feng,* Eli Tilevich,! Wu-chun Feng* T
*Department of Computer Science
TDepartment of Electrical and Computer Engineering
Virginia Tech, Blacksburg, U.S.A.
{afeng, tilevich, wfeng}@vt.edu

Abstract—With the majority of computing devices now fea-
turing multiple computing cores, modern programmers need to
be able to write programs that utilize these cores in parallel to
extract the requisite levels of performance. Despite the need for
such explicit parallel computing, few programmers are properly
groomed in the mindset and the practices of parallel computing.
Block-based programming languages, such as Scratch and
Snap!, have proven to be a highly effective means of teaching
fundamental programming concepts to a wide student audience.
Nevertheless, the rich feature-set of mainstream block-based
programming environments lack abstractions for explicit parallel
programming, thus missing the opportunity to introduce this
increasingly important programming concept at a time when the
students’ minds are most receptive. This paper reports on the
results of an NSF-sponsored project for adding and integrating
explicit programming abstractions, including producer-consumer,
master-worker, and MapReduce, to block-based languages. We
describe our reference implementation of adding the producer-
consumer abstraction to Snap! and an educational project that
utilizes this abstraction. This project clearly demonstrate the key
features of parallel processing, without unduly burdening the
programmer with the low-level details that this programming
model typically entails. Our initial results show great potential
in introducing the key concepts of parallel computing via block-
based programming.

Keywords—explicit parallel computing; computer science edu-
cation; block-based programming; visual programming; parallel
computational patterns

I. INTRODUCTION

The traditional pillars of K-12 education are the so-called three
R’s: Reading, wRiting, and aRithmetic. We postulate that the three R’s
above need to be supplemented with a fourth R: Reasoning, or if you
will, a renaissance in complex reasoning that embodies computational
thinking. As complex (or higher-order) reasoning skills are now
driving advanced economies, as shown in Figure 1), manual tasks and
routine cognitive tasks are being increasingly automated. As a result,
higher-order skills requiring complex reasoning and communication
must become a major focus of educational strategies. Indeed, the
College Board, in partnership with NSF, recently announced the fall
2016 launch of their new Advanced Placement Computer Science
Principles course. In development since 2009 with funding from NSF,
the AP Computer Science Principles course “is designed to broaden
the number and diversity of students who participate in computing”
and to empower them to “’develop skills that will be critical to the
jobs of today and tomorrow” [1], [2].

Many of these higher-order reasoning skills can be acquired in
the context of computing, particularly parallel computing. Because
computing has emerged as a third pillar of science, complementing
the traditional pillars of theory and experimentation, it can accelerate

978-1-4799-5944-0/14/$31.00 ©2014 IEEE

Higher order skills
are now more important

/ pai

Routine Cognitive
Nonroutine Manual

Sources: Adapted from
[38, 42]

Change in Importance to U.S. Workforce

Fig. 1. Technological Changes Affecting U.S. Workforce Skills.

discovery and innovation and create a fundamental change in how
research, development, and technology transfer in the sciences, en-
gineering, business, humanities, and arts will be conducted in the
21st century. For example, in a study conducted by the U.S. Council
of Competitiveness, 97% of surveyed U.S. businesses noted that
they could not exist or compete without the innovative use of high-
performance parallel computing (HPC) [3]. Unfortunately, those same
companies lament the dearth of a trained workforce that is familiar
with parallel computing concepts.

Block-based programming environments, such as Scratch [4]
and Snap! [5], have been used effectively as powerful educational
aids to introduce beginners to computing. We see the broad appeal
of these environments due to the following two features. First,
block-based languages have a very low barrier to entry. That is,
students with no prior programming experience can quickly grasp the
skills required to build programs that capture their interest, thereby
motivating them to keep learning how to program. Second, block-
based programming scales well with respect to students’ ages and
their level of programming experience. Block-based languages are
expressive enough to support the ingenuity of quite advanced students
of computing, while still providing enough basic blocks to provide
a rewarding programming experience to novices. It is because of
these properties of block-based languages that we see them as fertile
ground for introducing parallel computing concepts to a wide range
of computing students.

To address the need of improving the teaching of parallel com-
puting concepts, we have been pursuing a project whose goal is
to add explicit parallel abstractions to block-based programming
languages. The thesis of this research is that the teaching of parallel
computing does not need to be postponed until students have mastered
the fundamentals of sequential programming. In fact, at this point,

Blocks and Beyond, A VL/HCC 2015 Workshop, Oct-2015.

it may be too late to groom students to think truly in parallel.
Instead, we posit that explicit parallel abstractions, such as producer-
consumer, should be viewed as fundamental to programming as
the for loop. By exposing explicit parallel programming via key
language abstractions, we aim to harmoniously introduce students to
parallel computing from the very start.

The rest of the paper is organized as follows. Section II covers
background including discussion of the Snap! programming en-
vironment and concurrency paradigms. Section III presents work
we’ve done to demonstrate the viability of this approach. Finally,
in Section IV we present our conclusions and future work.

II. BACKGROUND

Figure 2 shows the typical Snap! environment. Users program
the behavior of actors called sprites, which appear on the stage
area in the upper right. The palette area along the left side contains
template blocks that users drag and drop into the scripts area in the
middle. Users connect the blocks together linearly to form programs,
which they do for each sprite in the application. When activated, the
scripts run and the resulting output of behaviors of the sprites can
be observed on the stage. In the screen shot shown in the figure, the
sprites are the bees, the bears, the hives, and the honey jars. The
displayed script defines the behavior of the bees, which is to perform
a little ”bee dance,” make honey, and deliver it to the bears.

r

G G G
: % Il I
e @ recs o x Dy @ [(18D (18D (18D
) @9 @9 @9

set x to @
change y by €1

@

Fig. 2. The Snap! Graphical User Interface.

Each sprite has its own associated set of scripts which run simul-
taneously when the user clicks on the go button. In this manner, the
system supports implicit parallelism, in that all sprites execute their
scripts concurrently, with the control of the entire application being
managed by the underlying JavaScript implementation. However,
to code explicit parallel behavior that is purposefully coordinated
using the Snap! code blocks themselves, while supported in Snap!
in a cumbersome and rudimentary fashion, requires a knowledge
of computer science concepts that are difficult for novice users to
understand and apply successfully in order to correctly achieve the
desired behavior.

Many different concurrency paradigms exist, with each pattern tai-
lored to solving a specific kind of problem. For instance, the producer-
consumer paradigm is used when the application produces multiple
sets of data that must be processed in order, as with a program
that handles network communication. The producer task receives
incoming data packets from the network interface and stores them to
a buffer where consumer tasks retrieve them for further processing.
Because processing the data likely takes longer than acquiring it,
placing the producer and consumer tasks in separate threads makes
such an application much more efficient. Communication between
the producer and consumer threads occurs via a shared, finite buffer
implemented as a first-in, first-out (FIFO) queue. This creates a

loosely-coupled system wherein the producers and the consumers do
not need to know about each other beyond the producer knowing that
something is taking the data out of the buffer to make room for more
and the consumer knowing that something is putting the data in.
Indeed, the producer-consumer problem, also known as the
bounded-buffer problem, is defined as one or more producer threads
creating data and placing it in a shared and finite buffer, and one or
more consumer threads removing the available data and operating on
it. Constraints on the system stipulate that a producer with ready data
must wait until an empty buffer slot is available before depositing the
data, and a consumer ready for new data must wait until it is deposited
in the buffer before retrieving it. Access to the shared buffer must
be carefully orchestrated, i.e., synchronized, to prevent corruption of
the data when multiple threads attempt to update it at the same time.

Consumer Pool

next free slot

v
[{ |

Producer Pool

[circular)
| Buffer h |

Widget

Producer Process: Consumer Process:
v ¥

Produce widget Request filled slot

Request empty slot Connect to buffer

Connect to buffer Retrieve widget
Deposit widget Disconnect buffer

Disconnect buffer Process widget

Fig. 3. Producer-Consumer Paradigm.

Figure 3 illustrates the producer-consumer paradigm. It shows the
shared FIFO queue as a circular buffer with the head, or in, pointer
maintaining where the producer is to insert the next data item, and
the tail, or out, pointer maintaining where the consumer is to retrieve
the next available data item to be processed.

Due to their complexity, explicitly parallel programs (in which
the user himself defines the coordinating logic) are prone to errors
and can be notoriously difficult to debug. Coding such parallel
behavior requires a certain sophistication of logic and programming
skills that more novice programmers generally do not possess, even
though parallel behavior is easy enough to understand intuitively
at a high level. We posit that teaching concurrency to computer
science students is artificially delayed due to the cumbersome, low-
level constructs that are currently available in commonly-used, text-
based languages such as POSIX threads (Pthreads) in C. We propose
that appropriate programming abstractions for a visual language such
as Snap! would allow novice users to implement explicit parallel
applications at a much earlier stage, before they become too rooted
in the sequential way of thinking about programming.

It is the logical thinking required to produce parallel codes that we
wish to promote by making the development of such programs more
accessible and less error-prone to the novice user. To achieve this,
we seek to provide the tools necessary for learning and employing
these important concepts in an age-appropriate manner. Part of our
approach involves utilizing a feature intrinsic to Snap! that allows the
user to define and add his own code blocks to the Snap! programming
environment and to define these new blocks using existing blocks. In
computer science parlance, this capability is known as encapsulation.
The basic idea behind encapsulation is to hide complexity, as it

Blocks and Beyond, A VL/HCC 2015 Workshop, Oct-2015.

tends to distract from our understanding of the larger system. As
any developer can attest, “Programs must be written for people to
read” [6].

In the next section we present some of the high-level constructs
that we have developed for explicit parallel programming in Snap!

III. PARALLEL SNAP!

The first exposure to parallel programming for a computer science
student would normally occur in a systems class and would involve
writing a solution to the producer-consumer problem in C using
POSIX threads (Pthreads), an industry standard for the C program-
ming language for creating and manipulating threads. A typical
Pthreads implementation, as shown in Figure 4, will follow along the
lines of the producer and consumer patterns illustrated in Figure 3,
but with additional code required to perform the task coordination
necessary to ensure program correctness through a property called
mutual exclusion. This property guarantees the condition that only
one task at a time accesses the shared buffer.

The Pthreads code in Figure 4 implements the producer-consumer
pattern appearing in Figure 3. The solution utilizes a shared, circular
buffer and three indices: a head index that indicates the next slot for
a producer to fill, a tail index that indicates the next slot containing
data for the consumer to remove, and a num_items index that
indicates when the buffer is either empty or full. Access to the shared
buffer must be coordinated using a construct called a mutex, short for
mutual exclusion, that implements the thread synchronization needed
to protect the shared buffer from potential corruption. To write a more
complete and general solution requires significantly more code and
a greater degree of programming complexity.

Alas, programming similar explicit parallel behavior in Snap!,
while feasible, is not a task achievable by novice users and requires
more ingenuity on the part of the programmer to achieve than
even the Pthreads version. In order to promote an ease of use of
explicit parallel constructs that is on par with learning, say, looping
mechanisms or conditional statements, we abstract out the low-level
details that are not critical to understanding parallel behavior. These
abstractions we present as basic building blocks that hide details not
pertinent to understanding explicit parallelism in Snap!

Figure 5 through Figure 9 show a series of screen shots of the
Snap! implementation of the producer-consumer problem. Figure 5
shows the program launch with the producer bees at home in the
upper left corner of the stage, and the consumer bears at home in the
lower right corner. In the middle is the shared buffer through which
the bees and the bears communicate. The buffer shown is of size four
(4). The white circle indicates an empty buffer slot, whereas a black
circle indicates a full slot.

The next frame of the program, shown in Figure 6, shows two
producers, having already acquired their “honey data,” enroute to
make their deposit to the shared buffer. As the producers near the
slots, the slots sense their presence and a connection between a
producer and a slot is made and the data is transferred. The buffer
then signals the consumer that data is ready and assigns it the next
filled slot. Note the values and locations of the data that the producers
are depositing.

Figure 7 shows the producers on their way home after making
their deposit, and two consumers already enroute to take the honey
data.” This Figure 7 also shows that a third consumer, i.e., bear, is
ready for data, but as no more buffer slots are ready, that consumer
must wait.

In Figure 8 we see that the first two consumers have retrieved their
data. Compare the value and location of the data items. In Figure 6
we saw that the producer with value 3 placed that item in the first
buffer slot. In looking at Figure 8, we can indeed verify that the
consumer retrieved data value 3 from the first slot, and in doing so,
the buffer sensed the proximity of the consumer, transferred the data
value, and changed its slot appearance from black to white to show
that it is now empty and available for another item.

#include
#include
#include
#include

#define

int buff

int num_items =

pthread_cond_t produce
pthread_cond_t consume

volds pr
int

for

}
pthr

vold* co
int

for

}
pthrea

int main
pthr
pthr
int

pthr
pthr
pthr
pthr
pthr
pthr
pthr
pthr
pthr

=stdio.h=

<pthread.h=
<stdlib. h=>
<unistd.h=

BUF_SIZE 5

er[BUF_SIZE];
B, head = B, tail = @;

pthread_mutex_t mutex =

oducer{void #ptr) {
i, data;

(i=1; i<=2; i++) {

data = (rand() % 18);

sleep(datal;

printf("Produced: %dyn", data);

pthread_mutex_lock(&mutex);

if (num_items == BUF_SIZE) {
pthread_cond_wait (&produce, &mutex);

}

buffer[head] = data;

head = (head+1) % BUF_SIZE;
num_items++;
pthread_cond_signal{&consume);
pthread_mutex_unlock{&mutesx);

ead_exit(@);

nsumer({void *ptr) {
i, data;

(i=1; i ==2; i++) {
sleep(rand() % 3);
pthread_mutex_lock(&mutex);
while (num_items == @]
pthread_cond_wait (&consume, &mutex);
data = buffer[taill
tail = (tail+1) % BUF_SIZE
num_items—;
pthread_cond_signal(&produce);
pthread_mutex_unlock{&mutex);
printf("Consumed: %dyn", data);

d_exit(@);

{int arge, char ==argv) {
ead_t pl, p2, p3, pd;
ead_t cl, c2, c3, c4;
pid = 1, cid = 1;

ead_create(&cl, NULL, consumer, MULL);
ead_create(&c2, NULL, consumer, NULL);
ead_create(&c3, NULL, consumer, NULL);
ead_create(&cd, NULL, consumer, NULL);
ead_create{&pl, NULL, producer, NULL);

producer, MULL)
producer, MULL)
producer, NULL)

ead_create{&p2,
ead_create(&p3,
ead_create(&p4d,
ead_exit(@);

NULL,
NULL,
NULL,

PTHREAD_MUTEX_INITIALIZER;
PTHREAD_COND_IMITIALIZER;
PTHREAD_COND_IMITIALIZER;

1

I
1
1

I

1

I
I

1
1

Produce

Request
Connect

Deposit

Disconnect

Reguest

Connect
Retrieve

Disconnect
Consume

Fig. 4. Solution to Producer-Consumer Problem Using Pthreads.

Blocks and Beyond, A VL/HCC 2015 Workshop, Oct-2015.

) (o Figure 9 displays the final frame of the program showing the last

e (e) consumers returning home to consume their data.

L8 % (uimer [ETI)
sess >

Fig. 5. Launch of the Snap! Producer-Consumer Program.

(am G0

(tmer (000)

Fig. 9. Bear Consuming Honey.

“ 3‘@(Below we discuss the details of our approach for introducing
8 % explicit parallelism to Snap! When the program starts, the system
e is initialized, and when the buffer is ready, it signals the bees and
DE bears to begin. The iterative behavior of the bees follows the normal

producer pattern: (1) produce data, (2) request empty buffer slot, (3)
acquire slot, (4) deposit data, and (5) repeat. The bears are similarly
coded to realize the normal consumer pattern: (1) request filled slot,
(2) acquire slot, (3) retrieve data, (4) consume data, and (5) repeat.
The blocks implementing the basic solution for the bees and the bears
are interspersed with code blocks that achieve the various animation
effects. The potential for Snap! to visually illustrate parallel systems
Fig. 6. Bees Making a Deposit. behavior through animation makes it particularly desirable as a
teaching tool for children, given age-appropriate examples such as
“the bees and the bears” demo.

I'm hungry

\% (sum OO0
(timer (510

M
| set shared_bufter | to | make a buffer P

i

Fig. 10. New “make buffer” Definition for Snap!

[ofo] T |

"m hunary For the preceding example, the shared buffer has a capacity of
four (4) slots; however this can be changed programmatically to
accommodate any size buffer between 1 and 10. Figure 10 shows
the special reporter block, make buffer, that was introduced to
encapsulate the implementation details of the buffer. The make
buffer block returns a buffer object containing five methods that
can be called on it, namely

Fig. 7. Bears Retrieving "Honey Data.”

1) start
2) connect_producer
i (sum 00 3) send
i | (umer (520) 4) connect_consumer
s 10 5) receive

Figure 11 shows the code block that a producer with id 1d would
use to send a connect_producer request to the buffer.

connact_producer S8

Fig. 11. Calling the connect_producer Method on the Buffer Object.

The shared buffer is a perfect example of the types of abstractions
that we seek to develop for block-based languages such as Snap! The
Fig. 8. Bees and Bears Coordinating Access to the Shared Buffer. programmer need not understand the actual implementation details
of the buffer in order to use it; the abstraction is at an appropriate

Blocks and Beyond, A VL/HCC 2015 Workshop, Oct-2015.

level and provides a general solution that can be reused in other
programming scenarios.

IV. CONCLUSIONS AND FUTURE WORK

Our work seeks to provide enhancements to the Snap! visual
programming language that would allow novice programmers to learn
about and to define more sophisticated behaviors in their applications
using explicit parallel constructs at an earlier point in their program-
ming careers. Our position is that current parallel constructs are not
at a high enough level of abstraction to be accessible to the novice
user and that this is an artificial barrier that should be eliminated.

Coordinating the complex interactions of parallel systems is non-
trivial, and our initial work shows promise in our approach. As proof
of concept, our implementation of the producer-consumer paradigm
in Snap! successfully demonstrates that explicit parallel behavior can
indeed be achieved in a block-based language such as Snap! The key
to making it accessible to non-expert users is to provide abstractions
at an appropriate level, such as the “’shared buffer” object, and to
make sure that such solutions are general enough to be useful in
virtually any given programming scenario. A visual language such
as Snap! has broad appeal and the costumes and animations give it
the capacity to introduce an element of whimsy into any programming
exercise.

However, one must be careful not to overlook the more serious ap-
plications that languages such as Snap! can facilitate. As an example,
instead of the preceding “bees and bears” producer-consumer demo,
what if we sought to implement, say, a package delivery system.
Instead of bees and hives, we have human workers and warehouses,
respectively, and instead of buffers and bears, we have delivery trucks

and businesses, respectively. Now we are looking at the potential for
modeling serious real-world, grown-up applications such as a product
distribution network for a retail store or a supply-and-demand chain
for a global enterprise.

(1]

(2]

(3]

(4]

[5]

(6]

V. ACKNOWLEDGEMENT
The work was support in part by NSF ACI-1353786.

REFERENCES

The
New

Board Officially Launches
Computer Science Principles Course to
Increase Student Engagement in Computing,” Dec
2014. [Online]. Available: https://www.collegeboard.org/
college-board-officially-launches-new-ap-computer-science- principles-course
“College Board and NSF Expand Partnership to Bring
Computer Science Classes to High Schools Across the U.S.” June
2015. [Online]. Available: https://www.collegeboard.org/releases/2015/
college-board-and-nsf-to-bring-computer-science-classes-to-high-schools
E. Joseph and A. Snell and C. Willard, “Council on Competitiveness
Study of U.S. Industrial HPC Users,” July 2004. [Online]. Available:
http://www.compete.org/pdf/HPCUsersSurvey.pdf

M. Resnick, J. Maloney, A. Monroy-Herndndez, N. Rusk, E. Eastmond,
K. Brennan, A. Millner, E. Rosenbaum, J. Silver, B. Silverman et al.,
“Scratch: programming for all,” Communications of the ACM, vol. 52,
no. 11, pp. 60-67, 2009.

B. Harvey, D. Garcia, J. Paley, and L. Segars, “Snap!:(build your own
blocks),” in Proceedings of the 43rd ACM technical symposium on
Computer Science Education. ACM, 2012, pp. 662—662.

G. Sussman, H. Abelson, and J. Sussman, “Structure and interpretation
of computer programs,” 1983.

College
AP

Board, “College

s

