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Abstract

For decades, computing speeds seemingly doubled every 24 months by increas-
ing the processor clock speed, thus giving software a “free ride” to better per-
formance. This free ride, however, effectively ended by the mid-2000s. With
clock speeds having plateaued and computational horsepower instead increas-
ing due to increasing the number of cores per processor, the vision for parallel
computing, which started more than 40 years ago, is a revolution that has now
(ubiquitously) arrived. In addition to traditional supercomputing clusters, par-
allel computing with multiple cores can be found in desktops, laptops, and even
mobile smartphones.

This ubiquitous parallelism in hardware presents a major challenge: the
difficulty in easily extracting parallel performance via current software abstrac-
tions. Consequently, this paper presents an approach that reduces the learning
curve to parallel programming by introducing such concepts into a visual (but
currently sequential) programming language called Snap!, which was inspired
by MIT’s Scratch project. Furthermore, our proposed visual abstractions can
automatically generate parallel code for the end user to run in parallel on a
variety of platforms from personal computing devices to supercomputers. Ulti-
mately, this work seeks to increase parallel programming literacy so that users,
whether novice or experienced, may leverage a world of ubiquitous parallelism
to enhance productivity in all walks of life, including the sciences, engineering,
commerce, and liberal arts.
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1. Introduction

As complex (or higher-order) reasoning skills are now driving advanced
economies, as shown in Figure 1, manual tasks and routine cognitive tasks are
being increasingly automated. As a result, higher-order skills requiring com-
plex reasoning and communication must become a major focus of educational
strategies. Indeed, the College Board, in partnership with the National Science
Foundation (NSF), recently announced the fall 2016 launch of their new Ad-
vanced Placement Computer Science Principles course. In development since
2009 with funding from NSF, the AP Computer Science Principles course “is
designed to broaden the number and diversity of students who participate in
computing” and to empower them to “develop skills that will be critical to the
jobs of today and tomorrow” [1, 2].
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Figure 1: Technological Changes Affecting U.S. Workforce Skills.

Many of these higher-order reasoning skills can be acquired in the context of
computing. Because computing has emerged as a third pillar of science, comple-
menting the traditional pillars of theory and experimentation, it can accelerate
discovery and innovation and create a fundamental change in how research,
development, and technology transfer in the sciences, engineering, business, hu-
manities, and arts will be conducted in the 21st century. For example, in a
2004 study conducted by the U.S. Council of Competitiveness and sponsored
by DARPA, 97% of surveyed U.S. businesses, including many Fortune 500 com-
panies such as Procter & Gamble, noted that they could not exist or compete
without the innovative use of high-performance parallel computing (HPC) [3].
Unfortunately, those same companies lament the dearth of a trained workforce
that is familiar with parallel computing concepts.

More recently, we have seen parallel computing become ubiquitous. For
decades and until the mid-2000s, computing capability seemingly doubled every



24 months by increasing the clock speed and giving software a “free ride” to
better performance. However, with clock speeds having plateaued and compu-
tational horsepower instead increasing due to increasing the number of cores
per processor, parallel computing is now the norm. In addition to traditional
supercomputing clusters, parallel computing with multiple cores can be found in
desktops, laptops, and even mobile smartphones. This ubiquitous parallelism in
hardware presents a major challenge: the difficulty in extracting parallel perfor-
mance via current software abstractions. To address these challenges, we turn
to block-based programming environments.

Block-based programming environments, such as Scratch [4], and Snap! [5],
have been used effectively as powerful educational aids to introduce beginners
to (sequential) computing. We see the broad appeal of these environments
due to the following two features. First, block-based languages possess a low
barrier to entry. That is, students with no prior programming experience can
quickly develop the skills required to build programs that capture their interest,
thereby motivating them to keep learning how to program. Second, block-
based programming scales well with respect to students’ ages and their level
of programming experience. Block-based languages are expressive enough to
support the ingenuity of advanced students in computing, while still providing
enough basic blocks to provide a rewarding programming experience to novices.
Because of these properties of block-based languages, we see them as fertile
ground for introducing parallel computing concepts to a wide range of computing
students — from K-12 students to college students to professionals.

To assist in addressing the need to improve the teaching of parallel com-
puting concepts, we propose to add explicit parallel abstractions to block-based
programming languages. The thesis of this research is that the teaching of par-
allel computing does not need to be postponed until students have mastered
the fundamentals of sequential programming. In fact, at this point, it may be
too late to groom students to think “truly in parallel.” Instead, we posit that
explicit parallel abstractions, such as producer-consumer, should be viewed as
fundamental to programming as the for loop. By exposing explicit parallel
programming via key language abstractions, we aim to harmoniously introduce
students to parallel computing from the very start.

Further, we propose using an experimental feature of Snap!, one that pro-
duces a textual representation of the blocks in order to generate source code
that can compile and run with high performance outside of the block-based en-
vironment, thus enabling the language to become an interactive development
environment (IDE) that supports parallel programming for domain scientists
(e.g., biologists and chemists) and domain engineers (e.g., aerospace engineers
and mechanical engineers) as well. In this way, we believe individuals of all ages
can become parallel programmers and utilize parallelism no matter their level
of computing sophistication. By doing this, we believe that the workforce will
be better prepared for the realities of our current parallel computing landscape.

To summarize, our goal is to increase parallel programming literacy for both
the novice and the experienced. We aim to (1) introduce parallel programming
concepts in a way that can be readily grasped by students as early as sizth grade



and (2) enable domain experts, who are typically not professional programmers,
to employ parallelism to accomplish their work.

The rest of the paper is organized as follows. Section 2 covers background
material, including a discussion of the block-based Snap! programming envi-
ronment and various parallel paradigms. Section 3 presents our approach to
teaching parallelism via the block-based Snap! programming environment and
presents several examples of different kinds of parallelism. Section 4 discusses
the implementation of the parallel constructs within our extended Snap! envi-
ronment. Section 5 provides a brief report on a survey-based assessment of the
deployment of our parallel programming environment during the “Women in
Computing Day” (WCD) event at Virginia Tech on April 1, 2016. Section 6
extends the theme of “parallelism for the masses” by demonstrating how Snap!
can be used to automatically generate text-based parallel code for subsequent
compilation and execution. Specifically, our extension makes Snap! into an inter-
active development environment where programs written in the block language
are translated to text-based parallel code for running outside of the browser on
machines that range from smartphones to supercomputers. Finally, Section 7
discusses related work, and Section 8 summarizes the work.

2. Background

Scratch is a visual, drag-and-drop, block-based programming language de-
veloped at MIT. It introduces new programmers to a virtual world in which
they control the actions and behaviors of characters called sprites. Program-
mers assemble sequences of basic building blocks into more complex sets of
behaviors that define movement and various interactions. Scratch introduces
novice users to fundamental concepts such as programming logic, variables, and
control structures like branching with if-then-else, looping with while con-
structs, and input/output capabilities, among many other things. Using the
basic set of Scratch building blocks, programmers with very little computer sci-
ence background can build complex games and animations with relative ease.
Scratch is intended as a “gateway” language leading to more advanced computer
programming using text-based languages.

Snap! is a visual programming language that is based on Scratch. Snap!’s
look and feel is very similar to that of Scratch. However, Snap! deviates from
Scratch in several important ways that make it ideal as a foundation upon which
to launch our research.

First, Snap! is written in JavaScript so that it can run in a web browser,
whereas Scratch was originally written in Smalltalk as a standalone application.*
While this alone is not a necessary feature, the fact that users can run the
block-based environment in their web browsers without having to download a
separate application makes it more attractive to people who might not otherwise

4Since beginning our research, Scratch has been re-written in Adobe Flash so that it, too,
can run in a web browser.



use the software due to a fear of installing potentially harmful code onto their
computers.

Second, Snap! allows users to define their own blocks using other blocks,
something that Scratch does not support. In fact, the original name for Snap!
was Build Your Own Blocks (BYOB) to illustrate a rather significant way in
which it differed from Scratch.

Third, Snap! treats lists as first-class objects, which again, is something that
Scratch does not support. First-class lists, along with first-class procedures,
which is what the block-building feature amounts to, makes Snap! a full-fledged
programming language. Snap!, with its advanced features, loses none of its ap-
peal to novice users who can safely ignore these advanced features when coding
their applications. At the same time, Snap! gains the audience of experienced
programmers who see a complete language that is suitable for achieving their
own programming needs.
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Figure 2: The Snap! Graphical User Interface.

Figure 2 shows what the Snap! interface looks like. The white area in the
upper right of the interface is the stage where the sprites appear, exhibit their
behavior, and display their output. In the center is the script editor, where the
end user (or programmer) assembles the blocks that define the set of programs
for the currently selected sprite. In the Snap! world, a project, or application, is
built with one or more sprites, each having one or more scripts associated with
it. Activated scripts run concurrently, both within a sprite’s own collection of
scripts and across all sprites.



Snap! adopts an event-driven programming model to incorporate interactiv-
ity into the system. Users can specify which events their sprites respond to and
what the sprites do when they receive their specified events. For instance, the
user clicking on the green start flag above the stage causes all the scripts that
begin with the “when green flag clicked” block to start executing.

In the example shown in Figure 2, the project consists of a single dragon
sprite having a program consisting of a collection of three separate scripts. The
top script begins execution when the green flag button is pressed by the user.
Because of the forever block, this script runs “forever” until the stop button is
pressed. The middle script executes a single block of code telling the dragon to
turn right every time the user presses the right arrow key. Similarly, the bottom
script turns the dragon to the left every time the user presses the left arrow key.
Figure 3 shows these scripts in detail.

v g \ when key pressed
turn O, @B degrees

turn § @B degrees

wait 71  secs

Figure 3: Dragon Scripts.

Events are passed down to the run-time system at the heart of the Snap!
programming environment, which identifies the active scripts and effectively
executes them “in parallel.” Because JavaScript is single-threaded, the illusion
of parallelism in Snap! is achieved through multi-tasking. Multi-tasking is a
technique for executing all active processes one at a time in an interleaved
fashion with only a single thread of control. This form of parallelism is referred
to as concurrency.

When events occur in the Snap! run-time environment, all scripts that wait
for that event in order to execute are added to the process queue by Snap!’s
thread manager. Each process executes for a short amount of time called a time
slice before yielding to the next process and waiting for its next allotted time
slice. Because the computer can switch rapidly from one process to the next,
this delivers the illusion of parallel execution. In this manner, the interleaved
execution of the dragon scripts in Figure 2 results in the visual effect of the user
seemingly being able to control the flight of the dragon.

This concurrent programming model exemplifies a form of implicit paral-
lelism, in that the creation and execution of parallel processes is automatically
managed by the Snap! run-time environment, along with access to shared and
private data. It can also be considered somewhat explicit by virtue of the user
being able to write scripts independently for each sprite among a collection of
sprites existing within the same project, as well as being able to write multiple
separate scripts for a single sprite.



Programming in a visual language such as Snap! allows the user to break
away from strict sequential coding by enabling the layout of separate block-
sequences of scripts within a two-dimensional (2-D) visual editor, thus identify-
ing “multiple concurrent flows of control ... naturally side-by-side” [6]. Therein
lies the basis for using a visual language such as Snap! for trying to develop new
abstractions to teach parallel programming concepts: users are programming in
parallel without necessarily being aware that that’s what they are doing! Snap!’s
execution model makes mimicking the real world seem natural and intuitive and
provides an exciting and promising setting for our research.

If we assume that a visual programming language such as Snap! is the in-
troductory programming language for a novice programmer, we can use this as
an opportunity to “get in on the ground floor,” so to speak. We aim to tap into
this inherently parallel virtual world and take it to the next level by providing
new constructs that will promote the kinds of logical thinking that are neces-
sary when it comes to parallel programming. We aim to teach parallel concepts
at a point before people become too ingrained in a sequential way of thinking
that could reasonably result from having learned to program using a text-based
language that promotes a strictly linear way of programming.

3. Introducing Parallelism into Snap!

Performing operations across a collection of items is an approachable way to
introduce parallelism. Snap! includes a map block that (sequentially) executes
the specified operation on each element of a list and returns a list of the results.
The mapping of an operation across the elements of the list in parallel is a
logical and easily grasped extension to the sequential Snap!

3.1. The Map Block

Figure 4a shows the existing Snap! block called map that applies the function
supplied in the first input slot to each element of the list supplied in the second
input slot and returns a new list containing the results. The results of executing
this code fragment are shown in Figure 4b. Unlike in Scratch, lists and functions
are both first-class data elements in Snap!, a key feature which, among other
things, lets them be passed to and returned from procedures.

resultsArray

set resultsArray | to| map (@ x €D | over ((CARN@A B

(a) Multiply each list element by 10. (b) Resulting list.

Figure 4: Snap!’s Map Block.

The map function executes sequentially by looping over a list, applying the
user-supplied function to each list element, and ultimately, returning a new list



containing the results. Upon closer inspection of the map block of Figure 4a,
we see that it contains the binary multiplication operator with its first input
being empty and its second input containing the number 10. The empty input
signals where the list inputs are to be inserted into the function. Because the
multiplication function is supplied as an argument to the map function, it would
normally be evaluated first in order to obtain the input value to its enclosing
block, in this case the map block. This is because Snap!’s default behavior is
to evaluate all block arguments first, then evaluate the block. However, the
function itself is the desired input value as it must be repeatedly evaluated
with a different input element from the list each time. Therefore, the evaluation
needs to be delayed until elements of the list are inserted, and the final results are
stored in a dynamic list. The gray ring around the multiplication block signals
for Snap! to delay the evaluation, hence causing the multiplication function
itself to be treated as the input parameter to map instead of its value, which
would simply evaluate to 0 given the empty input slot. Having functions as
first-class elements allows them to be passed as arguments to other functions,
to be assigned to variables, and to be returned as results.

3.2. The Parallel Map Block

Figure 5 introduces our new parallelMap block. The new block integrates
the visual representation of the original map block with a back-end implementa-
tion that utilizes explicitly parallel HTML5 Web Workers in the place of Snap!’s
sequential execution model. The new parallelMap block also has an optional
input slot that the user can reveal by clicking on the rightmost right-facing ar-
row next to the “inputs” array. This input allows the user to specify the number
of HTML5 Web Workers to spawn. By default, four Web Workers are created.

set resultsArray | to

(parallelMap \\\item X m input names:item over (inputs

Figure 5: parallelMap Function.

Figure 6 shows two lists corresponding to this example of the parallelMap
block. The one on the left shows the first ten inputs of the original input list
to the parallelMap block in the example, and the one on the right shows the
corresponding elements of the generated results. The implementation of the
parallel map block is given in Section 4.

3.8. The Parallel ForEach Block

The next parallel construct we introduce is a parallelForEach block. Like
the parallelMap block discussed in the previous section, the parallelForEach
block also operates over elements of an input list. In this case, however, instead
of applying an operator to each list element and returning a list, each list element
is used as an input value to the script blocks nested inside the parallelForEach
block with no result returned.
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We created a graphical illustration which uses the parallelForEach, along
with moving Snap!’s sprites on the stage, to give an intuitive understanding of
how much parallelism speeds up operations in a way that is easily understood
by those not familiar with parallel programming. The example simulates a con-
cession stand and can be run in either sequential or parallel mode (see Figure 7).
A timer in the upper left corner shows the elapsed time in Snap! timestep units.
In sequential mode, a single pitcher pours the three drinks one at a time for
a total of twelve timesteps. In the parallel mode, three pitchers pour a single
drink simultaneously for a total of only three timesteps.®
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Figure 7: Snap! Interface Showing a Parallel Concession Stand Example.

5t takes three timesteps to fill a glass so we would expect the sequential case to take nine
timesteps rather than twelve. The unexpected difference is due to interference by other tasks
that also execute in the browser or on the computer. As the sequential case takes longer
to execute, the effect is more noticeable for it than for the parallel case. In this case, the
difference happened to be three timesteps.



To enable comparison, our parallelForEach block can operate in two dif-
ferent modes: parallel (Figure 8a) and sequential (Figure 8b). In parallel mode,
which is indicated by the label “in parallel” being visible, the system spawns
clones of the Pitcher sprite to serve drinks to the waiting cups. The empty
input box to the right of the “in parallel” label of the block allows the user to
specify the level of parallelism, i.e., the number of clones that will be spawned

to execute the block. If empty, it defaults to the length of the input list, which,
in this case, is three.
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(a) Parallel Mode. (b) Sequential Mode.

Figure 8: parallelForEach Block in Parallel and Sequential Modes.

During execution, each clone of the Pitcher sprite executes the same nested
script on a different element of the input list, which, in this case, contains the
name of the Cup sprite that awaits beverage service. Figures 9a through 9c
show subsequent screen shots as the parallel version of the program progresses.
The timer in the upper left shows the elapsed time.

In this parallel example of the Producer-Consumer paradigm, the program
executes in three seconds using three concurrently executing clones of the Pitcher
sprite that are spawned automatically when the block process is executed. The
capability exemplified in this example uses Snap!’s intrinsic cloning feature in a
novel way to visually demonstrate parallel behavior.

By way of contrast, Figures 10a through 10c show the result in sequential
mode. Without changing anything else, the user can switch the parallelFor-
Each block to sequential mode by collapsing the parallel input box. This tells
the underlying system not to spawn clones and that the Pitcher sprite should

10
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Figure 9: Parallel Example over Time.

execute the script as a normal forEach block by looping over the input array.
In this case, the program executes in 12 seconds. The parallelForEach block
provides a useful pedagogical tool for visually demonstrating the benefits of
parallelism.
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(b) Timestep 7. (c) Timestep 12.

(a) Timestep 3.

Figure 10: Sequential Example at Timestep 12.

8.4. The MapReduce Block

The rise of “big data” has led to increased need to process large amounts of
data. The MapReduce paradigm [7, 8] has emerged as one of the most popular
techniques for processing such data. In order to teach this important parallel
computing approach, we provide a MapReduce block for Snap!.

Figure 11 shows the Snap! blocks for a canonical MapReduce example,
namely word count. In a MapReduce block, the first argument is a block that
implements the map function. The map function is executed for each item in the
supplied list, mapping the item to a value. The function returns a two-element
list with the item as the key and the result as the value. The result of mapping
the function over all the elements of the input list is also a list. Many invocations
of the map function can operate on separate items in parallel because the map
function only depends upon a single item, its input, from the list. This inherent
lack of dependencies between items is what allows for convenient expression of
a parallel computation.

The second argument to the MapReduce block is also a block, one which
implements a reduce function. Just like the map function, the reduce function

11



reduce

reducecount (b input names: (b= over

(77114 hello-world-goodbye-world-hello-sunshine-hello 117

Figure 11: Word Count Implemented in Snap!.

operates upon each item in the intermediate list from the map phase but, unlike
the map function, the computation it performs may depend upon previous items
in order to perform the reduction operation.® It too executes in parallel. The
final argument to the MapReduce block is the input list, in this case, generated
from a string of words.

In the MapReduce paradigm, the map or reduce functions can express the
identity function which passes its input argument through unchanged. Clearly
such operations are redundant but because they are executed in parallel in
MapReduce, their execution often occurs at the same time as meaningful oper-
ations and hence do not contribute much if any to the overall execution time.
The convenience of having a uniform model of parallel computation outweighs
the bit of extra overhead that comes from executing the identity function.

The result of the word count example, as shown in Figure 12, is a sorted list
of unique words from the input with the number of times the words appear.

" results

ks length: 4 'J

Figure 12: Output of Word Count Implemented in Snap!.

Although conceptually simple, MapReduce implementations can be quite
complex to set up and use. Fortunately, these details are hidden in the imple-
mentation of the MapReduce block in Snap!.

We use global climate modeling as a real-world example of MapReduce that
is suitable for an earth science class. Utilizing weather station data from the
National Ocean and Atmospheric Administration (NOAA), which contain tem-

6The elements of the intermediate result are sorted by the value of the key in between the
map function and the reduce function, as required by the semantics of MapReduce.

12



peratures in Fahrenheit, students can convert the temperatures to Celsius and
compute their average. By asking them to observe the average temperature
over many years using the NOAA data, students can attempt to observe a
mean change in the temperature of the Earth over time.

The temperature conversion from Fahrenheit to Celsius is performed in the
map function shown in Figure 13. The reduce function computes an average
over the converted values. Thus the effect of the MapReduce program is to
take a list of Fahrenheit temperatures and produce an average temperature in
Celsius as is required for this example.

5 x / €D | input names: (in->val reduce

(avg \in->val {input names: (in->val CA list 75 [50 [64 76 [45 4

Figure 13: A MapReduce Block for Snap!.

While it is unlikely that the computed averages will exactly reproduce the
careful measurements and calculations by climate scientists, if for no other rea-
son than climate is a global phenomenon while the data from NOAA is for
the United States only, the exercise provides an opportunity for the middle-
school teacher to use computing to tie into the Earth and Social Sciences. This
leads into potential discussions about the social and political issues surround-
ing climate change and empowers the students to get involved. The somewhat
abstract concepts of temperature conversion, climate vs. weather, government
policy, and social responsibility become more concrete and meaningful, all while
teaching parallel programming concepts.

4. Implementation

Up to this point, we have focused on using Snap! with parallel extensions to
teach parallel programming concepts. We now describe the underlying imple-
mentation of the parallel extensions. These underlying implementation details
are hidden from the end user (i.e., abstracted away) so that end users do not
have to be bogged down by the syntactic tedium (or complexity) of a text-based
language when creating and managing explicit parallel threads.

4.1. HTML5 Web Workers

Because the entire execution of Snap! scripts occurs within a single browser
thread, computationally expensive scripts can slow down the execution of Snap!
programs and even render the browser unresponsive. Furthermore, the best
that can be done with a single browser thread is to simulate parallel execution
by periodically switching between the execution of several processes within the
browser thread in order to give the illusion of multiple processes executing at
once, i.e., concurrency.

To achieve true parallel execution, we make use of HTML5 Web Workers [9].
HTML5 Web Workers provide a method for JavaScript programs to spawn sepa-
rate background threads that can utilize the underlying multi-core architecture

13



of a host system, heretofore ignored by JavaScript programs. Each HTML5
Web Worker corresponds to a single thread and runs independently from other
workers and independently from the user-interface thread, thus keeping the
browser responsive to user input. HTML5 Web Workers are meant to process
computationally-intensive calculations that would otherwise potentially render
the browser unresponsive and are hence an ideal construct for introducing true
parallelism into Snap!.

To enable access to HTML5 Web Workers within Snap!, we utilize Paral-
lel.js [10] — a small open-source JavaScript library that can be integrated into
any JavaScript project simply by loading it in the project’s .html file. The code
in Listing 1 shows a simple example that demonstrates the ease with which
HTML5 Web Workers can be employed. The example maps a function which
doubles the input value in parallel across all the elements in the input list using
two HTML5 Web Workers. In spite of this simplicity, only the developer of
the parallel Snap! environment needs to be aware of the details; it is otherwise
transparent to the end user.

function mydouble(n) {return n+n;};

var p = new Parallel([1,2,3,4], {maxWorkers: 2});
p.map (mydouble) ;
console.log(p.data);

Listing 1: Example Code using Parallel.js.

We now discuss the design and implementation of our parallelized Snap!
environment, which simultaneously leverages HTML5 Web Workers as well as
Snap!’s first-class lists and procedures.

4.2. Implementing Parallelism with HTML5 Web Workers

Listing 2 shows a listing of the code that implements the parallelMap block.
It is an example of how HTML Web Workers are used to implement true par-
allelism in Snap!.

The code takes advantage of the fact that JavaScript can create functions
on the fly. The mathematical operator specified by the user in the parallelMap
block is extracted from the current stack frame, aContext. It is wrapped into
a dynamically-created JavaScript function and assigned to variable aFunction,
which is later passed as an argument to the parallel map: p.map(aFunction).
The list of values to be operated upon, alist, is passed as an argument during
Parallel object creation, along with the number of HTML5 Web Workers to
instantiate. If fewer workers are created than there are list elements, the workers
systematically process the remaining elements from the list until completed.”

"The if statement is an artifact of the way that Snap! implements concurrency as
coroutines.  The first branch of the if creates the HTML5 Web Workers then the
pushContext (’doYield’) instructs the environment to allow something else to run. (The

14



Process.prototype.reportParallelMap =
function(aContext, aList, aCount) {
// At each runStep check to see if the workers are done.
// If so, return the resulting array and quit.
//
// Use the context input array to store the parallel job:
// [0] - ringified reporter obj
/7 [1] - list
// [2] - number of workers (default = #CPU's or 4)
Y e et
// [3] - Parallel object
var aFunction, anArray, body, workers, p;
if (this.context.inputs.length < 4) {
body = 'return ' + aContext.expression.mappedCode() + ';
aFunction = new Function(aContext.inputs[0], body);
workers = aCount || navigator.hardwareConcurrency || 4;
if (alist instanceof List) {

p = new Parallel(alist.asArray(), {maxWorkers: workers});

} else {
p = new Parallel(alist, {maxWorkers: workers});
}
p.map(aFunction) ;
this.context.inputs[3] = p;
} else {
p = this.context.inputs[3];
if (p.operation._resolved) {
return new List(p.data);
3
}
this.pushContext('doYield');
this.pushContext () ;
};

Listing 2: Implementation of parallelMap.

5. Assessment

We deployed and assessed our parallel Snap! environment at the 18th An-
nual Women in Computing Day (WCD) event, sponsored by the Association

second pushContext () pushes an empty context to prevent the reportParallelMap function
from being popped by the caller. This leaves the process on the execution stack to be called
again.) The second branch which is taken in subsequent calls to reportParallelMap checks

to see if the HTML5 Web Workers are finished and returns the results.
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of Women in Computing (AWC) and held at Virginia Tech on April 1, 2016.8
The AWC is a student-run, non-profit organization at Virginia Tech, consisting
of approximately 30 undergraduate students and 10 graduate students. Every
year, the AWC holds a WCD event that hosts approximately 100 seventh-grade
girls from 5-6 local middle schools, both rural and urban, for a day of fun with
computing.

This year, the AWC partitioned the middle school girls into four groups of
24-25 in order to have each group cycle through four parallel 50-minute activity
sessions, of which our parallel Snap! was the only activity that involved any
programming, as shown in Figure 14. Thus, every 50 minutes, our task en-
tailed teaching a new set of 24-25 girls how to program and then how to do so
in parallel! The informal curriculum first focused on the original (sequential)
Snap! environment and gave the middle schoolers time to get accustomed to the
(sequential) programming of the concession stand and global climate modeling
examples (even though many had no idea that they were actually program-
ming). Approximately 20 minutes through the time period, we then introduced
parallelism via the parallelMap amd parallelForEach blocks. The students
were then allowed to program on their own for the remainder of the session. One
of the more creative examples of parallelism was a video game, where the player
controlled an on-screen (laundry) basket and tried to catch water balloons that
were falling from the sky (in parallel) before they landed on the heads of people.

Figure 14: Women in Computing Day at Virginia Tech

While this parallel Snap! environment is intended for all users — whether
K-12 students, undergraduate students, graduate students, or even professionals

8While this programming environment was deployed and assessed with middle-school girls,
it is important to note that this environment is intended to be accessible to both novice and
experienced users, including undergraduate and graduate students as well as professionals
with a desire to learn how to program in parallel.
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— we deployed and assessed the curriculum with respect to middle schoolers.
As such, relative to the CSTA K-12 Computer Science Standards on teaching
computer science to K-12, we taught “computer science for problem solving.”

Of the three levels of computer science learning (based on on CSTA’s guide-
lines), we explicitly addressed the latter two levels, namely “Level 2 (recom-
mended for grades 6-9) Computer Science and Community” and “Level 3 (recom-
mended for grades 9-12) Applying concepts and creating real-world solutions.”
Of the five strands that orthogonally permeate the aforementioned levels of
learning of computer science — (1) computational thinking; (2) collaboration;
(3) computing practice; (4) computers and communication devices; and (5) com-
munity, global, and ethical impacts — we explicitly addressed the first three,
i.e., computational thinking, collaboration, and computing practice.

Finally, our assessment during the 18th WCD event also included a brief sur-
vey that solicited brief written feedback from the participating middle schoolers.
The survey asked the students to address (1) whether computer science would be
a potential career choice for them after having gone through our specific WCD
activity on parallel Snap!; (2) whether they thought that their career choice (if
not computer science) could benefit from computer science; and (3) whether
their impression of computer science was more favorable, less favorable, or the
same as before going through our WCD activity. From this sample of middle
schoolers, 29% indicated computer science as a potential career choice, 54% in-
dicated something other than computer science, and 17% provided no answer
(or said that they did not know). Of those who indicated computer science as
not being a potential career choice, 57% indicated that computer science would
benefit their chosen career. Lastly, when asked if their impression of computer
science was more favorable, less favorable, or the same as before being exposed
to our parallel Snap! activity, 86% indicated more favorable, 9% indicated less
favorable, and 6% indicated the same or had no opinion.

Self-Assessment: While WCD provided us with the opportunity and flexi-
bility to teach parallel programming "how we wanted to" in a controlled setting,
each teaching session was limited to only 50 minutes. As a consequence, we did
not have sufficient time to more formally deploy and assess our parallel com-
puting curriculum, including, for example, a comparison and contrast between
sequential and parallel Snap! or between parallel Snap! and a text-based parallel
programming language with respect to performance and programmability, i.e.,
ease of use.

However, due in part to the success of our parallel computing environment
and curriculum at WCD, we have been invited to incorporate our parallel Snap!
into a “CS0 Computer Literacy” course [11] on problem solving for the spring
semester of 2017. The proposed one-week curriculum has been set up to as-
sist first-year undergraduate students in developing problem-solving skills and
applying these skills to both sequential and parallel programming activities, in
accordance with many of the core curriculum goals found in the NSF/IEEE-
TCPP Curriculum Initiative on Parallel and Distributed Computing [11].
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6. Parallel Snap! in the Real World

The execution environment for parallel Snap! so far has been the browser,
which is a convenient way for individuals to become comfortable with the con-
cepts. But clearly the world of parallel computing spans a greater breadth of
environments. In this section, we discuss how programs written in Snap! with
our parallel extensions are run in more traditional environments on large vol-
umes of data instead of being restricted to running in a browser. We accomplish
this by translating Snap! blocks into OpenMP source code which is compiled
and executed in the manner of traditional parallel computing environments.
With this approach, Snap! moves from being a pedagogical tool into an environ-
ment that supports serious parallel programming. We begin by providing some
background on OpenMP and how Snap! blocks are translated into a textual
form.

6.1. OpenMP

Our approach to introducing true parallelism to Snap! draws inspiration
from OpenMP [12, 13|, an application programming interface (API) that sup-
ports multi-platform, shared-memory, multiprocessing across a multitude of pro-
gramming languages (e.g., C, C+-+, and Fortran), operating systems, and pro-
cessor architectures. It is widely used in parallelizing scientific computations. In
OpenMP, a master program executing sequentially can decide to execute faster
by splitting a task among a number of workers which execute in parallel with
respect to one another.

The OpenMP API consists of a set of compiler directives, library routines,
and environment variables that enable parallel execution at run time. OpenMP
is a relatively simple, text-based approach for introducing parallelism into a
sequential program. Listing 3 shows a simple sequential C program that prints
out “hello(0), world(0)”:

void main() {
int ID = O;
printf (" hello(%d), ", ID);
printf (" world(%d) \n", ID);
}

Listing 3: Sequential Program in C.

By adding a simple directive (or pragma) and a function call to obtain the
thread ID, the previous example readily compiles into a parallel program, where
each thread prints out its own “hello(ID), world(ID)” message, where ID is the
thread ID. The parallel version of the sequential program is in Listing 4.

OpenMP is attractive because the difference between the sequential C ver-
sion and the parallel OpenMP C version is very small and easily understood.
This is in stark contrast to the complexity of other text-based approaches, such
as pthreads.
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#include "omp.h"
void main() {
#pragma omp parallel
{
int ID = omp_get_thread_num();
printf(" hello(%d), ", ID);
printf (" world(%d) \n", ID);
¥
}

Listing 4: Parallel Program in OpenMP C.

In designing our parallel extensions to Snap!, we seek to emulate the simplic-
ity of text-based OpenMP parallelism using the pragma approach, but with a
block-based approach instead. As discussed previously, our research extensions
to Snap! introduce new built-in blocks to support parallelism in the browser.
To allow running programs created using Snap! blocks outside the browser, we
leverage Snap!’s built-in code-mapping feature to generate text-based OpenMP
code, which is then compiled and run on the target computing system.

6.2. Snap!’s Code Mapping Support

Snap! has an experimental feature that translates the visual, block-based
programs of Snap! into any text-based programming language [14]. Through
the use of this feature, parallel programs in Snap! are translated to OpenMP
code ready to compile and run in traditional parallel computing environments.

Figure 15 shows a sampling of key code mapping constructs we use to trans-
late Snap! blocks into C. Text of the placeholders <#1>, <#2>... signify the
mapping of the first location in the block to be filled in, the second, and so
forth. The remainder of the characters are copied to the output verbatim.
Because Snap! programs consist of nested blocks, the value substituted for a
particular placeholder may itself have resulted from the translation of a nested
block.

Figure 16 shows a Snap! implementation of the non-parallel map example
from Figure 4a. (In this example, the map operation is written out explicitly
so that the code translation is easier to follow.)

The Snap! ‘‘code of’’ block, when executed, automatically translates the
script it contains into the corresponding code for the language specified. List-
ing 5, shows C code according to the language mapping as specified by the ‘‘map
to C’ block at the top of the script in Figure 16. (The ‘“map to C’’ block must
be executed first to set the internal code mapping to the C programming lan-
guage so that the subsequent execution of the ‘‘code of’’ block does the code
translation correctly. The “map to C’’ block is elided in subsequent figures.)
To change the back-end language to which the Snap! scripts are being mapped,
i.e., if the user wishes to switch from C to JavaScript, the ““map to C’’ block is
changed to a “map to JavaScript’’ block to specify the appropriate mappings.
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#include <stdio.h>

return(0);

if <#1>

<#2>

int <#1>; for (<#1> = <#2>; <#1> <= <#3>; <#LI>++)

{
<#4>

map i @ + @ 13 to code | EZENIRIZEY

e 0 T D TR | (<#1> - <#2>)

Figure 15: Portion of Snap! to C Code Mapping.

N

script variables a (b (len
set a | to! list 8

-
set b | to! list

——

set code | to| code of =
set len | to! length of (a

add ((item (i) of (@

Figure 16: Snap! Script to Map to C.
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#include <stdio.h>
#include <stdlib.h>

typedef struct node {
int data;
struct node *next;
} node_t;

void append(int d, node_t *p) {
while (p->next != NULL)
P = p->next;
p->next = (node_t *) malloc(sizeof (node_t));
P = p->next;
p->data = d;
p->next = NULL;

int main()

int len;
int all = {3, 7, 8};
node_t *b = (node_t *) malloc(sizeof(node_t));
len = (sizeof(a)/sizeof(al0]));
int i; for (i = 1; i <= len; i++)
{
append((ali - 1] * 10), b);
}

return (0);

Listing 5: Code Mapping to C.

Currently, mappings exist for JavaScript, C, Smalltalk, and Python. Code map-
pings for new textual languages can easily be specified by the user by creating
the corresponding mapping block.

6.2.1. Mapping Blocks to OpenMP

Not only are our extensions to Snap! modeled after OpenMP, but using the
experimental code mapping feature blocks we are now ready to translate Snap!
blocks into OpenMP code for compilation and execution in parallel outside of
the browser.

The strategy is to generate a text file with functions containing OpenMP
pragma annotations for parallel processing. The text file is then compiled and
linked against an OpenMP run time to produce a parallel program. This work-
flow is shown in Figure 17. With this capability, Snap! is able to break free from
being strictly a teaching language and begins to be a language and environment
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Figure 17: Snap! as part of a scientific workflow.

for creating programs of general utility.

To be concrete, consider the MapReduce application which converts Fahren-
heit to Celsius and produces an average temperature introduced in Section 3.4.
Figure 18 shows the map-reduce block and its corresponding mapped output
code. Note that the textual output contains three placeholder symbols <#1>
<#2>, and <#3> corresponding to the three arguments it requires. The first
placeholder symbol <#1> is replaced by the text from the block supplied as the
mapping function. The substituted text is the body of the map function. The
second placeholder symbol <#2> is replaced by the text from the block supplied
as the reducing function. The substituted text is the body of the reduce func-
tion. The final placeholder is replaced by the input list.” Note: the strncpy
function calls copy the keys from the input to the output per MapReduce se-
mantics. The transformation of the values is performed by the bodies of the
map and reduce functions as discussed above.

Figure 19 shows the code block for the the mapper which converts Fahrenheit
to Celsius, along with the textual code produced for the mapper function by the
code mapping. Likewise, Figure 20 shows the code block for the reducer which
computes the average of all of the values given to it, along with it’s mapped
output code.

Listing 6 shows the combined map and reduce functions produced by per-
forming the code mapping of the Snap! blocks to OpenMP. (For completeness,
the file containing the main function is shown in Listing 7.) Compared with
the Snap! block implementation it was generated from, the textual OpenMP
representation is full of details which are necessary for successful compilation
of the textual language but which are extraneous for a high-level description
of the problem being solved. Those details are provided in the mapping from
map-reduce to OpenMP code by the programmer implementing the map-reduce
block, i.e., us. Thereafter, it is used without care by others for whom the intri-
cacies of OpenMP coding is but a diversion from their work.

While the example was purposefully chosen to be small so the resulting
translated OpenMP code did not consume too much space and yet represents
a complete example, it demonstrates that Snap!’s experimental code mapping
functionality is useful for generating OpenMP code which is then compiled and
executed outside of the Snap! environment. In other words, Snap! is on its way
to become an interactive development environment (IDE) for developing parallel

9The symbol <#3> signifies the list of data to be operated upon and is used in the driver
code which invokes the map and reduce functions on each element of the list.
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Code mapping

map | <#1> reduce | <#2> over <#3>

int map (EVP #*in, KVP *out) {
strncpy (out->key, in->key, MAXKEY); {
out->val = <#1>;
return 03
t
Iin.t reduce (EVP *in, EVP #*out) {
strncpy (out->key, in->key, MAXKEY);
out->val = <#2>;
return 0;

1

Enter code that corresponds to the block's operation (usuzlly a single
function Invecation). Use <#n> to referance actual arguments as shown.

oK | Cancel |

Figure 18: The MapReduce Block and Corresponding Mapped Code.

_((5*(b-32))/9)

Figure 19: The Fahrenheit-to-Celsius Mapper Block and Corresponding Mapped Code.

float avg(float *a, size_t count)

float sum = 0;
inti; for (i = 1; i <= count; i++)
{

sum =sum + *(a + (i- 1));
}

return (sum / count);
b J
o

code of | avg (a

Figure 20: The Averaging Reducer Block and Corresponding Mapped Code.
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#include <math.h>
#include <string.h>
#include "kup.h"

float avg(float *a, size_t count) {
if (count == 1)
return *a;
return (*a + ((count-1)=*avg(a+l,count-1))/count);

}

int map (KVP *in, KVP *out) {
strncpy (out->key, in->key, MAXKEY);
out->val = ((5 * (in->val - 32)) / 9);
return O;

}

int reduce (KVP *in, KVP *out) {
strncpy (out->key, in->key, MAXKEY);
out->val = avg(in->val);
return O;

}

Listing 6: Fahrenheit-to-Celsius Map and Reduce Functions After Mapping.

applications that can run in HPC environments.

6.3. Future Work

As discussed earlier, we envision that the Snap! environment could become
an integrated development environment (IDE) for creating parallel programs for
use by scientists of all domains. In this section, we consider what remains to be
done for this vision to become a reality.

For use as an IDE, the Snap! environment needs a way in which to ingest
larger amounts of data without having to enter them in one by one into a list
box. For production use, it needs to have a way to consume existing data
files. Likewise, it needs a way to write data to files for use by other programs
outside of Snap!, and it needs to do these things in a consistent manner without
compromising the user-friendly interface that it currently has.

Besides support for the mapping of blocks to OpenMP shown above and
which we have already implemented, the Snap! environment needs to incorporate
the means for automating the compilation and linking of the textual output
from the code mapping process in order to fulfill the same requirements as are
currently filled by the Makefile in command-line programming environments or
by the project in graphical environments such as Eclipse.

Once the Snap! blocks are codified and compiled, the program needs to be
scheduled for execution. In a workstation environment, the execution occurs on
the local machine so scheduling is straightforward. Supercomputers, however,
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/% OpenMP driver for Parallel Snap! MapReduce code output. */
#include <omp.h>
#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#include "kvp.h"

int main(int argc, char *argv[]) {
int nkvp;
KVP *inputlist, *midlist, *outputlist;

if (input(&nkvp, &inputlist) != 0) {
return 1;
}
midlist = malloc(nkvp * sizeof (struct KVP));

/* Run mapper */
#pragma omp parallel for shared(nkup, inputlist, midlist)
for (KVP *i = inputlist, *m = midlist;
i < inputlist + nkvp; i++, m++) {
map(i, m);

}

/* Sort on keys */
gsort(midlist, nkvp, sizeof (KVP), compare);
outputlist = malloc(nkvp * sizeof (struct KVP));

/* Run reducer */
#pragma omp parallel for shared(nkup, midlist, outputlist)
for (int i = 0; i < nkvp; i++) {
reduce (&midlist[i], &outputlist[i]);
}

if (output(nkvp, outputlist) != 0) {
exit(1);
}

free(inputlist);
free(outputlist);

return O;

Listing 7: MapReduce OpenMP Driver Code Containing main.
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execute large, long-running jobs and use sophisticated batch scheduling systems.
The Snap! environment can be extended to generate an outline of the batch
submission script, if not its entirety. Further, it can be extended to submit the
job, monitor waiting in the queue until execution, then collect the results and
display them to the user.

While such an extended Snap! environment may not replace a more tradi-
tional HPC workflow, such an approach could serve as a bridge allowing ad-
vanced users to transition from learning how to program in parallel with Snap!
to using it to support their actual workflow. For many scientists, this may be
sufficient enough such that the more sophisticated environments are not neces-
sary.

Another aspect of the Snap! environment that we are working on encom-
passes the conversion of Snap! programs to textual source code, and in partic-
ular, how to map the dynamic types of variables in Snap! to the static types
in languages such as C, C++, and Fortran. The type mapping is needed to
generate correct source code as well as to achieve good performance.

Finally, we also wish to extend Snap! to extract even more intra-node par-
allelism as well as support inter-node parallelism.

While our results to date indicate that Snap! is an engaging way to intro-
duce parallel computing, further work needs to be done to rigorously quantify
outcomes of using Snap! to teach parallel programming. As mentioned ear-
lier, we are planning to deploy and assess Snap! in a "CSO Computer Literacy"
course [11], consisting primarily of first-year computer science students, in the
spring semester of 2017.

7. Related Work

Visual languages are seen as a way to make programming more accessible
to novice users. They can reduce or eliminate the problems arising from in-
correct syntax of a text-based program. In addition, the visual nature of these
languages make it easier for programmers to understand the structure of their
programs. These languages seek to provide high-level abstractions that hide
unnecessary complexity, thus enabling the user to focus more on the logic of the
programming task and less on the syntax of programming. Visual parallel pro-
gramming languages more specifically seek ways in which to manage and ease
the complexity of parallel programming that arises due to having to manage
multiple threads of control.

Explicitly parallel programs are multi-dimensional objects; the natural rep-
resentations of a parallel program are annotated directed graphs [15]. Indeed,
a survey of the visual parallel programming scene shows a proliferation of lan-
guages modeled on the basis of data flow, control flow, and even object flow.
LabVIEW is an example of a successful visual parallel programming language
with the specific application of designing instrumentation [16].

In [17], the authors present an analysis of a gamut of visual programming
languages, concluding that the success of a language is associated with spe-
cialization, e.g., LabVIEW. General-purpose visual programming languages for
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parallel programming require expertise, and subsequent visual diagrams become
too cumbersome and no longer have an advantage over a text-based solution.

8. Conclusion

To address the pedagogical need for parallel computing, particularly in light
of its ubiquity, our work seeks to augment the Snap! visual programming lan-
guage with capabilities that would enable the execution of truly parallel pro-
cesses. We have demonstrated a new Snap! block that executes in an explicitly
parallel fashion using Parallel.js. The implementation allows the user to
dynamically specify an operation of any complexity that can subsequently be
translated to the correct form for any designated back-end system. In the sce-
nario demonstrated in this paper, the Snap! blocks are translated into OpenMP,
compiled, and executed.

This same approach can be used to generate the back-end code for any tar-
get system, including those with more sophisticated architectures. This would
provide a gateway for novice programmers to learn about and to utilize explicit
parallel constructs at an earlier point in their programming careers than is cur-
rently the norm. It is our position that current parallel constructs in text-based
languages such as C are not at a high enough level of abstraction to be accessi-
ble to the novice user and that such limitations are simply an artificial barrier
that can be overcome through creative solutions. Our use of Snap! to implement
parallelMap successfully demonstrates one such creative solution and paves the
way for many more.
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